1
|
Das J, Busia-Bourdain O, Khan KM, Wolfe AL. IMPlications of IMP2 in RNA Biology and Disease. Int J Mol Sci 2025; 26:2415. [PMID: 40141058 PMCID: PMC11942581 DOI: 10.3390/ijms26062415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) is an RNA-binding protein that positively regulates m6A-modified RNAs involved in critical cellular processes such as metabolism, oncogenesis, and immune function. Here, we elucidate facets of IMP2 biology, including several mechanisms of action on RNA, factors that regulate IMP2 expression, its relevant biological target RNAs, its role in normal development and disease, and its potential as a therapeutic target. IMP2 is a multi-level regulator of metabolism, influencing pathways linked to diabetes, obesity, and adipose function. Through genomic amplification and transcriptional overexpression in cancer cells, IMP2 can drive the initiation and progression of multiple cancer types, and high expression is associated with decreased overall survival of patients with cancer. IMP2 influences normal immune function, inflammation, macrophage polarization, and tumor immune evasion. IMP2 has emerged as a promising therapeutic target, particularly for cancers and metabolic diseases.
Collapse
Affiliation(s)
- Jessica Das
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Khizr M. Khan
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- New York Research and Mentoring for Postbaccalaureates (NY-RaMP) Program, Hunter College, New York, NY 10021, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- New York Research and Mentoring for Postbaccalaureates (NY-RaMP) Program, Hunter College, New York, NY 10021, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
2
|
Wang S, Wu S, Tang J, Chen Y, Zhang Y, Long W, Wu X. The RNA-Binding Protein IGF2BP1 Marks Germ Cells but Is Dispensable for Mouse Fertility. Mol Reprod Dev 2025; 92:e70016. [PMID: 39957073 DOI: 10.1002/mrd.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a key reader of N6-methyladenosine modifications that regulate target mRNA stability in eukaryotic cells; however, its role in germ cells has never been explored. Here, we analyzed the spatiotemporal expression of IGF2BP1 and revealed that it was present not only in oocytes of the mouse ovary but also in ZBTB16-positive undifferentiated spermatogonia in the mouse testis. Coimmunoprecipitation and fluorescence staining revealed that IGF2BP1 interacted with TRIM71, a regulator of spermatogonia differentiation, but that its expression was unaffected in the testes of Trim71 knockout mice. We also show that IGF2BP1 colocalized with components of the mRNA processing body (P-body), including DDX6 and EDC4. However, contrary to our expectations, using VASA (DDX4)-Cre-mediated conditional knockout mice, we found that germ cell-specific knockout of Igf2bp1 did not seem to affect the fertility of male or female mice. Further analysis revealed that spermatogenesis and ZBTB16-positive undifferentiated spermatogonia numbers in the testes of mutant mice remained unchanged and that there were no obvious changes in testicular morphology or cell subpopulations. In summary, although IGF2BP1 is preferentially expressed in germ cells, its function in germ cells may be dispensable.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shan Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jinyan Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuan Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yiyun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Wenwu Long
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Gola AM, Bucci-Muñoz M, Rigalli JP, Ceballos MP, Ruiz ML. Role of the RNA binding protein IGF2BP1 in cancer multidrug resistance. Biochem Pharmacol 2024; 230:116555. [PMID: 39332691 DOI: 10.1016/j.bcp.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.
Collapse
Affiliation(s)
- Aldana Magalí Gola
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Bucci-Muñoz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Paula Ceballos
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina.
| |
Collapse
|
4
|
Hornegger H, Anisimova AS, Muratovic A, Bourgeois B, Spinetti E, Niedermoser I, Covino R, Madl T, Karagöz GE. IGF2BP1 phosphorylation in the disordered linkers regulates ribonucleoprotein condensate formation and RNA metabolism. Nat Commun 2024; 15:9054. [PMID: 39426983 PMCID: PMC11490574 DOI: 10.1038/s41467-024-53400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown. By using proteomics, we demonstrate that phosphorylation of IGF2BP1 at S181 in a disordered linker is regulated in a stress-dependent manner. Phosphomimetic mutations in two disordered linkers, S181E and Y396E, modulate RNP condensate formation by IGF2BP1 without impacting its binding affinity for RNA. Intriguingly, the S181E mutant, which lies in linker 1, impairs IGF2BP1 condensate formation in vitro and in cells, whereas a Y396E mutant in the second linker increases condensate size and dynamics. Structural approaches show that the first linker binds RNAs nonspecifically through its RGG/RG motif, an interaction weakened in the S181E mutant. Notably, linker 2 interacts with IGF2BP1's folded domains and these interactions are partially impaired in the Y396E mutant. Importantly, the phosphomimetic mutants impact IGF2BP1's interaction with RNAs and remodel the transcriptome in cells. Our data reveal how phosphorylation modulates low-affinity interaction networks in disordered linkers to regulate RNP condensate formation and RNA metabolism.
Collapse
Affiliation(s)
- Harald Hornegger
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Aleksandra S Anisimova
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Adnan Muratovic
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Elena Spinetti
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Singh V, Singh A, Liu AJ, Fuchs SY, Sharma AK, Spiegelman VS. RNA Binding Proteins as Potential Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2024; 16:3502. [PMID: 39456596 PMCID: PMC11506615 DOI: 10.3390/cancers16203502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in regulating post-transcriptional gene expression, managing processes such as mRNA splicing, stability, and translation. In normal intestine, RBPs maintain the tissue homeostasis, but when dysregulated, they can drive colorectal cancer (CRC) development and progression. Understanding the molecular mechanisms behind CRC is vital for developing novel therapeutic strategies, and RBPs are emerging as key players in this area. This review highlights the roles of several RBPs, including LIN28, IGF2BP1-3, Musashi, HuR, and CELF1, in CRC. These RBPs regulate key oncogenes and tumor suppressor genes by influencing mRNA stability and translation. While targeting RBPs poses challenges due to their complex interactions with mRNAs, recent advances in drug discovery have identified small molecule inhibitors that disrupt these interactions. These inhibitors, which target LIN28, IGF2BPs, Musashi, CELF1, and HuR, have shown promising results in preclinical studies. Their ability to modulate RBP activity presents a new therapeutic avenue for treating CRC. In conclusion, RBPs offer significant potential as therapeutic targets in CRC. Although technical challenges remain, ongoing research into the molecular mechanisms of RBPs and the development of selective, potent, and bioavailable inhibitors should lead to more effective treatments and improved outcomes in CRC.
Collapse
Affiliation(s)
- Vikash Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Alvin John Liu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (A.S.); (A.K.S.)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (V.S.)
| |
Collapse
|
6
|
Ma S, Qin Y, Ren W. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in hematological diseases. Mol Med 2024; 30:165. [PMID: 39342091 PMCID: PMC11439276 DOI: 10.1186/s10020-024-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
The oncofetal mRNA-binding protein IGF2BP1 belongs to a conserved family of RNA-binding proteins. It primarily promotes RNA stability, regulates translation and RNA localization, and mediates gene expression through its downstream effectors. Numerous studies have demonstrated that IGF2BP1 plays crucial roles in embryogenesis and carcinogenesis. IGF2BP1-modulated cell proliferation, invasion, and chemo-resistance in solid tumors have attracted researchers' attention. Additionally, several studies have highlighted the importance of IGF2BP1 in hematologic malignancies and hematological genetic diseases, positioning it as a promising therapeutic target for hematological disorders. However, there is a lack of systematic summaries regarding the IGF2BP1 gene within the hematological field. In this review, we provide a comprehensive overview of the discovery and molecular structure of IGF2BP1, along with recent studies on its role in regulating embryogenesis. We also focus on the mechanisms by which IGF2BP1 regulates hematological malignancies through its interactions with its targeted mRNAs. Furthermore, we systematically elucidate the function and mechanism of IGF2BP1 in promoting fetal hemoglobin expression in adult hematopoietic stem/progenitor cells. Finally, we discuss the limitations and challenges of IGF2BP1 as a therapeutic target, offering insights into its prospects.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yiran Qin
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Liu Z, Deng K, Su Y, Zhang Z, Shi C, Wang J, Fan Y, Zhang G, Wang F. IGF2BP1-mediated the stability and protein translation of FGFR1 mRNA regulates myogenesis through the ERK signaling pathway. Int J Biol Macromol 2024; 280:135989. [PMID: 39326619 DOI: 10.1016/j.ijbiomac.2024.135989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/21/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification of RNAs and plays a key regulatory role in various biological processes. As a member of the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) family, IGF2BP1 has recently demonstrated its ability to specifically bind m6A-modified sites within mRNAs and effectively regulate their mRNA stability. However, the precise roles of IGF2BP1 in mammalian skeletal muscle development, along with its downstream mRNA targets during myogenesis, have yet to be fully elucidated. Here, we observed that IGF2BP1 expression significantly decreased during myogenic differentiation. Knockdown of IGF2BP1 significantly inhibited myoblast proliferation while promoted myogenic differentiation. In contrast, IGF2BP1 overexpression robustly stimulated myoblast proliferation but suppressed their differentiation. Combined analysis of high-throughput sequencing and RNA stability assays revealed that IGF2BP1 can enhance fibroblast growth factor receptor 1 (FGFR1) mRNA stability and promote its translation in an m6A-dependent manner, thereby regulating its expression level and the Extracellular Signal-Regulated Kinase (ERK) pathway. Additionally, knockdown of FGFR1 rescued the phenotypic changes (namely increased cell proliferation and suppressed differentiation) induced by IGF2BP1 overexpression via attenuating ERK signaling. Taken together, our findings suggest that IGF2BP1 maintains the stability and translation of FGFR1 mRNA in an m6A-dependent manner, thereby inhibiting skeletal myogenesis through activation of the ERK signaling pathway. This study further enriches the understanding of the molecular mechanisms by which RNA methylation regulates myogenesis, providing valuable insights into the role of IGF2BP1-mediated post-transcriptional regulation in muscle development.
