1
|
Tsukiyama T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:449-465. [PMID: 38383910 PMCID: PMC11126518 DOI: 10.1007/s11626-024-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will be applied to cancer treatment in the future despite the fully unclear function of RNF43.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, 15NW7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
2
|
Elmadani M, Raatikainen S, Mattila O, Alakoski T, Piuhola J, Åström P, Tenhunen O, Magga J, Kerkelä R. Dasatinib targets c-Src kinase in cardiotoxicity. Toxicol Rep 2023; 10:521-528. [PMID: 37152411 PMCID: PMC10160240 DOI: 10.1016/j.toxrep.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
Dasatinib is a multitargeted kinase inhibitor used for treatment of chronic myeloid leukemia and acute lymphoblastic leukemia. Unfortunately, treatment of cancer patients with some kinase inhibitors has been associated with cardiotoxicity. Cancer treatment with dasatinib has been reported to be associated with cardiotoxic side effects such as left ventricular dysfunction, heart failure, pericardial effusion and pulmonary hypertension. Here we aimed to investigate the molecular mechanisms underlying the cardiotoxicity of dasatinib. We found that among the resident cardiac cell types, cardiomyocytes were most sensitive to dasatinib-induced cell death. Exposure of cardiomyocytes to dasatinib attenuated the activity of extracellular signal-regulated kinase (ERK), which is a downstream target of dasatinib target kinase c-Src. Similar to dasatinib, c-Src depletion in cardiomyocytes compromised cardiomyocyte viability. Overexpression of dasatinib-resistant mutant of c-Src rescued the toxicity of dasatinib on cardiomyocytes, whereas forced expression of wild type c-Src did not have protective effect. Collectively, our results show that c-Src is a key target of dasatinib mediating the toxicity of dasatinib to cardiomyocytes. These findings may influence future drug design and suggest closer monitoring of patients treated with agents targeting c-Src for possible adverse cardiac effects.
Collapse
Affiliation(s)
- Manar Elmadani
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Sami Raatikainen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Orvokki Mattila
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Tarja Alakoski
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Division of Cardiology, Oulu University Hospital, Oulu, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Olli Tenhunen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Correspondence to: Research Unit of Biomedicine and Internal Medicine, University of Oulu, P.O.BOX 5000, FIN-90014 Oulu, Finland.
| |
Collapse
|
3
|
Thongsom S, Aksorn N, Petsri K, Roytrakul S, Sriratanasak N, Wattanathana W, Chanvorachote P. Analysis of Protein-Protein Interactions Identifies NECTIN2 as a Target of N,N-Bis (5-Ethyl-2-hydroxybenzyl) Methylamine for Inhibition of Lung Cancer Metastasis. Cancer Genomics Proteomics 2022; 19:624-635. [PMID: 35985690 PMCID: PMC9353721 DOI: 10.21873/cgp.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Metastasis negatively affects the survival of lung cancer patients, however, relatively few compounds have potential in metastasis suppression. This study investigated the molecular targets of N,N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD) for metastatic inhibition. MATERIALS AND METHODS Proteins were analyzed by proteomic and bioinformatic analyses. Protein-protein interaction (PPI) networks were created with the Search Tool for the Retrieval of Interacting Genes. The Kyoto Encyclopedia of Genes and Genomes database and hub genes were used to determine dominant pathways. Immunofluorescence and western blot analyses validated the proteomic results and investigated signaling pathways in NCI-H23 lung cancer cells. RESULTS A total of 1,751 proteins were common to the control, EMD and N,N-bis(5-methoxy-2-hydroxybenzyl) methylamine (MeMD) groups; 1,980 different proteins were categorized using metastatic capacity category and analyzed for unique proteins affected by EMD. Fifteen proteins were associated with cell adhesion and six with cell migration. Nectin cell adhesion molecule 2 (NECTIN2) was expressed in the control and MeMD-treated groups but not the EMD-treated group, suggesting NECTIN2 as an EMD target. PPI network showed association of NECTIN2 with proteins regulating cancer metastasis. Kyoto Encyclopedia of Genes and Genomes pathways revealed that NECTIN2 is an upstream target of cytoskeletal regulation via SRC signaling. Western blot and immunofluorescence analyses confirmed that EMD suppressed NECTIN2, and its downstream targets, including p-SRC (Y146 and Y527) and the epithelial-to-mesenchymal transition markers tight junction protein 1, vimentin, β-catenin, snail family transcriptional repressor 1 (SNAI1), and SNAI2, while increasing E-cadherin. CONCLUSION EMD suppressed NECTIN2-induced activation of EMT signaling. These data support the development of EMD to prevent metastasis of lung cancer.
