1
|
Hartl L, Duitman J, Aberson HL, Medema JP, Bijlsma MF, Spek CA. Identification of C/EBPδ-Modifying Compounds as Potential Anticancer Agents Using a High-Throughput Drug Screen. J Cell Mol Med 2025; 29:e70287. [PMID: 39887610 PMCID: PMC11783153 DOI: 10.1111/jcmm.70287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (C/EBPδ) has been shown to promote tumour growth, drug resistance and metastasis formation in some cancers, whereas we have shown that its re-expression limits the features of tumour progression in pancreatic ductal adenocarcinoma (PDAC). The pharmacological targeting-either activation or inhibition-of C/EBPδ may therefore harbour clinical relevance and is desirable for preclinical studies on C/EBPδ in different contexts. Regrettably, to date, only few molecules have been identified that modify C/EBPδ. Here, we present a high-throughput compound screen in conjunction with a novel eGFP reporter to identify further compounds that either increase or decrease C/EBPδ transcriptional activity. Of 1402 small molecule inhibitors, we identified a total of 22 potent inducers and 18 inhibitors of C/EBPδ-mediated eGFP fluorescence. Using pathway enrichment analysis, we found that, generally, inhibition of the cell cycle elicits an increase in C/EBPδ activity whereas PI3K/Akt/mTOR-targeting compounds reduce C/EBPδ activity. We confirmed the potential importance of cell cycle-mediated regulation of C/EBPδ by showing that four of the most potent C/EBPδ activators-R547, PHA793387, AZD5438 and AT7519, all multi-cyclin-dependent kinase (CDK) inhibitors-limited the clonal expansion of PDAC cells. Next to providing a valuable selection of C/EBPδ-modulating compounds for the use in preclinical studies, this report contributes to our understanding of the molecular regulatory mechanisms of C/EBPδ in general and in PDAC in particular.
Collapse
Affiliation(s)
- Leonie Hartl
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - JanWillem Duitman
- Department of Pulmonary MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Department of Experimental ImmunologyAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Inflammatory DiseasesAmsterdam Infection & ImmunityAmsterdamThe Netherlands
| | - Hella L. Aberson
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| | - C. Arnold Spek
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Biology and ImmunologyCancer Center AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Accattatis FM, Caruso A, Carleo A, Del Console P, Gelsomino L, Bonofiglio D, Giordano C, Barone I, Andò S, Bianchi L, Catalano S. CEBP-β and PLK1 as Potential Mediators of the Breast Cancer/Obesity Crosstalk: In Vitro and In Silico Analyses. Nutrients 2023; 15:2839. [PMID: 37447165 DOI: 10.3390/nu15132839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last two decades, obesity has reached pandemic proportions in several countries, and expanding evidence is showing its contribution to several types of malignancies, including breast cancer (BC). The conditioned medium (CM) from mature adipocytes contains a complex of secretes that may mimic the obesity condition in studies on BC cell lines conducted in vitro. Here, we report a transcriptomic analysis on MCF-7 BC cells exposed to adipocyte-derived CM and focus on the predictive functional relevance that CM-affected pathways/processes and related biomarkers (BMs) may have in BC response to obesity. CM was demonstrated to increase cell proliferation, motility and invasion as well as broadly alter the transcript profiles of MCF-7 cells by significantly modulating 364 genes. Bioinformatic functional analyses unraveled the presence of five highly relevant central hubs in the direct interaction networks (DIN), and Kaplan-Meier analysis sorted the CCAAT/enhancer binding protein beta (CEBP-β) and serine/threonine-protein kinase PLK1 (PLK1) as clinically significant biomarkers in BC. Indeed, CEBP-β and PLK1 negatively correlated with BC overall survival and were up-regulated by adipocyte-derived CM. In addition to their known involvement in cell proliferation and tumor progression, our work suggests them as a possible "deus ex machina" in BC response to fat tissue humoral products in obese women.
Collapse
Affiliation(s)
- Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße, 30625 Hannover, Germany
| | - Piercarlo Del Console
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Laura Bianchi
- Section of Functional Proteomics, Department of Life Sciences, Via Aldo Moro, University of Siena, 53100 Siena, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
3
|
Matherne MG, Phillips ES, Embrey SJ, Burke CM, Machado HL. Emerging functions of C/EBPβ in breast cancer. Front Oncol 2023; 13:1111522. [PMID: 36761942 PMCID: PMC9905667 DOI: 10.3389/fonc.2023.1111522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Breast tumorigenesis relies on complex interactions between tumor cells and their surrounding microenvironment, orchestrated by tightly regulated transcriptional networks. C/EBPβ is a key transcription factor that regulates the proliferation and differentiation of multiple cell types and modulates a variety of biological processes such as tissue homeostasis and the immune response. In addition, C/EBPβ has well-established roles in mammary gland development, is overexpressed in breast cancer, and has tumor-promoting functions. In this review, we discuss context-specific roles of C/EBPβ during breast tumorigenesis, isoform-specific gene regulation, and regulation of the tumor immune response. We present challenges in C/EBPβ biology and discuss the importance of C/EBPβ isoform-specific gene regulation in devising new therapeutic strategies.
Collapse
Affiliation(s)
- Megan G. Matherne
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Emily S. Phillips
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Samuel J. Embrey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Caitlin M. Burke
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States,*Correspondence: Heather L. Machado,
| |
Collapse
|
4
|
Yang N, Wang H, Zhang R, Niu Z, Zheng S, Zhang Z. C/EBP β Mediates the Aberrant Inflammatory Response and Cell Cycle Arrest in Lps-stimulated Human Renal Tubular Epithelial Cells by Regulating NF-κB Pathway. Arch Med Res 2021; 52:603-610. [PMID: 33947580 DOI: 10.1016/j.arcmed.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS The main cause of sepsis-induced Acute kidney injury (AKI) is acute infection after surgery and subsequent progression. However, the mechanism by which AKI is caused and developed from sepsis are not completely known. Herein, we determined the role of CCAAT/enhancer-binding protein β (C/EBP β) in sepsis-induced AKI METHODS: C/EBP β expression was up or down-regulated in LPS-stimulated human renal tubular epithelial cells in vitro by recombinant adenoviruses or siRNA. Subsequent analyses included the test of TNF-α and IL-6 levels by ELISA, cell cycle assay by flow cytometry. RESULTS C/EBP β was aberrantly expressed in renal tubular epithelial HK-2 cells exposed to LPS. C/EBP β overexpression significantly enhanced, but C/EBP β silencing obviously decreased the production and secretion of inflammatory cytokines TNF-α and IL-6 induced by LPS stimulus in HK-2 cells. And the cell cycle arrest of HK-2 cells induced by LPS was also enhanced after C/EBP β overexpression while attenuated after C/EBP β silencing. Consistent pattern of changes in Cyclin D1 and p21 expression were observed in LPS-stimulated HK-2 cells after C/EBP β silencing and C/EBP β overexpression. Additionally, the increased p-NF-κB levels induced by LPS were found to be obviously decreased after C/EBP β silencing in HK-2 cells. And the enhanced TNF-α and IL-6 secretion as well as cell cycle arrest by C/EBP β overexpression were blocked by BAY11-7082 inhibitor of NF-κB pathway. CONCLUSIONS C/EBP β could mediate the LPS-induced aberrant inflammatory response and cell cycle arrest in tubular epithelial cells by NF-κB pathway.
Collapse
Affiliation(s)
- Ni Yang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Hai Wang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Rui Zhang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Zequn Niu
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Shaowei Zheng
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Zhengliang Zhang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China.
| |
Collapse
|
5
|
Lee LL, Kim SJ, Hahn YI, Jang JH, Saeidi S, Surh YJ. Stabilization of C/EBPβ through direct interaction with STAT3 in H-Ras transformed human mammary epithelial cells. Biochem Biophys Res Commun 2021; 546:130-137. [PMID: 33582555 DOI: 10.1016/j.bbrc.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/03/2021] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays important roles in cancer-associated inflammation by controlling expression of proinflammatory cytokines and chemokines. Recent studies suggest that C/EBPβ (CCAAT-enhancer binding protein beta) and STAT3 synergistically stimulate cancer cell proliferation and epithelial-mesenchymal transition. C/EBPβ is a leucine-zipper transcription factor that regulates expression of a variety of inflammatory cytokines or chemokines, such as IL-8, G-CSF (granulocyte colony stimulating factor), and GM-CSF (granulocyte macrophage colony stimulating factor) which induce neutrophil infiltration and differentiation. However, molecular mechanisms by which STAT3 and C/EBPβ cooperatively interact had not been fully elucidated. In this study, we found that the level of C/EBPβ protein, but not that of its mRNA transcript, was decreased in the absence of STAT3 in H-Ras transformed human mammary epithelial (H-Ras MCF10A) cells. In addition, silencing STAT3 dramatically induced ubiquitination of C/EBPβ for proteasomal degradation. Furthermore, direct interaction between STAT3 and C/EBPβ was confirmed by immunoprecipitation and proximity ligation assays. Taken together, these results suggest that STAT3 stabilizes C/EBPβ, thereby promoting cancer-associated inflammation.