Collapse
Affiliation(s)
- Zhipeng Liu
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yalong Su
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Congyu Shi
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingang Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoming Zhang
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Sanya Research Institute of Nanjing Agricultural University & Hainan Seed Industry laborator, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Dai F, Zhang Y, Deng Z, Zhang J, Wang R, Chen J, Yang D, Mao S, Liu H, Cheng Y, Hu M. IGF2BP3 participates in the pathogenesis of recurrent spontaneous abortion by regulating ferroptosis. J Reprod Immunol 2024; 165:104271. [PMID: 39054220 DOI: 10.1016/j.jri.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024]
Abstract
The aberrant invasive capability of trophoblast cells is widely acknowledged as a primary mechanism underlying RSA. Recently, IGF2BP3 has been implicated in various cancers due to its influence on cellular invasion and migration. However, whether IGF2BP3 involve in the occurrence of RSA and the specific functions it assumes in the development of RSA remain elusive. In our study, we firstly collected villous tissues from RSA and those with normal pregnancies individuals to performed Protein sequencing and then detected the expression of IGF2BP3 through Western blot, qRT-PCR and immunohistochemistry. Secondly, we analyzed the single-cell data (GSE214607) to assess the expression of IGF2BP3 in invasive EVT trophoblasts. Thirdly, we utilized lentivirus technology to establish HTR-8/SVneo cell lines with stable IGF2BP3 knockdown and RNA-seq analysis was employed to investigate the GO functional pathway enrichment of IGF2BP3. Meanwhile, the effect of IGF2BP3 knockdown on trophoblast cells apoptosis, migration, and ferroptosis was evaluated through functional experiments. Additionally, LPS-induced abortion animal model was constructed to evaluate IGF2BP3 expression in placental tissues. A significant downregulation of IGF2BP3 was observed in the villous tissues of RSA patient, a finding corroborated by subsequent single cell sequencing results. Furthermore, it suggested that IGF2BP3 may be involved in the migration and apoptotic processes of trophoblast cells. Mechanistic research indicated that IGF2BP3 knockdown could compromise GPX4 mRNA stability, leading to the promotion of ferroptosis. Finally, our investigation observed the down-regulation of IGF2BP3 expression in placental villous tissues of an LPS-induced abortion animal model. Our findings revealed that IGF2BP3 was downregulated in the villous tissues of RSA patients. Mechanically, down-regulation of IGF2BP3 may induce RSA by promoting GPX4-mediated ferroptosis and inhibiting trophoblast invasion and migration. Our study may provide new targets and research directions for the pathogenesis of RSA.
Collapse
Affiliation(s)
- Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China; Department of Gynaecology and Reproductive Medicine, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei 430100, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Sisi Mao
- The First Clinical College of Wuhan University, Wuhan, Hubei 430100, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|
9
|
Klein P, Petrić Howe M, Harley J, Crook H, Esteban Serna S, Roumeliotis TI, Choudhary JS, Chakrabarti AM, Luisier R, Patani R, Ramos A. m6a methylation orchestrates IMP1 regulation of microtubules during human neuronal differentiation. Nat Commun 2024; 15:4819. [PMID: 38844464 PMCID: PMC11156911 DOI: 10.1038/s41467-024-49139-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Neuronal differentiation requires building a complex intracellular architecture, and therefore the coordinated regulation of defined sets of genes. RNA-binding proteins (RBPs) play a key role in this regulation. However, while their action on individual mRNAs has been explored in depth, the mechanisms used to coordinate gene expression programs shaping neuronal morphology are poorly understood. To address this, we studied how the paradigmatic RBP IMP1 (IGF2BP1), an essential developmental factor, selects and regulates its RNA targets during the human neuronal differentiation. We perform a combination of system-wide and molecular analyses, revealing that IMP1 developmentally transitions to and directly regulates the expression of mRNAs encoding essential regulators of the microtubule network, a key component of neuronal morphology. Furthermore, we show that m6A methylation drives the selection of specific IMP1 mRNA targets and their protein expression during the developmental transition from neural precursors to neurons, providing a molecular principle for the onset of target selectivity.
Collapse
Affiliation(s)
- Pierre Klein
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marija Petrić Howe
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jasmine Harley
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Harry Crook
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sofia Esteban Serna
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Jyoti S Choudhary
- Functional Proteomics team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anob M Chakrabarti
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Raphaëlle Luisier
- Idiap Research Institute, Martigny, 1920, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Andres Ramos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK.
| |
Collapse
|
10
|
Wei C, Niu Y, Chen B, Wang Y, Cai H, Han R, Tian Y, Liu X, Guo W, Kang X, Li Z. Divergent Regulatory Roles of Transcriptional Variants of the Chicken LDB3 Gene in Muscle Shaping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12240-12250. [PMID: 38764183 DOI: 10.1021/acs.jafc.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.
Collapse
Affiliation(s)
- Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wei Guo
- Departmentof Animal and Dairy Sciences, University of Wisconsin-Madison, 1933 Observatory Dr., Madison, Wisconsin 54706, United States
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
11
|
Wang K, Hua G, Li J, Yang Y, Zhang C, Yang L, Hu X, Scheben A, Wu Y, Gong P, Zhang S, Fan Y, Zeng T, Lu L, Gong Y, Jiang R, Sun G, Tian Y, Kang X, Hu H, Li W. Duck pan-genome reveals two transposon insertions caused bodyweight enlarging and white plumage phenotype formation during evolution. IMETA 2024; 3:e154. [PMID: 38868520 PMCID: PMC10989122 DOI: 10.1002/imt2.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 06/14/2024]
Abstract
Structural variations (SVs) are a major source of domestication and improvement traits. We present the first duck pan-genome constructed using five genome assemblies capturing ∼40.98 Mb new sequences. This pan-genome together with high-depth sequencing data (∼46.5×) identified 101,041 SVs, of which substantial proportions were derived from transposable element (TE) activity. Many TE-derived SVs anchoring in a gene body or regulatory region are linked to duck's domestication and improvement. By combining quantitative genetics with molecular experiments, we, for the first time, unraveled a 6945 bp Gypsy insertion as a functional mutation of the major gene IGF2BP1 associated with duck bodyweight. This Gypsy insertion, to our knowledge, explains the largest effect on bodyweight among avian species (27.61% of phenotypic variation). In addition, we also examined another 6634 bp Gypsy insertion in MITF intron, which triggers a novel transcript of MITF, thereby contributing to the development of white plumage. Our findings highlight the importance of using a pan-genome as a reference in genomics studies and illuminate the impact of transposons in trait formation and livestock breeding.
Collapse
Affiliation(s)
- Kejun Wang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Intelligent Husbandry Department, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu Yang
- Wuhan Academy of Agricultural ScienceWuhanChina
| | - Chenxi Zhang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Lan Yang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Xiaoyu Hu
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Armin Scheben
- Simons Center for Quantitative BiologyCold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Yanan Wu
- Department of preventive veterinary medicine, College of Veterinary MedicineHenan Agricultural UniversityZhengzhouChina
- International Joint Research Center for National Animal ImmunologyZhengzhouHenanChina
| | - Ping Gong
- Wuhan Academy of Agricultural ScienceWuhanChina
| | - Shuangjie Zhang
- Quality Safety and Processing LaboratoryJiangsu Institute of Poultry SciencesYangzhouChina
| | - Yanfeng Fan
- Quality Safety and Processing LaboratoryJiangsu Institute of Poultry SciencesYangzhouChina
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Intelligent Husbandry Department, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ruirui Jiang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Guirong Sun
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Yadong Tian
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Xiangtao Kang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding and Guangdong Rice Engineering LaboratoryGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Wenting Li
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| |
Collapse
|
12
|
Singh A, Singh V, Wallis N, Abis G, Oberman F, Wood T, Dhamdhere M, Gershon T, Ramos A, Yisraeli J, Spiegelman VS, Sharma AK. Development of a specific and potent IGF2BP1 inhibitor: A promising therapeutic agent for IGF2BP1-expressing cancers. Eur J Med Chem 2024; 263:115940. [PMID: 37976707 DOI: 10.1016/j.ejmech.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
IGF2BP1 is a protein that controls the stability, localization, and translation of various mRNA targets. Poor clinical outcomes in numerous cancer types have been associated with its overexpression. As it has been demonstrated to impede tumor growth and metastasis in animal models, inhibiting IGF2BP1 function is a promising strategy for combating cancer. A lead chemical, 7773, which specifically decreased IGF2BP1 RNA binding and cellular activities, was previously identified in a high-throughput screen for effective IGF2BP1 inhibitors. Additional optimization of 7773 described in this manuscript led to the discovery of six compounds that performed equally well or better than 7773. In cell lines with high levels of endogenous IGF2BP1, one of 7773 derivatives, AVJ16, was found to be most efficient at preventing cell migration. Further, AVJ16 was found to be IGF2BP1-specific because it had no effect on cell lines that expressed little or no IGF2BP1 protein. The direct binding of AVJ16 to IGF2BP1 was validated by binding tests, with a 12-fold increase in binding efficiency over the lead compound. AVJ16 was shown to bind to a hydrophobic region at the protein's KH34 di-domain interface between the KH3 and KH4 domains. Overall, the findings imply that AVJ16 is a potent and specific inhibitor of IGF2BP1 activity.
Collapse
Affiliation(s)
- Amandeep Singh
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Penn State Cancer Institute, Hershey, PA, USA
| | - Vikash Singh
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nadav Wallis
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Tyler Wood
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mayura Dhamdhere
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Tehila Gershon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Andres Ramos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
| | - Joel Yisraeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research - Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Arun K Sharma
- The Pennsylvania State University College of Medicine, Department of Pharmacology, Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
13
|
Fen-Xu, Jiang LH, Chen-Fu, Feng WW, Zhou CJ. CRD-BP as a Tumor Marker of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:169-176. [PMID: 37990428 DOI: 10.2174/0118715206256546231108095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
The National Cancer Center published a comparative report on cancer data between China and the United States in the Chinese Medical Journal, which shows that colorectal cancer (CRC) ranks second in China and fourth in the United States. It is worth noting that since 2000, the case fatality rate of CRC in China has skyrocketed, while the United States has gradually declined. Finding tumor markers with high sensitivity and specificity is our primary goal to reduce the case fatality rate of CRC. Studies have shown that CRD-BP (Insulin-like growth factor 2 mRNA-binding protein 1) can affect a variety of signaling pathways, such as Wnt.nuclear factor KB (NF-κB), and Hedgehog, and has good biological effects as a therapeutic target for CRC. CRD-BP is expected to become a tumor marker with high sensitivity and specificity of CRC. This paper reviews the research on CRD-BP as a tumor marker of CRC.
