1
|
Kumar P, Madhawan A, Sharma A, Sharma V, Das D, Parveen A, Fandade V, Sharma D, Roy J. A sucrose non-fermenting-1-related protein kinase 1 gene from wheat, TaSnRK1α regulates starch biosynthesis by modulating AGPase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108407. [PMID: 38340690 DOI: 10.1016/j.plaphy.2024.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.
Collapse
Affiliation(s)
- Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Akshya Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Deepak Das
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon 8 Expressway, Faridabad, Haryana, 121001, India.
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
2
|
Wang J, Liu M, Mao C, Li S, Zhou J, Fan Y, Guo L, Yu H, Yang X. Comparative proteomics reveals the mechanism of cyclosporine production and mycelial growth in Tolypocladium inflatum affected by different carbon sources. Front Microbiol 2023; 14:1259101. [PMID: 38163081 PMCID: PMC10757567 DOI: 10.3389/fmicb.2023.1259101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Cyclosporine A (CsA) is a secondary cyclopeptide metabolite produced by Tolypocladium inflatum that is widely used clinically as an immunosuppressant. CsA production and mycelial growth differed when T. inflatum was cultured in different carbon source media. During early fermentation, CsA was preferred to be produced in fructose medium, while the mycelium preferred to accumulate in sucrose medium. On the sixth day, the difference was most pronounced. In this study, high-throughput comparative proteomics methods were applied to analyze differences in protein expression of mycelial samples on day 6, revealing the proteins and mechanisms that positively regulate CsA production related to carbon metabolism. The differences included small molecule acid metabolism, lipid metabolism, organic catabolism, exocrine secretion, CsA substrate Bmt synthesis, and transcriptional regulation processes. The proteins involved in the regulation of mycelial growth related to carbon metabolism were also revealed and were associated with waste reoxidation processes or coenzyme metabolism, small molecule synthesis or metabolism, the stress response, genetic information or epigenetic changes, cell component assembly, cell wall integrity, membrane metabolism, vesicle transport, intramembrane localization, and the regulation of filamentous growth. This study provides a reliable reference for CsA production from high-efficiency fermentation. This study provides key information for obtaining more CsA high-yielding strains through metabolic engineering strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuqing Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
3
|
Jenkins DJ, Woolston BM, Hood-Pishchany MI, Pelayo P, Konopaski AN, Quinn Peters M, France MT, Ravel J, Mitchell CM, Rakoff-Nahoum S, Whidbey C, Balskus EP. Bacterial amylases enable glycogen degradation by the vaginal microbiome. Nat Microbiol 2023; 8:1641-1652. [PMID: 37563289 PMCID: PMC10465358 DOI: 10.1038/s41564-023-01447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
The human vaginal microbiota is frequently dominated by lactobacilli and transition to a more diverse community of anaerobic microbes is associated with health risks. Glycogen released by lysed epithelial cells is believed to be an important nutrient source in the vagina. However, the mechanism by which vaginal bacteria metabolize glycogen is unclear, with evidence implicating both bacterial and human enzymes. Here we biochemically characterize six glycogen-degrading enzymes (GDEs), all of which are pullanases (PulA homologues), from vaginal bacteria that support the growth of amylase-deficient Lactobacillus crispatus on glycogen. We reveal variations in their pH tolerance, substrate preferences, breakdown products and susceptibility to inhibition. Analysis of vaginal microbiome datasets shows that these enzymes are expressed in all community state types. Finally, we confirm the presence and activity of bacterial and human GDEs in cervicovaginal fluid. This work establishes that bacterial GDEs can participate in the breakdown of glycogen, providing insight into metabolism that may shape the vaginal microbiota.
Collapse
Affiliation(s)
- Dominick J Jenkins
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin M Woolston
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - M Indriati Hood-Pishchany
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Paula Pelayo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - M Quinn Peters
- Department of Chemistry, Seattle University, Seattle, WA, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline M Mitchell
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | | | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Milanesi R, Coccetti P, Tripodi F. The Regulatory Role of Key Metabolites in the Control of Cell Signaling. Biomolecules 2020; 10:biom10060862. [PMID: 32516886 PMCID: PMC7356591 DOI: 10.3390/biom10060862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism.
Collapse
|
5
|
Margalha L, Confraria A, Baena-González E. SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2261-2274. [PMID: 30793201 DOI: 10.1093/jxb/erz066] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/07/2019] [Indexed: 05/11/2023]
Abstract
The evolutionarily conserved protein kinase complexes SnRK1 and TOR are central metabolic regulators essential for plant growth, development, and stress responses. They are activated by opposite signals, and the outcome of their activation is, in global terms, antagonistic. Similarly to their yeast and animal counterparts, SnRK1 is activated by the energy deficit often associated with stress to restore homeostasis, while TOR is activated in nutrient-rich conditions to promote growth. Recent evidence suggests that SnRK1 represses TOR in plants, revealing evolutionary conservation also in their crosstalk. Given their importance for integrating environmental information into growth and developmental programs, these signaling pathways hold great promise for reducing the growth penalties caused by stress. Here we review the literature connecting SnRK1 and TOR to plant stress responses. Although SnRK1 and TOR emerge mostly as positive regulators of defense and growth, respectively, the outcome of their activities in plant growth and performance is not always straightforward. Manipulation of both pathways under similar experimental setups, as well as further biochemical and genetic analyses of their molecular and functional interaction, is essential to fully understand the mechanisms through which these two metabolic pathways contribute to stress responses, growth, and development.