Collapse
Affiliation(s)
- Lil-Li Lee
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Young-Il Hahn
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
6
|
Sharma N, Kaur R, Yadav B, Shah K, Pandey H, Choudhary D, Jain P, Aggarwal A, Vinson C, Rishi V. Transient Delivery of A-C/EBP Protein Perturbs Differentiation of 3T3-L1 Cells and Induces Preadipocyte Marker Genes. Front Mol Biosci 2021; 7:603168. [PMID: 33569390 PMCID: PMC7868408 DOI: 10.3389/fmolb.2020.603168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Transformation of committed 3T3-L1 preadipocytes to lipid-laden adipocytes involves the timely appearance of numerous transcription factors (TFs); foremost among them, C/EBPβ is expressed during the early phases of differentiation. Here, we describe liposome-mediated protein transfection approach to rapidly downregulate C/EBPβ by A-C/EBP protein inhibitor. Signals from EGFP-tagged A-C/EBP protein were observed in 3T3-L1 cells within 2 h of transfections, whereas for A-C/EBP gene transfections, equivalent signals appeared in 48 h. Following transient transfections, the expression profiles of 24 marker genes belonging to pro- and anti-adipogenic, cell cycle, and preadipocyte pathways were analyzed. Expectedly, the mRNA and protein expression profiles of adipocyte marker genes showed lower expression in both A-C/EBP protein- and gene-transfected samples. Interestingly, for preadipocytes and cell fate determinant genes, striking differences were observed between A-C/EBP protein- and A-C/EBP gene-transfected samples. Preadipocyte differentiation factors Stat5a and Creb were downregulated in A-C/EBP protein samples. Five preadipocyte markers, namely, Pdgfrα, Pdgfrβ, Ly6A, CD34, and Itgb1, showed high expression in A-C/EBP protein samples, whereas only Ly6A and CD34 were expressed in A-C/EBP gene-transfected samples. Pdgfrα and Pdgfrβ, two known cell fate markers, were expressed in A-C/EBP protein-transfected samples, suggesting a possible reversal of differentiation. Our study provides evidences for the immediate and efficient knockdown of C/EBPβ protein to understand time-dependent preadipocytes differentiation.
Collapse
Affiliation(s)
- Nishtha Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Raminder Kaur
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Binduma Yadav
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Koushik Shah
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Harshita Pandey
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Diksha Choudhary
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Prateek Jain
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Aanchal Aggarwal
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Charles Vinson
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
7
|
Salotti J, Johnson PF. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp Gerontol 2019; 128:110752. [PMID: 31648009 DOI: 10.1016/j.exger.2019.110752] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an important barrier to tumor progression in cells that have acquired activating mutations in RAS and other oncogenes. Senescent cells also produce a secretome known as the senescence-associated secretory phenotype (SASP) that includes pro-inflammatory cytokines and chemokines. SASP factors reinforce and propagate the senescence program and identify senescent cells to the immune system for clearance. The OIS program is executed by several transcriptional effectors that include p53, RB, NF-κB and C/EBPβ. In this review, we summarize the critical role of C/EBPβ in regulating OIS and the SASP. Post-translational modifications induced by oncogenic RAS signaling control C/EBPβ activity and dimerization, and these alterations switch C/EBPβ to a pro-senescence form during OIS. In addition, C/EBPβ is regulated by a unique 3'UTR-mediated mechanism that restrains its activity in tumor cells to facilitate senescence bypass and suppression of the SASP.
Collapse
Affiliation(s)
- Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Jamieson SA, Ruan Z, Burgess AE, Curry JR, McMillan HD, Brewster JL, Dunbier AK, Axtman AD, Kannan N, Mace PD. Substrate binding allosterically relieves autoinhibition of the pseudokinase TRIB1. Sci Signal 2018; 11:11/549/eaau0597. [PMID: 30254053 DOI: 10.1126/scisignal.aau0597] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tribbles family of pseudokinases recruits substrates to the ubiquitin ligase COP1 to facilitate ubiquitylation. CCAAT/enhancer-binding protein (C/EBP) family transcription factors are crucial Tribbles substrates in adipocyte and myeloid cell development. We found that the TRIB1 pseudokinase was able to recruit various C/EBP family members and that the binding of C/EBPβ was attenuated by phosphorylation. To explain the mechanism of C/EBP recruitment, we solved the crystal structure of TRIB1 in complex with C/EBPα, which revealed that TRIB1 underwent a substantial conformational change relative to its substrate-free structure and bound C/EBPα in a pseudosubstrate-like manner. Crystallographic analysis and molecular dynamics and subsequent biochemical assays showed that C/EBP binding triggered allosteric changes that link substrate recruitment to COP1 binding. These findings offer a view of pseudokinase regulation with striking parallels to bona fide kinase regulation-by means of the activation loop and αC helix-and raise the possibility of small molecules targeting either the activation "loop-in" or "loop-out" conformations of Tribbles pseudokinases.
Collapse
Affiliation(s)
- Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Abigail E Burgess
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jack R Curry
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Hamish D McMillan
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Jodi L Brewster
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Anita K Dunbier
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand.
| |
Collapse
|
9
|
DeSmet ML, Fleet JC. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. J Steroid Biochem Mol Biol 2017; 173:194-201. [PMID: 28104492 PMCID: PMC5511787 DOI: 10.1016/j.jsbmb.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Abstract
High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention.
Collapse
Affiliation(s)
- Marsha L DeSmet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| | - James C Fleet
- Purdue University Interdisciplinary Life Science Ph.D. Program, West Lafayette, IN, United States; Purdue University Center for Cancer Research, West Lafayette, IN, United States; Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
10
|
Sukari A, Muqbil I, Mohammad RM, Philip PA, Azmi AS. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Semin Cancer Biol 2016; 36:95-104. [PMID: 26804424 DOI: 10.1016/j.semcancer.2016.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder.
Collapse
Affiliation(s)
- Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA; iTRI Hamad Medical Corporation, Doha, Qatar
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
12
|
Amid A, Wan Chik WD, Jamal P, Hashim YZHY. Microarray and quantitative PCR analysis of gene expression profiles in response to treatment with tomato leaf extract in mcf-7 breast cancer cells. Asian Pac J Cancer Prev 2014; 13:6319-25. [PMID: 23464452 DOI: 10.7314/apjcp.2012.13.12.6319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We previously found cytotoxic effects of tomato leaf extract (TLE) on the MCF-7 breast cancer cell line. The aim of this study was to ascertain the molecular mechanisms associated with the usage of TLE as an anticancer agent by microarray analysis using mRNA from MCF-7 breast cancer cells after treatment with TLE for 1 hr and 48 hrs. Approximately 991 genes out of the 30,000 genes in the human genome were significantly (p<0.05) changed after the treatment. Within this gene set, 88 were significantly changed between the TLE treated cells and the untreated MCF-7 cells (control cells) with a cut-off fold change >2.00. In order to focus on genes that were involved in cancer cell growth, only twenty-nine genes were selected, either down-regulated or up-regulated after treatment with TLE. Microarray assay results were confirmed by analyzing 10 of the most up and down regulated genes related to cancer cells progression using real-time PCR. Treatment with TLE induced significant up-regulation in the expression of the CRYAB, PIM1, BTG1, CYR61, HIF1-α and CEBP-β genes after 1 hr and 48 hrs, whereas the TXNIP and THBS1 genes were up-regulated after 1 hr of treatment but down-regulated after 48 hrs. In addition both the HMG1L1 and HIST2H3D genes were down-regulated after 1 hr and 48 hrs of treatment. These results demonstrate the potent activity of TLE as an anticancer agent.
Collapse
Affiliation(s)
- Azura Amid
- Bioprocess and Molecular Engineering Research Unit (BPMERU), International Islamic University Malaysia, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
13
|
Abstract
AbstractRas genes are pre-eminent genes that are frequently linked with cancer biology. The functional loss of ras protein caused by various point mutations within the gene, is established as a prognostic factor for the genesis of a constitutively active Ras-MAPK pathway leading to cancer. Ras signaling circuit follows a complex pathway, which connects many signaling molecules and cells. Several strategies have come up for targeting mutant ras proteins for cancer therapy, however, the clinical benefits remain insignificant. Targeting the Ras-MAPK pathway is extremely complicated due its intricate networks involving several upstream and downstream regulators. Blocking oncogenic Ras is still in latent stage and requires alternative approaches to screen the genes involved in Ras transformation. Understanding the mechanism of Ras induced tumorigenesis in diverse cancers and signaling networks will open a path for drug development and other therapeutic approaches.
Collapse
|
14
|
Steinmann S, Coulibaly A, Ohnheiser J, Jakobs A, Klempnauer KH. Interaction and cooperation of the CCAAT-box enhancer-binding protein β (C/EBPβ) with the homeodomain-interacting protein kinase 2 (Hipk2). J Biol Chem 2013; 288:22257-69. [PMID: 23782693 DOI: 10.1074/jbc.m113.487769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT box/enhancer-binding protein β (C/EBPβ) is a bZip transcription factor that plays crucial roles in important cellular processes such as differentiation and proliferation of specific cell types. Previously, we showed that C/EBPβ cooperates with the coactivator p300 through a novel mechanism that involves the C/EBPβ-induced phosphorylation of multiple sites in the carboxyl-terminal domain of p300 by protein kinase Hipk2. We have now examined the interaction and cooperation of C/EBPβ, p300, and Hipk2 in more detail. We show that Hipk2 and C/EBPβ are direct physical binding partners whose interaction is mediated by sequences located in the amino-terminal and central domains of Hipk2 and the amino-terminal part of C/EBPβ. In addition to phosphorylating p300 recruited to C/EBPβ, Hipk2 also phosphorylates C/EBPβ at sites that have previously been shown to plays key roles in the regulation of C/EBPβ activity. Silencing of Hipk2 expression disrupts adipocyte differentiation of 3T3-L1 cells, a physiological C/EBPβ-dependent differentiation process indicating that the cooperation of C/EBPβ and Hipk2 is functionally relevant. Finally, we demonstrate that C/EBPα, a related C/EBP family member whose amino-terminal sequences differ significantly from that of C/EBPβ, is unable to interact and cooperate with Hipk2. Instead, our data suggest that C/EBPα cooperates with the protein kinase Jnk to induce phosphorylation of p300. Overall, our data identify Hipk2 as a novel regulator of C/EBPβ and implicate different protein kinases in the cooperation of p300 with C/EBPβ and C/EBPα.