Collapse
Affiliation(s)
- Fen-Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Liang-Hong Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Chen-Fu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Wei-Wei Feng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| | - Chang-Jiang Zhou
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Liaoning Command, Liaoning 116000, Liaoning Province, China
| |
Collapse
|
14
|
Zhang X, Zhong Y, Liu L, Jia C, Cai H, Yang J, Wu B, Lv Z. Fasting regulates mitochondrial function through lncRNA PRKCQ-AS1-mediated IGF2BPs in papillary thyroid carcinoma. Cell Death Dis 2023; 14:827. [PMID: 38092752 PMCID: PMC10719255 DOI: 10.1038/s41419-023-06348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Recurring evidence suggests that fasting has extensive antitumor effects in various cancers, including papillary thyroid carcinoma (PTC). However, the underlying mechanism of this relationship with PTC is unknown. In this study, we study the effect of fasting on glycolysis and mitochondrial function in PTC. We find that fasting impairs glycolysis and reduces mitochondrial dysfunction in vitro and in vivo and also fasting in vitro and fasting mimicking diets (FMD) in vivo significantly increase the expression of lncRNA-protein kinase C theta antisense RNA 1 (PRKCQ-AS1), during the inhibition of TPC cell glycolysis and mitochondrial function. Moreover, lncRNA PRKCQ-AS1 was significantly lower in PTC tissues and cells. In addition, PRKCQ-AS1 overexpression increased PTC cell glycolysis and mitochondrial function; PRKCQ-AS1 knockdown has the opposite effect. On further mechanistic analysis, we identified that PRKCQ-AS1 physically interacts with IGF2BPs and enhances protein arginine methyltransferases 7 (PRMT7) mRNA, which is the key player in regulating glycolysis and mitochondrial function in PTC. Hence, PRKCQ-AS1 inhibits tumor growth while regulating glycolysis and mitochondrial functions via IGF2BPs/PRMT7 signaling. These results indicate that lncRNA PRKCQ-AS1 is a key downstream target of fasting and is involved in PTC metabolic reprogramming. Further, the PRKCQ-AS1/IGF2BPs/PRMT7 axis is an ideal therapeutic target for PTC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai hospital Affiliated with Jinan University, Jinan University, 519000, Guangdong, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| | - Yong Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Jianshe Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
15
|
Anisimova AS, Karagöz GE. Optimized infrared photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (IR-PAR-CLIP) protocol identifies novel IGF2BP3-interacting RNAs in colon cancer cells. RNA (NEW YORK, N.Y.) 2023; 29:1818-1836. [PMID: 37582618 PMCID: PMC10578486 DOI: 10.1261/rna.079714.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
The conserved family of RNA-binding proteins (RBPs), IGF2BPs, plays an essential role in posttranscriptional regulation controlling mRNA stability, localization, and translation. Mammalian cells express three isoforms of IGF2BPs: IGF2BP1-3. IGF2BP3 is highly overexpressed in cancer cells, and its expression correlates with a poor prognosis in various tumors. Therefore, revealing its target RNAs with high specificity in healthy tissues and in cancer cells is of crucial importance. Photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) identifies the binding sites of RBPs on their target RNAs at nucleotide resolution in a transcriptome-wide manner. Here, we optimized the PAR-CLIP protocol to study RNA targets of endogenous IGF2BP3 in a human colorectal carcinoma cell line. To this end, we first established an immunoprecipitation protocol to obtain highly pure endogenous IGF2BP3-RNA complexes. Second, we modified the protocol to use highly sensitive infrared (IR) fluorescent dyes instead of radioactive probes to visualize IGF2BP3-crosslinked RNAs. We named the modified method "IR-PAR-CLIP." Third, we compared RNase cleavage conditions and found that sequence preferences of the RNases impact the number of the identified IGF2BP3 targets and introduce a systematic bias in the identified RNA motifs. Fourth, we adapted the single adapter circular ligation approach to increase the efficiency in library preparation. The optimized IR-PAR-CLIP protocol revealed novel RNA targets of IGF2BP3 in a human colorectal carcinoma cell line. We anticipate that our IR-PAR-CLIP approach provides a framework for studies of other RBPs.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Max Perutz Labs, Vienna BioCenter Campus (VBC), 1030 Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Labs, Vienna BioCenter Campus (VBC), 1030 Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, 1030 Vienna, Austria
| |
Collapse
|
16
|
Li X, Jin J, Long X, Weng R, Xiong W, Liang J, Liu J, Sun J, Cai X, Zhang L, Liu Y. METTL3-regulated m6A modification impairs the decidualization of endometrial stromal cells by regulating YTHDF2-mediated degradation of FOXO1 mRNA in endometriosis-related infertility. Reprod Biol Endocrinol 2023; 21:99. [PMID: 37891533 PMCID: PMC10605339 DOI: 10.1186/s12958-023-01151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Endometriosis-related infertility is a common worldwide reproductive health concern. Despite ongoing research, the causes of infertility remain unclear. Evidence suggests that epigenetic regulation is crucial in reproduction. However, the role of N6-methyladenosine (m6A) modification of RNA in endometriosis-related infertility requires further investigation. METHODS We examined the expression of m6A and methyltransferase-like 3 (METTL3) in endometrial samples taken from normal fertile women in the proliferative phase (the NP group) or the mid-secretory phase (the NS group) or from women with endometriosis-related infertility at the mid-secretory phase (the ES group). We treated primary endometrial stromal cells (ESCs) with medroxyprogesterone acetate and 8-Bromo-cyclic adenosine monophosphate for in vitro decidualization and detected the expression of m6A, METTL3, and decidual markers. We analyzed the expression of m6A, METTL3, and forkhead box O1 (FOXO1) in ESCs from normal fertile women (the ND group) or women with endometriosis-related infertility (the ED group). We also assessed the expression of m6A, METTL3, and decidual markers, as well as the embryo adhesion rate, upon METTL3 overexpression or knockdown. Additionally, we investigated the role of METTL3 in embryo implantation in vivo by applying mice with endometriosis. Furthermore, we performed RNA stability assays, RNA immunoprecipitation (RIP), and methylated RIP assays to explore the mechanisms underlying the regulation of FOXO1 by METTL3-mediated m6A. RESULTS The expression of m6A and METTL3 was reduced only in the NS group; the NP and ES groups demonstrated increased m6A and METTL3 levels. m6A and METTL3 levels decreased in ESCs with prolonged decidual treatment. Compared to the ND group, m6A and METTL3 levels in the ED group increased after decidual treatment, whereas the expression of FOXO1 decreased. METTL3 overexpression suppressed the expression of decidual markers and embryo implantation in vitro; METTL3 knockdown exhibited the opposite effect. Inhibition of METTL3 promoted embryo implantation in vivo. Furthermore, we observed that METTL3-mediated m6A regulated the degradation of FOXO1 mRNA through YTHDF2, a m6A binding protein. CONCLUSIONS METTL3-regulated m6A promotes YTHDF2-mediated decay of FOXO1 mRNA, thereby affecting cellular decidualization and embryo implantation. These findings provide novel insights into the development of therapies for women with endometriosis-related infertility.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jie Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xuefeng Long
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruiwen Weng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junjun Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jingwen Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xueqin Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
17
|
Yankee TN, Oh S, Winchester EW, Wilderman A, Robinson K, Gordon T, Rosenfeld JA, VanOudenhove J, Scott DA, Leslie EJ, Cotney J. Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes. Nat Commun 2023; 14:4623. [PMID: 37532691 PMCID: PMC10397224 DOI: 10.1038/s41467-023-40363-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Craniofacial disorders arise in early pregnancy and are one of the most common congenital defects. To fully understand how craniofacial disorders arise, it is essential to characterize gene expression during the patterning of the craniofacial region. To address this, we performed bulk and single-cell RNA-seq on human craniofacial tissue from 4-8 weeks post conception. Comparisons to dozens of other human tissues revealed 239 genes most strongly expressed during craniofacial development. Craniofacial-biased developmental enhancers were enriched +/- 400 kb surrounding these craniofacial-biased genes. Gene co-expression analysis revealed that regulatory hubs are enriched for known disease causing genes and are resistant to mutation in the normal healthy population. Combining transcriptomic and epigenomic data we identified 539 genes likely to contribute to craniofacial disorders. While most have not been previously implicated in craniofacial disorders, we demonstrate this set of genes has increased levels of de novo mutations in orofacial clefting patients warranting further study.
Collapse
Affiliation(s)
- Tara N Yankee
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington, CT, 06030, USA
| | - Sungryong Oh
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA
| | | | - Andrea Wilderman
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington, CT, 06030, USA
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tia Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratory, Houston, TX, 77021, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
18
|
Liu X, Chen J, Chen W, Xu Y, Shen Y, Xu X. Targeting IGF2BP3 in Cancer. Int J Mol Sci 2023; 24:ijms24119423. [PMID: 37298373 DOI: 10.3390/ijms24119423] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) can regulate multiple pathways by binding to RNAs, playing a variety of functions, such as localization, stability, and immunity. In recent years, with the development of technology, researchers have discovered that RBPs play a key role in the N6-methyladenosine (m6A) modification process. M6A methylation is the most abundant form of RNA modification in eukaryotes, which is defined as methylation on the sixth N atom of adenine in RNA. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is one of the components of m6A binding proteins, which plays an important role in decoding m6A marks and performing various biological functions. IGF2BP3 is abnormally expressed in many human cancers, often associated with poor prognosis. Here, we summarize the physiological role of IGF2BP3 in organisms and describe its role and mechanism in tumors. These data suggest that IGF2BP3 may be a valuable therapeutic target and prognostic marker in the future.
Collapse
Affiliation(s)
- Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
19
|
Lu P, Yang J, Li M, Wen S, Zhang T, Yan C, Liu R, Xiao Y, Wang X, Jiang W. A desert lncRNA HIDEN regulates human endoderm differentiation via interacting with IMP1 and stabilizing FZD5 mRNA. Genome Biol 2023; 24:92. [PMID: 37095549 PMCID: PMC10124006 DOI: 10.1186/s13059-023-02925-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Extensive studies have revealed the function and mechanism of lncRNAs in development and differentiation, but the majority have focused on those lncRNAs adjacent to protein-coding genes. In contrast, lncRNAs located in gene deserts are rarely explored. Here, we utilize multiple differentiation systems to dissect the role of a desert lncRNA, HIDEN (human IMP1-associated "desert" definitive endoderm lncRNA), in definitive endoderm differentiation from human pluripotent stem cells. RESULTS We show that desert lncRNAs are highly expressed with cell-stage-specific patterns and conserved subcellular localization during stem cell differentiation. We then focus on the desert lncRNA HIDEN which is upregulated and plays a vital role during human endoderm differentiation. We find depletion of HIDEN by either shRNA or promoter deletion significantly impairs human endoderm differentiation. HIDEN functionally interacts with RNA-binding protein IMP1 (IGF2BP1), which is also required for endoderm differentiation. Loss of HIDEN or IMP1 results in reduced WNT activity, and WNT agonist rescues endoderm differentiation deficiency caused by the depletion of HIDEN or IMP1. Moreover, HIDEN depletion reduces the interaction between IMP1 protein and FZD5 mRNA and causes the destabilization of FZD5 mRNA, which is a WNT receptor and necessary for definitive endoderm differentiation. CONCLUSIONS These data suggest that desert lncRNA HIDEN facilitates the interaction between IMP1 and FZD5 mRNA, stabilizing FZD5 mRNA which activates WNT signaling and promotes human definitive endoderm differentiation.
