1
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
van Rhijn N, Zhao C, Al-Furaiji N, Storer ISR, Valero C, Gago S, Chown H, Baldin C, Grant RF, Bin Shuraym H, Ivanova L, Kniemeyer O, Krüger T, Bignell E, Goldman GH, Amich J, Delneri D, Bowyer P, Brakhage AA, Haas H, Bromley MJ. Functional analysis of the Aspergillus fumigatus kinome identifies a druggable DYRK kinase that regulates septal plugging. Nat Commun 2024; 15:4984. [PMID: 38862481 PMCID: PMC11166925 DOI: 10.1038/s41467-024-48592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.
Collapse
Affiliation(s)
- Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Can Zhao
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Narjes Al-Furaiji
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Pharmacology, College of Medicine, University of Kerbala, Kerbala, Iraq
| | - Isabelle S R Storer
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clara Baldin
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Rachael-Fortune Grant
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hajer Bin Shuraym
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 11481, Riyadh, Saudi Arabia
| | - Lia Ivanova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Daniela Delneri
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Axel A Brakhage
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Maslanka R, Bednarska S, Zadrag-Tecza R. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Arch Biochem Biophys 2024; 756:110021. [PMID: 38697344 DOI: 10.1016/j.abb.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
4
|
Kwon S, Choi Y, Kim ES, Lee KT, Bahn YS, Jung KW. Pleiotropic roles of LAMMER kinase, Lkh1 in stress responses and virulence of Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1369301. [PMID: 38774630 PMCID: PMC11106425 DOI: 10.3389/fcimb.2024.1369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 05/24/2024] Open
Abstract
Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eui-Seong Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
5
|
Joshi K, Luisi B, Wunderlin G, Saleh S, Lilly A, Okusolubo T, Farabaugh PJ. An evolutionarily conserved phosphoserine-arginine salt bridge in the interface between ribosomal proteins uS4 and uS5 regulates translational accuracy in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:3989-4001. [PMID: 38340338 DOI: 10.1093/nar/gkae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.
Collapse
Affiliation(s)
- Kartikeya Joshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Brooke Luisi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Grant Wunderlin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Sima Saleh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Anna Lilly
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Temiloluwa Okusolubo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| |
Collapse
|
6
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Bohner F, Papp C, Takacs T, Varga M, Szekeres A, Nosanchuk JD, Vágvölgyi C, Tóth R, Gacser A. Acquired Triazole Resistance Alters Pathogenicity-Associated Features in Candida auris in an Isolate-Dependent Manner. J Fungi (Basel) 2023; 9:1148. [PMID: 38132749 PMCID: PMC10744493 DOI: 10.3390/jof9121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Fluconazole resistance is commonly encountered in Candida auris, and the yeast frequently displays resistance to other standard drugs, which severely limits the number of effective therapeutic agents against this emerging pathogen. In this study, we aimed to investigate the effect of acquired azole resistance on the viability, stress response, and virulence of this species. Fluconazole-, posaconazole-, and voriconazole- resistant strains were generated from two susceptible C. auris clinical isolates (0381, 0387) and compared under various conditions. Several evolved strains became pan-azole-resistant, as well as echinocandin-cross-resistant. While being pan-azole-resistant, the 0381-derived posaconazole-evolved strain colonized brain tissue more efficiently than any other strain, suggesting that fitness cost is not necessarily a consequence of resistance development in C. auris. All 0387-derived evolved strains carried a loss of function mutation (R160S) in BCY1, an inhibitor of the PKA pathway. Sequencing data also revealed that posaconazole treatment can result in ERG3 mutation in C. auris. Despite using the same mechanisms to generate the evolved strains, both genotype and phenotype analysis highlighted that the development of resistance was unique for each strain. Our data suggest that C. auris triazole resistance development is a highly complex process, initiated by several pleiotropic factors.
Collapse
Affiliation(s)
- Flora Bohner
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Csaba Papp
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Tamas Takacs
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Mónika Varga
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - András Szekeres
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Joshua D. Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Attila Gacser
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
- HUN-REN-USZ Pathomechanisms of Fungal Infections Research Group, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
8
|
Caligaris M, Sampaio-Marques B, Hatakeyama R, Pillet B, Ludovico P, De Virgilio C, Winderickx J, Nicastro R. The Yeast Protein Kinase Sch9 Functions as a Central Nutrient-Responsive Hub That Calibrates Metabolic and Stress-Related Responses. J Fungi (Basel) 2023; 9:787. [PMID: 37623558 PMCID: PMC10455444 DOI: 10.3390/jof9080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Riko Hatakeyama
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, B-3001 Heverlee, Belgium;
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| |
Collapse
|
9
|
van Rhijn N, Zhao C, Al-Furaji N, Storer I, Valero C, Gago S, Chown H, Baldin C, Fortune-Grant R, Shuraym HB, Ivanova L, Kniemeyer O, Krüger T, Bignell E, Goldman G, Amich J, Delneri D, Bowyer P, Brakhage A, Haas H, Bromley M. Functional analysis of the Aspergillus fumigatus kinome reveals a DYRK kinase involved in septal plugging is a novel antifungal drug target. RESEARCH SQUARE 2023:rs.3.rs-2960526. [PMID: 37398159 PMCID: PMC10312919 DOI: 10.21203/rs.3.rs-2960526/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. The azole class of antifungals represent first line therapeutics for most of these infections however resistance is rising. Identification of novel antifungal targets that, when inhibited, synergise with the azoles will aid the development of agents that can improve therapeutic outcomes and supress the emergence of resistance. As part of the A. fumigatus genome-wide knockout program (COFUN), we have completed the generation of a library that consists of 120 genetically barcoded null mutants in genes that encode the protein kinase cohort of A. fumigatus. We have employed a competitive fitness profiling approach (Bar-Seq), to identify targets which when deleted result in hypersensitivity to the azoles and fitness defects in a murine host. The most promising candidate from our screen is a previously uncharacterised DYRK kinase orthologous to Yak1 of Candida albicans, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. Here we show that the orthologue YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress via phosphorylation of the Woronin body tethering protein Lah. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and impacts growth in murine lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit Yak1 in C. albicans prevents stress mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.
Collapse
Affiliation(s)
| | - Can Zhao
- Manchester Fungal Infection Group
| | | | | | | | | | | | | | | | | | - Lia Ivanova
- Leibniz Institute for Natural Product Research and Infection Biology
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology
| | | | - Gustavo Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Bloco Q, Universidade de São Paulo
| | | | | | | | - Axel Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - University of Jena
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Innsbruck Medical University
| | | |
Collapse
|
10
|
Xia B, Viswanatha R, Hu Y, Mohr SE, Perrimon N. Pooled genome-wide CRISPR activation screening for rapamycin resistance genes in Drosophila cells. eLife 2023; 12:e85542. [PMID: 37078570 PMCID: PMC10118385 DOI: 10.7554/elife.85542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 04/21/2023] Open
Abstract
Loss-of-function and gain-of-function genetic perturbations provide valuable insights into gene function. In Drosophila cells, while genome-wide loss-of-function screens have been extensively used to reveal mechanisms of a variety of biological processes, approaches for performing genome-wide gain-of-function screens are still lacking. Here, we describe a pooled CRISPR activation (CRISPRa) screening platform in Drosophila cells and apply this method to both focused and genome-wide screens to identify rapamycin resistance genes. The screens identified three genes as novel rapamycin resistance genes: a member of the SLC16 family of monocarboxylate transporters (CG8468), a member of the lipocalin protein family (CG5399), and a zinc finger C2H2 transcription factor (CG9932). Mechanistically, we demonstrate that CG5399 overexpression activates the RTK-Akt-mTOR signaling pathway and that activation of insulin receptor (InR) by CG5399 requires cholesterol and clathrin-coated pits at the cell membrane. This study establishes a novel platform for functional genetic studies in Drosophila cells.