Collapse
Affiliation(s)
- Simone Steinmann
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
15
|
The transcription factor C/EBP-β mediates constitutive and LPS-inducible transcription of murine SerpinB2. PLoS One 2013; 8:e57855. [PMID: 23472114 PMCID: PMC3589482 DOI: 10.1371/journal.pone.0057855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/28/2013] [Indexed: 01/26/2023] Open
Abstract
SerpinB2 or plasminogen activator inhibitor type 2 (PAI-2) is highly induced in macrophages in response to inflammatory stimuli and is linked to the modulation of innate immunity, macrophage survival, and inhibition of plasminogen activators. Lipopolysaccharide (LPS), a potent bacterial endotoxin, can induce SerpinB2 expression via the toll-like receptor 4 (TLR4) by ∼1000-fold over a period of 24 hrs in murine macrophages. To map the LPS-regulated SerpinB2 promoter regions, we transfected reporter constructs driven by the ∼5 kb 5'-flanking region of the murine SerpinB2 gene and several deletion mutants into murine macrophages. In addition, we compared the DNA sequence of the murine 5′ flanking sequence with the sequence of the human gene for homologous functional regulatory elements and identified several regulatory cis-acting elements in the human SERPINB2 promoter conserved in the mouse. Mutation analyses revealed that a CCAAT enhancer binding (C/EBP) element, a cyclic AMP response element (CRE) and two activator protein 1 (AP-1) response elements in the murine SerpinB2 proximal promoter are essential for optimal LPS-inducibility. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated that LPS induces the formation of C/EBP-β containing complexes with the SerpinB2 promoter. Importantly, both constitutive and LPS-induced SerpinB2 expression was severely abrogated in C/EBP-β-null mouse embryonic fibroblasts (MEFs) and primary C/EBP-β-deficient peritoneal macrophages. Together, these data provide new insight into C/EBP-β-dependent regulation of inflammation-associated SerpinB2 expression.
Collapse
|
16
|
Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes. Differentiation 2013; 85:20-31. [DOI: 10.1016/j.diff.2012.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/20/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022]
|
17
|
Oncogenic KRAS impairs EGFR antibodies' efficiency by C/EBPβ-dependent suppression of EGFR expression. Neoplasia 2012; 14:190-205. [PMID: 22496619 DOI: 10.1593/neo.111636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/29/2022] Open
Abstract
Oncogenic KRAS mutations in colorectal cancer (CRC) are associated with lack of benefit from epidermal growth factor receptor (EGFR)-directed antibody (Ab) therapy. However, the mechanisms by which constitutively activated KRAS (KRAS(G12V)) impairs effector mechanisms of EGFR-Abs are incompletely understood. Here, we established isogenic cell line models to systematically investigate the impact of KRAS(G12V) on tumor growth in mouse A431 xenograft models as well as on various modes of action triggered by EGFR-Abs in vitro. KRAS(G12V) impaired EGFR-Ab-mediated growth inhibition by stimulating receptor-independent downstream signaling. KRAS(G12V) also rendered tumor cells less responsive to Fc-mediated effector mechanisms of EGFR-Abs-such as complement-dependent cytotoxicity (CDC) and Ab-dependent cell-mediated cytotoxicity (ADCC). Impaired CDC and ADCC activities could be linked to reduced EGFR expression in KRAS-mutated versus wild-type (wt) cells, which was restored by small interfering RNA (siRNA)-mediated knockdown of KRAS4b. Immunohistochemistry experiments also revealed lower EGFR expression in KRAS-mutated versus KRAS-wt harboring CRC samples. Analyses of potential mechanisms by which KRAS(G12V) downregulated EGFR expression demonstrated significantly decreased activity of six distinct transcription factors. Additional experiments suggested the CCAAT/enhancer-binding protein (C/EBP) family to be implicated in the regulation of EGFR promoter activity in KRAS-mutated tumor cells by suppressing EGFR transcription through up-regulation of the inhibitory family member C/EBPβ-LIP. Thus, siRNA-mediated knockdown of C/EBPβ led to enhanced EGFR expression and Ab-mediated cytotoxicity against KRAS-mutated cells. Together, these results demonstrate that KRAS(G12V) signaling induced C/EBPβ-dependent suppression of EGFR expression, thereby impairing Fc-mediated effector mechanisms of EGFR-Abs and rendering KRAS-mutated tumor cells less sensitive to these therapeutic agents.
Collapse
|
18
|
Guo L, Li X, Huang JX, Huang HY, Zhang YY, Qian SW, Zhu H, Zhang YD, Liu Y, Liu Y, Wang KK, Tang QQ. Histone demethylase Kdm4b functions as a co-factor of C/EBPβ to promote mitotic clonal expansion during differentiation of 3T3-L1 preadipocytes. Cell Death Differ 2012; 19:1917-27. [PMID: 22722334 DOI: 10.1038/cdd.2012.75] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) β is required for both mitotic clonal expansion (MCE) and terminal adipocyte differentiation of 3T3-L1 preadipocytes. Although the role of C/EBPβ in terminal adipocyte differentiation is well defined, its mechanism of action during MCE is not. In this report, histone demethylase Kdm4b, as well as cell cycle genes Cdc45l (cell division cycle 45 homolog), Mcm3 (mini-chromosome maintenance complex component 3), Gins1 (GINS complex subunit 1) and Cdc25c (cell division cycle 25 homolog c), were identified as potential C/EBPβ target genes during MCE by utilizing promoter-wide chromatin immunoprecipitation (ChIP)-on-chip analysis combined with gene expression microarrays. The expression of Kdm4b is induced during MCE and its induction is dependent on C/EBPβ. ChIP, Electrophoretic Mobility Shift Assay (EMSA) and luciferase assay confirmed that the promoter of Kdm4b is bound and activated by C/EBPβ. Knockdown of Kdm4b impaired MCE. Furthermore, Kdm4b interacted with C/EBPβ and was recruited to the promoters of C/EBPβ-regulated cell cycle genes, including Cdc45l, Mcm3, Gins1, and Cdc25c, demethylated H3K9me3 and activated their transcription. These findings suggest a novel feed forward mechanism involving a DNA binding transcription factor (C/EBPβ) and a chromatin regulator (Kdm4b) in the regulation of MCE by controlling cell cycle gene expression.
Collapse
Affiliation(s)
- L Guo
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Negative regulation of C/EBPbeta1 by sumoylation in breast cancer cells. PLoS One 2011; 6:e25205. [PMID: 21980398 PMCID: PMC3182197 DOI: 10.1371/journal.pone.0025205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023] Open
Abstract
Sumoylation is a post-translational modification that is oftentimes deregulated in diseases such as cancer. Transcription factors are frequent targets of sumoylation and modification by SUMO can affect subcellular localization, transcriptional activity, and stability of the target protein. C/EBPbeta1 is one such transcription factor that is modified by SUMO-2/3. Non-sumoylated C/EBPbeta1, p52-C/EBPbeta1, is expressed in normal mammary epithelial cells but not breast cancer cell lines and plays a role in oncogene-induced senescence, a tumor suppressive mechanism. Although p52-C/EBPbeta1 is not observed via immunoblot in breast cancer cell lines, higher molecular weight bands are observed when breast cancer cell lines are subjected to immunoblot analysis with a C/EBPbeta1-specific antibody. We show that exogenously expressed C/EBPbeta1 is sumoylated in breast cancer cells, and that the higher molecular weight bands we observe in anti-C/EBPbeta1 immunoblots of breast cancer cell lines is sumoylated C/EBPbeta1. Phosphorylation oftentimes enhances sumoylation, and phosphorylation cascades are activated in breast cancer cells. We demonstrate that phosphorylation of C/EBPbeta1Thr235 by Erk-2 enhances sumoylation of C/EBPbeta1 in vitro. In addition, sumoylated C/EBPbeta1 is phosphorylated on Thr235 and mutation of Thr235 to alanine leads to a decrease in sumoylation of C/EBPbeta1. Finally, using a C/EBPbeta1-SUMO fusion protein we show that constitutive sumoylation of C/EBPbeta1 completely blocks its capability to induce senescence in WI38 fibroblasts expressing hTERT. Thus, sumolylation of C/EBPbeta1 in breast cancer cells may be a mechanism to circumvent oncogene-induced senescence.