Collapse
Affiliation(s)
- Pei Lu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Mao Li
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Shanshan Wen
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ran Liu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Xiao
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China
| | - Xinghuan Wang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.
- RNA Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
20
|
Naulé L, Mancini A, Pereira SA, Gassaway BM, Lydeard JR, Magnotto JC, Kim HK, Liang J, Matos C, Gygi SP, Merkle FT, Carroll RS, Abreu AP, Kaiser UB. MKRN3 inhibits puberty onset via interaction with IGF2BP1 and regulation of hypothalamic plasticity. JCI Insight 2023; 8:e164178. [PMID: 37092553 PMCID: PMC10243807 DOI: 10.1172/jci.insight.164178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sidney A. Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon M. Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John R. Lydeard
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Han Kyeol Kim
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joy Liang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cynara Matos
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian T. Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust – Medical Research Council Institute of Metabolic Science and
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Zhang Y, Dai F, Yang D, Zheng Y, Zhu R, Wu M, Deng Z, Wang Z, Tan W, Li Z, Li B, Gao L, Cheng Y. Deletion of Insulin-like growth factor II mRNA-binding protein 3 participates in the pathogenesis of recurrent spontaneous abortion by inhibiting IL-10 secretion and inducing M1 polarization. Int Immunopharmacol 2023; 114:109473. [PMID: 36463698 DOI: 10.1016/j.intimp.2022.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) has been proved to affect trophoblast function and embryonic development, but its role and potential mechanism in recurrent spontaneous abortion (RSA) are not clear. RSA is a complex reproductive disease, causing physical and mental damage to patients. In recent years, many studies have found that immune microenvironment is vital to maintain successful pregnancy in the maternal fetal interface. Therefore, this study aims to explore the role of IGF2BP3 in affecting macrophage polarization and its possible mechanism. In this article, we found that IGF2BP3 expression was decreased in placental villous samples of human and RSA mouse model, and knockdown of IGF2BP3 in HTR8/SVneo cells promotes M1 Mφ polarization. Combining with RNA sequencing analysis, we found that IGF2BP3 may regulate the Mφ polarization by affecting the expression of trophoblast cytokines, especially IL-10 secretion. Further mechanistic studies showed that knockdown of IGF2BP3 decreased expression of IL-10 by activating NF-κB pathway. Moreover, we found that M2 Mφ promote trophoblast invasion not IGF2BP3 dependent. Our study reveals the interaction between trophoblast cells and macrophages at the maternal-fetal interface of RSA patients, and will provide theoretical guidance for its diagnosis and treatment of RSA patients.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
22
|
Bian Y, Li J, Shen H, Li Y, Hou Y, Huang L, Song G, Qiao C. WTAP dysregulation-mediated HMGN3-m6A modification inhibited trophoblast invasion in early-onset preeclampsia. FASEB J 2022; 36:e22617. [PMID: 36412513 DOI: 10.1096/fj.202200700rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022]
Abstract
Early-onset preeclampsia (ePE) originates from abnormal implantation and placentation that involves trophoblast invasion, but its pathophysiology is not entirely understood. N6-methyladenosine (m6A) regulators mediate the progression of various cancers. The invasiveness of trophoblast cells is similar to that of tumor cells. However, little is known regarding the potential role of m6A modification in ePE and the underlying mechanism. This study aimed to explore the m6A level in placental tissue samples collected from ePE patients and to investigate whether m6A modification was an essential part of PE pathogenesis. The m6A level in placental tissue samples of 80 PE participants was examined. MeRIP-microarray, RNA-Seq, luciferase reporter assay, and RNA immunoprecipitation chip (RIP) assay were performed. The m6A level in the ePE group was significantly reduced compared with the control group. Wilms' tumor 1-associating protein (WTAP) regulated trophoblast cell migration and invasion. Mechanistically, the high mobility group nucleosomal binding domain 3 (HMGN3) gene was a target gene of WTAP in trophoblast (p < .05). WTAP enhanced the stability of HMGN3 mRNA through binding with its 3'-UTR m6A site(+485A, +522A). HMGN3 was recognized by m6A recognition protein insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which was inhibited when knocking down WTAP. Both m6A and WTAP levels were downregulated in ePE. The m6A modification mediated by WTAP/IGF2BP1/HMGN3 axis might contribute to abnormal trophoblast invasion. Our work provided a foundation for further exploration of RNA epigenetic regulatory patterns in ePE, and indicated a new treatment strategy for ePE.
Collapse
Affiliation(s)
- Yue Bian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Jiapo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Hongfei Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Yuanyuan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Yue Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Ling Huang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Guiyu Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| |
Collapse
|
23
|
Kuhn M, Zhang Y, Favate J, Morita M, Blucher A, Das S, Liang S, Preet R, Parham LR, Williams KN, Molugu S, Armstrong RJ, Zhang W, Yang J, Hamilton KE, Dixon DA, Mills G, Morgan TK, Shah P, Andres SF. IMP1/IGF2BP1 in human colorectal cancer extracellular vesicles. Am J Physiol Gastrointest Liver Physiol 2022; 323:G571-G585. [PMID: 36194131 PMCID: PMC9678429 DOI: 10.1152/ajpgi.00121.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.
Collapse
Affiliation(s)
- Madeline Kuhn
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Yang Zhang
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Mayu Morita
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Aurora Blucher
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Sukanya Das
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Shun Liang
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Louis R Parham
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kathy N Williams
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sudheer Molugu
- Electron Microscopy Resource Lab, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Randall J Armstrong
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Wei Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiegang Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Gordon Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Terry K Morgan
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sarah F Andres
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
24
|
Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol 2022; 86:18-31. [PMID: 35643219 DOI: 10.1016/j.semcancer.2022.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m6A modification readers to the cellular phenotype, thus providing a comprehensive insight into IGF2BP function.
Collapse
Affiliation(s)
- Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain.
| |
Collapse
|
25
|
Núñez L, Buxbaum AR, Katz ZB, Lopez-Jones M, Nwokafor C, Czaplinski K, Pan F, Rosenberg J, Monday HR, Singer RH. Tagged actin mRNA dysregulation in IGF2BP1[Formula: see text] mice. Proc Natl Acad Sci U S A 2022; 119:e2208465119. [PMID: 36067310 PMCID: PMC9477413 DOI: 10.1073/pnas.2208465119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression is tightly regulated by RNA-binding proteins (RBPs) to facilitate cell survival, differentiation, and migration. Previous reports have shown the importance of the Insulin-like Growth Factor II mRNA-Binding Protein (IGF2BP1/IMP1/ZBP1) in regulating RNA fate, including localization, transport, and translation. Here, we generated and characterized a knockout mouse to study RBP regulation. We report that IGF2BP1 is essential for proper brain development and neonatal survival. Specifically, these mice display disorganization in the developing neocortex, and further investigation revealed a loss of cortical marginal cell density at E17.5. We also investigated migratory cell populations in the IGF2BP1[Formula: see text] mice, using BrdU labeling, and detected fewer mitotically active cells in the cortical plate. Since RNA localization is important for cellular migration and directionality, we investigated the regulation of β-actin messenger RNA (mRNA), a well-characterized target with established roles in cell motility and development. To aid in our understanding of RBP and target mRNA regulation, we generated mice with endogenously labeled β-actin mRNA (IGF2BP1[Formula: see text]; β-actin-MS2[Formula: see text]). Using endogenously labeled β-actin transcripts, we report IGF2BP1[Formula: see text] neurons have increased transcription rates and total β-actin protein content. In addition, we found decreased transport and anchoring in knockout neurons. Overall, we present an important model for understanding RBP regulation of target mRNA.
Collapse
Affiliation(s)
- Leti Núñez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | | | | | - Melissa Lopez-Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Chiso Nwokafor
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | | | - Feng Pan
- Eli Lilly and Company, Indianapolis, IN 46285
| | | | | | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
26
|
Tao QH, Chen Y, Bai DP, Mai LJ, Fan QM, Shi YZ, Chen C, Li A. Differential expression of MSTN, IGF2BP1, and FABP2 across different embryonic ages and sexes in white Muscovy ducks. Gene 2022; 829:146479. [PMID: 35460805 DOI: 10.1016/j.gene.2022.146479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
Abstract
To explore the effects of growth-related genes in both sexes and at different growth and development stages, male and female white Muscovy ducks at embryonic day E13, E17, E21, E25 and E29 were assessed in this study. RT-qPCR was used to determine the mRNA transcription levels of selected growth-related genes in the leg muscles of Muscovy ducks of both sexes and at different growth and developmental stages. MSTN, IGF2BP1 and FABP2 mRNAs were expressed in the leg muscles of male and female Muscovy ducks, but with different expression patterns. The MSTN and IGF2BP1 mRNA expression patterns were wavelike. MSTN mRNA expression was elevated at E13, increased at E17, decreased rapidly to the lowest level at E21, increased again at E25, and then decreased. IGF2BP1 mRNA expression was elevated at E13, increased at E17, decreased rapidly at E21, decreased rapidly to the lowest level at E25, and increased at E29. The expression trend of FABP2 mRNA was approximately "⊥" shape; the expression was the lowest at E13, increased slowly from E17 to E25, and increased extremely significantly at E29. In addition, the expression of MSTN in male Muscovy ducks was significantly higher than that in female ducks at E25 (P < 0.05). The expression of IGF2BP1 in male Muscovy ducks was extremely significantly higher than that in female ducks at E17 (P < 0.01). However, the expression of FABP2 in female Muscovy ducks was extremely significantly higher than that in male Muscovy ducks at E21 and E29 (P < 0.01). In conclusion, the mRNA expression of MSTN, IGF2BP1 and FABP2 in white Muscovy ducks is gestational age specific and sex specific. The differential gene expression patterns observed in this study provide a basis for understanding the physiological changes in white Muscovy ducks at different embryonic ages and in both sexes, supplementing the existing research on duck embryo muscle development. In addition, the findings provide a new framework for further discussion of poultry breeding.