Collapse
Affiliation(s)
- Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Drosophila RNAi Screening Center, Harvard Medical SchoolBostonUnited States
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Drosophila RNAi Screening Center, Harvard Medical SchoolBostonUnited States
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Drosophila RNAi Screening Center, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
11
|
Gutiérrez-Santiago F, Navarro F. Transcription by the Three RNA Polymerases under the Control of the TOR Signaling Pathway in Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13040642. [PMID: 37189389 DOI: 10.3390/biom13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosomes are the basis for protein production, whose biogenesis is essential for cells to drive growth and proliferation. Ribosome biogenesis is highly regulated in accordance with cellular energy status and stress signals. In eukaryotic cells, response to stress signals and the production of newly-synthesized ribosomes require elements to be transcribed by the three RNA polymerases (RNA pols). Thus, cells need the tight coordination of RNA pols to adjust adequate components production for ribosome biogenesis which depends on environmental cues. This complex coordination probably occurs through a signaling pathway that links nutrient availability with transcription. Several pieces of evidence strongly support that the Target of Rapamycin (TOR) pathway, conserved among eukaryotes, influences the transcription of RNA pols through different mechanisms to ensure proper ribosome components production. This review summarizes the connection between TOR and regulatory elements for the transcription of each RNA pol in the budding yeast Saccharomyces cerevisiae. It also focuses on how TOR regulates transcription depending on external cues. Finally, it discusses the simultaneous coordination of the three RNA pols through common factors regulated by TOR and summarizes the most important similarities and differences between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
12
|
Pérez-Díaz AJ, Vázquez-Marín B, Vicente-Soler J, Prieto-Ruiz F, Soto T, Franco A, Cansado J, Madrid M. cAMP-Protein kinase A and stress-activated MAP kinase signaling mediate transcriptional control of autophagy in fission yeast during glucose limitation or starvation. Autophagy 2023; 19:1311-1331. [PMID: 36107819 PMCID: PMC10012941 DOI: 10.1080/15548627.2022.2125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is an essential adaptive physiological response in eukaryotes induced during nutrient starvation, including glucose, the primary immediate carbon and energy source for most cells. Although the molecular mechanisms that induce autophagy during glucose starvation have been extensively explored in the budding yeast Saccharomyces cerevisiae, little is known about how this coping response is regulated in the evolutionary distant fission yeast Schizosaccharomyces pombe. Here, we show that S. pombe autophagy in response to glucose limitation relies on mitochondrial respiration and the electron transport chain (ETC), but, in contrast to S. cerevisiae, the AMP-activated protein kinase (AMPK) and DNA damage response pathway components do not modulate fission yeast autophagic flux under these conditions. In the presence of glucose, the cAMP-protein kinase A (PKA) signaling pathway constitutively represses S. pombe autophagy by downregulating the transcription factor Rst2, which promotes the expression of respiratory genes required for autophagy induction under limited glucose availability. Furthermore, the stress-activated protein kinase (SAPK) signaling pathway, and its central mitogen-activated protein kinase (MAPK) Sty1, positively modulate autophagy upon glucose limitation at the transcriptional level through its downstream effector Atf1 and by direct in vivo phosphorylation of Rst2 at S292. Thus, our data indicate that the signaling pathways that govern autophagy during glucose shortage or starvation have evolved differently in S. pombe and uncover the existence of sophisticated and multifaceted mechanisms that control this self-preservation and survival response.
Collapse
Affiliation(s)
- Armando Jesús Pérez-Díaz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco Prieto-Ruiz
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Alejandro Franco
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - José Cansado
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Marisa Madrid
- Yeast Physiology Group. Department of Genetics and Microbiology. Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
13
|
Wang YN, Liu FJ, Liu HD, Zhang Y, Jiao X, Ye ML, Zhao ZBK, Zhang SF. Regulation of autophagy and lipid accumulation under phosphate limitation in Rhodotorula toruloides. Front Microbiol 2023; 13:1046114. [PMID: 36777022 PMCID: PMC9908577 DOI: 10.3389/fmicb.2022.1046114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
Background It is known that autophagy is essential for cell survival under stress conditions. Inorganic phosphate (Pi) is an essential nutrient for cell growth and Pi-limitation can trigger autophagy and lipid accumulation in oleaginous yeasts, yet protein (de)-phosphorylation and related signaling events in response to Pi limitation and the molecular basis linking Pi-limitation to autophagy and lipid accumulation remain elusive. Results Here, we compared the proteome and phosphoproteome of Rhodotorula toruloides CGMCC 2.1389 under Pi-limitation and Pi-repletion. In total, proteome analysis identified 3,556 proteins and the phosphoproteome analysis identified 1,649 phosphoproteins contained 5,659 phosphosites including 4,499 pSer, 978 pThr, and 182 pTyr. We found Pi-starvation-induced autophagy was regulated by autophagy-related proteins, but not the PHO pathway. When ATG9 was knocked down, the engineered strains produced significantly less lipids under Pi-limitation, suggesting that autophagy required Atg9 in R. toruloides and that was conducive to lipid accumulation. Conclusion Our results provide new insights into autophagy regulation under Pi-limitation and lipid accumulation in oleaginous yeast, which should be valuable to guide further mechanistic study of oleaginicity and genetic engineering for advanced lipid producing cell factory.
Collapse
Affiliation(s)
- Ya-nan Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang-jie Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Hong-di Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Xiang Jiao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Ming-liang Ye
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China,Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, CAS, Dalian, China,Ming-liang Ye,
| | - Zong-bao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China,Zong-bao Kent Zhao,
| | - Su-fang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China,*Correspondence: Su-fang Zhang, ,
| |
Collapse
|
14
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
15
|
Scarpin MR, Simmons CH, Brunkard JO. Translating across kingdoms: target of rapamycin promotes protein synthesis through conserved and divergent pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7016-7025. [PMID: 35770874 PMCID: PMC9664230 DOI: 10.1093/jxb/erac267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
mRNA translation is the growth rate-limiting step in genome expression. Target of rapamycin (TOR) evolved a central regulatory role in eukaryotes as a signaling hub that monitors nutrient availability to maintain homeostasis and promote growth, largely by increasing the rate of translation initiation and protein synthesis. The dynamic pathways engaged by TOR to regulate translation remain debated even in well-studied yeast and mammalian models, however, despite decades of intense investigation. Recent studies have firmly established that TOR also regulates mRNA translation in plants through conserved mechanisms, such as the TOR-LARP1-5'TOP signaling axis, and through pathways specific to plants. Here, we review recent advances in our understanding of the regulation of mRNA translation in plants by TOR.
Collapse
Affiliation(s)
- M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
- Department of Plant and Microbial Biology, University of California, Berkeley,CA, USA
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, USA
| | - Carl H Simmons
- Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
16
|
Cai YY, Li L, Zhu XM, Lu JP, Liu XH, Lin FC. The crucial role of the regulatory mechanism of the Atg1/ULK1 complex in fungi. Front Microbiol 2022; 13:1019543. [PMID: 36386635 PMCID: PMC9643702 DOI: 10.3389/fmicb.2022.1019543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy, an evolutionarily conserved cellular degradation pathway in eukaryotes, is hierarchically regulated by autophagy-related genes (Atgs). The Atg1/ULK1 complex is the most upstream factor involved in autophagy initiation. Here,we summarize the recent studies on the structure and molecular mechanism of the Atg1/ULK1 complex in autophagy initiation, with a special focus on upstream regulation and downstream effectors of Atg1/ULK1. The roles of pathogenicity and autophagy aspects in Atg1/ULK1 complexes of various pathogenic hosts, including plants, insects, and humans, are also discussed in this work based on recent research findings. We establish a framework to study how the Atg1/ULK1 complex integrates the signals that induce autophagy in accordance with fungus to mammalian autophagy regulation pathways. This framework lays the foundation for studying the deeper molecular mechanisms of the Atg1 complex in pathogenic fungi.
Collapse
Affiliation(s)
- Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Ping Lu
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Fu-Cheng Lin,
| |
Collapse
|
17
|
Phosphorylation of Jhd2 by the Ras-cAMP-PKA(Tpk2) pathway regulates histone modifications and autophagy. Nat Commun 2022; 13:5675. [PMID: 36167807 PMCID: PMC9515143 DOI: 10.1038/s41467-022-33423-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. How cells transduce nutrient availability to appropriate gene expression remains poorly understood. Here we show that glycolysis regulates histone modifications and gene expression by activating protein kinase A (PKA) via the Ras-cyclic AMP pathway. The catalytic subunit of PKA, Tpk2 antagonizes Jhd2-catalyzed H3K4 demethylation by phosphorylating Jhd2 at Ser321 and Ser340 in response to glucose availability. Tpk2-catalyzed Jhd2 phosphorylation impairs its nuclear localization, reduces its binding to chromatin, and promotes its polyubiquitination and degradation by the proteasome. Tpk2-catalyzed Jhd2 phosphorylation also maintains H3K14 acetylation by preventing the binding of histone deacetylase Rpd3 to chromatin. By phosphorylating Jhd2, Tpk2 regulates gene expression, maintains normal chronological life span and promotes autophagy. These results provide a direct connection between metabolism and histone modifications and shed lights on how cells rewire their biological responses to nutrient signals. How cells transduce nutrient availability to appropriate gene expression remains poorly understood. Here the authors show that the nutrient sensor, protein kinase A modulates histone modifications and gene transcription by phosphorylating histone demethylase.