Collapse
Affiliation(s)
- Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nithikoon Aksorn
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nicharat Sriratanasak
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand;
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Wu M, Qiu Q, Zhou Q, Li J, Yang J, Zheng C, Luo A, Li X, Zhang H, Cheng X, Lu W, Liu P, Lu B, Lu Y. circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt signaling pathway in ovarian cancer. Mol Cancer 2022; 21:137. [PMID: 35768865 PMCID: PMC9241180 DOI: 10.1186/s12943-022-01611-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CircRNAs are a novel class of evolutionarily conserved noncoding RNA molecules that form covalently closed continuous loop structures without 5' caps and 3' poly(A) tails. Accumulating evidence suggests that circRNAs play important regulatory roles in cancer and are promising biomarkers for cancer diagnosis and prognosis, as well as targets for cancer therapy. In this study, we identify and explore the role of a novel circRNA, circFBXO7, in ovarian cancer. METHODS rRNA-depleted RNA-sequencing was performed to identify differentially expressed circRNAs between ovarian cancerous and normal tissues. qRT-PCR and single-molecule RNA in-situ hybridization was used to quantify circFBXO7 expression in tumor tissues. The association of circFBXO7 expression with patient prognosis was evaluated by Kaplan-Meier survival analysis. The biological function of circFBXO7 was also investigated using loss-of-function and gain-of-function assays in vivo and in vitro. Luciferase reporter and TOP/FOP-Flash reporter assays were then conducted together with RNA immunoprecipitation and western blot to assess the circFBXO7/miR-96-5p/MTSS1/Wnt/β-catenin axis. RESULTS circFBXO7 was downregulated in ovarian cancer which was associated with poor prognosis. Biologically, circFBXO7 overexpression significantly suppressed ovarian cancer cell proliferation, migration, and invasion in vitro, and inhibited tumor growth and metastasis in vivo, whereas its knockdown exerted an opposite role. Mechanistically, circFBXO7 functioned as a competing endogenous RNA for miR-96-5p to regulate the expression of MTSS1. Consequently, downregulation of MTSS1 led to excessive accumulation of β-catenin and increased phosphorylation of GSK3β, leading to the translocation of β-catenin to the nucleus, thereby activating the Wnt/β-catenin signaling pathway and ultimately promoting ovarian cancer progression. CONCLUSIONS Our findings indicate that circFBXO7 acts as a bone fide tumor suppressor in ovarian cancer and that the circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt/β-catenin signaling pathway which may provide a promising target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Mengting Wu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Qiongzi Qiu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Qing Zhou
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jia Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Juze Yang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Chengcai Zheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Aoran Luo
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xufan Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China
| | - Xiaodong Cheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China
| | - Weiguo Lu
- Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.,Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Pengyuan Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China. .,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| | - Bingjian Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
5
|
High-Throughput Profiling of Colorectal Cancer Liver Metastases Reveals Intra- and Inter-Patient Heterogeneity in the EGFR and WNT Pathways Associated with Clinical Outcome. Cancers (Basel) 2022; 14:cancers14092084. [PMID: 35565214 PMCID: PMC9104154 DOI: 10.3390/cancers14092084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor heterogeneity can greatly influence therapy outcome and patient survival. In this study, we aimed at unraveling inter- and intra-patient heterogeneity of colorectal cancer liver metastases (CRLM). To this end, we comprehensively characterized CRLM using state-of-the-art high-throughput technologies combined with bioinformatics analyses. We found a high degree of inter- and intra-patient heterogeneity among the metastases, in particular in genes of the WNT and EGFR pathways. Through analyzing the master regulators and effectors associated with the regulation of these genes, we identified a specific gene signature that was highly expressed in a large cohort of colorectal cancer patients and associated with clinical outcome. Abstract Seventy percent of patients with colorectal cancer develop liver metastases (CRLM), which