Collapse
Affiliation(s)
- Qing-Hua Tao
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yue Chen
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ding-Ping Bai
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Li-Jun Mai
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Qin-Ming Fan
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yu-Zhu Shi
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Chao Chen
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ang Li
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Wang C, Yang Y, Liu Y, Zhang Y, Chen S, Li G, Wang X, Wang H, Song J, Gong S, Lin Z, He D. Novel IGF2BP1 splice variants, expression and their association with growth traits in goose. Br Poult Sci 2022; 63:804-812. [PMID: 35766314 DOI: 10.1080/00071668.2022.2094220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The gene IGF2BP1 has been reported as being related to the body size and body weight in ducks, goats and chickens. However, this potential growth-related gene has not yet been reported in geese.2. The goose IGF2BP1 cDNA (IGF2BP1-X1) is 2,925 bp in length, containing an open reading frame (ORF) of 1,731 bp that encodes a protein of 576 amino acids. Six IGF2BP1 transcripts (IGF2BP1-X2∼IGF2BP1-X7) were identified due to the alternative splicing of different exons within the IGF2BP1-X1 transcript.3. RT-qPCR analysis indicated that the goose IGF2BP1 mRNA was differentially expressed in the examined tissues of the female embryos (28 d of development), adult (70 d of age) and laying (270 d of age) of Zhedong White geese.4. In total, 16 single nucleotide polymorphisms (SNPs) and three insertion/deletion (InDel) variants were detected in several introns and 3'-untranslated regions of the goose IGF2BP1 gene. The 17-bp InDel within IGF2BP1 intron 14 was significantly associated with body weight at six weeks old (BW6, P<0.05), and extremely significantly associated with the BW8 and BW10 (P<0.01) of Zhedong White geese.
Collapse
Affiliation(s)
- Cui Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yunzhou Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yi Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yuting Zhang
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, P.R. China
| | - Shufang Chen
- NingBo Academy of Agricultural Sciences, Ningbo 315040, P.R. China
| | - Guangquan Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Xianze Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Jiawei Song
- Xiangshan Animal Husbandry and Veterinary General Station, Ningbo 315700, P.R. China
| | - Shaoming Gong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Zhenping Lin
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou 515100, P.R. China
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| |
Collapse
|
28
|
Zhou X, Ye Q, Zheng J, Kuang L, Zhu J, Yan H. IMP3 promotes re-endothelialization after arterial injury via increasing stability of VEGF mRNAhv. J Cell Mol Med 2022; 26:2023-2037. [PMID: 35315195 PMCID: PMC8980943 DOI: 10.1111/jcmm.17225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
IMP3, an RNA‐binding protein (RBP) that participates in the process of post‐transcriptional modifications of mRNA transcripts, is capable of altering cellular functions, and in some cases, be involved in specific disease progression. We aimed to investigate whether IMP3 has the ability to regulate the functional properties of endothelial cells and re‐endothelialization in response to arterial injury. Wire injury was introduced to the right carotid arteries of wildtype C57/BL6 mice. As a result, IMPs’ expressions were up‐regulated in the induced arterial lesions, and IMP3 was the most up‐regulated RNA among other IMPs. We overexpressed IMP3 before the wire‐injured surgery using adeno‐associated virus AAV2‐IMP3. In vivo studies confirmed that IMP3 overexpression accelerated the progress of re‐endothelialization after arterial injury. In vitro, endothelial cells were transfected with either ad‐IMP3 or Si‐IMP3, cell functional studies showed that IMP3 could promote endothelial cell proliferation and migration, while reducing apoptosis. Mechanistic studies also revealed that IMP3 could enhance VEGF mRNA stability and therefore up‐regulate activities of VEGF/PI3K/Akt signalling pathway. Our data indicated that IMP3 promotes re‐endothelialization after arterial injury and regulates endothelial cell proliferation, migration and apoptosis via increasing stability of VEGF mRNA and activation of VEGF/PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Xinmiao Zhou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingqing Ye
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinlei Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Kuang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Yan
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Zhou H, Yang L, Ding J, Dai R, He C, Xu K, Luo L, Xiao L, Zheng Y, Han C, Akinyemi FT, Honaker CF, Zhang Y, Siegel PB, Meng H. Intestinal Microbiota and Host Cooperate for Adaptation as a Hologenome. mSystems 2022; 7:e0126121. [PMID: 35014869 PMCID: PMC8751389 DOI: 10.1128/msystems.01261-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Multiomic analyses reported here involved two lines of chickens, from a common founder population, that had undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. In these lines that differ by around 15-fold in body weight, we observed different compositions of intestinal microbiota in the holobionts and variation in DNA methylation, mRNA expression, and microRNA profiles in the ceca. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was the most upregulated gene in HWS ceca with its expression likely affected by the upregulation of expression of gga-miR-2128 and a methylated region near its transcription start site (388 bp). Correlation analysis showed that IGF2BP1 expression was associated with an abundance of microbes, such as Lactobacillus and Methanocorpusculum. These findings suggest that IGF2BP1 was regulated in the hologenome in adapting to long-term artificial selection for body weight. Our study provides evidence that adaptation of the holobiont can occur in the microbiome as well as in the epigenetic profile of the host. IMPORTANCE The hologenome concept has broadened our perspectives for studying host-microbe coevolution. The multiomic analyses reported here involved two lines of chickens, from a common founder population, that had undergone long-term selection for high (HWS) or low (LWS) 56-day body weight. In these lines that differ by around 15-fold in body weight, we observed different compositions of intestinal microbiota in the holobionts, and variation in DNA methylation, mRNA expression, and microRNA profiles in ceca. The insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was the most upregulated gene in HWS ceca with its expression likely affected by a methylated region near its transcription start site and the upregulation of expression of gga-miR-2128. Correlation analysis also showed that IGF2BP1 expression was associated with the abundance of microbes, such as Lactobacillus and Methanocorpusculum. These findings suggest that IGF2BP1 was regulated in the hologenome in response to long-term artificial selection for body weight. Our study shows that the holobiont may adapt in both the microbiome and the host's epigenetic profile.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingyu Yang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jinmei Ding
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ronghua Dai
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chuan He
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ke Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingxiao Luo
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lu Xiao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yuming Zheng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chengxiao Han
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Fisayo T. Akinyemi
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Christa F. Honaker
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Yan Zhang
- Carilion Clinic, Roanoke, Virginia, USA
| | - Paul B. Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - He Meng
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Fakhraldeen SA, Berry SM, Beebe DJ, Roopra A, Bisbach CM, Spiegelman VS, Niemi NM, Alexander CM. Enhanced immunoprecipitation techniques for the identification of RNA-binding protein partners: IGF2BP1 interactions in mammary epithelial cells. J Biol Chem 2022; 298:101649. [PMID: 35104504 PMCID: PMC8891971 DOI: 10.1016/j.jbc.2022.101649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate the expression of large cohorts of RNA species to produce programmatic changes in cellular phenotypes. To describe the function of RBPs within a cell, it is key to identify their mRNA-binding partners. This is often done by crosslinking nucleic acids to RBPs, followed by chemical release of the nucleic acid fragments for analysis. However, this methodology is lengthy, which involves complex processing with attendant sample losses, thus large amounts of starting materials and prone to artifacts. To evaluate potential alternative technologies, we tested “exclusion-based” purification of immunoprecipitates (IFAST or SLIDE) and report here that these methods can efficiently, rapidly, and specifically isolate RBP–RNA complexes. The analysis requires less than 1% of the starting material required for techniques that include crosslinking. Depending on the antibody used, 50% to 100% starting protein can be retrieved, facilitating the assay of endogenous levels of RBPs; the isolated ribonucleoproteins are subsequently analyzed using standard techniques, to provide a comprehensive portrait of RBP complexes. Using exclusion-based techniques, we show that the mRNA-binding partners for RBP IGF2BP1 in cultured mammary epithelial cells are enriched in mRNAs important for detoxifying superoxides (specifically glutathione peroxidase [GPX]-1 and GPX-2) and mRNAs encoding mitochondrial proteins. We show that these interactions are functionally significant, as loss of function of IGF2BP1 leads to destabilization of GPX mRNAs and reduces mitochondrial membrane potential and oxygen consumption. We speculate that this underlies a consistent requirement for IGF2BP1 for the expression of clonogenic activity in vitro.
Collapse
Affiliation(s)
- Saja A Fakhraldeen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Celia M Bisbach
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University in St Louis
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
31
|
Xu X, Leng J, Zhang X, Capellini TD, Chen Y, Yang L, Chen Z, Zheng S, Zhang X, Zhan S, Wang L, Zhong T, Guo J, Niu L, Wang Y, Dai D, Zhang H, Li L, Cao J. Identification of IGF2BP1-related lncRNA-miRNA-mRNA network in goat skeletal muscle satellite cells. Anim Sci J 2021; 92:e13631. [PMID: 34545661 DOI: 10.1111/asj.13631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) plays essential roles in the proliferation of skeletal muscle satellite cells (MuSCs). Increasing evidence has shown that IGF2BP1 regulates the expression of noncoding RNAs and mRNAs. However, the related molecular network remains to be fully understood. Therefore, we performed RNA sequencing and analyzed the microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and mRNAs differentially expressed in goat MuSCs treated with IGF2BP1 overexpressing and empty vectors. A total of 36 miRNAs, 59 lncRNAs, and 44 mRNAs were differentially expressed caused by IGF2BP1. Expectedly, they were enriched in muscle development-related Rap1, PI3K-AKT, and FoxO signaling pathways. Finally, we constructed a lncRNA-miRNA-mRNA interaction network containing 30 lncRNAs, 15 miRNAs, and 34 mRNAs, in which several miRNAs, including miR-133a-3p, miR-204-5p, miR-125a-3p, miR-145-3p, and miR-423-5p, relate with cell growth and participate in muscle development. Overall, we constructed an IGF2BP1-related network, which provides new insight into the myogenic proliferation of goat.
Collapse
Affiliation(s)
- Xiaoli Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Junchen Leng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zitong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuailong Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xujia Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Yang Y, Wu J, Liu F, He J, Wu F, Chen J, Jiang Z. IGF2BP1 Promotes the Liver Cancer Stem Cell Phenotype by Regulating MGAT5 mRNA Stability by m6A RNA Methylation. Stem Cells Dev 2021; 30:1115-1125. [PMID: 34514861 DOI: 10.1089/scd.2021.0153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to elucidate the mechanism of action of the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) on the phenotype of the liver cancer stem cells (LCSCs). To gain insight into the mechanism of action of the IGF2BP1 on LCSCs, the IGF2BP1 shRNA sequences were transfected into hepatocellular carcinoma (HCC) cells. The LCSC phenotypes were measured by stemness gene expressions, spheroid formations, percentages of the CD133+ cells, colony formations, and tumorigenesis in vivo. Next, we screened for possible molecular mechanisms from the Cancer Genome Atlas (TCGA) database, and a methylated RNA immunoprecipitation-quantitative polymerase chain reaction (MeRIP-qPCR) was used to adjust the binding of IGF2BP1 to the target gene, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase (MGAT5). The MeRIP-qPCR was used to detect the binding of IGF2BP1 and MGAT5 through N6 methyladenosine (m6A) modification. Furthermore, we adjusted the attenuation of the mRNA of the MGAT5 using quantitative real-time PCR (qRT-PCR). The IGF2BP1 was upregulated in the LCSCs. Furthermore, the IGF2BP1 promoted self-renewal and chemoresistance in human LCSCs and tumorigenesis in mice and it enhanced the expression of stemness genes in the LCSCs compared with the HCC cells. Further exploration indicated that the IGF2BP1 binds directly to the MGAT5 and inhibits its mRNA attenuation, suggesting that the IGF2BP1 impacts MGAT5 mRNA stability through m6A modification. Thus, it can be concluded that the IGF2BP1 facilitated the LCSC phenotypes by promoting the MGAT5 mRNA stability through the upregulation of m6A modification of the MGAT5 mRNA.