Collapse
|
18
|
Tsuji Y, Kinoshita A, Tsukahara M, Ishikawa T, Shinkawa H, Yamano T, Fukuzawa H. A YAK1-type protein kinase, triacylglycerol accumulation regulator 1, in the green alga Chlamydomonas reinhardtii is a potential regulator of cell division and differentiation into gametes during photoautotrophic nitrogen deficiency. J GEN APPL MICROBIOL 2022. [PMID: 36002293 DOI: 10.2323/jgam.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yet another kinase (YAK) 1 is a conserved eukaryotic protein kinase coordinating growth and development. We previously isolated a mutant of Chlamydomonas reinhardtii defective in the YAK1 ortholog triacylglycerol (TAG) accumulation regulator 1 (TAR1). The mutant tar1-1 displayed higher levels of chlorophyll, starch, TAG, and biomass than the parental strain C9 (renamed as C9-3) in photoautotrophic nitrogen (N)-deficient conditions. However, we found that the parental C9-3 showed faster chlorosis upon N-deficiency than the original C9 (C9-1) freshly recovered from cryopreservation, suggesting that C9-3 had acquired particular characteristics during long-term subculturing. To exclude phenotypes dependent on a particular parental strain, we newly created tar1 mutants from two wild-types, C9-1 and CC 125. Like tar1-1, the new tar1 mutants showed higher levels of chlorophyll and TAG/starch than the parental strain. Upon removal of N, Chlamydomonas cells divide once before ceasing further division. Previously, the single division after N-removal was arrested in tar1-1 in photomixotrophic conditions, but this phenotype was not observed in photoautotrophic conditions because of the particular characteristics of the parental C9-3. However, using C9- 1 and CC-125 as parental strains, we showed that cell division after N-removal was impaired in new tar1 mutants in photoautotrophic conditions. Consistent with the view that the division under N-deficiency is necessary for gametic differentiation, new tar1 mutants showed lower mating efficiency than the parental strains. Taken together, TAR1 was suggested to promote differentiation into gametes through the regulation of cell division in response to N-deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Haruka Shinkawa
- Graduate Study of Biostudies, Kyoto University.,Present address: Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University
| | | | | |
Collapse
|
19
|
Guerra P, Vuillemenot LAPE, van Oppen YB, Been M, Milias-Argeitis A. TORC1 and PKA activity towards ribosome biogenesis oscillates in synchrony with the budding yeast cell cycle. J Cell Sci 2022; 135:276358. [PMID: 35975715 DOI: 10.1242/jcs.260378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
Recent studies have revealed that the growth rate of budding yeast and mammalian cells varies during the cell cycle. By linking a multitude of signals to cell growth, the highly conserved Target of Rapamycin Complex 1 (TORC1) and Protein Kinase A (PKA) pathways are prime candidates for mediating the dynamic coupling between growth and division. However, measurements of TORC1 and PKA activity during the cell cycle are still lacking. Following the localization dynamics of two TORC1 and PKA targets via time-lapse microscopy in hundreds of yeast cells, we found that the activity of these pathways towards ribosome biogenesis fluctuates in synchrony with the cell cycle even under constant external conditions. Mutations of upstream TORC1 and PKA regulators suggested that internal metabolic signals partially mediate these activity changes. Our study reveals a new aspect of TORC1 and PKA signaling, which will be important for understanding growth regulation during the cell cycle.
Collapse
Affiliation(s)
- Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Luc-Alban P E Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Yulan B van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Marije Been
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| |
Collapse
|
20
|
Interaction of TOR and PKA Signaling in S. cerevisiae. Biomolecules 2022; 12:biom12020210. [PMID: 35204711 PMCID: PMC8961621 DOI: 10.3390/biom12020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
TOR and PKA signaling are the major growth-regulatory nutrient-sensing pathways in S. cerevisiae. A number of experimental findings demonstrated a close relationship between these pathways: Both are responsive to glucose availability. Both regulate ribosome production on the transcriptional level and repress autophagy and the cellular stress response. Sch9, a major downstream effector of TORC1 presumably shares its kinase consensus motif with PKA, and genetic rescue and synthetic defects between PKA and Sch9 have been known for a long time. Further, studies in the first decade of this century have suggested direct regulation of PKA by TORC1. Nonetheless, the contribution of a potential direct cross-talk vs. potential sharing of targets between the pathways has still not been completely resolved. What is more, other findings have in contrast highlighted an antagonistic relationship between the two pathways. In this review, I explore the association between TOR and PKA signaling, mainly by focusing on proteins that are commonly referred to as shared TOR and PKA targets. Most of these proteins are transcription factors which to a large part explain the major transcriptional responses elicited by TOR and PKA upon nutrient shifts. I examine the evidence that these proteins are indeed direct targets of both pathways and which aspects of their regulation are targeted by TOR and PKA. I further explore if they are phosphorylated on shared sites by PKA and Sch9 or when experimental findings point towards regulation via the PP2ASit4/PP2A branch downstream of TORC1. Finally, I critically review data suggesting direct cross-talk between the pathways and its potential mechanism.
Collapse
|
21
|
Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 2021; 37:110149. [PMID: 34965436 DOI: 10.1016/j.celrep.2021.110149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.
Collapse
|
22
|
Navarro MV, de Barros YN, Segura WD, Chaves AFA, Jannuzzi GP, Ferreira KS, Xander P, Batista WL. The Role of Dimorphism Regulating Histidine Kinase (Drk1) in the Pathogenic Fungus Paracoccidioides brasiliensis Cell Wall. J Fungi (Basel) 2021; 7:jof7121014. [PMID: 34946996 PMCID: PMC8707131 DOI: 10.3390/jof7121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.
Collapse
Affiliation(s)
- Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
| | - Yasmin Nascimento de Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wilson Dias Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | | | - Grasielle Pereira Jannuzzi
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Patrícia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
- Correspondence: ; Tel.: +55-11-3319-3594; Fax: +55-11-3319-3300
| |
Collapse
|
23
|
A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus. mBio 2021; 12:e0260021. [PMID: 34781734 PMCID: PMC8593672 DOI: 10.1128/mbio.02600-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acetylation and deacetylation of histones are key epigenetic mechanisms for gene regulation in response to environmental stimuli. RPD3 is a well-conserved class I histone deacetylase (HDAC) that is involved in diverse biological processes. Here, we investigated the roles of the Magnaporthe oryzaeRPD3 (MoRPD3) gene, an ortholog of Saccharomyces cerevisiaeRpd3, during development and pathogenesis in the model plant-pathogenic fungus Magnaporthe oryzae. We demonstrated that the MoRPD3 gene is able to functionally complement the yeast Rpd3 deletion mutant despite the C-terminal extension of the MoRPD3 protein. MoRPD3 localizes primarily to the nuclei of vegetative hyphae, asexual spores, and invasive hyphae. Deletion of MoRPD3 appears to be lethal. Depletion of MoRPD3 transcripts via gene silencing (MoRPD3kd, where “kd” stands for “knockdown”) has opposing effects on asexual and sexual reproduction. Although conidial germination and appressorium formation rates of the mutants were almost comparable to those of the wild type, in-depth analysis revealed that the appressoria of mutants are smaller than those of the wild type. Furthermore, the MoRPD3kd strain shows a significant reduction in pathogenicity, which can be attributed to the delay in appressorium-mediated penetration and impaired invasive growth. Interestingly, MoRPD3 does not regulate potassium transporters, as shown for Rpd3 of S. cerevisiae. However, it functioned in association with the target of rapamycin (TOR) kinase pathway, resulting in the dependency of appressorium formation on hydrophilic surfaces and on TOR’s inhibition by MoRPD3. Taken together, our results uncovered distinct and evolutionarily conserved roles of MoRPD3 in regulating fungal reproduction, infection-specific development, and virulence.