are a decisive factor in cancer progression. Therapy outcome is largely influenced by tumor heterogeneity, but the intra- and inter-patient heterogeneity of CRLM has been poorly studied. In particular, the contribution of the WNT and EGFR pathways, which are both frequently deregulated in colorectal cancer, has not yet been addressed in this context. To this end, we comprehensively characterized normal liver tissue and eight CRLM from two patients by standardized histopathological, molecular, and proteomic subtyping. Suitable fresh-frozen tissue samples were profiled by transcriptome sequencing (RNA-Seq) and proteomic profiling with reverse phase protein arrays (RPPA) combined with bioinformatic analyses to assess tumor heterogeneity and identify WNT- and EGFR-related master regulators and metastatic effectors. A standardized data analysis pipeline for integrating RNA-Seq with clinical, proteomic, and genetic data was established. Dimensionality reduction of the transcriptome data revealed a distinct signature for CRLM differing from normal liver tissue and indicated a high degree of tumor heterogeneity. WNT and EGFR signaling were highly active in CRLM and the genes of both pathways were heterogeneously expressed between the two patients as well as between the synchronous metastases of a single patient. An analysis of the master regulators and metastatic effectors implicated in the regulation of these genes revealed a set of four genes (SFN, IGF2BP1, STAT1, PIK3CG) that were differentially expressed in CRLM and were associated with clinical outcome in a large cohort of colorectal cancer patients as well as CRLM samples. In conclusion, high-throughput profiling enabled us to define a CRLM-specific signature and revealed the genes of the WNT and EGFR pathways associated with inter- and intra-patient heterogeneity, which were validated as prognostic biomarkers in CRC primary tumors as well as liver metastases.
Collapse
|
6
|
Winkler S, Winkler I, Figaschewski M, Tiede T, Nordheim A, Kohlbacher O. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics 2022; 23:139. [PMID: 35439941 PMCID: PMC9020058 DOI: 10.1186/s12859-022-04670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
Collapse
Affiliation(s)
- Sebastian Winkler
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany. .,International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.
| | - Ivana Winkler
- International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.,Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Figaschewski
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Thorsten Tiede
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,Leibniz Institute on Aging (FLI), Jena, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
7
|
Chen M, Shan L, Gan Y, Tian L, Zhou J, Zhu E, Yuan H, Li X, Wang B. Metastasis suppressor 1 controls osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. Cell Mol Life Sci 2022; 79:107. [PMID: 35094173 PMCID: PMC11072310 DOI: 10.1007/s00018-022-04147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/29/2022]
Abstract
Metastasis suppressor 1 (MTSS1) plays an inhibitory role in tumorigenesis and metastasis of a variety of cancers. To date, the function of MTSS1 in the differentiation of marrow stromal progenitor cells remains to be explored. In the current study, we investigated whether and how MTSS1 has a role in osteoblast differentiation and bone homeostasis. Our data showed that MTSS1 mRNA was upregulated during osteoblast differentiation and downregulated in the osteoblastic lineage cells of ovariectomized and aged mice. Functional studies revealed that MTSS1 promoted the osteogenic differentiation from marrow stromal progenitor cells. Mechanistic explorations uncovered that the inactivation of Src and afterward activation of canonical Wnt signaling were involved in osteoblast differentiation induced by MTSS1. The enhanced osteogenic differentiation induced by MTSS1 overexpression was attenuated when Src was simultaneously overexpressed, and conversely, the inhibition of osteogenic differentiation by MTSS1 siRNA was rescued when the Src inhibitor was supplemented to the culture. Finally, the in vivo transfection of MTSS1 siRNA to the marrow of mice significantly reduced the trabecular bone mass, along with the reduction of trabecular osteoblasts, the accumulation of marrow adipocytes, and the increase of phospho-Src-positive cells on the trabeculae. No change in the number of osteoclasts was observed. This study has unraveled that MTSS1 contributes to osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. It also suggests the potential of MTSS1 as a new target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Meng Chen
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Ying Gan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.