Collapse
Affiliation(s)
- Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fuqiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
33
|
Forman TE, Dennison BJC, Fantauzzo KA. The Role of RNA-Binding Proteins in Vertebrate Neural Crest and Craniofacial Development. J Dev Biol 2021; 9:34. [PMID: 34564083 PMCID: PMC8482138 DOI: 10.3390/jdb9030034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.
Collapse
Affiliation(s)
| | | | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.E.F.); (B.J.C.D.)
| |
Collapse
|
34
|
Wang K, Hu H, Tian Y, Li J, Scheben A, Zhang C, Li Y, Wu J, Yang L, Fan X, Sun G, Li D, Zhang Y, Han R, Jiang R, Huang H, Yan F, Wang Y, Li Z, Li G, Liu X, Li W, Edwards D, Kang X. The chicken pan-genome reveals gene content variation and a promoter region deletion in IGF2BP1 affecting body size. Mol Biol Evol 2021; 38:5066-5081. [PMID: 34329477 PMCID: PMC8557422 DOI: 10.1093/molbev/msab231] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Domestication and breeding have reshaped the genomic architecture of chicken, but the retention and loss of genomic elements during these evolutionary processes remain unclear. We present the first chicken pan-genome constructed using 664 individuals, which identified an additional ∼66.5 Mb sequences that are absent from the reference genome (GRCg6a). The constructed pan-genome encoded 20,491 predicated protein-coding genes, of which higher expression level are observed in conserved genes relative to dispensable genes. Presence/absence variation (PAV) analyses demonstrated that gene PAV in chicken was shaped by selection, genetic drift, and hybridization. PAV-based GWAS identified numerous candidate mutations related to growth, carcass composition, meat quality, or physiological traits. Among them, a deletion in the promoter region of IGF2BP1 affecting chicken body size is reported, which is supported by functional studies and extra samples. This is the first time to report the causal variant of chicken body size QTL located at chromosome 27 which was repeatedly reported. Therefore, the chicken pan-genome is a useful resource for biological discovery and breeding. It improves our understanding of chicken genome diversity and provides materials to unveil the evolution history of chicken domestication.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, 6009 WA, Australia
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Chenxi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yiyi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Junfeng Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Lan Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Xuewei Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Fengbin Yan
- Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yanbin Wang
- Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, 6009 WA, Australia
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| |
Collapse
|
35
|
Liu H, Xu H, Lan X, Cao X, Pan C. The InDel variants of sheep IGF2BP1 gene are associated with growth traits. Anim Biotechnol 2021; 34:134-142. [PMID: 34255980 DOI: 10.1080/10495398.2021.1942029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) plays positive roles in the growth, proliferation of cells and early embryos development by binding mRNA targets. Recently, it had been shown that some polymorphic loci within IGF2BP1 gene were associated with growth traits in animals, especially in goats. Therefore, it has been hypothesized that some variants within IGF2BP1 gene may be also involved in growth traits of sheep. Nine insertion/deletion (InDel) mutations within IGF2BP1 were identified and three loci were polymorphic. Meanwhile, the association analyses between three InDels and growth traits were carried out in 745 sheep. The results showed that all InDels included 5 bp InDel in downstream region, 9 bp InDel in intron 4 and 15 bp InDel in intron 2 within IGF2BP1 were significantly associated with growth traits (p<.05). Furthermore, at 5 and 9 bp InDel loci, the individuals of heterozygous genotype (ID) had superior growing performance especially at body weight (BW). In all, three InDels were crucial variants correlated with growth traits and could be applied in marker-assisted selection (MAS) in sheep.
Collapse
Affiliation(s)
- Hongfei Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, P. R. China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
36
|
The biological function of IGF2BPs and their role in tumorigenesis. Invest New Drugs 2021; 39:1682-1693. [PMID: 34251559 DOI: 10.1007/s10637-021-01148-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) pertain to a highly conservative RNA-binding family that works as a post-transcriptional fine-tuner for target transcripts. Emerging evidence suggests that IGF2BPs regulate RNA processing and metabolism, including stability, translation, and localization, and are involved in various cellular functions and pathophysiologies. In this review, we summarize the roles and molecular mechanisms of IGF2BPs in cancer development and progression. We mainly discuss the functional relevance of IGF2BPs in embryo development, neurogenesis, metabolism, RNA processing, and tumorigenesis. Understanding IGF2BPs role in tumor progression will provide new insight into cancer pathophysiology.
Collapse
|
37
|
Laine VN, Verschuuren M, van Oers K, Espín S, Sánchez-Virosta P, Eeva T, Ruuskanen S. Does Arsenic Contamination Affect DNA Methylation Patterns in a Wild Bird Population? An Experimental Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8947-8954. [PMID: 34110128 DOI: 10.1101/2020.12.08.415745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pollutants, such as toxic metals, negatively influence organismal health and performance, even leading to population collapses. Studies in model organisms have shown that epigenetic marks, such as DNA methylation, can be modulated by various environmental factors, including pollutants, influencing gene expression, and various organismal traits. Yet experimental data on the effects of pollution on DNA methylation from wild animal populations are largely lacking. We here experimentally investigated for the first time the effects of early-life exposure to environmentally relevant levels of a key pollutant, arsenic (As), on genome-wide DNA methylation in a wild bird population. We experimentally exposed nestlings of great tits (Parus major) to arsenic during their postnatal developmental period (3 to 14 days post-hatching) and compared their erythrocyte DNA methylation levels to those of respective controls. In contrast to predictions, we found no overall hypomethylation in the arsenic group. We found evidence for loci to be differentially methylated between the treatment groups, but for five CpG sites only. Three of the sites were located in gene bodies of zinc finger and BTB domain containing 47 (ZBTB47), HIVEP zinc finger 3 (HIVEP3), and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). Further studies are needed to evaluate whether epigenetic dysregulation is a commonly observed phenomenon in polluted populations and what are the consequences for organism functioning and for population dynamics.
Collapse
Affiliation(s)
- Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Mark Verschuuren
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Silvia Espín
- Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Murcia 30003, Spain
- Department of Biology, University of Turku, Turku 20500, Finland
| | - Pablo Sánchez-Virosta
- Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Murcia 30003, Spain
- Department of Biology, University of Turku, Turku 20500, Finland
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku 20500, Finland
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, Turku 20500, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| |
Collapse
|
38
|
Laine V, Verschuuren M, van Oers K, Espín S, Sánchez-Virosta P, Eeva T, Ruuskanen S. Does Arsenic Contamination Affect DNA Methylation Patterns in a Wild Bird Population? An Experimental Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8947-8954. [PMID: 34110128 PMCID: PMC8277128 DOI: 10.1021/acs.est.0c08621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pollutants, such as toxic metals, negatively influence organismal health and performance, even leading to population collapses. Studies in model organisms have shown that epigenetic marks, such as DNA methylation, can be modulated by various environmental factors, including pollutants, influencing gene expression, and various organismal traits. Yet experimental data on the effects of pollution on DNA methylation from wild animal populations are largely lacking. We here experimentally investigated for the first time the effects of early-life exposure to environmentally relevant levels of a key pollutant, arsenic (As), on genome-wide DNA methylation in a wild bird population. We experimentally exposed nestlings of great tits (Parus major) to arsenic during their postnatal developmental period (3 to 14 days post-hatching) and compared their erythrocyte DNA methylation levels to those of respective controls. In contrast to predictions, we found no overall hypomethylation in the arsenic group. We found evidence for loci to be differentially methylated between the treatment groups, but for five CpG sites only. Three of the sites were located in gene bodies of zinc finger and BTB domain containing 47 (ZBTB47), HIVEP zinc finger 3 (HIVEP3), and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). Further studies are needed to evaluate whether epigenetic dysregulation is a commonly observed phenomenon in polluted populations and what are the consequences for organism functioning and for population dynamics.
Collapse
Affiliation(s)
- Veronika
N. Laine
- Department
of Animal Ecology, Netherlands Institute
of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Mark Verschuuren
- Department
of Animal Ecology, Netherlands Institute
of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Kees van Oers
- Department
of Animal Ecology, Netherlands Institute
of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Silvia Espín
- Area
of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Murcia 30003, Spain
- Department
of Biology, University of Turku, Turku 20500, Finland
| | - Pablo Sánchez-Virosta
- Area
of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Murcia 30003, Spain
- Department
of Biology, University of Turku, Turku 20500, Finland
| | - Tapio Eeva
- Department
of Biology, University of Turku, Turku 20500, Finland
| | - Suvi Ruuskanen
- Department
of Biology, University of Turku, Turku 20500, Finland
- Department
of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| |
Collapse
|
39
|
Vong YH, Sivashanmugam L, Leech R, Zaucker A, Jones A, Sampath K. The RNA-binding protein Igf2bp3 is critical for embryonic and germline development in zebrafish. PLoS Genet 2021; 17:e1009667. [PMID: 34214072 PMCID: PMC8282044 DOI: 10.1371/journal.pgen.1009667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/15/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The ability to reproduce is essential in all branches of life. In metazoans, this process is initiated by formation of the germline, a group of cells that are destined to form the future gonads, the tissue that will produce the gametes. The molecular mechanisms underlying germline formation differs between species. In zebrafish, development of the germline is dependent on the specification, migration and proliferation of progenitors called the primordial germ cells (PGCs). PGC specification is dependent on a maternally provided cytoplasmic complex of ribonucleoproteins (RNPs), the germplasm. Here, we show that the conserved RNA-binding protein (RBP), Igf2bp3, has an essential role during early embryonic development and germline development. Loss of Igf2bp3 leads to an expanded yolk syncytial layer (YSL) in early embryos, reduced germline RNA expression, and mis-regulated germline development. We show that loss of maternal Igf2bp3 function results in translational de-regulation of a Nodal reporter during the mid-blastula transition. Furthermore, maternal igf2bp3 mutants exhibit reduced expression of germplasm transcripts, defects in chemokine guidance, abnormal PGC behavior and germ cell death. Consistently, adult igf2bp3 mutants show a strong male bias. Our findings suggest that Igf2bp3 is essential for normal embryonic and germline development, and acts as a key regulator of sexual development.