Collapse
|
24
|
Montella-Manuel S, Pujol-Carrion N, de la Torre-Ruiz MA. The Cell Wall Integrity Receptor Mtl1 Contributes to Articulate Autophagic Responses When Glucose Availability Is Compromised. J Fungi (Basel) 2021; 7:903. [PMID: 34829194 PMCID: PMC8623553 DOI: 10.3390/jof7110903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mtl1protein is a cell wall receptor belonging to the CWI pathway. Mtl1 function is related to glucose and oxidative stress signaling. In this report, we show data demonstrating that Mtl1 plays a critical role in the detection of a descent in glucose concentration, in order to activate bulk autophagy machinery as a response to nutrient deprivation and to maintain cell survival in starvation conditions. Autophagy is a tightly regulated mechanism involving several signaling pathways. The data here show that in Saccharomyces cerevisiae, Mtl1 signals glucose availability to either Ras2 or Sch9 proteins converging in Atg1 phosphorylation and autophagy induction. TORC1 complex function is not involved in autophagy induction during the diauxic shift when glucose is limited. In this context, the GCN2 gene is required to regulate autophagy activation upon amino acid starvation independent of the TORC1 complex. Mtl1 function is also involved in signaling the autophagic degradation of mitochondria during the stationary phase through both Ras2 and Sch9, in a manner dependent on either Atg33 and Atg11 proteins and independent of the Atg32 protein, the mitophagy receptor. All of the above suggest a pivotal signaling role for Mtl1 in maintaining correct cell homeostasis function in periods of glucose scarcity in budding yeast.
Collapse
Affiliation(s)
| | | | - Maria Angeles de la Torre-Ruiz
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198 Lleida, Spain; (S.M.-M.); (N.P.-C.)
| |
Collapse
|
25
|
Corral-Ramos C, Barrios R, Ayté J, Hidalgo E. TOR and MAP kinase pathways synergistically regulate autophagy in response to nutrient depletion in fission yeast. Autophagy 2021; 18:375-390. [PMID: 34157946 DOI: 10.1080/15548627.2021.1935522] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
General autophagy is an evolutionarily conserved process in eukaryotes, by which intracellular materials are transported into and degraded inside lysosomes or vacuoles, with the main goal of recycling those materials during periods of starvation. The molecular bases of autophagy have been widely described in Saccharomyces cerevisiae, and the specific roles of Atg proteins in the process were first characterized in this model system. Important contributions have been made in Schizosaccharomyces pombe highlighting the evolutionary similarity and, at the same time, diversity of Atg components in autophagy. However, little is known regarding signals, pathways and role of autophagy in this distant yeast. Here, we undertake a global approach to investigate the signals, the pathways and the consequences of autophagy activation. We demonstrate that not only nitrogen but several nutritional deprivations including lack of carbon, sulfur, phosphorus or leucine sources, trigger autophagy, and that the TORC1, TORC2 and MAP kinase Sty1 pathways control the onset of autophagy. Furthermore, we identify an unexpected phenotype of autophagy-defective mutants, namely their inability to survive in the absence of leucine when biosynthesis of this amino acid is impaired.Abbreviations: ATG: autophagy-related; cAMP: cyclic adenosine monophosphate; cDNA: complementary deoxyribonucleic acid; GFP: green fluorescence protein; Gluc: glucose; Leu: leucine; MAP: mitogen-activated protein; MM: minimal medium; PI: propidium iodine; PKA: protein kinase A; RNA: ribonucleic acid; RT-qPCR: real time quantitative polymerase chain reaction; S. cerevisiae: Saccharomyces cerevisiae; S. pombe: Schizosaccharomyces pombe; TCA: trichloroacetic acid; TOR: target of rapamycin; TORC1: target of rapamycin complex 1; TORC2: target of rapamycin complex 2; YE5S: yeast extract 5 amino acid supplemented.
Collapse
Affiliation(s)
| | - Rubén Barrios
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
26
|
Msn2/4 transcription factors positively regulate expression of Atg39 ER-phagy receptor. Sci Rep 2021; 11:11919. [PMID: 34099851 PMCID: PMC8184937 DOI: 10.1038/s41598-021-91480-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Selective autophagy requires the autophagy receptor specifically localizing to the target for degradation. In the budding yeast, Atg39 and Atg40 function as an autophagy receptor for the endoplasmic reticulum (ER)-selective autophagy, referred to as ER-phagy. The expression level of the ATG39 gene is increased in response to ER stress and nitrogen starvation. Under unstressed conditions, ATG39 transcription is repressed by Mig1/2 repressors. ER stress activates Snf1 AMP-activated protein kinase (AMPK), which negatively regulates Mig1/2 and consequently derepresses ATG39 transcription. However, ATG39 expression is still induced by ER stress and nitrogen starvation in the absence of Snf1, suggesting that additional molecules are involved in regulation of ATG39 expression. Here, we identify Msn2/4 transcription factors as an activator of ATG39 transcription. Not only ATG39 promoter activity but also ER-phagy are downregulated by loss of Msn2/4 and disruption of Msn2/4-binding consensus sequences located in the ATG39 promoter. We also find that the cAMP-dependent protein kinase pathway is involved in Msn2/4-mediated transcriptional regulation of ATG39. Our results suggest that yeast ER-phagy is appropriately controlled through modulation of the expression level of the ER-phagy receptor involving multiple signaling pathways and transcription factors.
Collapse
|
27
|
Peterson PP, Liu Z. Identification and Characterization of Rapidly Accumulating sch9Δ Suppressor Mutations in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6254187. [PMID: 33901283 DOI: 10.1093/g3journal/jkab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023]
Abstract
Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.
Collapse
Affiliation(s)
- Patricia P Peterson
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
28
|
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Comput Struct Biotechnol J 2021; 19:1713-1737. [PMID: 33897977 PMCID: PMC8050425 DOI: 10.1016/j.csbj.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin‐related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.
Collapse
Key Words
- AAs, amino acids
- ACT, amino Acid/Choline Transporter
- AP, adaptor protein
- APC, amino acid-polyamine-organocation
- Arg, arginine
- Arrestins
- Arts, arrestin‐related trafficking adaptors
- Asp, aspartic acid
- Aspergilli
- Biotechnology
- C, carbon
- C-terminus, carboxyl-terminus
- Cell factories
- Conformational changes
- Cu, copper
- DUBs, deubiquitinating enzymes
- EMCs, eisosome membrane compartments
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- Endocytic signals
- Endocytosis
- Fe, iron
- Fungi
- GAAC, general amino acid control
- Glu, glutamic acid
- H+, proton
- IF, inward-facing
- LAT, L-type Amino acid Transporter
- LID, loop Interaction Domain
- Lys, lysine
- MCCs, membrane compartments containing the arginine permease Can1
- MCCs/eisosomes
- MCPs, membrane compartments of Pma1
- MFS, major facilitator superfamily
- MVB, multi vesicular bodies
- Met, methionine
- Metabolism
- Mn, manganese
- N, nitrogen
- N-terminus, amino-terminus
- NAT, nucleobase Ascorbate Transporter
- NCS1, nucleobase/Cation Symporter 1
- NCS2, nucleobase cation symporter family 2
- NH4+, ammonium
- Nutrient transporters
- OF, outward-facing
- PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)
- PM, plasma membrane
- PVE, prevacuolar endosome
- Saccharomyces cerevisiae
- Signaling pathways
- Structure-function
- TGN, trans-Golgi network
- TMSs, transmembrane segments
- TORC1, target of rapamycin complex 1
- TRY, titer, rate and yield
- Trp, tryptophan
- Tyr, tyrosine
- Ub, ubiquitin
- Ubiquitylation
- VPS, vacuolar protein sorting
- W/V, weight per volume
- YAT, yeast Amino acid Transporter
- Zn, Zinc
- fAATs, fungal AA transporters
Collapse
|
29
|
Omarjee O, Mathieu AL, Quiniou G, Moreews M, Ainouze M, Frachette C, Melki I, Dumaine C, Gerfaud-Valentin M, Duquesne A, Kallinich T, Tahir Turanli E, Malcus C, Viel S, Pescarmona R, Georgin-Lavialle S, Jamilloux Y, Larbre JP, Sarrabay G, Magnotti F, Rice GI, Bleicher F, Reboulet J, Merabet S, Henry T, Crow YJ, Faure M, Walzer T, Belot A. LACC1 deficiency links juvenile arthritis with autophagy and metabolism in macrophages. J Exp Med 2021; 218:211815. [PMID: 33606008 PMCID: PMC7901146 DOI: 10.1084/jem.20201006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Juvenile idiopathic arthritis is the most common chronic rheumatic disease in children, and its etiology remains poorly understood. Here, we explored four families with early-onset arthritis carrying homozygous loss-of-expression mutations in LACC1. To understand the link between LACC1 and inflammation, we performed a functional study of LACC1 in human immune cells. We showed that LACC1 was primarily expressed in macrophages upon mTOR signaling. We found that LACC1 deficiency had no obvious impact on inflammasome activation, type I interferon response, or NF-κB regulation. Using bimolecular fluorescence complementation and biochemical assays, we showed that autophagy-inducing proteins, RACK1 and AMPK, interacted with LACC1. Autophagy blockade in macrophages was associated with LACC1 cleavage and degradation. Moreover, LACC1 deficiency reduced autophagy flux in primary macrophages. This was associated with a defect in the accumulation of lipid droplets and mitochondrial respiration, suggesting that LACC1-dependent autophagy fuels macrophage bioenergetics metabolism. Altogether, LACC1 deficiency defines a novel form of genetically inherited juvenile arthritis associated with impaired autophagy in macrophages.