| |
Collapse
|
8
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
9
|
Vishnoi K, Ke R, Saini KS, Viswakarma N, Nair RS, Das S, Chen Z, Rana A, Rana B. Berberine Represses β-Catenin Translation Involving 4E-BPs in Hepatocellular Carcinoma Cells. Mol Pharmacol 2021; 99:1-16. [PMID: 33130557 PMCID: PMC7725064 DOI: 10.1124/molpharm.120.000029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant activation of Wnt/β-catenin axis occurs in several gastrointestinal malignancies due to inactivating mutations of adenomatous polyposis coli (in colorectal cancer) or activating mutations of β-catenin itself [in hepatocellular carcinoma (HCC)]. These lead to β-catenin stabilization, increase in β-catenin/T-cell factor (TCF)-mediated transcriptional activation, and target gene expression, many of which are involved in tumor progression. While studying pharmaceutical agents that can target β-catenin in cancer cells, we observed that the plant compound berberine (BBR), a potent activator of AMP-activated protein kinase (AMPK), can reduce β-catenin expression and downstream signaling in HCC cells in a dose-dependent manner. More in-depth analyses to understand the mechanism revealed that BBR-induced reduction of β-catenin occurs independently of AMPK activation and does not involve transcriptional or post-translational mechanisms. Pretreatment with protein synthesis inhibitor cycloheximide antagonized BBR-induced β-catenin reduction, suggesting that BBR affects β-catenin translation. BBR treatment also antagonized mammalian target of rapamycin (mTOR) activity and was associated with increased recruitment of eukaryotic translation initiation factor 4E-binding protein (4E-BP) 1 in the translational complex, which was revealed by 7-methyl-cap-binding assays, suggesting inhibition of cap-dependent translation. Interestingly, knocking down 4E-BP1 and 4E-BP2 significantly attenuated BBR-induced reduction of β-catenin levels and expression of its downstream target genes. Moreover, cells with 4E-BP knockdown were resistant to BBR-induced cell death and were resensitized to BBR after pharmacological inhibition of β-catenin. Our findings indicate that BBR antagonizes β-catenin pathway by inhibiting β-catenin translation and mTOR activity and thereby reduces HCC cell survival. These also suggest that BBR could be used for targeting HCCs that express mutated/activated β-catenin variants that are currently undruggable. SIGNIFICANCE STATEMENT: β-catenin signaling is aberrantly activated in different gastrointestinal cancers, including hepatocellular carcinoma, which is currently undruggable. In this study we describe a novel mechanism of targeting β-catenin translation via utilizing a plant compound, berberine. Our findings provide a new avenue of targeting β-catenin axis in cancer, which can be utilized toward the designing of effective therapeutic strategies to combat β-catenin-dependent cancers.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Rong Ke
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Karan S Saini
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Zhengjia Chen
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology (K.V., R.K., K.S.S., N.V., R.S.N., S.D., A.R., B.R.), University of Illinois Hospital and Health Sciences System Cancer Center (S.D., A.R., B.R.), and Division of Epidemiology and Biostatistics, School of Public Health (Z.C.), University of Illinois at Chicago, Chicago, Illinois; Biostatistics Shared Resource Core, University of Illinois Cancer Institute, Chicago, Illinois (Z.C.); and Jesse Brown VA Medical Center, Chicago, Illinois (A.R., B.R.)