Collapse
|
20
|
Xia Z, Guo M, Ma H. Functional analysis of novel phosphorylation sites of CREB-binding protein using mass spectrometry and mammalian two-hybrid assays. Proteomics 2011; 11:3444-51. [PMID: 21751375 DOI: 10.1002/pmic.201100121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 12/21/2022]
Abstract
In the Wnt/β-catenin pathway, p300/CBP (CREB-binding protein) is recruited by nuclear β-catenin to regulate a wide array of T-cell factor (TCF)-dependent gene expression. Previous studies have indicated that CBP/β-catenin complex-mediated transcription is critical for cell proliferation. Both CBP and β-catenin are phosphoproteins. The interaction domain has been mapped to the N-terminal region of CBP (amino acids 1-111) and the C-terminal region of β-catenin, but it is unclear whether phosphorylation on specific residues of these regions is required for the interaction. To address this unmet challenge, phosphoproteomic profile of the critical N-terminus of CBP was determined by utilizing TiO(2) affinity chromatography followed by LC-MS/MS analysis. Two unique and novel phosphorylation sites Ser77 and Ser92 were identified. Further studies aided by site-directed mutagenesis, immunoprecipitation and mammalian two-hybrid assay have concluded that the phosphorylation of a Proline-directed Ser92 residue modulates the selective binding ability of CBP with β-catenin. The specific Mitogen-activated protein kinase inhibitor PD98059, which promotes cell cycle G1 arrest, concomitantly inhibits the interaction, and the evidences suggest that the MEK/ERK (extracellular signal-regulated kinase) cascade activation is the upstream signal required for Ser92 phosphorylation, leading to enhancement of the interaction of CBP with β-catenin.
Collapse
Affiliation(s)
- Zanxian Xia
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
21
|
3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells. EMBO J 2011; 30:3714-28. [PMID: 21804532 DOI: 10.1038/emboj.2011.250] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/27/2011] [Indexed: 12/21/2022] Open
Abstract
C/EBPβ is an auto-repressed protein that becomes post-translationally activated by Ras-MEK-ERK signalling. C/EBPβ is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPβ activation by H-Ras(V12) is suppressed in immortalized/transformed cells, but not in primary cells, by its 3' untranslated region (3'UTR). 3'UTR sequences inhibited Ras-induced cytostatic activity of C/EBPβ, DNA binding, transactivation, phosphorylation, and homodimerization, without significantly affecting protein expression. The 3'UTR suppressed induction of senescence-associated C/EBPβ target genes, while promoting expression of genes linked to cancers and TGFβ signalling. An AU-rich element (ARE) and its cognate RNA-binding protein, HuR, were required for 3'UTR inhibition. These components also excluded the Cebpb mRNA from a perinuclear cytoplasmic region that contains activated ERK1/2, indicating that the site of C/EBPβ translation controls de-repression by Ras signalling. Notably, 3'UTR inhibition and Cebpb mRNA compartmentalization were absent in primary fibroblasts, allowing Ras-induced C/EBPβ activation and OIS to proceed. Our findings reveal a novel mechanism whereby non-coding mRNA sequences selectively regulate C/EBPβ activity and suppress its anti-oncogenic functions.
Collapse
|
22
|
Aguilar-Morante D, Cortes-Canteli M, Sanz-Sancristobal M, Santos A, Perez-Castillo A. Decreased CCAAT/enhancer binding protein β expression inhibits the growth of glioblastoma cells. Neuroscience 2010; 176:110-9. [PMID: 21185356 DOI: 10.1016/j.neuroscience.2010.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/27/2022]
Abstract
C/EBPβ is a leucine-zipper transcription factor implicated in the control of metabolism, development, cell differentiation, and proliferation. However, it remains unclear its role in tumor development. Here, we show that down-regulation of C/EBPβ by RNA interference inhibits proliferation in the GL261 murine glioblastoma cell line, induces an arrest of the cell cycle at the G0/G1 boundary, and diminishes their transformation capacity and migration. In addition, we show that C/EBPβ regulates the expression of several DNA damage response- and invasion-related genes. Lastly, C/EBPβ depletion significantly retards tumor onset and prolongs survival in a murine orthotopic brain tumor model. Immunohistochemical analysis revealed a significant diminution of proliferating cell nuclear antigen (PCNA) labeling in tumors derived from C/EBPβ-depleted GL261 cells compared with that in controls. These results show, for the first time, the dependence of glioma cells on C/EBPβ and suggest a potential role of this transcription factor in glioma development.
Collapse
Affiliation(s)
- D Aguilar-Morante
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4 and Centro de Investigación Biomédica en Red sobre Enfermedades neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Chamorro-Jorganes A, Calleros L, Griera M, Saura M, Luengo A, Rodriguez-Puyol D, Rodriguez-Puyol M. Fibronectin upregulates cGMP-dependent protein kinase type Iβ through C/EBP transcription factor activation in contractile cells. Am J Physiol Cell Physiol 2010; 300:C683-91. [PMID: 21160032 DOI: 10.1152/ajpcell.00251.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitric oxide (NO)-soluble guanylate cyclase (sGC) pathway exerts most of its cellular actions through the activation of the cGMP-dependent protein kinase (PKG). Accumulation of extracellular matrix is one of the main structural changes in pathological conditions characterized by a decreased activity of this pathway, such as hypertension, diabetes, or aging, and it is a well-known fact that extracellular matrix proteins modulate cell phenotype through the interaction with membrane receptors such as integrins. The objectives of this study were 1) to evaluate whether extracellular matrix proteins, particularly fibronectin (FN), modulate PKG expression in contractile cells, 2) to analyze the mechanisms involved, and 3) to evaluate the functional consequences. FN increased type I PKG (PKG-I) protein content in human mesangial cells, an effect dependent on the interaction with β(1)-integrin. The FN upregulation of PKG-I protein content was due to increased mRNA expression, determined by augmented transcriptional activity of the PKG-I promoter region. Akt and the transcription factor CCAAT enhancer-binding protein (C/EBP) mediated the genesis of these changes. FN also increased PKG-I in another type of contractile cell, rat vascular smooth muscle cells (RVSMC). Tirofiban, a pharmacological analog of FN, increased PKG-I protein content in RVSMC and rat aortic walls and magnified the hypotensive effect of dibutyryl cGMP in conscious Wistar rats. The present results provide evidence of a mechanism able to increase PKG-I protein content in contractile cells. Elucidation of this novel mechanism provides a rationale for future pharmacotherapy in certain vascular diseases.
Collapse
Affiliation(s)
- Aranzazu Chamorro-Jorganes
- Dept. of Physiology, Facultad de Medicina, Universidad de Alcalá, Campus Universitario s/n, Alcalá de Henares, 28871 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Regulation of C/EBPbeta1 by Ras in mammary epithelial cells and the role of C/EBPbeta1 in oncogene-induced senescence. Oncogene 2010; 29:6004-15. [PMID: 20818427 PMCID: PMC2978746 DOI: 10.1038/onc.2010.336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Overexpression of Ras(V12) in MCF10A cells, an immortalized mammary epithelial cell line, leads to transformation of these cells. We demonstrate that this is accompanied by degradation of C/EBPbeta1. C/EBPbeta is a transcription factor in which three protein isoforms exist due to alternative translation at three in-frame methionines. When C/EBPbeta1 is expressed in MCF10A-Ras(V12) cells, immunoblot analysis reveals that C/EBPbeta1 is degraded in these cells. Treatment of the MCF10A-Ras(V12)-C/EBPbeta1 cells with the cdk inhibitor roscovitine leads to stabilization of C/EBPbeta1. It has been previously shown that cdk2 phosphorylates C/EBPbeta on Thr235. We demonstrate that mutation of Thr235 to alanine in C/EBPbeta1 is sufficient to restore the stability of C/EBPbeta1 expression in the MCF10A-Ras(V12) cells. Overexpression of Ras(V12) in primary cells induces senescence rather than transformation, thus suppressing tumorigenesis. C/EBPbeta is required for Ras(V12)-induced senescence in primary mouse embryonic fibroblasts (MEFs). Upregulation of IL6 by C/EBPbeta has been shown to be necessary for oncogene-induced senescence, but the specific isoform of C/EBPbeta has not been investigated. We show that the C/EBPbeta1 isoform upregulates IL6 when introduced into normal fibroblasts. Additionally, we show that C/EBPbeta1 induces senescence. Taken together, degradation of C/EBPbeta1 by Ras activation may represent a mechanism to bypass OIS.
Collapse
|
25
|
Lee S, Miller M, Shuman JD, Johnson PF. CCAAT/Enhancer-binding protein beta DNA binding is auto-inhibited by multiple elements that also mediate association with p300/CREB-binding protein (CBP). J Biol Chem 2010; 285:21399-410. [PMID: 20452968 DOI: 10.1074/jbc.m110.128413] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Signaling through Ras GTPases controls the activity of many transcription factors including CCAAT/enhancer-binding protein (C/EBPbeta), which regulates oncogenic H-Ras(V12)-induced senescence and growth arrest. Here we report that C/EBPbeta (LAP) DNA binding is inhibited by N-terminal sequences and derepressed by oncogenic Ras signaling. Sequence and mutational analyses showed that auto-repression involves two LXXLF (phiXXphiphi)-like motifs (LX1 and LX2) and a third element, auto-inhibitory domain (AID), located within conserved region CR5. LX1 is a critical component of the transactivation domain and has been shown to mediate C/EBPbeta binding to the TAZ2 region of p300/CREB-binding protein coactivators. C/EBPbeta auto-repression also involves a C-terminal regulatory domain (CRD) adjacent to the leucine zipper. CRD contains a third phiXXphiphi motif (LX3) and a short sequence, KQL, which has similarity to a region in the protein-binding site of TAZ2. The C/EBPbeta N- and C-terminal domains physically associate in a manner that requires the basic region and CRD. We propose a model in which the regulatory sequences form a hydrophobic core that reciprocally inhibits DNA binding and transactivation. We also suggest a mechanism for C/EBPbeta derepression involving several recently identified modifications within AID and CRD. Finally, we show that association of activated C/EBPbeta with p300/CREB-binding protein requires the LX2 and AID auto-inhibitory elements. Thus, the N-terminal regulatory elements have dual roles in auto-inhibition and coactivator binding.