Collapse
Affiliation(s)
- Leonor Margalha
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,Oeiras, Portugal
| | - Ana Confraria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,Oeiras, Portugal
| | | |
Collapse
|
6
|
Papapetridis I, Verhoeven MD, Wiersma SJ, Goudriaan M, van Maris AJA, Pronk JT. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2018; 18:4996351. [PMID: 29771304 PMCID: PMC6001886 DOI: 10.1093/femsyr/foy056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose-xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83G673T allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L-1 glucose and 10 g L-1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.
Collapse
Affiliation(s)
| | | | - Sanne J Wiersma
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maaike Goudriaan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | | | | |
Collapse
|
7
|
Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production. Appl Microbiol Biotechnol 2018; 102:8989-9002. [PMID: 30121750 DOI: 10.1007/s00253-018-9306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
In this study, an evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production was characterized by multi-omic approaches. Genome sequencing of the HJ7-14 revealed a point mutation in the GAL83 gene (G703A) involved in the catabolite repression as well as the galactose metabolism. Cultural and transcriptional analyses of a S. cerevisiae mutant with chromosomal GAL83(G703A) indicated that the catabolite repression onto the galactose metabolism was considerably relieved in all cell growth stages. Untargeted metabolomic approach revealed that metabolic phenotypes between the control D452-2 and HJ7-14 strains were clearly discriminated in time-dependent manner. Especially in early growth stage at 6 h, the HJ7-14 showed dramatic and coordinated alteration in central carbon and amino acid metabolisms. Through metabolomic re-organization, fold changes in fatty acid metabolism and metabolites related to stress response system were also found upon glucose depletion and active galactose utilization. Multi-omic characterization using genome sequencing, transcription, and metabolome profiling clearly unveiled that the GAL83 gene mutation partially relieved glucose-dependent catabolite repression and allowed the evolved HJ7-14 to efficiently convert algal sugars to ethanol. Our finding could be applicable for engineering of S. cerevisiae able to covert red algal biomass to other biofuels and biochemicals.
Collapse
|
8
|
Broeckx T, Hulsmans S, Rolland F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6215-6252. [PMID: 27856705 DOI: 10.1093/jxb/erw416] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.
Collapse
Affiliation(s)
- Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
9
|
Emanuelle S, Doblin MS, Stapleton DI, Bacic A, Gooley PR. Molecular Insights into the Enigmatic Metabolic Regulator, SnRK1. TRENDS IN PLANT SCIENCE 2016; 21:341-353. [PMID: 26642889 DOI: 10.1016/j.tplants.2015.11.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Sucrose non-fermenting-1 (SNF1)-related kinase 1 (SnRK1) lies at the heart of metabolic homeostasis in plants and is crucial for normal development and response to stress. Evolutionarily related to SNF1 in yeast and AMP-activated kinase (AMPK) in mammals, SnRK1 acts protectively to maintain homeostasis in the face of fluctuations in energy status. Despite a conserved function, the structure and regulation of the plant kinase differ considerably from its relatively well-understood opisthokont orthologues. In this review, we highlight the known plant-specific modes of regulation involving SnRK1 together with new insights based on a 3D molecular model of the kinase. We also summarise how these differences from other orthologues may be specific adaptations to plant metabolism, and offer insights into possible avenues of future inquiry into this enigmatic enzyme.
Collapse
Affiliation(s)
- Shane Emanuelle
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David I Stapleton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Paul R Gooley
- Department of Biochemistry & Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
10
|
Sanz P, Viana R, Garcia-Gimeno MA. AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:353-374. [PMID: 27812987 DOI: 10.1007/978-3-319-43589-3_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In yeast, SNF1 protein kinase is the orthologue of mammalian AMPK complex. It is a trimeric complex composed of Snf1 protein kinase (orthologue of AMPKα catalytic subunit), Snf4 (orthologue of AMPKγ regulatory subunit), and a member of the Gal83/Sip1/Sip2 family of proteins (orthologues of AMPKβ subunit) that act as scaffolds and also regulate the subcellular localization of the complex. In this chapter, we review the recent literature on the characteristics of SNF1 complex subunits, the structure and regulation of the activity of the SNF1 complex, its role at the level of transcriptional regulation of relevant target genes and also at the level of posttranslational modification of targeted substrates. We also review the crosstalk of SNF1 complex activity with other key protein kinase pathways such as cAMP-PKA, TORC1, and PAS kinase.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain.
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCiii), Jaime Roig 11, 46010, Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
11
|
Plant SnRK1 Kinases: Structure, Regulation, and Function. EXPERIENTIA SUPPLEMENTUM 2016; 107:403-438. [DOI: 10.1007/978-3-319-43589-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Oligschlaeger Y, Miglianico M, Chanda D, Scholz R, Thali RF, Tuerk R, Stapleton DI, Gooley PR, Neumann D. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. J Biol Chem 2015; 290:11715-28. [PMID: 25792737 PMCID: PMC4416872 DOI: 10.1074/jbc.m114.633271] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian AMP-activated protein kinase (AMPK) is an obligatory αβγ heterotrimeric complex carrying a carbohydrate-binding module (CBM) in the β-subunit (AMPKβ) capable of attaching AMPK to glycogen. Nonetheless, AMPK localizes at many different cellular compartments, implying the existence of mechanisms that prevent AMPK from glycogen binding. Cell-free carbohydrate binding assays revealed that AMPK autophosphorylation abolished its carbohydrate-binding capacity. X-ray structural data of the CBM displays the central positioning of threonine 148 within the binding pocket. Substitution of Thr-148 for a phospho-mimicking aspartate (T148D) prevents AMPK from binding to carbohydrate. Overexpression of isolated CBM or β1-containing AMPK in cellular models revealed that wild type (WT) localizes to glycogen particles, whereas T148D shows a diffuse pattern. Pharmacological AMPK activation and glycogen degradation by glucose deprivation but not forskolin enhanced cellular Thr-148 phosphorylation. Cellular glycogen content was higher if pharmacological AMPK activation was combined with overexpression of T148D mutant relative to WT AMPK. In summary, these data show that glycogen-binding capacity of AMPKβ is regulated by Thr-148 autophosphorylation with likely implications in the regulation of glycogen turnover. The findings further raise the possibility of regulated carbohydrate-binding function in a wider variety of CBM-containing proteins.