| |
Collapse
|
10
|
Talaverón R, Matarredona ER, Herrera A, Medina JM, Tabernero A. Connexin43 Region 266-283, via Src Inhibition, Reduces Neural Progenitor Cell Proliferation Promoted by EGF and FGF-2 and Increases Astrocytic Differentiation. Int J Mol Sci 2020; 21:ijms21228852. [PMID: 33238452 PMCID: PMC7700635 DOI: 10.3390/ijms21228852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Neural progenitor cells (NPCs) are self-renewing cells that give rise to the major cells in the nervous system and are considered to be the possible cell of origin of glioblastoma. The gap junction protein connexin43 (Cx43) is expressed by NPCs, exerting channel-dependent and -independent roles. We focused on one property of Cx43—its ability to inhibit Src, a key protein in brain development and oncogenesis. Because Src inhibition is carried out by the sequence 266–283 of the intracellular C terminus in Cx43, we used a cell-penetrating peptide containing this sequence, TAT-Cx43266–283, to explore its effects on postnatal subventricular zone NPCs. Our results show that TAT-Cx43266–283 inhibited Src activity and reduced NPC proliferation and survival promoted by epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). In differentiation conditions, TAT-Cx43266–283 increased astrocyte differentiation at the expense of neuronal differentiation, which coincided with a reduction in Src activity and β-catenin expression. We propose that Cx43, through the region 266–283, reduces Src activity, leading to disruption of EGF and FGF-2 signaling and to down-regulation of β-catenin with effects on proliferation and differentiation. Our data indicate that the inhibition of Src might contribute to the complex role of Cx43 in NPCs and open new opportunities for further research in gliomagenesis.
Collapse
Affiliation(s)
- Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (R.T.); (J.M.M.)
| | | | - Alejandro Herrera
- Departamento de Fisiología, Universidad de Sevilla, 41012 Sevilla, Spain; (E.R.M.); (A.H.)
| | - José M. Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (R.T.); (J.M.M.)
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain; (R.T.); (J.M.M.)
- Correspondence: ; Tel.: +34-923-29-45-00 (ext. 5311)
| |
Collapse
|
11
|
Zhai S, Lin S, Lin Z, Xu J, Ji T, Chen K, Wu K, Liu H, Ying H, Fei W, Wang J, Fu G, Wang Y, Hu X, Cai X. eIF4EBP3 was downregulated by methylation and acted as a tumor suppressor by targeting eIF4E/β-catenin in gastric cancer. Gastric Cancer 2020; 23:483-496. [PMID: 31853750 DOI: 10.1007/s10120-019-01030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epigenetic aberrations of tumor suppressor genes (TSGs), particularly DNA methylation, are frequently involved in the pathogenesis of gastric cancer (GC). Through a methylome study, we identified eIF4EBP3 as a methylated gene in GC. However, the role of eIF4EBP3 in GC progression has not been explored. METHODS The expression and promoter region methylation of eIF4EBP3 in GC and healthy tissues were analyzed in public datasets. eIF4EBP3 expression in GC was detected by semi-quantitative RT-PCR, western blot and immunohistochemistry. We also studied epigenetic alterations and functions in GC. The effects of eIF4EBP3 on cell proliferation, migration and invasion were conducted by functional experiments in vitro and in vivo. Label-free proteomic analysis was applied to identify targets of eIF4EBP3. RESULTS The expression level of eIF4EBP3 was downregulated in gastric cancer due to promoter region methylation, and was associated with poor survival and tumor progression. Ectopic expression of eIF4EBP3 significantly inhibited tumor cell growth, migration and invasion both in vitro and in vivo. Label-free proteomic analysis indicated eIF4EBP3 downregulated the protein level of β-catenin, which was confirmed by western blot. Overexpression of β-catenin reversed the inhibitory effects of eIF4EBP3 on cell growth and migration, indicating that eIF4EBP3 acts on GC cells by targeting the eIF4E/β-catenin axis. CONCLUSION These results suggest that eIF4EBP3 is a novel TSG methylated in gastric cancer that may play important roles in GC development and liver metastasis and indicate eIF4EBP3 as a potential metastasis and survival biomarker for GC.