Collapse
Affiliation(s)
- Ommar Omarjee
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France.,National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France.,National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France
| | - Gaëlle Quiniou
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Marion Moreews
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Michelle Ainouze
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Cécile Frachette
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Department, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Isabelle Melki
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Neurogenetics and Neuroinflammation, Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, Paris, France
| | - Cécile Dumaine
- General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Agnès Duquesne
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Department, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Tilmann Kallinich
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité University Medicine Berlin, German Rheumatism Research Center, Leibniz Association, Berlin Institute of Health, Berlin, Germany
| | - Eda Tahir Turanli
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christophe Malcus
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,Immunology Department, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Viel
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,Immunology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Rémi Pescarmona
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,Immunology Department, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Sophie Georgin-Lavialle
- Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Sorbonne Université, Service de Médecine Interne, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses d'Origine Inflammatoire, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Université Pierre-et-Marie-Curie-Paris 6, Institut National de la Santé et de la Recherche Médicale UMRS 933, Paris, France
| | - Yvan Jamilloux
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France.,Internal Medicine, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Paul Larbre
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,Rheumatology Unit, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Guillaume Sarrabay
- Centre Hospitalier Universitaire Montpellier, University of Montpellier, Laboratory of Rare and Autoinflammatory Genetic Diseases and Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses d'Origine Inflammatoire, Montpellier, France
| | - Flora Magnotti
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Francoise Bleicher
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Thomas Henry
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, Paris, France.,Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mathias Faure
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France.,National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Institut National de la Santé et de la Recherche Médicale, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France.,National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Department, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
30
|
Hu Z, Raucci S, Jaquenoud M, Hatakeyama R, Stumpe M, Rohr R, Reggiori F, De Virgilio C, Dengjel J. Multilayered Control of Protein Turnover by TORC1 and Atg1. Cell Rep 2020; 28:3486-3496.e6. [PMID: 31553916 DOI: 10.1016/j.celrep.2019.08.069] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is a master regulator of cell homeostasis, which promotes anabolic reactions and synchronously inhibits catabolic processes such as autophagy-mediated protein degradation. Its prime autophagy target is Atg13, a subunit of the Atg1 kinase complex that acts as the gatekeeper of canonical autophagy. To study whether the activities of TORC1 and Atg1 are coupled through additional, more intricate control mechanisms than simply this linear pathway, we analyzed the epistatic relationship between TORC1 and Atg1 by using quantitative phosphoproteomics. Our in vivo data, combined with targeted in vitro TORC1 and Atg1 kinase assays, not only uncover numerous TORC1 and Atg1 effectors, but also suggest distinct bi-directional regulatory feedback loops and characterize Atg29 as a commonly regulated downstream target of both TORC1 and Atg1. Thus, an exquisitely multilayered regulatory network appears to coordinate TORC1 and Atg1 activities to robustly tune autophagy in response to nutritional cues.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Serena Raucci
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Rudolf Rohr
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
31
|
Zhang X, Wu D, Wang C, Luo Y, Ding X, Yang X, Silva F, Arenas S, Weaver JM, Mandell M, Deretic V, Liu M. Sustained activation of autophagy suppresses adipocyte maturation via a lipolysis-dependent mechanism. Autophagy 2020; 16:1668-1682. [PMID: 31840569 PMCID: PMC8386625 DOI: 10.1080/15548627.2019.1703355] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of macroautophagy/autophagy is implicated in obesity and insulin resistance. However, it remains poorly defined how autophagy regulates adipocyte development. Using adipose-specific rptor/raptor knockout (KO), atg7 KO and atg7 rptor double-KO mice, we show that inhibiting MTORC1 by RPTOR deficiency led to autophagic sequestration of lipid droplets, formation of LD-containing lysosomes, and elevation of basal and isoproterenol-induced lipolysis in vivo and in primary adipocytes. Despite normal differentiation at an early phase, progressive degradation and shrinkage of cellular LDs and downregulation of adipogenic markers PPARG and PLIN1 occurred in terminal differentiation of rptor KO adipocytes, which was rescued by inhibiting lipolysis or lysosome. In contrast, inactivating autophagy by depletion of ATG7 protected adipocytes against RPTOR deficiency-induced formation of LD-containing lysosomes, LD degradation, and downregulation of adipogenic markers in vitro. Ultimately, atg7 rptor double-KO mice displayed decreased lipolysis, restored adipose tissue development, and upregulated thermogenic gene expression in brown and inguinal adipose tissue compared to RPTOR-deficient mice in vivo. Collectively, our study demonstrates that autophagy plays an important role in regulating adipocyte maturation via a lipophagy and lipolysis-dependent mechanism. ABBREVIATIONS ATG7: autophagy related 7; BAT: brown adipose tissue; CEBPB/C/EBPβ: CCAAT enhancer binding protein beta; DGAT1: diacylglycerol O-acyltransferase 1; eWAT: epididymal white adipose tissue; iWAT: inguinal white adipose tissue; KO: knockout; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; PLIN1: perepilin 1; PNPLA2/ATGL: patatin-like phospholipase domain containing 2; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; RPTOR: regulatory associated protein of MTOR complex1; TG: triglyceride; ULK1: unc-51 like kinase 1; UCP1: uncoupling protein 1; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Dandan Wu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Floyd Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sara Arenas
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - John Michael Weaver
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Michael Mandell
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA,Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA,CONTACT Meilian Liu Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
32
|
Forzani C, Duarte GT, Van Leene J, Clément G, Huguet S, Paysant-Le-Roux C, Mercier R, De Jaeger G, Leprince AS, Meyer C. Mutations of the AtYAK1 Kinase Suppress TOR Deficiency in Arabidopsis. Cell Rep 2020; 27:3696-3708.e5. [PMID: 31216485 DOI: 10.1016/j.celrep.2019.05.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022] Open
Abstract
The target of rapamycin (TOR) kinase is a conserved energy sensor that regulates growth in response to environmental cues. However, little is known about the TOR signaling pathway in plants. We used Arabidopsis lines affected in the lethal with SEC13 protein 8 (LST8-1) gene, a core element of the TOR complex, to search for suppressor mutations. Two suppressor lines with improved growth were isolated that carried mutations in the Yet Another Kinase 1 (AtYAK1) gene encoding a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family. Atyak1 mutations partly rescued the developmental defects of lst8-1-1 mutants and conferred resistance to the TOR inhibitor AZD-8055. Moreover, atyak1 mutations suppressed the transcriptomic and metabolic perturbations as well as the abscisic acid (ABA) hypersensitivity of the lst8-1-1 mutants. AtYAK1 interacted with the regulatory-associated protein of TOR (RAPTOR), a component of the TOR complex, and was phosphorylated by TOR. Thus, our findings reveal that AtYAK1 is a TOR effector that probably needs to be switched off to activate plant growth.