Collapse
Affiliation(s)
- Yin Ho Vong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Lavanya Sivashanmugam
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Leech
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andreas Zaucker
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Alex Jones
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Early Life, University of Warwick, Coventry, United Kingdom
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
40
|
Feng G, Zhao J, Lei J, Wang L, Wang S, Zhang T, Lu H. Identification of Igf2bp1 gene family and effect on chicken myoblast proliferation. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1932916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Guang Feng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Jiarong Zhao
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Jingjing Lei
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Ling Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Shanshan Wang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Tao Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Hongzhao Lu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| |
Collapse
|
41
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
42
|
Characterization and Comparative Transcriptomic Analysis of Skeletal Muscle in Pekin Duck at Different Growth Stages Using RNA-Seq. Animals (Basel) 2021; 11:ani11030834. [PMID: 33809502 PMCID: PMC8000258 DOI: 10.3390/ani11030834] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Skeletal muscle is an important tissue and its development is strictly regulated by genes. In this study, in order to understand the muscle-related gene expression in Pekin duck, RNA-seq was performed to analyze and compare skeletal muscle at different growth stages. Alternative splicing, single nucleotide polymorphisms and insertion–deletions were detected, and 299 novel genes were discovered. MYL4, IGF2BP1, CSRP3, SPP1, KLHL31, LAMB2, LAMA2, ITGB1 and OPN played crucial roles in skeletal muscle development. Oxidative phosphorylation, ECM-receptor interaction, focal adhesion, carbon metabolism, and biosynthesis of amino acids participated in the regulation of skeletal muscle development in Pekin duck. This study provides an important reference for revealing the developmental mechanisms of pectoral and leg muscles in duck. Abstract Skeletal muscle, accounting for approximately 50% of body weight, is the largest and most important tissue. In this study, the gene expression profiles and pathways in skeletal muscle of Pekin duck were investigated and compared at embryonic day 17, 21, and 27 and postnatally at 6 months of age. An average of 49,555,936 reads in each sample was obtained from the transcriptome libraries. Over 70.0% of alternative splicing (AS) in each sample was mainly alternative 5′ first exon (transcription start site)—the first exon splicing (TSS) and alternative 3′ last exon (transcription terminal site)—the last exon splicing (TTS), indicating that TSS and TTS were the most common AS event in Pekin ducks, and these AS events were closely related to the regulation of muscle development at different growth stages. The results provided a valuable genomic resource for selective breeding and functional studies of genes. A total of 299 novel genes with ≥2 exons were obtained. There were 294 to 2806 differentially expressed genes (DEGs) in each pairwise comparison of Pekin duck. Notably, 90 DEGs in breast muscle and 9 DEGs in leg muscle were co-expressed at all developmental points. DEGs were validated by qPCR analysis, which confirmed the tendency of the expression. DEGs related to muscle development were involved in biological processes such as “endodermal cell differentiation”, “muscle cell cellular homeostasis”, “skeletal muscle tissue growth” and “skeletal muscle cell differentiation”, and were involved in pathways such as oxidative phosphorylation, ECM-receptor (extracellular matrix receptor) interaction, focal adhesion, carbon metabolism, and biosynthesis of amino acids. Some DEGs, including MYL4, IGF2BP1, CSRP3, SPP1 and KLHL31, as well as LAMB2, LAMA2, ITGB1 and OPN, played crucial roles in muscle growth and development. This study provides valuable information about the expression profile of mRNAs and pathways from duck skeletal muscle at different growth stages, and further functional study of these mRNAs and pathways could provide new ideas for studying the molecular networks of growth and development in duck skeletal muscle.
Collapse
|
43
|
Regué L, Zhao L, Ji F, Wang H, Avruch J, Dai N. RNA m6A reader IMP2/IGF2BP2 promotes pancreatic β-cell proliferation and insulin secretion by enhancing PDX1 expression. Mol Metab 2021; 48:101209. [PMID: 33705986 PMCID: PMC8076713 DOI: 10.1016/j.molmet.2021.101209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a common metabolic disease. Variants in human IGF2 mRNA binding protein 2 (IMP2/IGF2BP2) are associated with increased risk of T2D. IMP2 contributes to T2D susceptibility primarily through effects on insulin secretion. However, the underlying mechanism is not known. METHODS To understand the role of IMP2 in insulin secretion and T2D pathophysiology, we generated Imp2 pancreatic β-cell specific knockout mice (βIMP2KO) by recombining the Imp2flox allele with Cre recombinase driven by the rat insulin 2 promoter. We further characterized metabolic phenotypes of βIMP2KO mice and assessed their β-cell functions. RESULTS The deletion of IMP2 in pancreatic β-cells leads to reduced compensatory β-cell proliferation and function. Mechanically, IMP2 directly binds to Pdx1 mRNA and stimulates its translation in an m6A dependent manner. Moreover, IMP2 orchestrates IGF2-AKT-GSK3β-PDX1 signaling to stable PDX1 polypeptides. In human EndoC-βH1 cells, the over-expression of IMP2 is capable to enhance cell proliferation, PDX1 protein level and insulin secretion. CONCLUSION Our work therefore reveals IMP2 as a critical regulator of pancreatic β-cell proliferation and function; highlights the importance of posttranscriptional gene expression in T2D pathology.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Animals
- Cell Line
- Cell Proliferation/genetics
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Gene Knockout Techniques
- Homeodomain Proteins/metabolism
- Humans
- Insulin Secretion/genetics
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/genetics
- Insulin, Regular, Human/metabolism
- Insulin-Secreting Cells/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Signal Transduction/genetics
- Trans-Activators/metabolism
- Transfection
Collapse
Affiliation(s)
- Laura Regué
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Liping Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fei Ji
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hua Wang
- The Lundquist Institute, Harbor-UCLA, Torrance, CA, 90502, USA
| | - Joseph Avruch
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ning Dai
- Department of Molecular Biology and Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Zhang S, Zhang K, Peng X, Zhan H, Lu J, Xie S, Zhao S, Li X, Ma Y. Selective sweep analysis reveals extensive parallel selection traits between large white and Duroc pigs. Evol Appl 2020; 13:2807-2820. [PMID: 33294024 PMCID: PMC7691457 DOI: 10.1111/eva.13085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
In the process of pig genetic improvement, different commercial breeds have been bred for the same purpose, improving meat production. Most of the economic traits, such as growth and fertility, have been selected similarly despite the discrepant selection pressure, which is known as parallel selection. Here, 28 whole-genome sequencing data of Danish large white pigs with an approximately 25-fold depth each were generated, resulting in about 12 million high-quality SNPs for each individual. Combined with the sequencing data of 27 Duroc and 23 European wild boars, we investigated the parallel selection of Danish large white and Duroc pigs using two complementary methods, Fst and iHS. In total, 67 candidate regions were identified as the signatures of parallel selection. The genes in candidate regions of parallel selection were mainly associated with sensory perception, growth rate, and body size. Further functional annotation suggested that the striking consistency of the terms may be caused by the polygenetic basis of quantitative traits, and revealing the complex genetic basis of parallel selection. Besides, some unique terms were enriched in population-specific selection regions, such as the limb development-related terms enriched in Duroc-specific selection regions, suggesting unique selections of breed-specific selected traits. These results will help us better understand the parallel selection process of different breeds. Moreover, we identified several potential causal SNPs that may contribute to the pig genetic breeding process.
Collapse
Affiliation(s)
- Saixian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Kaili Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Xia Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Huiwen Zhan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jiahui Lu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
45
|
Starks RR, Abu Alhasan R, Kaur H, Pennington KA, Schulz LC, Tuteja G. Transcription Factor PLAGL1 Is Associated with Angiogenic Gene Expression in the Placenta. Int J Mol Sci 2020; 21:ijms21218317. [PMID: 33171905 PMCID: PMC7664191 DOI: 10.3390/ijms21218317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
During pregnancy, the placenta is important for transporting nutrients and waste between the maternal and fetal blood supply, secreting hormones, and serving as a protective barrier. To better understand placental development, we must understand how placental gene expression is regulated. We used RNA-seq data and ChIP-seq data for the enhancer associated mark, H3k27ac, to study gene regulation in the mouse placenta at embryonic day (e) 9.5, when the placenta is developing a complex network of blood vessels. We identified several upregulated transcription factors with enriched binding sites in e9.5-specific enhancers. The most enriched transcription factor, PLAGL1 had a predicted motif in 233 regions that were significantly associated with vasculature development and response to insulin stimulus genes. We then performed several experiments using mouse placenta and a human trophoblast cell line to understand the role of PLAGL1 in placental development. In the mouse placenta, Plagl1 is expressed in endothelial cells of the labyrinth layer and is differentially expressed in placentas from mice with gestational diabetes compared to placentas from control mice in a sex-specific manner. In human trophoblast cells, siRNA knockdown significantly decreased expression of genes associated with placental vasculature development terms. In a tube assay, decreased PLAGL1 expression led to reduced cord formation. These results suggest that Plagl1 regulates overlapping gene networks in placental trophoblast and endothelial cells, and may play a critical role in placental development in normal and complicated pregnancies.
Collapse
Affiliation(s)
- Rebekah R. Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Rabab Abu Alhasan
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
| | - Haninder Kaur
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
| | | | - Laura C. Schulz
- Obstetrics, Gynecology and Women’s Health, University of Missouri, Columba, MO 65212, USA;
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; (R.R.S.); (R.A.A.); (H.K.)
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
46
|
Wang Y, Bu L, Cao X, Qu H, Zhang C, Ren J, Huang Z, Zhao Y, Luo C, Hu X, Shu D, Li N. Genetic Dissection of Growth Traits in a Unique Chicken Advanced Intercross Line. Front Genet 2020; 11:894. [PMID: 33033489 PMCID: PMC7509424 DOI: 10.3389/fgene.2020.00894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
The advanced intercross line (AIL) that is created by successive generations of pseudo-random mating after the F2 generation is a valuable resource, especially in agricultural livestock and poultry species, because it improves the precision of quantitative trait loci (QTL) mapping compared with traditional association populations by introducing more recombination events. The growth traits of broilers have significant economic value in the chicken industry, and many QTLs affecting growth traits have been identified, especially on chromosomes 1, 4, and 27, albeit with large confidence intervals that potentially contain dozens of genes. To promote a better understanding of the underlying genetic architecture of growth trait differences, specifically body weight and bone development, in this study, we report a nine-generation AIL derived from two divergent outbred lines: High Quality chicken Line A (HQLA) and Huiyang Bearded (HB) chicken. We evaluate the genetic architecture of the F0, F2, F8, and F9 generations of AIL and demonstrate that the population of the F9 generation sufficiently randomized the founder genomes and has the characteristics of rapid linkage disequilibrium decay, limited allele frequency decline, and abundant nucleotide diversity. This AIL yielded a much narrower QTL than the F2 generations, especially the QTL on chromosome 27, which was reduced to 120 Kb. An ancestral haplotype association analysis showed that most of the dominant haplotypes are inherited from HQLA but with fluctuation of the effects between them. We highlight the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP) in bone growth. We also retrieved a missing QTL from AIL on chromosome 4 by identifying the founder selection signatures, which are explained by the loss of association power that results from rare alleles. Our study provides a reasonable resource for detecting quantitative trait genes and tracking ancestor history and will facilitate our understanding of the genetic mechanisms underlying chicken bone growth.