Collapse
Affiliation(s)
- Sook Lee
- Laboratory of Cancer Prevention, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
26
|
RSK-mediated phosphorylation in the C/EBP{beta} leucine zipper regulates DNA binding, dimerization, and growth arrest activity. Mol Cell Biol 2010; 30:2621-35. [PMID: 20351173 DOI: 10.1128/mcb.00782-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The bZIP transcription factor C/EBPbeta is a target of Ras signaling that has been implicated in Ras-induced transformation and oncogene-induced senescence (OIS). To gain insights into Ras-C/EBPbeta signaling, we investigated C/EBPbeta activation by oncogenic Ras. We show that C/EBPbeta DNA binding is autorepressed and becomes activated by the Ras-Raf-MEK-ERK-p90(RSK) cascade. Inducible phosphorylation by RSK on Ser273 in the leucine zipper was required for DNA binding. In addition, three other modifications (phosphorylation on Tyr109 [p-Tyr109], p-Ser111, and monomethylation of Arg114 [me-Arg114]) within an N-terminal autoinhibitory domain were important for Ras-induced C/EBPbeta activation and cytostatic activity. Apart from its role in DNA binding, Ser273 phosphorylation also creates an interhelical g<-->e' salt bridge with Lys268 that increases attractive electrostatic interactions between paired leucine zippers and promotes homodimerization. Mutating Ser273 to Ala or Lys268 to Glu decreased C/EBPbeta homodimer formation, whereas heterodimerization with C/EBPgamma was relatively unaffected. The S273A substitution also reduced the antiproliferative activity of C/EBPbeta in Ras(V12)-expressing fibroblasts and decreased binding to target cell cycle genes, while a phosphomimetic substitution (S273D) maintained growth arrest function. Our findings identify four novel C/EBPbeta-activating modifications, including RSK-mediated phosphorylation of a bifunctional residue in the leucine zipper that regulates DNA binding and homodimerization and thereby promotes cell cycle arrest.
Collapse
|
27
|
Lee SH, Krisanapun C, Baek SJ. NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 2010; 31:719-28. [PMID: 20110283 DOI: 10.1093/carcin/bgq016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Capsaicin, a natural product of the Capsicum species of red peppers, is known to induce apoptosis and suppress growth. Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and antitumorigenic property in colorectal and lung cancer. Our data demonstrate that capsaicin leads to induction of apoptosis and up-regulates NAG-1 gene expression at the transcriptional level. Overexpression of CCAAT/enhancer binding protein beta (C/EBPbeta) caused a significant increase of basal and capsaicin-induced NAG-1 promoter activity. We subsequently identified C/EBPbeta binding sites in the NAG-1 promoter responsible for capsaicin-induced NAG-1 transactivation. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirmed binding of C/EBPbeta to the NAG-1 promoter. Capsaicin treatment resulted in an increase of phosphorylated serine/threonine residues on C/EBPbeta, and the immunoprecipitation study showed that capsaicin enhanced binding of C/EBPbeta with glycogen synthase kinase 3beta (GSK3beta) and activating transcription factor 3 (ATF3). The phosphorylation and interaction of C/EBPbeta with GSK3beta and ATF3 are decreased by the inhibition of the GSK3beta and Protein Kinase C pathways. Knockdown of C/EBPbeta, GSK3beta or ATF3 ameliorates NAG-1 expression induced by capsaicin treatment. These data indicate that C/EBPbeta phosphorylation through GSK3beta may mediate capsaicin-induced expression of NAG-1 and apoptosis through cooperation with ATF3 in human colorectal cancer cells.
Collapse
Affiliation(s)
- Seong-Ho Lee
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
28
|
Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T. Identification of substrates for cyclin dependent kinases. ACTA ACUST UNITED AC 2010; 50:375-99. [DOI: 10.1016/j.advenzreg.2009.12.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Liu NC, Lin WJ, Yu IC, Lin HY, Liu S, Lee YF, Chang C. Activation of TR4 orphan nuclear receptor gene promoter by cAMP/PKA and C/EBP signaling. Endocrine 2009; 36:211-7. [PMID: 19618297 DOI: 10.1007/s12020-009-9220-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/30/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
In earlier studies, we had suggested that the fasting signal induces TR4 orphan nuclear receptor expression in vivo. The detailed mechanism(s), however, remain unclear. In this study, we found that cAMP/PKA, the mediator of fasting and glucagon signals, could induce TR4 gene expression that in turn modulates gluconeogenesis. Mechanistic dissection by in vitro studies in hepatocytes demonstrated that cAMP/PKA might trigger C/EBP alpha and beta binding to the selective cAMP response element, which is located at the TR4 promoter, thus inducing TR4 transcription. We also demonstrated that the binding activity of C/EBPs to the TR4 promoter is increased in response to cAMP treatment. Together, our data identified a new signaling pathway from the fasting signal --> cAMP/PKA --> C/EBP alpha and beta --> TR4 --> gluconeogenesis in hepatocytes; and suggested that TR4 could be an important regulator to control glucose homeostasis. The identification of activator(s)/inhibitor(s) or ligand(s) of TR4 may provide us an alternative way to control gluconeogenesis.
Collapse
Affiliation(s)
- Ning-Chun Liu
- George Whipple Laboratory for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci 2009; 10:244-69. [PMID: 19519454 DOI: 10.2174/138920309788452164] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility "built" into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner.
Collapse
Affiliation(s)
- Maria Miller
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
31
|
Non-receptor Tyrosine Kinases c-Abl and Arg Regulate the Activity of C/EBPβ. J Mol Biol 2009; 391:729-43. [DOI: 10.1016/j.jmb.2009.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/20/2009] [Accepted: 06/14/2009] [Indexed: 11/18/2022]
|
32
|
Poon SL, Hammond GT, Leung PCK. Epidermal growth factor-induced GnRH-II synthesis contributes to ovarian cancer cell invasion. Mol Endocrinol 2009; 23:1646-56. [PMID: 19608641 DOI: 10.1210/me.2009-0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH-II modulates ovarian cancer cells invasion and is expressed in normal ovary and ovarian epithelial cancer cells; however, the upstream regulator(s) of GnRH-II expression in these cells remains unclear. We now demonstrate that epidermal growth factor (EGF) increases GnRH-II mRNA levels in several human ovarian carcinoma cell lines and up-regulates GnRH-II promoter activity in OVCAR-3 cells in a dose-dependent manner, whereas an EGF receptor inhibitor (AG148) abolishes EGF-induced increases in GnRH-II promoter activity and GnRH-II mRNA levels. EGF increases the phosphorylation of cAMP-responsive element-binding protein (p-CREB) and its association with the coregulator, CCAAT/enhancer binding protein beta, whereas blocking the EGF-induced ERK1/2 phosphorylation with MAPK inhibitors (PD98059/U0126) markedly reduced these effects. Moreover, depletion of CREB using small interfering RNA attenuated EGF-induced GnRH-II promoter activity. Chromatin immunoprecipitation assays demonstrated that EGF induces p-CREB binding to a cAMP responsive-element within the GnRH-II promoter, likely in association with CCAAT/enhancer binding protein beta, and mutagenesis of this cAMP responsive-element prevented EGF-induced GnRH-II promoter activity in OVCAR-3 cells. Importantly, GnRH-II acts additively with EGF to promote invasion of OVCAR-3 and CaOV-3 cells, but not SKOV-3 cells that express low levels of GnRH receptor (GnRHR). Treatment with GnRHR small interfering RNA also partially inhibited the EGF-induced invasion of OVCAR-3 and CaOV-3 cells. Furthermore, EGF treatment transiently increases GnRHR levels in OVCAR-3 and CaOV-3, which likely accentuates the effects of increase GnRH-II production on cell invasion. These results provide evidence that EGF is an upstream regulator of the autocrine actions of GnRH-II on the invasive properties of ovarian cancer cells.