Collapse
Affiliation(s)
- Yvonne Oligschlaeger
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Marie Miglianico
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dipanjan Chanda
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Roland Scholz
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Ramon F Thali
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Roland Tuerk
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | | | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Dietbert Neumann
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands, the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| |
Collapse
|
13
|
A protein kinase screen of Neurospora crassa mutant strains reveals that the SNF1 protein kinase promotes glycogen synthase phosphorylation. Biochem J 2014; 464:323-34. [PMID: 25253091 DOI: 10.1042/bj20140942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development.
Collapse
|
14
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
15
|
Li Y, Zhang L, Ding Z, Shi G. Constitutive expression of a novel isoamylase from Bacillus lentus in Pichia pastoris for starch processing. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:11-25. [PMID: 23551663 PMCID: PMC6599549 DOI: 10.1111/tpj.12192] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 05/17/2023]
Abstract
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy-sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ-like proteins, plants also encode a hybrid βγ protein that combines the Four-Cystathionine β-synthase (CBS)-domain (FCD) structure in γ subunits with a glycogen-binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in-depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast-containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre-CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Philip Ruelens
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Yi Li
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative, Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koen Geuten
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| |
Collapse
|
17
|
Li Y, Niu D, Zhang L, Wang Z, Shi G. Purification, characterization and cloning of a thermotolerant isoamylase produced from Bacillus sp. CICIM 304. ACTA ACUST UNITED AC 2013; 40:437-46. [DOI: 10.1007/s10295-013-1249-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Abstract
A novel thermostable isoamylase, IAM, was purified to homogeneity from the newly isolated thermophilic bacterium Bacillus sp. CICIM 304. The purified monomeric protein with an estimated molecular mass of 100 kDa displayed its optimal temperature and pH at 70 °C and 6.0, respectively, with excellent thermostability between 30 and 70 °C and pH values from 5.5 to 9.0. Under the conditions of temperature 50 °C and pH 6.0, the K m and V max on glycogen were 0.403 ± 0.018 mg/mg and 0.018 ± 0.001 mg/(min mg), respectively. Gene encoding IAM, BsIam was identified from genomic DNA sequence with inverse PCRs. The open reading frame of the BsIam gene was 2,655 base pairs long and encoded a polypeptide of 885 amino acids with a calculated molecular mass of 101,155 Da. The deduced amino acid sequence of IAM shared less than 40 % homology with that of microbial isoamylase ever reported, which indicated it was a novel isoamylase. This enzyme showed its obvious superiority in the industrial starch conversion process.
Collapse
Affiliation(s)
- Youran Li
- grid.258151.a 0000000107081323 Research Center of Bioresource & Bioenergy, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Dandan Niu
- grid.258151.a 0000000107081323 Research Center of Bioresource & Bioenergy, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Liang Zhang
- grid.258151.a 0000000107081323 Research Center of Bioresource & Bioenergy, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhengxiang Wang
- grid.258151.a 0000000107081323 Research Center of Bioresource & Bioenergy, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Guiyang Shi
- grid.258151.a 0000000107081323 Research Center of Bioresource & Bioenergy, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| |
Collapse
|
18
|
Tun NM, O'Doherty PJ, Perrone GG, Bailey TD, Kersaitis C, Wu MJ. Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 2013; 5:1068-75. [DOI: 10.1039/c3mt00083d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Li Y, Zhang L, Niu D, Wang Z, Shi G. Cloning, expression, characterization, and biocatalytic investigation of a novel bacilli thermostable type I pullulanase from Bacillus sp. CICIM 263. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11164-11172. [PMID: 23072450 DOI: 10.1021/jf303109u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The pulA1 gene, encoding a novel thermostable type I pullulanase PulA1 from Bacillus sp. CICIM 263, was identified from genomic DNA. The open reading frame of the pulA1 gene was 2655 base pairs long and encoded a polypeptide (PulA1) of 885 amino acids with a calculated molecular mass of 100,887 Da. The pulA1 gene was expressed in Escherichia coli and Bacillus subtilis. Recombinant PuLA1 showed optimal activity at pH 6.5 and 70 °C. The enzyme demonstrated moderate thermostability as PuLA1 maintained more than 88% of its acitivity when incubated at 70 °C for 1 h. The enzyme could completely hydrolyze pullulan to maltotriose, and hydrolytic activity was also detected with glycogen, starch and amylopection, but not with amylose, which is consistent with the property of type I pullulanase. PulA1 may be suitable for industrial applications to improve the yields of fermentable sugars for bioethanol production.