Collapse
Affiliation(s)
- Shuting Zhai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Shuang Lin
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhongjie Lin
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Tong Ji
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Chen
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Wu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hui Liu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hanning Ying
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Weiqiang Fei
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Jin Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Yifan Wang
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
12
|
MiR-532-3p suppresses colorectal cancer progression by disrupting the ETS1/TGM2 axis-mediated Wnt/β-catenin signaling. Cell Death Dis 2019; 10:739. [PMID: 31570702 PMCID: PMC6768886 DOI: 10.1038/s41419-019-1962-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
The expression panel of plasma microRNA defined miR-532-3p as a valuable biomarker for colorectal adenoma (CRA). However, its expression pattern and function in colorectal cancer (CRC) have remained unclear. The present study investigated the expression levels of miR-532-3p and found that it was in situ downregulated both in CRA and CRC. Moreover, it functioned as a sensitizer for chemotherapy in CRC by inducing cell cycle arrest and early apoptosis via its activating effects on p53 and apoptotic signaling pathways. In addition, miR-532-3p was found to restrain cell growth, metastasis, and epithelial–mesenchymal transition (EMT) phenotype of CRC. A study on the mechanism behind these effects revealed that miR-532-3p directly binds to 3′UTR regions of ETS1 and TGM2, ultimately repressing the canonical Wnt/β-catenin signaling. Further investigation showed that TGM2 was transcriptionally regulated by ETS1 and ETS1/TGM2 axis served as a vital functional target of miR-532-3p in suppressing CRC progression. To conclude, miR-532-3p mimics could act as potential candidate for molecular therapy in CRC through inactivation of the canonical Wnt/β-catenin signaling and enhancement of chemosensitivity.
Collapse
|
13
|
Timmermans-Sprang EPM, Mestemaker HM, Steenlage RR, Mol JA. Dasatinib inhibition of cSRC prevents the migration and metastasis of canine mammary cancer cells with enhanced Wnt and HER signalling. Vet Comp Oncol 2019; 17:413-426. [PMID: 31069942 DOI: 10.1111/vco.12490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/05/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor 2 (HER2) overexpression leads to aggressive mammary tumour growth. Although the prognosis of HER2+ tumours in humans is greatly improved using biologicals, therapy resistance, which may be caused by increased phosphatidyl-3-kinase (PI3K), rous sarcoma proto-oncogene (cSRC) or wingless-type MMTV integration site family (Wnt) activity, is a major concern. A recent analysis of 12 canine mammary cell lines showed an association between HER2/3 overexpression and phosphatase and tensin homologue (PTEN) deletion with elevated Wnt-signalling. Wnt-activity appeared to be insensitive to phosphatidyl-3-kinase (PI3K) inhibitors but sensitive to Src-I1. We hypothesized that Wnt activation, was caused by HER2/3-activated cSRC activation. The role of HER2/3 on Wnt signalling was investigated by silencing HER2/3 expression using specific small interfering RNA (siRNAs). Next, the effect of an epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor on Wnt activity and migration was investigated and compared to other tyrosine kinase inhibitors (TKIs) of related signalling pathways. Finally, two TKIs, a cSRC and a PI3K inhibitor, were investigated in a zebrafish xenograft model. Silencing of HER1-3 did not inhibit the intrinsic high Wnt activity, whereas the HER kinase inhibitor afatinib showed enhanced Wnt activity. The strongest inhibition of Wnt activity and cell viability and migration was shown by cSRC inhibitors, which also showed strong inhibition of cell viability and metastasis in a zebrafish xenograft model. HER2/3 overexpression or HER2/3-induced cSRC activation is not the cause of enhanced Wnt activity. However, inhibition of cSRC resulted in a strong inhibition of Wnt activity and cell migration and metastasis. Further studies are needed to unravel the mechanism of cSRC activation and cSRC inhibition to restore sensitivity to HER-inhibitors in HER2/3-positive breast cancer.