Collapse
Affiliation(s)
- Song Ling Poon
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | | | |
Collapse
|
33
|
Yang YM, Kim HE, Ki SH, Kim SG. Metadoxine, an ion-pair of pyridoxine and L-2-pyrrolidone-5-carboxylate, blocks adipocyte differentiation in association with inhibition of the PKA-CREB pathway. Arch Biochem Biophys 2009; 488:91-9. [PMID: 19607801 DOI: 10.1016/j.abb.2009.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/30/2009] [Accepted: 07/09/2009] [Indexed: 11/19/2022]
Abstract
Adipogenesis is orchestrated by the expression of master adipogenic regulators. In particular, phosphorylation of cAMP response element binding protein (CREB) by protein kinase A promotes CREB nuclear translocation, thereby inducing expression of the adipogenic regulators and resulting in adipogenic maturation. Although metadoxine, an ion-pair of pyridoxine and l-2-pyrrolidone-5-carboxylate, has been shown to inhibit lipid accumulation in the liver, its effect on adipocyte differentiation has never been explored. This study investigated the effects of metadoxine on the differentiation of 3T3-L1 preadipocytes and the molecular mechanism. Metadoxine treatment did not inhibit mitotic clonal expansion, but inhibited late-stage cell differentiation, suggesting that metadoxine may block the differentiation step of preadipocytes. Metadoxine inhibited CREB phosphorylation and binding to the cAMP response element, thereby repressing CCAAT/enhancer-binding protein beta during hormone-induced adipogenesis. Overall, metadoxine inhibits adipogenic differentiation in association with the inhibition of CREB/cAMP response element-dependent CCAAT/enhancer-binding protein beta induction in the protein kinase A-CREB pathway.
Collapse
Affiliation(s)
- Yoon Mee Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Sillim-dong, Kwanak-gu, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
34
|
Ranjan R, Thompson EA, Yoon K, Smart RC. C/EBPalpha expression is partially regulated by C/EBPbeta in response to DNA damage and C/EBPalpha-deficient fibroblasts display an impaired G1 checkpoint. Oncogene 2009; 28:3235-45. [PMID: 19581927 PMCID: PMC2741539 DOI: 10.1038/onc.2009.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We observed that C/EBPα is highly inducible in primary fibroblasts by DNA damaging agents that induce strand breaks, alkylate and crosslink DNA as well as those that produce bulky DNA lesions. Fibroblasts deficient in C/EBPα (C/EBPα-/-) display an impaired G1 checkpoint as evidenced by inappropriate entry into S-phase in response to DNA damage and these cells also display an enhanced G1 to S transition in response to mitogens. The induction of C/EBPα by DNA damage in fibroblasts does not require p53. EMSA analysis of nuclear extracts prepared from UVB- and MNNG-treated fibroblasts revealed increased binding of C/EBPβ to a C/EBP consensus sequence and ChIP analysis revealed increased C/EBPβ binding to the C/EBPα promoter. To determine whether C/EBPβ has a role in the regulation of C/EBPα we treated C/EBPβ-/- fibroblasts with UVB or MNNG. We observed C/EBPα induction was impaired in both UVB- and MNNG- treated C/EBPβ-/- fibroblasts. Our study reveals a novel role for C/EBPβ in the regulation of C/EBPα in response to DNA damage and provides definitive genetic evidence that C/EBPα has a critical role in the DNA damage G1 checkpoint.
Collapse
Affiliation(s)
- R Ranjan
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | | | | | |
Collapse
|
35
|
CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev Mol Med 2009; 11:e12. [PMID: 19351437 DOI: 10.1017/s1462399409001033] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CCAAT/enhancer-binding proteins (C/EBPs) are a family of leucine-zipper transcription factors that regulate gene expression to control cellular proliferation, differentiation, inflammation and metabolism. Encoded by an intronless gene, C/EBPbeta is expressed as several distinct protein isoforms (LAP1, LAP2, LIP) whose expression is regulated by the differential use of several in-frame translation start sites. LAP1 and LAP2 are transcriptional activators and are associated with differentiation, whereas LIP is frequently elevated in proliferative tissue and acts as a dominant-negative inhibitor of transcription. However, emerging evidence suggests that LIP can serve as a transcriptional activator in some cellular contexts, and that LAP1 and LAP2 might also have unique actions. The LIP:LAP ratio is crucial for the maintenance of normal growth and development, and increases in this ratio lead to aggressive forms of breast cancer. This review discusses the regulation of C/EBPbeta activity by post-translational modification, the individual actions of LAP1, LAP2 and LIP, and the functions and downstream targets that are unique to each isoform. The role of the C/EBPbeta isoforms in breast cancer is discussed and emphasis is placed on their interactions with receptor tyrosine kinases.
Collapse
|
36
|
Sebastian T, Johnson PF. RasV12-mediated down-regulation of CCAAT/enhancer binding protein beta in immortalized fibroblasts requires loss of p19Arf and facilitates bypass of oncogene-induced senescence. Cancer Res 2009; 69:2588-98. [PMID: 19276382 DOI: 10.1158/0008-5472.can-08-2312] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) is involved in cellular responses to oncogenic and physiologic Ras signals. C/EBPbeta is required for premature senescence of primary mouse fibroblasts induced by expression of H-Ras(V12), demonstrating its role in oncogene-induced senescence. Here, we have investigated the mechanisms by which Ras inhibits proliferation of normal cells but transforms immortalized cells. We show that oncogenic Ras down-regulates C/EBPbeta expression in NIH 3T3 cells, which are immortalized by a deletion of the CDKN2A locus and, therefore, lack the p16(Ink4a) and p19(Arf) tumor suppressors. Ras(V12)-induced silencing of C/EBPbeta occurred at the mRNA level and involved both the Raf-mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-ERK and phosphatidylinositol 3-kinase signaling pathways. Oncogenic Ras decreased C/EBPbeta expression in Ink4a/Arf(-/-) mouse embryo fibroblasts (MEF) but increased C/EBPbeta levels in wild-type MEFs. C/EBPbeta down-regulation in NIH 3T3 cells was reversed by expression of p19(Arf), but not of p53 or p16(Ink4a), highlighting a critical role for p19(Arf) in sustaining C/EBPbeta levels. Ectopic expression of p34 C/EBPbeta (LAP) inhibited Ras(V12)-mediated transformation of NIH 3T3 cells, suppressed their tumorigenicity in nude mice, and reactivated expression of the proapoptotic Fas receptor, which is also down-regulated by Ras. Our findings indicate that Cebpb gene silencing eliminates a growth inhibitory transcription factor that would otherwise restrain oncogenesis. We propose that C/EBPbeta is part of a p53-independent, p19(Arf)-mediated network that enforces Ras-induced cell cycle arrest and tumor suppression in primary fibroblasts.
Collapse
Affiliation(s)
- Thomas Sebastian
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
37
|
Ha-Ras transformation of MCF10A cells leads to repression of Singleminded-2s through NOTCH and C/EBPbeta. Oncogene 2009; 28:1561-8. [PMID: 19169276 DOI: 10.1038/onc.2008.497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously shown that Singleminded-2s (SIM2s), a member of the basic helix-loop-helix Per-Arnt-Sim (bHLH/PAS) family of transcription factors, is downregulated in breast cancer samples and has tumor suppressor activity. However, the mechanism by which SIM2s is repressed in breast cancer cells has not been determined. In this study, we show that transformation of MCF10A cells by Harvey-Ras (Ha-Ras) induces CCAAT/enhance binding protein beta (C/EBPbeta) and activates the NOTCH signaling pathway to block SIM2s gene expression. NOTCH-mediated repression acts through a C-repeat binding factor 1 (CBF1)-independent mechanism, as introduction of CBF1 had no effect on SIM2s expression. Consistent with C/ebpbeta-dependent inhibition of SIM2s, C/ebpbeta(-/-) mouse mammary glands express high levels of SIM2s and reestablishment of C/ebpbeta isoforms decreased SIM2s mRNA levels in C/ebpbeta immortalized mammary epithelial cell lines. These studies illustrate a novel pathway of tumor suppressor gene silencing in Ha-Ras-transformed breast epithelial cells and identify SIM2s as a target of C/EBPbeta and NOTCH signaling.
Collapse
|
38
|
Pless O, Kowenz-Leutz E, Knoblich M, Lausen J, Beyermann M, Walsh MJ, Leutz A. G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-beta. J Biol Chem 2008; 283:26357-63. [PMID: 18647749 DOI: 10.1074/jbc.m802132200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional capacity of the transcriptional regulatory CCAAT/enhancer-binding protein-beta (C/EBPbeta) is governed by protein interactions and post-translational protein modifications. In a proteome-wide interaction screen, the histone-lysine N-methyltransferase, H3 lysine 9-specific 3 (G9a), was found to directly interact with the C/EBPbeta transactivation domain (TAD). Binding between G9a and C/EBPbeta was confirmed by glutathione S-transferase pulldown and co-immunoprecipitation. Metabolic labeling showed that C/EBPbeta is post-translationally modified by methylation in vivo. A conserved lysine residue in the C/EBPbeta TAD served as a substrate for G9a-mediated methylation. G9a, but not a methyltransferase-defective G9a mutant, abrogated the transactivation potential of wild type C/EBPbeta. A C/EBPbeta TAD mutant that contained a lysine-to-alanine exchange was resistant to G9a-mediated inhibition. Moreover, the same mutation conferred super-activation of a chromatin-embedded, endogenous C/EBPbeta target gene. Our data identify C/EBPbeta as a direct substrate of G9a-mediated post-translational modification that alters the functional properties of C/EBPbeta during gene regulation.