Collapse
Affiliation(s)
- Youran Li
- Research Center of Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Proc Natl Acad Sci U S A 2012; 109:8652-7. [PMID: 22589305 DOI: 10.1073/pnas.1206280109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The SNF1/AMP-activated protein kinases are αβγ-heterotrimers that sense and regulate energy status in eukaryotes. They are activated by phosphorylation of the catalytic Snf1/α subunit, and the Snf4/γ regulatory subunit regulates phosphorylation through adenine nucleotide binding. In Saccharomyces cerevisiae, the Snf1 subunit is phosphorylated on the activation-loop Thr-210 in response to glucose limitation. To assess the requirement of the heterotrimer for regulated Thr-210 phosphorylation, we examined Snf1 and a truncated Snf1 kinase domain (residues 1-309) that has partial Snf1 function. Snf1(1-309) does not interact with the β and Snf4/γ regulatory subunits, and its activity was independent of them in vivo. Phosphorylation of both Snf1 and Snf1(1-309) increased in response to glucose limitation in wild-type cells and in cells lacking β- and Snf4/γ-subunits. These results indicate that glucose regulation of activation-loop phosphorylation can occur by mechanism(s) that function independently of the regulatory subunits. We further show that the Reg1-Glc7 protein phosphatase 1 and Sit4 type 2A-like phosphatase are largely responsible for dephosphorylation of Thr-210 of Snf1(1-309). Together, these findings suggest that these two phosphatases mediate heterotrimer-independent regulation of Thr-210 phosphorylation.
Collapse
|
21
|
Momcilovic M, Carlson M. Alterations at dispersed sites cause phosphorylation and activation of SNF1 protein kinase during growth on high glucose. J Biol Chem 2011; 286:23544-51. [PMID: 21561858 DOI: 10.1074/jbc.m111.244111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The SNF1/AMP-activated protein kinases are central energy regulators in eukaryotes. SNF1 of Saccharomyces cerevisiae is inhibited during growth on high levels of glucose and is activated in response to glucose depletion and other stresses. Activation entails phosphorylation of Thr(210) on the activation loop of the catalytic subunit Snf1 by Snf1-activating kinases. We have used mutational analysis to identify Snf1 residues that are important for regulation. Alteration of Tyr(106) in the αC helix or Leu(198) adjacent to the Asp-Phe-Gly motif on the activation loop relieved glucose inhibition of phosphorylation, resulting in phosphorylation of Thr(210) during growth on high levels of glucose. Substitution of Arg for Gly(53), at the N terminus of the kinase domain, increased activation on both high and low glucose. Alteration of the ubiquitin-associated domain revealed a modest autoinhibitory effect. Previous studies identified alterations of the Gal83 (β) and Snf4 (γ) subunits that relieve glucose inhibition, and we have here identified a distinct set of Gal83 residues that are required. Together, these results indicate that alterations at dispersed sites within each subunit of SNF1 cause phosphorylation of the kinase during growth on high levels of glucose. These findings suggest that the conformation of the SNF1 complex is crucial to maintenance of the inactive state during growth on high glucose and that the default state for SNF1 is one in which Thr(210) is phosphorylated and the kinase is active.
Collapse
Affiliation(s)
- Milica Momcilovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
22
|
Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc Natl Acad Sci U S A 2011; 108:6349-54. [PMID: 21464305 DOI: 10.1073/pnas.1102758108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The SNF1 protein kinase of Saccharomyces cerevisiae is a member of the SNF1/AMP-activated protein kinase family, which is essential for metabolic control, energy homeostasis, and stress responses in eukaryotes. SNF1 is activated in response to glucose limitation by phosphorylation of Thr210 on the activation loop of the catalytic subunit Snf1. The SNF1 β-subunit contains a glycogen-binding domain that has been implicated in glucose inhibition of Snf1 Thr210 phosphorylation. To assess the role of glycogen, we examined Snf1 phosphorylation in strains with altered glycogen metabolism. A reg1Δ mutant, lacking Reg1-Glc7 protein phosphatase 1, exhibits elevated glycogen accumulation and phosphorylation of Snf1 during growth on high levels of glucose. Unexpectedly, mutations that abolished glycogen synthesis also restored Thr210 dephosphorylation in glucose-grown reg1Δ cells, indicating that elevated glycogen synthesis contributes to activation of SNF1 and that another phosphatase acts on Snf1. We present evidence that Sit4, a type 2A-like protein phosphatase, contributes to dephosphorylation of Snf1 Thr210. Finally, evidence that the effects of glycogen are not mediated by binding to the β-subunit raises the possibility that elevated glycogen synthesis alters glucose metabolism and thereby reduces glucose signaling to the SNF1 pathway.
Collapse
|
23
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Petranovic D, Tyo K, Vemuri GN, Nielsen J. Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 2010; 10:1046-59. [DOI: 10.1111/j.1567-1364.2010.00689.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Momcilovic M, Iram SH, Liu Y, Carlson M. Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase. J Biol Chem 2008; 283:19521-9. [PMID: 18474591 DOI: 10.1074/jbc.m803624200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The SNF1/AMP-activated protein kinase (AMPK) family is required for adaptation to metabolic stress and energy homeostasis. The gamma subunit of AMPK binds AMP and ATP, and mutations that affect binding cause human disease. We have here addressed the role of the Snf4 (gamma) subunit in regulating SNF1 protein kinase in response to glucose availability in Saccharomyces cerevisiae. Previous studies of mutant cells lacking Snf4 suggested that Snf4 counteracts autoinhibition by the C-terminal sequence of the Snf1 catalytic subunit but is dispensable for glucose regulation, and AMP does not activate SNF1 in vitro. We first introduced substitutions at sites that, in AMPK, contribute to nucleotide binding and regulation. Mutations at several sites relieved glucose inhibition of SNF1, as judged by catalytic activity, phosphorylation of the activation-loop Thr-210, and growth assays, although analogs of the severe human mutations R531G/Q had little effect. We further showed that alterations of Snf4 residues that interact with the glycogen-binding domain (GBD) of the beta subunit strongly relieved glucose inhibition. Finally, substitutions in the GBD of the Gal83 beta subunit that are predicted to disrupt interactions with Snf4 and also complete deletion of the GBD similarly relieved glucose inhibition of SNF1. Analysis of mutant cells lacking glycogen synthase showed that regulation of SNF1 is normal in the absence of glycogen. These findings reveal novel roles for Snf4 and the GBD in regulation of SNF1.