Collapse
Affiliation(s)
- Céline Forzani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Gustavo T Duarte
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Stéphanie Huguet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Plateau de Moulon, 91192 Gif sur Yvette, France; Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Plateau de Moulon, 91192 Gif sur Yvette, France
| | - Christine Paysant-Le-Roux
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Plateau de Moulon, 91192 Gif sur Yvette, France; Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Plateau de Moulon, 91192 Gif sur Yvette, France
| | - Raphaël Mercier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France; Sorbonne Université, UFR 927, 4 Place Jussieu, F-75252 Paris Cedex 05, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
33
|
Brunkard JO. Exaptive Evolution of Target of Rapamycin Signaling in Multicellular Eukaryotes. Dev Cell 2020; 54:142-155. [PMID: 32649861 PMCID: PMC7346820 DOI: 10.1016/j.devcel.2020.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022]
Abstract
Target of rapamycin (TOR) is a protein kinase that coordinates metabolism with nutrient and energy availability in eukaryotes. TOR and its primary interactors, RAPTOR and LST8, have been remarkably evolutionarily static since they arose in the unicellular last common ancestor of plants, fungi, and animals, but the upstream regulatory mechanisms and downstream effectors of TOR signaling have evolved considerable diversity in these separate lineages. Here, I focus on the roles of exaptation and adaptation in the evolution of novel signaling axes in the TOR network in multicellular eukaryotes, concentrating especially on amino acid sensing, cell-cell signaling, and cell differentiation.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Devare MN, Kim YH, Jung J, Kang WK, Kwon K, Kim J. TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast. Aging Cell 2020; 19:e13151. [PMID: 32449834 PMCID: PMC7294778 DOI: 10.1111/acel.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.
Collapse
Affiliation(s)
- Mayur Nimbadas Devare
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Joohye Jung
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Woo Kyu Kang
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Ki‐Sun Kwon
- Aging Intervention Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
| | - Jeong‐Yoon Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| |
Collapse
|
35
|
Castaneda JM, Miyata H, Archambeault DR, Satouh Y, Yu Z, Ikawa M, Matzuk MM. Mouse t-complex protein 11 is important for progressive motility in sperm†. Biol Reprod 2020; 102:852-862. [PMID: 31837139 PMCID: PMC7124965 DOI: 10.1093/biolre/ioz226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022] Open
Abstract
The t-complex is defined as naturally occurring variants of the proximal third of mouse chromosome 17 and has been studied by mouse geneticists for decades. This region contains many genes involved in processes from embryogenesis to sperm function. One such gene, t-complex protein 11 (Tcp11), was identified as a testis-specific gene whose protein is present in elongating spermatids. Later work on Tcp11 localized TCP11 to the sperm surface and acrosome cap and implicated TCP11 as important for sperm capacitation through the cyclic AMP/Protein Kinase A pathway. Here, we show that TCP11 is cytoplasmically localized to elongating spermatids and absent from sperm. In the absence of Tcp11, male mice have severely reduced fertility due to a significant decrease in progressively motile sperm; however, Tcp11-null sperm continues to undergo tyrosine phosphorylation, a hallmark of capacitation. Interestingly, null sperm displays reduced PKA activity, consistent with previous reports. Our work demonstrates that TCP11 functions in elongated spermatids to confer proper motility in mature sperm.
Collapse
Affiliation(s)
- Julio M Castaneda
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Denise R Archambeault
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Yuhkoh Satouh
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Zhifeng Yu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan and
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Kim B, Lee Y, Choi H, Huh WK. The trehalose-6-phosphate phosphatase Tps2 regulates ATG8 transcription and autophagy in Saccharomyces cerevisiae. Autophagy 2020; 17:1013-1027. [PMID: 32240040 DOI: 10.1080/15548627.2020.1746592] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy/autophagy is an important catabolic process for maintaining cellular homeostasis by adapting to various stress conditions. Autophagy is mediated by a double-membrane autophagosome, which sequesters a portion of cytoplasmic components for delivery to the vacuole. Several autophagy-related (ATG) genes play crucial roles in autophagosome formation. The induction of ATG genes must be tightly regulated to maintain a proper autophagic activity, but their regulatory mechanisms are still largely unknown. Here, we report that the trehalose-6-phosphate phosphatase Tps2 functions as a positive regulator of autophagy in Saccharomyces cerevisiae. Cellular trehalose levels do not affect autophagy regulation by Tps2. Loss of Tps2 leads to impaired autophagic flux and reduced ATG8 expre/ssion under nitrogen starvation. In tps2Δ cells, Ume6 is predominantly dephosphorylated and represses ATG8 transcription by binding to its promoter region. Tps2 regulates nuclear translocation and activation of Rim15 kinase, a negative regulator of Ume6, by causing the dissociation of Rim15 from the 14-3-3 proteins Bmh1/2 under nitrogen starvation, suggesting that Rim15 mediates the function of Tps2 as a positive regulator of ATG8 induction. Furthermore, Tps2 plays a crucial role in the dephosphorylation of Ser1061 and Thr1075 residues of Rim15, which is important for controlling the dissociation of Rim15 from Bmh1/2 under nitrogen starvation. Together, our results reveal the role of Tps2 as a positive regulator of autophagy and provide new insight into the regulatory mechanisms of ATG gene expression.Abbreviations: ATG: autophagy-related; ChIP: chromatin immunoprecipitation; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; GFP: green fluorescent protein; PKA: protein kinase A; PtdIns3K: phosphatidylinositol 3-kinase; Rim15KI: kinase-inactive Rim15; Rim15-2A: Rim15S1061A,T1075A; TEM: transmission electron microscopy; TORC1: target of rapamycin complex 1.
Collapse
Affiliation(s)
- Bongkeun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yongook Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyojeong Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Plank M, Perepelkina M, Müller M, Vaga S, Zou X, Bourgoint C, Berti M, Saarbach J, Haesendonckx S, Winssinger N, Aebersold R, Loewith R. Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9. Mol Cell Proteomics 2020; 19:655-671. [PMID: 32102971 PMCID: PMC7124472 DOI: 10.1074/mcp.ra120.001955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation cascades play a central role in the regulation of cell growth and protein kinases PKA, Sch9 and Ypk1 take center stage in regulating this process in S. cerevisiae To understand how these kinases co-ordinately regulate cellular functions we compared the phospho-proteome of exponentially growing cells without and with acute chemical inhibition of PKA, Sch9 and Ypk1. Sites hypo-phosphorylated upon PKA and Sch9 inhibition were preferentially located in RRxS/T-motifs suggesting that many are directly phosphorylated by these enzymes. Interestingly, when inhibiting Ypk1 we not only detected several hypo-phosphorylated sites in the previously reported RxRxxS/T-, but also in an RRxS/T-motif. Validation experiments revealed that neutral trehalase Nth1, a known PKA target, is additionally phosphorylated and activated downstream of Ypk1. Signaling through Ypk1 is therefore more closely related to PKA- and Sch9-signaling than previously appreciated and may perform functions previously only attributed to the latter kinases.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland; National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland.
| | - Mariya Perepelkina
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Markus Müller
- National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Stefania Vaga
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Xiaoming Zou
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Clélia Bourgoint
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Marina Berti
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Jacques Saarbach
- National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Steven Haesendonckx
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Nicolas Winssinger
- National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland; Faculty of Science, University of Zurich, CH-8006, Zurich, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland; National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland.
| |
Collapse
|
38
|
Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030562. [PMID: 32121322 PMCID: PMC7139730 DOI: 10.3390/cancers12030562] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved biological phenomenon that maintains cellular homeostasis through the clearing of damaged cellular components under cellular stress and offers the cell building blocks for cellular survival. Aberrations in autophagy subsidize to various human pathologies, such as dementia, cardiovascular diseases, leishmaniosis, influenza, hepatic diseases, and cancer, including hepatocellular carcinoma (HCC). HCC is the fifth common mortal type of liver cancer globally, with an inhomogeneous topographical distribution and highest incidence tripled in men than women. Existing treatment procedures with liver cancer patients result in variable success rates and poor prognosis due to their drug resistance and toxicity. One of the pathophysiological mechanisms that are targeted during the development of anti-liver cancer drugs is autophagy. Generally, overactivated autophagy may lead to a non-apoptotic form of programmed cell death (PCD) or autophagic cell death or type II PCD. Emerging evidence suggests that manipulation of autophagy could induce type II PCD in cancer cells, acting as a potential tumor suppressor. Hence, altering autophagic signaling offers new hope for the development of novel drugs for the therapy of resistant cancer cells. Natural polyphenolic compounds, including flavonoids and non-flavonoids, execute their anticarcinogenic mechanism through upregulating tumor suppressors and autophagy by modulating canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) signaling pathways. Additionally, there is evidence signifying that plant polyphenols target angiogenesis and metastasis in HCC via interference with multiple intracellular signals and decrease the risk against HCC. The current review offers a comprehensive understanding of how natural polyphenolic compounds exhibit their anti-HCC effects through regulation of autophagy, the non-apoptotic mode of cell death.