Collapse
Affiliation(s)
- Ole Pless
- Max Delbrück Center for Molecular Medicine, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Ewing SJ, Zhu S, Zhu F, House JS, Smart RC. C/EBPbeta represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19(Arf). Cell Death Differ 2008; 15:1734-44. [PMID: 18636078 DOI: 10.1038/cdd.2008.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CCAAT/enhancer-binding protein-beta (C/EBPbeta) is a mediator of cell survival and tumorigenesis. When C/EBPbeta(-/-) mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19(Arf) and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19(Arf) is dramatically elevated in C/EBPbeta(-/-) epidermis and that C/EBPbeta represses a p19(Arf) promoter reporter. To determine whether p19(Arf) is responsible for the proapoptotic phenotype in C/EBPbeta(-/-) mice, C/EBPbeta(-/-);p19(Arf-/-) mice were generated. C/EBPbeta(-/-);p19(Arf-/-) mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19(Arf) is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPbeta(-/-) epidermis, we generated K14-ER:Ras;C/EBPbeta(-/-) mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPbeta(-/-) mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPbeta represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPbeta may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents.
Collapse
Affiliation(s)
- S J Ewing
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633, USA
| | | | | | | | | |
Collapse
|
40
|
C/EBPs: recipients of extracellular signals through proteome modulation. Curr Opin Cell Biol 2008; 20:180-5. [DOI: 10.1016/j.ceb.2008.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 12/27/2022]
|
41
|
Ikeda R, Nishida T, Watanabe F, Shimizu-Saito K, Asahina K, Horikawa S, Teraoka H. Involvement of CCAAT/enhancer binding protein-beta (C/EBPbeta) in epigenetic regulation of mouse methionine adenosyltransferase 1A gene expression. Int J Biochem Cell Biol 2008; 40:1956-69. [PMID: 18346930 DOI: 10.1016/j.biocel.2008.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/23/2008] [Accepted: 02/11/2008] [Indexed: 12/31/2022]
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the main methyl donor in cellular transmethylation reactions and the aminopropyl moiety in polyamine biosynthesis. In mammals, two different genes, MAT1A and MAT2A, encode catalytic polypeptides of liver-specific MAT I/III and ubiquitous MAT II, respectively. Reverse transcription-polymerase chain reaction showed that MAT1A gene expression was at a detectable level in embryonic day 14 mouse fetal liver and subsequently increased. Bisulfite genomic sequencing indicated that the methylation status of 10CpG sites in the MAT1A promoter proximal region was appreciably correlated with the gene expression in mouse developing liver and in adult hepatic cells; hepatic stellate cells and hepatocytes. When mouse hepatoma-derived Hepa-1 cells showing extremely low expression of MAT1A gene were treated with 5-aza-2'-deoxycytidine and trichostatin A, MAT1A gene expression was enhanced. In addition, in vitro methylation of the MAT1A promoter region suppressed the MAT1A promoter activity in reporter assay. Next, we performed electrophoretic mobility shift assay and found that the transcriptional factor CCAAT/enhancer binding protein-beta (C/EBPbeta) specifically binds to a putative binding site of C/EBPbeta in the MAT1A promoter. Suppression of C/EBPbeta expression by short hairpin RNA decreased the MAT1A promoter activity and MAT1A gene expression, and inhibition of C/EBPbeta binding to MAT1A by site-directed mutagenesis also showed similar results. Western blot analysis and chromatin immunoprecipitation assay indicated that C/EBPbeta binding is dependent on DNA methylation status. Based on these findings, we conclude that C/EBPbeta plays an important role in epigenetic regulation of the mature hepatic gene MAT1A.
Collapse
Affiliation(s)
- Reiko Ikeda
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Li H, Gade P, Xiao W, Kalvakolanu DV. The interferon signaling network and transcription factor C/EBP-beta. Cell Mol Immunol 2007; 4:407-418. [PMID: 18163952 PMCID: PMC2782719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Cytokines like interferons (IFNs) play a central role in regulating innate and specific immunities against the pathogens and neoplastic cells. A number of signaling pathways are induced in response to IFN in various cells. One classic mechanism employed by IFNs is the JAK-STAT signaling pathway for inducing cellular responses. Here we describe the non-STAT pathways that participate in IFN-induced responses. In particular, we will focus on the role played by transcription factor C/EBP-beta in mediating these responses.
Collapse
Affiliation(s)
- Hui Li
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, USA
- Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Padmaja Gade
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | - Weihua Xiao
- School of Life Sciences, University of Science and Technology, Hefei, Anhui, China
| | - Dhan V. Kalvakolanu
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, USA
| |
Collapse
|
43
|
Bezy O, Vernochet C, Gesta S, Farmer SR, Kahn CR. TRB3 blocks adipocyte differentiation through the inhibition of C/EBPbeta transcriptional activity. Mol Cell Biol 2007; 27:6818-31. [PMID: 17646392 PMCID: PMC2099230 DOI: 10.1128/mcb.00375-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRB3 has been implicated in the regulation of several biological processes in mammalian cells through its ability to influence Akt and other signaling pathways. In this study, we investigated the role of TRB3 in regulating adipogenesis and the activity of adipogenic transcription factors. We find that TRB3 is expressed in 3T3-L1 preadipocytes, and this expression is transiently suppressed during the initial days of differentiation concomitant with induction of C/EBPbeta. This event appears to be a prerequisite for adipogenesis. Overexpression of TRB3 blocks differentiation of 3T3-L1 cells at a step downstream of C/EBPbeta. Ectopic expression of TRB3 in mouse fibroblasts also inhibits the C/EBPbeta-dependent induction of PPARgamma2 and blocks their differentiation into adipocytes. This inhibition of preadipocyte differentiation by TRB3 appears to be the result of two complementary effects. First, TRB3 inhibits extracellular signal-regulated kinase activity, which prevents the phosphorylation of regulatory sites on C/EBPbeta. Second, TRB3 directly interacts with the DR1 domain of C/EBPbeta in the nucleus, further inhibiting both its ability to bind its response element and its ability to transactivate the C/EBPalpha and a-FABP promoters. Thus, TRB3 is an important negative regulator of adipogenesis that acts at an early step in the differentiation cascade to block the C/EBPbeta proadipogenic function.
Collapse
Affiliation(s)
- Olivier Bezy
- Section on Obesity and Hormone Action, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
44
|
The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 2007; 17:318-24. [PMID: 17658261 DOI: 10.1016/j.tcb.2007.07.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/30/2007] [Accepted: 07/04/2007] [Indexed: 01/31/2023]
Abstract
In recent years, a link between the transcriptional regulators of lineage-specific gene expression and progenitor proliferation control has emerged. A main exponent of this phenomenon is the CCAAT/enhancer binding protein (C/EBP) family of basic region-leucine zipper proteins. These transcription factors control the differentiation of a range of cell types, and have key roles in regulating cellular proliferation through interaction with cell cycle proteins. More recently, their position at the crossroads between proliferation and differentiation has made them strong candidate regulators of tumorigenesis, and C/EBPs have been described as both tumor promoters and tumor suppressors.
Collapse
|
45
|
Li X, Kim JW, Grønborg M, Urlaub H, Lane MD, Tang QQ. Role of cdk2 in the sequential phosphorylation/activation of C/EBPbeta during adipocyte differentiation. Proc Natl Acad Sci U S A 2007; 104:11597-602. [PMID: 17601773 PMCID: PMC1913868 DOI: 10.1073/pnas.0703771104] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Upon induction of differentiation, growth-arrested (G(1) phase) 3T3-L1 preadipocytes express CCAAT/enhancer binding protein-beta (C/EBPbeta), initiating a transcriptional cascade. C/EBPbeta immediately undergoes a priming phosphorylation (on Thr(188)) by MAPK/ERK. However, the acquisition of DNA binding and transactivation capacity of C/EBPbeta is delayed until further phosphorylation (on Ser(184) or Thr(179)) by GSK3beta occurs. Phosphorylation by glycogen synthase kinase-3beta (GSK3beta) induces S phase entry and thereby mitotic clonal expansion (MCE), a requirement for terminal differentiation. Because MAPK activity is down-regulated before S phase is completed, we sought to identify the kinase that maintains C/EBPbeta in the primed phosphorylated state throughout S phase and MCE. We show here that cdk2/cyclinA, whose expression is activated at the onset of S phase, functions in this capacity. Ex vivo and in vitro experiments show that cdk2/cyclinA catalyzes this delayed priming phosphorylation. Mass spectrometric analysis revealed that cdk2/cyclinA phosphorylates C/EBPbeta on Thr(188) and is required for phosphorylation (on Ser(184) or Thr(179)) of C/EBPbeta by GSK3beta and maintenance of DNA binding activity. Suppression of cdk2 activity by RNA interference or pharmacologic inhibitor disrupts subsequent events in the differentiation program. Thus, MAPK and cdk2/cyclinA act sequentially to maintain Thr(188) of C/EBPbeta in the primed phosphorylated state during MCE and thereby progression of terminal differentiation.