Collapse
Affiliation(s)
- Milica Momcilovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The SNF1/AMPK family of protein kinases is highly conserved in eukaryotes and is required for energy homeostasis in mammals, plants, and fungi. SNF1 protein kinase was initially identified by genetic analysis in the budding yeast Saccharomyces cerevisiae. SNF1 is required primarily for the adaptation of yeast cells to glucose limitation and for growth on carbon sources that are less preferred than glucose, but is also involved in responses to other environmental stresses. SNF1 regulates transcription of a large set of genes, modifies the activity of metabolic enzymes, and controls various nutrient-responsive cellular developmental processes. Like AMPK, SNF1 protein kinase is heterotrimeric. It is phosphorylated and activated by the upstream kinases Sak1, Tos3, and Elm1 and is inactivated by the Reg1-Glc7 protein phosphatase 1. Further regulation of SNF1 is achieved through autoinhibition and through control of its subcellular localization. Here we review the current understanding of SNF1 protein kinase pathways in Saccharomyces cerevisiae and other yeasts.
Collapse
Affiliation(s)
- Kristina Hedbacker
- Columbia University, Department of Genetics and Development, 701 W. 168th St. HSC 922, New York, NY 10032, USA
| | | |
Collapse
|
27
|
Amodeo GA, Rudolph MJ, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 2007; 449:492-5. [PMID: 17851534 DOI: 10.1038/nature06127] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/27/2007] [Indexed: 11/09/2022]
Abstract
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis in mammals and is an attractive target for drug discovery against diabetes, obesity and other diseases. The AMPK homologue in Saccharomyces cerevisiae, known as SNF1, is essential for responses to glucose starvation as well as for other cellular processes, although SNF1 seems to be activated by a ligand other than AMP. Here we report the crystal structure at 2.6 A resolution of the heterotrimer core of SNF1. The ligand-binding site in the gamma-subunit (Snf4) has clear structural differences from that of the Schizosaccharomyces pombe enzyme, although our crystallographic data indicate that AMP can also bind to Snf4. The glycogen-binding domain in the beta-subunit (Sip2) interacts with Snf4 in the heterotrimer but should still be able to bind carbohydrates. Our structure is supported by a large body of biochemical and genetic data on this complex. Most significantly, the structure reveals that part of the regulatory sequence in the alpha-subunit (Snf1) is sequestered by Snf4, demonstrating a direct interaction between the alpha- and gamma-subunits and indicating that our structure may represent the heterotrimer core of SNF1 in its activated state.
Collapse
Affiliation(s)
- Gabriele A Amodeo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
28
|
Polge C, Thomas M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? TRENDS IN PLANT SCIENCE 2007; 12:20-8. [PMID: 17166759 DOI: 10.1016/j.tplants.2006.11.005] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/18/2006] [Accepted: 11/28/2006] [Indexed: 05/13/2023]
Abstract
The SNF1-related kinases are considered to be crucial elements of transcriptional, metabolic and developmental regulation in response to stress. In yeast, SNF1 is one of the main regulators in the shift from fermentation to aerobic metabolism; AMPK, its mammalian counterpart, is a master metabolic regulator involved in a variety of metabolic disorders such as diabetes and obesity. The aim of this review is to examine the literature concerning SnRK1 proteins, the SNF1 homologues in plants. The remarkable structural similarities between the plant complexes and those of yeast and mammalian suggest the existence of a common ancestral function in the regulation of energy and carbon metabolism. We will also highlight some distinctive features acquired by the plant proteins during evolution.
Collapse
Affiliation(s)
- Cécile Polge
- Laboratoire Physiologie Cellulaire Végétale, UMR5168, CEA/ Université Joseph Fourier, F-38054 Grenoble, France
| | | |
Collapse
|
29
|
Hedbacker K, Carlson M. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. EUKARYOTIC CELL 2006; 5:1950-6. [PMID: 17071825 PMCID: PMC1694805 DOI: 10.1128/ec.00256-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/10/2006] [Indexed: 12/17/2022]
Abstract
Snf1 protein kinase containing the beta subunit Gal83 is localized in the cytoplasm during growth of Saccharomyces cerevisiae cells in abundant glucose and accumulates in the nucleus in response to glucose limitation. Nuclear localization of Snf1-Gal83 requires activation of the Snf1 catalytic subunit and depends on Gal83, but in the snf1Delta mutant, Gal83 exhibits glucose-regulated nuclear accumulation. We show here that the N terminus of Gal83, which is divergent from those of the other beta subunits, is necessary and sufficient for Snf1-independent, glucose-regulated localization. We identify a leucine-rich nuclear export signal in the N terminus and show that export depends on the Crm1 export receptor. We present evidence that catalytically inactive Snf1 promotes the cytoplasmic retention of Gal83 in glucose-grown cells through its interaction with the C terminus of Gal83; cytoplasmic localization of inactive Snf1-Gal83 maintains accessibility to the Snf1-activating kinases. Finally, we characterize the effects of glucose phosphorylation on localization. These studies define roles for Snf1 and Gal83 in determining the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.