Collapse
Affiliation(s)
- Yuzhe Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lina Bu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuemin Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuolin Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Dai N. The Diverse Functions of IMP2/IGF2BP2 in Metabolism. Trends Endocrinol Metab 2020; 31:670-679. [PMID: 32586768 DOI: 10.1016/j.tem.2020.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
The human insulin-like growth factor 2 (IGF2) mRNA binding protein family (IMPs/IGF2BPs) is involved in a spectrum of biological processes, including development, tumorigenesis, and stemness. IMPs play a major role in post-transcriptional regulation of RNAs through the ribonucleoprotein complex (RNP). They have emerged as direct mammalian target of rapamycin (mTOR) substrates that coordinate nutrient stimulation and RNA life cycle control. IMP2 is a human type 2 diabetes (T2D) gene associated with impaired insulin secretion. Recently, using murine models, the substantial progress in understanding disease mechanisms has highlighted the significance of IMP2 in metabolism. This new knowledge may have the potential for therapeutic benefit.
Collapse
Affiliation(s)
- Ning Dai
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
48
|
Mateu-Regué À, Christiansen J, Bagger FO, Winther O, Hellriegel C, Nielsen FC. Single mRNP Analysis Reveals that Small Cytoplasmic mRNP Granules Represent mRNA Singletons. Cell Rep 2020; 29:736-748.e4. [PMID: 31618640 DOI: 10.1016/j.celrep.2019.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Small cytoplasmic mRNP granules are implicated in mRNA transport, translational control, and decay. Using super-resolution microscopy and fluorescence correlation spectroscopy, we analyzed the molecular composition and dynamics of single cytoplasmic YBX1_IMP1 mRNP granules in live cells. Granules appeared elongated and branched, with patches of IMP1 and YBX1 distributed along mRNA, reflecting the attachment of the two RNA-binding proteins in cis. Particles form at the nuclear pore and do not associate with translating ribosomes, so the mRNP is a repository for mRNAs awaiting translation. In agreement with the average number of mRNA-binding sites derived from crosslinked immunoprecipitation (CLIP) analyses, individual mRNPs contain 5-15 molecules of YBX1 and IMP1 and a single poly(A) tail identified by PABPC1. Taken together, we conclude that small cytoplasmic mRNP granules are mRNA singletons, thus depicting the cellular transcriptome. Consequently, expression of functionally related mRNAs in RNA regulons is unlikely to result from coordinated assembly.
Collapse
Affiliation(s)
- Àngels Mateu-Regué
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jan Christiansen
- Department of Biology, Copenhagen Biocenter, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ole Winther
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christian Hellriegel
- Carl Zeiss RMS, Harvard Center for Biological Imaging, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
49
|
Singh V, Gowda CP, Singh V, Ganapathy AS, Karamchandani DM, Eshelman MA, Yochum GS, Nighot P, Spiegelman VS. The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. J Biol Chem 2020; 295:8602-8612. [PMID: 32385106 DOI: 10.1074/jbc.ac120.013646] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an mRNA-binding protein that has an oncofetal pattern of expression. It is also expressed in intestinal tissue, suggesting that it has a possible role in intestinal homeostasis. To investigate this possibility, here we generated Villin CreERT2:Igf2bp1flox/flox mice, which enabled induction of an IGF2BP1 knockout specifically in intestinal epithelial cells (IECs) of adult mice. Using gut barrier and epithelial permeability assays and several biochemical approaches, we found that IGF2BP1 ablation in the adult intestinal epithelium causes mild active colitis and mild-to-moderate active enteritis. Moreover, the IGF2BP1 deletion aggravated dextran sodium sulfate-induced colitis. We also found that IGF2BP1 removal compromises barrier function of the intestinal epithelium, resulting from altered protein expression at tight junctions. Mechanistically, IGF2BP1 interacted with the mRNA of the tight-junction protein occludin (Ocln), stabilizing Ocln mRNA and inducing expression of occludin in IECs. Furthermore, ectopic occludin expression in IGF2BP1-knockdown cells restored barrier function. We conclude that IGF2BP1-dependent regulation of occludin expression is an important mechanism in intestinal barrier function maintenance and in the prevention of colitis.
Collapse
Affiliation(s)
- Vikash Singh
- Division of Hematology and Oncology, Pediatric Department, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Chethana P Gowda
- Division of Hematology and Oncology, Pediatric Department, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Dipti M Karamchandani
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Melanie A Eshelman
- Department of Biochemistry & Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory S Yochum
- Department of Biochemistry & Molecular Biology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA.,Department of Surgery, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Prashant Nighot
- Department of Medicine, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Vladimir S Spiegelman
- Division of Hematology and Oncology, Pediatric Department, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
50
|
Gerlinskaya LA, Litvinova EA, Kontsevaya GV, Feofanova NA, Achasova KM, Anisimova MV, Maslennikova SO, Zolotykh MA, Moshkin YM, Moshkin MP. Phenotypic variations in transferred progeny due to genotype of surrogate mother. Mol Hum Reprod 2020; 25:88-99. [PMID: 30445548 DOI: 10.1093/molehr/gay052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/15/2018] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Does the genotype of the surrogate mother modulate the body composition and immunity of her offspring? SUMMARY ANSWER C57BL/6J (B6) progenies carried by immunodeficient NOD SCID (NS) mothers had increased adaptive but decreased innate, immune responsiveness in comparison with the same genotype offspring carried by immunocompetent mothers, B6 and BALB/c (C); the B6 progenies carried by the same genotype mothers also showed higher body fat than the others. WHAT IS KNOWN ALREADY Differences in the major histocompatibility complex (MHC) genes between mother and foetus is considered as an important factor in prenatal embryo development, whereas the impact of such dissimilarity on the phenotype of the mature progeny is unclear. STUDY DESIGN, SIZE, DURATION Transplantation of two-cell mouse embryos into recipient females of the different MHC (H2) genotypes was used as an approach to simulate three variants of the immunogenic mother-foetus interaction: (i) bidirectional immunogenic dialogue between B6 (H2b haplotype) embryos and C (H2d haplotype) surrogate mother; (ii) one-way immunogenic interaction between B6 embryos and immunodeficient NS (H2g7 haplotype) surrogate mother and (iii) reduced immunogenetic dialogue between embryos and surrogate mother of the same H2b haplotype resulting in only a maternal response to HY antigens of male foetuses. Delivered by Caesarean section, pups were fostered by lactating B6 females and weighed after weaning (n = 171). Body mass and composition and innate and adaptive immunity were assessed in selected progeny groups at 9-11 weeks of age. PARTICIPANTS/MATERIALS, SETTING, METHODS The study was performed on the specific pathogen-free mouse, inbred strains C57BL/6J, NOD SCID and BALB/c. Plasma progesterone in pregnant females was measured by enzyme-linked immunosorbent assay (ELISA). Body composition was determined by magnetic resonance spectroscopy using a low-field NMR spectrometer (EchoMRI, USA). To assess peritoneal macrophage responses (innate immunity) to anthrax, lactate dehydrogenase (LDH) and interleukin-1 (IL-1β) were measured in a culture medium 24 h after the addition of both anthrax-lethal factor and anthrax-protective antigen. To assess adaptive immunity, 9-10 males in experimental groups were infected with Helicobacter hepaticus. Faeces collected 2 and 4 weeks after infection was used for quantitative assessment of the H. hepaticus DNA by real-time polymerase chain reaction. IgA, interferon (IFN-γ), tumour necrosis factor (TNFα), interleukin-17 (IL-17) and interleukin-10 (IL-10) in colon tissue and IgG in serum were determined in samples collected 4 weeks after gavage with H. hepaticus using ELISA. For statistical analyses, ANCOVA, post hoc least significant difference (LSD) test, Student's t-test, Spearman rank correlations and χ2 test were performed. P-value <0.05 was considered as a statistically significant difference. MAIN RESULTS AND THE ROLE OF CHANCE ANCOVA with litter size and age as covariates revealed significant effects of the surrogate mother genotype on body mass and percent of fat in their adult progeny (F2149 = 15.60, P < 0.001 and F2149 = 5.02, P = 0.007, respectively). Adult B6 mice carried by B6 surrogate mothers were characterized by a higher percentage of body fat in comparison with offspring that were carried by NS and C females. In comparison with the male offspring carried by the B6 and C mothers, male B6 progenies carried by immunodeficient NS mothers had a higher humoral immune response (serum IgG) against oral infection with H. hepaticus, but lower in vitro macrophage IL-1β reaction to the anthrax. Four weeks after the infection of offspring, concentrations of serum IgG and colon IL-10 correlated positively with maternal progesterone on Day 4 after embryo transfer and negatively with DNA of H. hepaticus. One-way ANOVA confirmed a statistically significant impact of surrogate mother genotype on adaptive (IgG) and innate (IL-1β) immunity (F2.26 = 26.39, P < 0.001 and F2.27 = 5.89, P = 0.008, respectively). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The main limitation of our study is the number of combinations of mother and foetus interactions, in particular, transfer of only one embryo genotype was used. Also, it is a descriptive study, which requires further analysis of the epigenetic mechanisms of the observed phenotypic effects of surrogate mother genotype. WIDER IMPLICATIONS OF THE FINDINGS Our experimental data demonstrate that the transfer of inbred embryos to surrogate mothers of the different genotypes is a prospective experimental model for the study of epigenetic effects of the immunogenetic interactions between mother and foetus. The experimental approach tested in our study will be in demand for the development of criteria for choosing surrogate mothers. In particular, immunocompetence of the surrogate mother along with genetic distance of her MHC alleles to the transferred embryos have a significant impact on offspring development. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Russian FPI (6/099/2017), budget projects (0324-2016-0002 and 0324-2018-0016) and implemented using the equipment of the Centre for Genetic Resources of Laboratory Animals at ICG SB RAS, supported by the Ministry of Education and Science of Russia (Unique project identifier RFMEFI62117X0015). The authors report no conflicts of interest.
Collapse
Affiliation(s)
- Ludmila A Gerlinskaya
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ekaterina A Litvinova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Galina V Kontsevaya
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Natalia A Feofanova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Laboratory of clinical immunopathology, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Ksenia M Achasova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Margarita V Anisimova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Svetlana O Maslennikova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Maria A Zolotykh
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Yuri M Moshkin
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Mikhail P Moshkin
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|