Collapse
Affiliation(s)
- Xi Li
- *Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205
- Key Laboratory of Molecular Medicine, Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Jae Woo Kim
- *Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205
- Department of Biochemistry and Molecular Biology, Medical Research Center for Chronic Metabolic Disease, Yonsei University College of Medicine, Brain Korea 21 Project for Medical Sciences, Yonsei University, Seoul 120-752, Korea; and
| | - Mads Grønborg
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Henning Urlaub
- Department of Neurobiology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - M. Daniel Lane
- *Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205
- To whom correspondence should be addressed. E-mail:
| | - Qi-Qun Tang
- *Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205
- Key Laboratory of Molecular Medicine, Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
46
|
Wang H, Larris B, Peiris TH, Zhang L, Le Lay J, Gao Y, Greenbaum LE. C/EBPbeta activates E2F-regulated genes in vivo via recruitment of the coactivator CREB-binding protein/P300. J Biol Chem 2007; 282:24679-88. [PMID: 17599912 DOI: 10.1074/jbc.m705066200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The E2F transcription factors play an essential role in regulating the G(1)- to S-phase transition of the cell cycle. Previous studies have identified the importance of interactions between E2Fs and other transcription factors as a mechanism for transcriptional control of a subset of E2F regulated target genes. However, the mechanisms responsible for E2F target gene specificity remain incompletely understood. Here we report that in a mammalian in vivo model of synchronized proliferation, C/EBPbeta occupancy on the promoters of E2F-regulated growth-related genes increases as a function of cell cycle progression. C/EPBbeta binding to these promoters is associated with recruitment of the coactivator CBP/p300, histone H4 acetylation, and maximal activation of E2F target genes. Moreover, binding of CBP/p300 to E2F targets is markedly reduced in C/EBPbeta null mice, resulting in reduced expression of E2F regulated genes. These findings identify C/EBPbeta as a direct activator of E2F target genes in mammalian cell cycle progression through a mechanism that involves recruitment of CBP/p300. The demonstration of a functional link between C/EBPbeta and CBP/p300 for E2F target gene activation provides a potential mechanism for how coactivators such as CBP/p300 can be selectively recruited to E2F target genes in response to tissue-specific growth stimuli.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Oh WJ, Rishi V, Pelech S, Vinson C. Histological and proteomic analysis of reversible H-RasV12G expression in transgenic mouse skin. Carcinogenesis 2007; 28:2244-52. [PMID: 17551062 DOI: 10.1093/carcin/bgm127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have used a two-transgene tetracycline system to reversibly express oncogenic H-Ras(V12G) in mouse skin and primary keratinocytes culture using the bovine keratin 5 promoter. Induction of H-Ras(V12G) expression in skin at 30 days after birth causes epidermal basal cell hyperplasia, an eruption of keratinous cysts and loss of hair follicles by 3 weeks. Subsequent H-Ras(V12G) de-induction for 3 days results in massive apoptosis in the non-H-Ras(V12G)-expressing stroma as well as in the suprabasal cells of the epidermis. Several procaspases such as CASP3, 1alpha, 5 and 12 disappeared, whereas the pro-apoptotic proteins AIF, Bax and Fas ligand were induced in H-Ras(V12G) de-induction skin. This process is followed by a wave of cell division at 14 days as hair follicles regrew, returning to near normal histology and skin appearance by 30 days. Using Kinetworkstrade mark multi-immunoblotting screens, the phosphorylation status of 37 proteins and expression levels of 75 protein kinases in the skin were determined in three samples: (i) wild-type skin, (ii) hyperplastic H-Ras(V12G)-expressing skin and (iii) skin where H-Ras(V12G) expression was suppressed for 7 days. Following H-Ras(V12G) induction, 16 kinases were increased over 2-fold, and 2 kinases were reduced over 50%. This included increased phosphorylation of both known downstream H-Ras(V12G) targets and unknown H-Ras(V12G) targets. After H-Ras(V12G) suppression, many but not all protein changes were reversed. These results from skin and primary keratinocytes are organized to reflect the molecular events that cause the histological changes observed. These proteomic changes identify markers that may mediate the oncogenic addiction paradigm.
Collapse
Affiliation(s)
- Won-Jun Oh
- Laboratory of Metabolism, National Cancer Institute, Centre for Cancer Research, National Institutes of Health, Building 37, Room 3128, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
48
|
Spooner CJ, Sebastian T, Shuman JD, Durairaj S, Guo X, Johnson PF, Schwartz RC. C/EBPbeta serine 64, a phosphoacceptor site, has a critical role in LPS-induced IL-6 and MCP-1 transcription. Cytokine 2007; 37:119-27. [PMID: 17433708 DOI: 10.1016/j.cyto.2007.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 01/14/2007] [Accepted: 03/05/2007] [Indexed: 11/20/2022]
Abstract
C/EBPbeta is a member of the CCAAT/enhancer binding protein family of transcription factors and has been shown to be a critical transcriptional regulator of various proinflammatory genes, including IL-6 and MCP-1. Serine 64 in the transactivation domain of C/EBPbeta has recently been identified as a Ras-induced phosphoacceptor site. The integrity of serine 64 along with threonine 189 is important for the Ha-ras(V12)-induced transformation of NIH3T3 cells, however no target genes dependent upon serine 64 for their expression have been reported. In order to evaluate a potential role of serine 64 in C/EBPbeta-regulated cytokine expression, we expressed a form of C/EBPbeta with an alanine substitution at serine 64 (C/EBPbeta(S64A)) in P388 murine B lymphoblasts, which lack endogenous C/EBPbeta expression and are normally unresponsive to LPS for expression of IL-6 and MCP-1. In comparison to wild type C/EBPbeta, which robustly supports the LPS-induced expression of IL-6 and MCP-1, C/EBPbeta(S64A) was severely impaired in its ability to support the LPS-induced transcription of IL-6 and MCP-1. Furthermore, LPS stimulation increased the level of phosphorylation detected at serine 64. Thus, serine 64, probably through its phosphorylation, is a critical determinant of C/EBPbeta activity in the transcription of IL-6 and MCP-1.
Collapse
Affiliation(s)
- Chauncey J Spooner
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Akasaka T, Balasas T, Russell LJ, Sugimoto KJ, Majid A, Walewska R, Karran EL, Brown DG, Cain K, Harder L, Gesk S, Martin-Subero JI, Atherton MG, Brüggemann M, Calasanz MJ, Davies T, Haas OA, Hagemeijer A, Kempski H, Lessard M, Lillington DM, Moore S, Nguyen-Khac F, Radford-Weiss I, Schoch C, Struski S, Talley P, Welham MJ, Worley H, Strefford JC, Harrison CJ, Siebert R, Dyer MJS. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2006; 109:3451-61. [PMID: 17170124 DOI: 10.1182/blood-2006-08-041012] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CCAAT enhancer-binding protein (CEBP) transcription factors play pivotal roles in proliferation and differentiation, including suppression of myeloid leukemogenesis. Mutations of CEBPA are found in a subset of acute myeloid leukemia (AML) and in some cases of familial AML. Here, using cytogenetics, fluorescence in situ hybridization (FISH), and molecular cloning, we show that 5 CEBP gene family members are targeted by recurrent IGH chromosomal translocations in BCP-ALL. Ten patients with t(8;14)(q11;q32) involved CEBPD on chromosome 8, and 9 patients with t(14;19)(q32;q13) involved CEBPA, while a further patient involved CEBPG, located 71 kb telomeric of CEBPA in chromosome band 19q13; 4 patients with inv(14)(q11q32)/t(14;14)(q11;q32) involved CEBPE and 3 patients with t(14;20)(q32;q13) involved CEBPB. In 16 patients the translocation breakpoints were cloned using long-distance inverse–polymerase chain reaction (LDI-PCR). With the exception of CEBPD breakpoints, which were scattered within a 43-kb region centromeric of CEBPD, translocation breakpoints were clustered immediately 5′ or 3′ of the involved CEBP gene. Except in 1 patient with t(14;14)(q11;q32), the involved CEBP genes retained germ-line sequences. Quantitative reverse transcription (RT)–PCR showed overexpression of the translocated CEBP gene. Our findings implicate the CEBP gene family as novel oncogenes in BCP-ALL, and suggest opposing functions of CEBP dysregulation in myeloid and lymphoid leukemogenesis.
Collapse
Affiliation(s)
- Takashi Akasaka
- Toxicology Unit, Medical Research Council, University of Leicester, Lancaster Road, Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Biggs JR, Peterson LF, Zhang Y, Kraft AS, Zhang DE. AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol Cell Biol 2006; 26:7420-9. [PMID: 17015473 PMCID: PMC1636878 DOI: 10.1128/mcb.00597-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/10/2006] [Accepted: 07/25/2006] [Indexed: 12/21/2022] Open
Abstract
AML1 (RUNX1) regulates hematopoiesis, angiogenesis, muscle function, and neurogenesis. Previous studies have shown that phosphorylation of AML1, particularly at serines 276 and 303, affects its transcriptional activation. Here, we report that phosphorylation of AML1 serines 276 and 303 can be blocked in vivo by inhibitors of the cyclin-dependent kinases (CDKs) Cdk1 and Cdk2. Furthermore, these residues can be phosphorylated in vitro by purified Cdk1/cyclin B and Cdk2/cyclin A. Mutant AML1 protein which cannot be phosphorylated at these sites (AML1-4A) is more stable than wild-type AML1. AML-4A is resistant to degradation mediated by Cdc20, one of the substrate-targeting subunits of the anaphase-promoting complex (APC). However, Cdh1, another targeting subunit used by the APC, can mediate the degradation of AML1-4A. A phospho-mimic protein, AML1-4D, can be targeted by Cdc20 or Cdh1. These observations suggest that both Cdc20 and Cdh1 can target AML1 for degradation by the APC but that AML1 phosphorylation may affect degradation mediated by Cdc20-APC to a greater degree.
Collapse
Affiliation(s)
- Joseph R Biggs
- Division of Oncovirology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Rd., MEM-L51, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|