Collapse
Affiliation(s)
- Kristina Hedbacker
- Department of Genetics and Development, Columbia University, 701 W. 168th Street, HSC922, New York, NY 10032, USA
| | | |
Collapse
|
30
|
Gissot L, Polge C, Jossier M, Girin T, Bouly JP, Kreis M, Thomas M. AKINbetagamma contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence. PLANT PHYSIOLOGY 2006; 142:931-44. [PMID: 17028154 PMCID: PMC1630761 DOI: 10.1104/pp.106.087718] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The sucrose nonfermenting-1 protein kinase (SNF1)/AMP-activated protein kinase subfamily plays a central role in metabolic responses to nutritional and environmental stresses. In yeast (Saccharomyces cerevisiae) and mammals, the beta- and gamma-noncatalytic subunits are implicated in substrate specificity and subcellular localization, respectively, and regulation of the kinase activity. The atypical betagamma-subunit has been previously described in maize (Zea mays), presenting at its N-terminal end a sequence related to the KIS (kinase interacting sequence) domain specific to the beta-subunits (Lumbreras et al., 2001). The existence of two components, SNF1-related protein kinase (SnRK1) complexes containing the betagamma-subunit and one SnRK1 kinase, had been proposed. In this work, we show that, despite its unusual features, the Arabidopsis (Arabidopsis thaliana) homolog AKINbetagamma clearly interacts with AKINbeta-subunits in vitro and in vivo, suggesting its involvement in heterotrimeric complexes located in both cytoplasm and nucleus. Unexpectedly, a transcriptional analysis of AKINbetagamma gene expression highlighted the implication of alternative splicing mechanisms in the regulation of AKINbetagamma expression. A two-hybrid screen performed with AKINbetagamma as bait, together with in planta bimolecular fluorescence complementation experiments, suggests the existence of interactions in the cytosol between AKINbetagamma and two leucine-rich repeats related to pathogen resistance proteins. Interestingly, this interaction occurs through the truncated KIS domain that corresponds exactly to a GBD (glycogen-binding domain) recently described in mammals and yeast. A phylogenetic study suggests that AKINbetagamma-related proteins are restricted to the plant kingdom. Altogether, these data suggest the existence of plant-specific SnRK1 trimeric complexes putatively involved in a plant-specific function such as plant-pathogen interactions.
Collapse
Affiliation(s)
- Lionel Gissot
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Université Paris-Sud, F-91405 Orsay cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Kerk D, Conley TR, Rodriguez FA, Tran HT, Nimick M, Muench DG, Moorhead GBG. A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:400-13. [PMID: 16623901 DOI: 10.1111/j.1365-313x.2006.02704.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dual-specificity protein phosphatases (DSPs) are important regulators of a wide variety of protein kinase signaling cascades in animals, fungi and plants. We previously identified a cluster of putative DSPs in Arabidopsis (including At3g52180 and At3g01510) in which the phosphatase domain is related to that of laforin, the human protein mutated in Lafora epilepsy. In animal and fungal systems, the laforin DSP and the beta-regulatory subunits of AMP-regulated protein kinase (AMPK) and Snf-1 have all been demonstrated to bind to glycogen by a glycogen-binding domain (GBD). We present a bioinformatic analysis which shows that these DSPs from Arabidopsis, together with other related plant DSPs, share with the above animal and fungal proteins a widespread and ancient carbohydrate-binding domain. We demonstrate that DSP At3g52180 binds to purified starch through its predicted carbohydrate-binding region, and that mutation of key conserved residues reduces this binding. Consistent with its ability to bind exogenous starch, DSP At3g52180 was found associated with starch purified from Arabidopsis plants and suspension cells. Immunolocalization experiments revealed a co-localization with chlorophyll, placing DSP At3g52180 in the chloroplast. Gene-expression data from different stages of the light-dark cycle and across a wide variety of tissues show a strong correlation between the pattern displayed by transcripts of the At3g52180 locus and that of genes encoding key starch degradative enzymes. Taken together, these data suggest the hypothesis that plant DSPs could be part of a protein assemblage at the starch granule, where they would be ideally situated to regulate starch metabolism through reversible phosphorylation events.