Collapse
Affiliation(s)
- Chandramohan Kiruthiga
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| |
Collapse
|
39
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
40
|
Cardarelli S, Giorgi M, Poiana G, Biagioni S, Saliola M. Metabolic role of cGMP in S. cerevisiae: the murine phosphodiesterase-5 activity affects yeast cell proliferation by altering the cAMP/cGMP equilibrium. FEMS Yeast Res 2019; 19:5322165. [PMID: 30772891 DOI: 10.1093/femsyr/foz016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
In higher eukaryotes, cAMP and cGMP are signal molecules of major transduction pathways while phosphodiesterases (PDE) are a superfamily of cAMP/cGMP hydrolysing enzymes, modulatory components of these routes. Saccharomyces cerevisiae harbours two genes for PDE: Pde2 is a high affinity cAMP-hydrolysing enzyme, while Pde1 can hydrolyse both cAMP and cGMP. To gain insight into the metabolic role of cGMP in the physiology of yeast, the murine Pde5a1 gene encoding a specific cGMP-hydrolysing enzyme, was expressed in S. cerevisiae pdeΔ strains. pde1Δ and pde2Δ PDE5A1-transformed strain displayed opposite growth-curve profiles; while PDE5A1 recovered the growth delay of pde1Δ, PDE5A1 reversed the growth profile of pde2Δ to that of the untransformed pde1Δ. Growth test analysis and the use of Adh2 and Adh1 as respiro-fermentative glycolytic flux markers confirmed that PDE5A1 altered the metabolism by acting on Pde1-Pde2/cyclic nucleotides content and also on the TORC1 nutrient-sensing cascade. cGMP is required during the log-phase of cell proliferation to adjust/modulate cAMP levels inside well-defined ranges. A model is presented proposing the role of cGMP in the cAMP/PKA pathway. The expression of the PDE5A1 cassette in other mutant strains might constitute the starting tool to define cGMP metabolic role in yeast nutrient signaling.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| |
Collapse
|
41
|
Li J, Vázquez-García I, Persson K, González A, Yue JX, Barré B, Hall MN, Long A, Warringer J, Mustonen V, Liti G. Shared Molecular Targets Confer Resistance over Short and Long Evolutionary Timescales. Mol Biol Evol 2019; 36:691-708. [PMID: 30657986 DOI: 10.1093/molbev/msz006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing and de novo genetic variants can both drive adaptation to environmental changes, but their relative contributions and interplay remain poorly understood. Here we investigated the evolutionary dynamics in drug-treated yeast populations with different levels of pre-existing variation by experimental evolution coupled with time-resolved sequencing and phenotyping. We found a doubling of pre-existing variation alone boosts the adaptation by 64.1% and 51.5% in hydroxyurea and rapamycin, respectively. The causative pre-existing and de novo variants were selected on shared targets: RNR4 in hydroxyurea and TOR1, TOR2 in rapamycin. Interestingly, the pre-existing and de novo TOR variants map to different functional domains and act via distinct mechanisms. The pre-existing TOR variants from two domesticated strains exhibited opposite rapamycin resistance effects, reflecting lineage-specific functional divergence. This study provides a dynamic view on how pre-existing and de novo variants interactively drive adaptation and deepens our understanding of clonally evolving populations.
Collapse
Affiliation(s)
- Jing Li
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Ignacio Vázquez-García
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Statistics, Columbia University, New York, NY
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Benjamin Barré
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | | | - Anthony Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gianni Liti
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| |
Collapse
|
42
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
43
|
Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Sci Rep 2019; 9:3186. [PMID: 30816278 PMCID: PMC6395727 DOI: 10.1038/s41598-019-40112-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional control of mRNA is a key event in the regulation of gene expression. From yeast to human cells, P-bodies are cytoplasmic RNA-protein aggregates that play an essential role in this process, particularly under stress conditions. In this work, we show that in the model yeast Saccharomyces cerevisiae cell wall stress induces the formation of these structures. This effect is dependent on multiple elements in the Cell Wall Integrity (CWI) MAPK signalling pathway, a signal transduction cascade responsible for the maintenance of cell integrity under adverse environmental conditions. Remarkably, P-body assembly requires the catalytic activity of the MAPK of the pathway, Slt2/Mpk1. In accordance with the control exerted by this signalling pathway, the timing of P-body formation is similar to that of the activation of the CWI pathway. Noticeably, mRNAs whose expression is regulated by this pathway localize in P-bodies after the cell is exposed to stress following a temporal pattern coincident with CWI pathway activation. Moreover, when these mRNAs are overexpressed in a mutant background unable to form visible P-bodies, the cells show hypersensitivity to agents that interfere with cell wall integrity, supporting that they play a role in the mRNA lifecycle under stress conditions.
Collapse
|
44
|
Jaffe M, Dziulko A, Smith JD, St Onge RP, Levy SF, Sherlock G. Improved discovery of genetic interactions using CRISPRiSeq across multiple environments. Genome Res 2019; 29:668-681. [PMID: 30782640 PMCID: PMC6442382 DOI: 10.1101/gr.246603.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
Abstract
Large-scale genetic interaction (GI) screens in yeast have been invaluable for our understanding of molecular systems biology and for characterizing novel gene function. Owing in part to the high costs and long experiment times required, a preponderance of GI data has been generated in a single environmental condition. However, an unknown fraction of GIs may be specific to other conditions. Here, we developed a pooled-growth CRISPRi-based sequencing assay for GIs, CRISPRiSeq, which increases throughput such that GIs can be easily assayed across multiple growth conditions. We assayed the fitness of approximately 17,000 strains encompassing approximately 7700 pairwise interactions in five conditions and found that the additional conditions increased the number of GIs detected nearly threefold over the number detected in rich media alone. In addition, we found that condition-specific GIs are prevalent and improved the power to functionally classify genes. Finally, we found new links during respiratory growth between members of the Ras nutrient-sensing pathway and both the COG complex and a gene of unknown function. Our results highlight the potential of conditional GI screens to improve our understanding of cellular genetic networks.
Collapse
Affiliation(s)
- Mia Jaffe
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Adam Dziulko
- Joint Initiative for Metrology in Biology, Stanford, California 94305, USA.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Justin D Smith
- Stanford Genome Technology Center, Stanford University, Palo Alto, California 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert P St Onge
- Stanford Genome Technology Center, Stanford University, Palo Alto, California 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sasha F Levy
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Joint Initiative for Metrology in Biology, Stanford, California 94305, USA.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA.,National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
45
|
Gatica D, Hu G, Liu X, Zhang N, Williamson PR, Klionsky DJ. The Pat1-Lsm Complex Stabilizes ATG mRNA during Nitrogen Starvation-Induced Autophagy. Mol Cell 2018; 73:314-324.e4. [PMID: 30527663 DOI: 10.1016/j.molcel.2018.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
Macroautophagy/autophagy is a key catabolic recycling pathway that requires fine-tuned regulation to prevent pathologies and preserve homeostasis. Here, we report a new post-transcriptional pathway regulating autophagy involving the Pat1-Lsm (Lsm1 to Lsm7) mRNA-binding complex. Under nitrogen-starvation conditions, Pat1-Lsm binds a specific subset of autophagy-related (ATG) transcripts and prevents their 3' to 5' degradation by the exosome complex, leading to ATG mRNA stabilization and accumulation. This process is regulated through Pat1 dephosphorylation, is necessary for the efficient expression of specific Atg proteins, and is required for robust autophagy induction during nitrogen starvation. To the best of our knowledge, this work presents the first example of ATG transcript regulation via 3' binding factors and exosomal degradation.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guowu Hu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nannan Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Li S, Giardina DM, Siegal ML. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet 2018; 14:e1007744. [PMID: 30388117 PMCID: PMC6241136 DOI: 10.1371/journal.pgen.1007744] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/14/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
Genetically identical cells exhibit extensive phenotypic variation even under constant and benign conditions. This so-called nongenetic heterogeneity has important clinical implications: within tumors and microbial infections, cells show nongenetic heterogeneity in growth rate and in susceptibility to drugs or stress. The budding yeast, Saccharomyces cerevisiae, shows a similar form of nongenetic heterogeneity in which growth rate correlates positively with susceptibility to acute heat stress at the single-cell level. Using genetic and chemical perturbations, combined with high-throughput single-cell assays of yeast growth and gene expression, we show here that heterogeneity in intracellular cyclic AMP (cAMP) levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies this nongenetic heterogeneity. Lower levels of cAMP correspond to slower growth, as shown by direct comparison of cAMP concentration in subpopulations enriched for slower vs. faster growing cells. Concordantly, an endogenous reporter of this pathway’s activity correlates with growth in individual cells. The paralogs Msn2 and Msn4 differ in their roles in nongenetic heterogeneity in a way that demonstrates slow growth and stress tolerance are not inevitably linked. Heterogeneity in growth rate requires each, whereas only Msn2 is required for heterogeneity in expression of Tsl1, a subunit of trehalose synthase that contributes to acute-stress tolerance. Perturbing nongenetic heterogeneity by mutating genes in this pathway, or by culturing wild-type cells with the cell-permeable cAMP analog 8-bromo-cAMP or the PKA inhibitor H89, significantly impacts survival of acute heat stress. Perturbations that increase intracellular cAMP levels reduce the slower-growing subpopulation and increase susceptibility to acute heat stress, whereas PKA inhibition slows growth and decreases susceptibility to acute heat stress. Loss of Msn2 reduces, but does not completely eliminate, the correlation in individual cells between growth rate and acute-stress survival, suggesting a major role for the Msn2 pathway in nongenetic heterogeneity but also a residual benefit of slow growth. Our results shed light on the genetic control of nongenetic heterogeneity and suggest a possible means of defeating bet-hedging pathogens or tumor cells by making them more uniformly susceptible to treatment. Nongenetic heterogeneity exists when a trait differs among individuals that have identical genotypes and environments. A clonal population can maximize its long-term success in an uncertain environment by diversifying its phenotypes via nongenetic heterogeneity: the currently unfavored ones may become the favored ones when conditions change. Nongenetic heterogeneity has clinical relevance. For example, populations of tumor cells or infectious microbes show cell-to-cell differences in growth and in drug or stress tolerance. This heterogeneity hampers efficient treatment and can potentiate harmful evolution of a tumor or pathogen. We show that in budding yeast, heterogeneity in intracellular cyclic AMP levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies the nongenetic heterogeneity of both single-cell growth rate and acute heat-stress tolerance. Perturbations of this pathway significantly affect population survival upon acute heat stress. These results illuminate a mechanism of nongenetic heterogeneity and suggest the potential value of antitumor or antifungal treatment strategies that target nongenetic heterogeneity to render the tumor or pathogen population more uniformly susceptible to a second drug that aims to kill.
Collapse
Affiliation(s)
- Shuang Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Daniella M. Giardina
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Jiang Z, Bo L, Meng Y, Wang C, Chen T, Wang C, Yu X, Deng X. Overexpression of homeodomain-interacting protein kinase 2 (HIPK2) attenuates sepsis-mediated liver injury by restoring autophagy. Cell Death Dis 2018; 9:847. [PMID: 30154452 PMCID: PMC6113252 DOI: 10.1038/s41419-018-0838-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Sepsis is the leading cause of death in intensive care units worldwide. Autophagy has recently been shown to protect against sepsis-induced liver injury. Here, we investigated the roles of homeodomain-interacting protein kinase 2 (HIPK2) in the molecular mechanism of sepsis-induced liver injury. HIPK2 expression was reduced in sepsis-induced liver injury, and HIPK2 overexpression increased the survival rate and improved caecal ligation and puncture (CLP)-induced liver injury by reducing serum and liver aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) levels in mice with sepsis. HIPK2 overexpression significantly decreased CLP-induced release of inflammatory cytokines into the serum and attenuated oxidative stress-associated indicators in mice with CLP-induced liver injury, whereas HIPK2 knockdown produced the opposite results, suggesting that HIPK2 is a negative regulator of sepsis. Furthermore, HIPK2 overexpression inhibited lipopolysaccharide (LPS)-induced apoptosis of primary hepatocytes, increased the autophagic flux, and restored both autophagosome and autolysosome formation in the livers of CLP-induced mice by suppressing calpain signalling. Importantly, HIPK2 overexpression reduced the elevated cytosolic Ca2+ concentration in LPS-treated primary hepatocytes by interacting with calpain 1 and calmodulin. Finally, several anti-inflammatory drugs, including resveratrol, aspirin, vitamin E and ursolic acid, significantly increased the levels of the HIPK2 mRNA and protein by modulating promoter activity and the 3′-UTR stability of the HIPK2 gene. In conclusion, HIPK2 overexpression may improve sepsis-induced liver injury by restoring autophagy and thus might be a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Meng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chen Wang
- Department of Cell Biology, School of Basic Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Tianxing Chen
- School of Life Science, Nanjing University, 210023, Nanjing, Jiangsu Province, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, Nanjing, Jiangsu Province, China
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiya Yu
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
48
|
Cdc14 Phosphatase Promotes TORC1-Regulated Autophagy in Yeast. J Mol Biol 2018; 430:1671-1684. [DOI: 10.1016/j.jmb.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
|
49
|
Conrad M, Kankipati HN, Kimpe M, Van Zeebroeck G, Zhang Z, Thevelein JM. The nutrient transceptor/PKA pathway functions independently of TOR and responds to leucine and Gcn2 in a TOR-independent manner. FEMS Yeast Res 2018; 17:3950251. [PMID: 28810702 PMCID: PMC5812495 DOI: 10.1093/femsyr/fox048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
Two nutrient-controlled signalling pathways, the PKA and TOR pathway, play a major role in nutrient regulation of growth as well as growth-correlated properties in yeast. The relationship between the two pathways is not well understood. We have used Gap1 and Pho84 transceptor-mediated activation of trehalase and phosphorylation of fragmented Sch9 as a read-out for rapid nutrient activation of PKA or TORC1, respectively. We have identified conditions in which L-citrulline-induced activation of Sch9 phosphorylation is compromised, but not activation of trehalase: addition of the TORC1 inhibitor, rapamycin and low levels of L-citrulline. The same disconnection was observed for phosphate activation in phosphate-starved cells. The leu2 auxotrophic mutation reduces amino acid activation of trehalase, which is counteracted by deletion of GCN2. Both effects were also independent of TORC1. Our results show that rapid activation of the TOR pathway by amino acids is not involved in rapid activation of the PKA pathway and that effects of Gcn2 inactivation as well as leu2 auxotrophy all act independently of the TOR pathway. Hence, rapid nutrient signalling to PKA and TOR in cells arrested by nutrient starvation acts through parallel pathways.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marlies Kimpe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
50
|
Yang Q, Zhang J, Hu J, Wang X, Lv B, Liang W. Involvement of BcYak1 in the Regulation of Vegetative Differentiation and Adaptation to Oxidative Stress of Botrytis cinerea. Front Microbiol 2018. [PMID: 29515556 PMCID: PMC5826331 DOI: 10.3389/fmicb.2018.00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Yak1, a member of the dual-specificity tyrosine phosphorylation-regulated protein kinases, plays an important role in diverse cellular processes in fungi. However, to date, the role of BcYak1 in Botrytis cinerea, the causal agent of gray mold diseases in various plant species, remains uncharacterized. Our previous study identified one lysine acetylation site (Lys252) in BcYak1, which is the first report of such a site in Yak1. In this study, the function of BcYak1 and its lysine acetylation site were investigated using gene disruption and site-directed mutagenesis. The gene deletion mutant ΔBcYak1 not only exhibits much lower pathogenicity, conidiation and sclerotium formation, but was also much more sensitive to H2O2 and the ergosterol biosynthesis inhibitor (EBI) triadimefon. The Lys252 site-directed mutagenesis mutant strain ΔBcYak1-K252Q (mimicking the acetylation of the site), however, only showed lower sclerotium formation and higher sensitivity to H2O2. These results indicate that BcYAK1 is involved in the vegetative differentiation, adaptation to oxidative stress and triadimefon, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jianan Zhang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jicheng Hu
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Binna Lv
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|