Collapse
Affiliation(s)
- David Kerk
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, CA 92106, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Parker G, Pederson B, Obayashi M, Schroeder J, Harris R, Roach P. Gene expression profiling of mice with genetically modified muscle glycogen content. Biochem J 2006; 395:137-45. [PMID: 16356168 PMCID: PMC1409698 DOI: 10.1042/bj20051456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycogen, a branched polymer of glucose, forms an energy re-serve in numerous organisms. In mammals, the two largest glyco-gen stores are in skeletal muscle and liver, which express tissue-specific glycogen synthase isoforms. MGSKO mice, in which mGys1 (mouse glycogen synthase) is disrupted, are devoid of muscle glycogen [Pederson, Chen, Schroeder, Shou, DePaoli-Roach and Roach (2004) Mol. Cell. Biol. 24, 7179-7187]. The GSL30 mouse line hyper-accumulates glycogen in muscle [Manchester, Skurat, Roach, Hauschka and Lawrence (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 10707-10711]. We performed a microarray analysis of mRNA from the anterior tibialis, medial gastrocnemius and liver of MGSKO mice, and from the gastroc-nemius of GSL30 mice. In MGSKO mice, transcripts of 79 genes varied in their expression in the same direction in both the anterior tibialis and gastrocnemius. These included several genes encoding proteins proximally involved in glycogen metabolism. The Ppp1r1a [protein phosphatase 1 regulatory (inhibitor) sub-unit 1A] gene underwent the greatest amount of downregulation. In muscle, the downregulation of Pfkfb1 and Pfkfb3, encoding isoforms of 6-phosphofructo-2-kinase/fructose-2,6-bisphospha-tase, is consistent with decreased glycolysis. Pathways for branched-chain amino acid, and ketone body utilization appear to be downregulated, as is the capacity to form the gluconeogenic precursors alanine, lactate and glutamine. Expression changes among several members of the Wnt signalling pathway were identified, suggesting an as yet unexplained role in glycogen meta-bolism. In liver, the upregulation of Pfkfb1 and Pfkfb3 expression is consistent with increased glycolysis, perhaps as an adaptation to altered muscle metabolism. By comparing changes in muscle expression between MGSKO and GSL30 mice, we found a subset of 44 genes, the expression of which varied as a function of muscle glycogen content. These genes are candidates for regulation by glycogen levels. Particularly interesting is the observation that 11 of these genes encode cardiac or slow-twitch isoforms of muscle contractile proteins, and are upregulated in muscle that has a greater oxidative capacity in MGSKO mice.
Collapse
Affiliation(s)
- Gretchen E. Parker
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A., and Indiana University Center for Diabetes Research Indianapolis, IN 46202-5122, U.S.A
| | - Bartholomew A. Pederson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A., and Indiana University Center for Diabetes Research Indianapolis, IN 46202-5122, U.S.A
| | - Mariko Obayashi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A., and Indiana University Center for Diabetes Research Indianapolis, IN 46202-5122, U.S.A
| | - Jill M. Schroeder
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A., and Indiana University Center for Diabetes Research Indianapolis, IN 46202-5122, U.S.A
| | - Robert A. Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A., and Indiana University Center for Diabetes Research Indianapolis, IN 46202-5122, U.S.A
| | - Peter J. Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, U.S.A., and Indiana University Center for Diabetes Research Indianapolis, IN 46202-5122, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Polekhina G, Gupta A, van Denderen BJW, Feil SC, Kemp BE, Stapleton D, Parker MW. Structural Basis for Glycogen Recognition by AMP-Activated Protein Kinase. Structure 2005; 13:1453-62. [PMID: 16216577 DOI: 10.1016/j.str.2005.07.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/07/2005] [Accepted: 07/09/2005] [Indexed: 10/25/2022]
Abstract
AMP-activated protein kinase (AMPK) coordinates cellular metabolism in response to energy demand as well as to a variety of stimuli. The AMPK beta subunit acts as a scaffold for the alpha catalytic and gamma regulatory subunits and targets the AMPK heterotrimer to glycogen. We have determined the structure of the AMPK beta glycogen binding domain in complex with beta-cyclodextrin. The structure reveals a carbohydrate binding pocket that consolidates all known aspects of carbohydrate binding observed in starch binding domains into one site, with extensive contact between several residues and five glucose units. beta-cyclodextrin is held in a pincer-like grasp with two tryptophan residues cradling two beta-cyclodextrin glucose units and a leucine residue piercing the beta-cyclodextrin ring. Mutation of key beta-cyclodextrin binding residues either partially or completely prevents the glycogen binding domain from binding glycogen. Modeling suggests that this binding pocket enables AMPK to interact with glycogen anywhere across the carbohydrate's helical surface.
Collapse
Affiliation(s)
- Galina Polekhina
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Sakoda H, Fujishiro M, Fujio J, Shojima N, Ogihara T, Kushiyama A, Fukushima Y, Anai M, Ono H, Kikuchi M, Horike N, Viana AYI, Uchijima Y, Kurihara H, Asano T. Glycogen debranching enzyme association with beta-subunit regulates AMP-activated protein kinase activity. Am J Physiol Endocrinol Metab 2005; 289:E474-81. [PMID: 15886229 DOI: 10.1152/ajpendo.00003.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AMP-activated protein kinase (AMPK) regulates both glycogen and lipid metabolism functioning as an intracellular energy sensor. In this study, we identified a 160-kDa protein in mouse skeletal muscle lysate by using a glutathione-S-transferase (GST)-AMPK fusion protein pull-down assay. Mass spectrometry and a Mascot search revealed this protein to be a glycogen debranching enzyme (GDE). The association between AMPK and GDE was observed not only in the overexpression system but also endogenously. Next, we showed the beta1-subunit of AMPK to be responsible for the association with GDE. Furthermore, experiments using deletion mutants of the beta1-subunit of AMPK revealed amino acids 68-123 of the beta1-subunit to be sufficient for GDE binding. W100G and K128Q, both beta1-subunit mutants, are reportedly incapable of binding to glycogen, but both bound GDE, indicating that the association between AMPK and GDE does not involve glycogen. Rather, the AMPK-GDE association is likely to be direct. Overexpression of amino acids 68-123 of the beta1-subunit inhibited the association between endogenous AMPK and GDE. Although GDE activity was unaffected, basal phosphorylation and kinase activity of AMPK, as well as phosphorylation of acetyl-CoA carboxylase, were significantly increased. Thus it is likely that the AMPK-GDE association is a novel mechanism regulating AMPK activity and the resultant fatty acid oxidation and glucose uptake.
Collapse
Affiliation(s)
- Hideyuki Sakoda
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim MD, Hong SP, Carlson M. Role of Tos3, a Snf1 protein kinase kinase, during growth of Saccharomyces cerevisiae on nonfermentable carbon sources. EUKARYOTIC CELL 2005; 4:861-6. [PMID: 15879520 PMCID: PMC1140095 DOI: 10.1128/ec.4.5.861-866.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, Snf1 protein kinase of the Snf1/AMP-activated protein kinase family is required for growth on nonfermentable carbon sources and nonpreferred sugars. Three kinases, Pak1, Elm1, and Tos3, activate Snf1 by phosphorylation of its activation-loop threonine, and the absence of all three causes the Snf(-) phenotype. No phenotype has previously been reported for the tos3Delta single mutation. We show here that, when cells are grown on glycerol-ethanol, tos3Delta reduces growth rate, Snf1 catalytic activity, and activation of the Snf1-dependent carbon source-responsive element (CSRE) in the promoters of gluconeogenic genes. In contrast, tos3Delta did not significantly affect Snf1 catalytic activity or CSRE function during abrupt glucose depletion, indicating that Tos3 has a more substantial role in activating Snf1 protein kinase during growth on a nonfermentable carbon source than during acute carbon stress. We also report that Tos3 is localized in the cytosol during growth in either glucose or glycerol-ethanol. These findings lend support to the idea that the Snf1 protein kinase kinases make different contributions to cellular regulation under different growth conditions.
Collapse
Affiliation(s)
- Myoung-Dong Kim
- Department of Genetics and Development and Microbiology, Columbia University, HSC922, New York, NY 10032, USA.
| | | | | |
Collapse
|
36
|
Gissot L, Polge C, Bouly JP, Lemaitre T, Kreis M, Thomas M. AKINbeta3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic beta-subunits. PLANT MOLECULAR BIOLOGY 2004; 56:747-59. [PMID: 15803412 DOI: 10.1007/s11103-004-5111-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 10/18/2004] [Indexed: 05/23/2023]
Abstract
The SNF1/AMPK/SnRK1 heterotrimeric kinase complex is involved in the adaptation of cellular metabolism in response to diverse stresses in yeast, mammals and plants. Following a model proposed in yeast, the kinase targets are likely to bind the complex via the non-catalytic beta-subunits. These proteins currently identified in yeast, mammals and plants present a common structure with two conserved interacting domains named Kinase Interacting Sequence (KIS) and Association with SNF1 Complex (ASC), and a highly variable N-terminal domain. In this paper we describe the characterisation of AKINbeta3, a novel protein related to AKINbeta subunits of Arabidopsis thaliana, containing a truncated KIS domain and no N-terminal extension. Interestingly the missing region of the KIS domain corresponds to the glycogen-binding domain (beta-GBD) identified in the mammalian AMPKbeta1. In spite of its unusual features, AKINbeta3 complements the yeast sip1Deltasip2Deltagal83Delta mutant. Moreover, interactions between AKINbeta3 and other AKIN complex subunits from A. thaliana were detected by two-hybrid experiments and in vitro binding assays. Taken together these data demonstrate that AKINbeta3 is a beta-type subunit. A search for beta-type subunits revealed the existence of beta3-type proteins in other plant species. Furthermore, we suggest that the AKINbeta3-type subunits could be plant specific since no related sequences have been found in any of the other completely sequenced genomes. These data suggest the existence of novel SnRK1 complexes including AKINbeta3-type subunits, involved in several functions among which some could be plant specific.
Collapse
Affiliation(s)
- Lionel Gissot
- Laboratoire de Biologie du Développement des Plantes, Institut de Biotechnologie des Plantes (IBP), UMR CNRS 8618, Bâtiment 630, Université Paris-Sud, F-91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Hedbacker K, Hong SP, Carlson M. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol Cell Biol 2004; 24:8255-63. [PMID: 15340085 PMCID: PMC515071 DOI: 10.1128/mcb.24.18.8255-8263.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three kinases, Pak1, Tos3, and Elm1, activate Snf1 protein kinase in Saccharomyces cerevisiae. This cascade is conserved in mammals, where LKB1 activates AMP-activated protein kinase. We address the specificity of the activating kinases for the three forms of Snf1 protein kinase containing the beta-subunit isoforms Gal83, Sip1, and Sip2. Pak1 is the most important kinase for activating Snf1-Gal83 in response to glucose limitation, but Elm1 also has a significant role; moreover, both Pak1 and Elm1 affect Snf1-Sip2. These findings exclude the possibility of a one-to-one correspondence between the activating kinases and the Snf1 complexes. We further identify a second, unexpected role for Pak1 in regulating Snf1-Gal83: the catalytic activity of Pak1 is required for the nuclear enrichment of Snf1-Gal83 in response to carbon stress. The nuclear enrichment of Snf1 fused to green fluorescent protein (GFP) depends on both Gal83 and Pak1 and is abolished by a mutation of the activation loop threonine; in contrast, the nuclear enrichment of Gal83-GFP occurs in a snf1Delta mutant and depends on Pak1 only when Snf1 is present. Snf1-Gal83 is the only form of the kinase that localizes to the nucleus. These findings, that Pak1 both activates Snf1-Gal83 and controls its nuclear localization, implicate Pak1 in regulating nuclear Snf1 protein kinase activity.
Collapse
Affiliation(s)
- Kristina Hedbacker
- Department of Genetics and Development, Columbia University, 701 W. 168th St., HSC922, New York, NY 10032, USA
| | | | | |
Collapse
|