Collapse
Affiliation(s)
| | - Helena M Mestemaker
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Renske R Steenlage
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Cisternas P, Zolezzi JM, Martinez M, Torres VI, Wong GW, Inestrosa NC. Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J Neurochem 2019; 149:54-72. [PMID: 30300917 PMCID: PMC7680578 DOI: 10.1111/jnc.14608] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose-6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP-activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt-mediated improvements in neuronal glucose metabolism.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M. Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Viviana. I. Torres
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G. William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
15
|
Wang W, Wen Q, Luo J, Chu S, Chen L, Xu L, Zang H, Alnemah MM, Li J, Zhou J, Fan S. Suppression Of β-catenin Nuclear Translocation By CGP57380 Decelerates Poor Progression And Potentiates Radiation-Induced Apoptosis in Nasopharyngeal Carcinoma. Theranostics 2017; 7:2134-2149. [PMID: 28656063 PMCID: PMC5485425 DOI: 10.7150/thno.17665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/08/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear localization of β-catenin is essential for the progression of various human cancers via transcriptional upregulation of downstream genes. The MAP kinase interacting serine/threonine kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis has been reported to activate Wnt/β-catenin signaling, and CGP57380, an inhibitor of MNK kinases, inhibits the proliferation of multiple cancers. In this study, we showed that β-catenin signaling (including β-catenin, cyclin D1, c-Myc, and MMP-7) and p-eIF4E expression were elevated in nasopharyngeal carcinoma (NPC) compared with non-cancerous nasopharyngeal epithelial tissues, and was associated with clinical characteristics of NPC patients. Lymph node metastasis, gender, aberrant β-catenin expression, and elevated levels of MMP-7 and cyclin D1 were independent prognostic factors. Significantly, expression of p-eIF4E was positively correlated with β-catenin, and targeting the MNK-eIF4E axis with CGP57380 downregulated β-catenin in the nucleus, which in turn decreased proliferation, cell cycle progression, migration, invasion, and metastasis of NPC in vitro and in vivo. CGP57380 also potentiated radiation-induced apoptosis in NPC. Moreover, CGP57380 upregulated β-catenin in the cytoplasm thus blocking epithelial-mesenchymal transition (EMT), a key mechanism in cancer cell invasiveness and metastasis. Mechanistically, inhibition of β-catenin nuclear translocation by CGP57380 was dependent on AKT activation. Notably, identification of the MNK/eIF4E/β-catenin axis might provide a potential target for overcoming the poor prognosis mediated by β-catenin in NPC.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuzhou Chu
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lingjiao Chen
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lina Xu
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hongjing Zang
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mohannad Ma Alnemah
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jinghe Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Songqing Fan
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
16
|
Groll N, Petrikat T, Vetter S, Wenz C, Dengjel J, Gretzmeier C, Weiss F, Poetz O, Joos TO, Schwarz M, Braeuning A. Inhibition of β-catenin signaling by phenobarbital in hepatoma cells in vitro. Toxicology 2016; 370:94-105. [PMID: 27693619 DOI: 10.1016/j.tox.2016.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/16/2023]
Abstract
The antiepileptic drug phenobarbital (PB) exerts hepatic effect based on indirect activation of the constitutive androstane receptor (CAR) via inhibition of the epidermal growth factor receptor (EGFR) and the kinase Src. It has furthermore been observed that in mice PB suppresses the growth of hepatocellular carcinoma with overactive signaling through the oncogenic Wnt/β-catenin pathway, thus suggesting an interference of PB with β-catenin signaling. The present work was aimed to characterize effects of PB on β-catenin signaling at different cellular levels and to elucidate molecular details of the interaction of PB and β-catenin in an in vitro system of mouse hepatoma cells. PB efficiently inhibited signaling through β-catenin. This phenomenon was in-depth characterized at the levels of β-catenin protein accumulation and transcriptional activity. Mechanistic analyses revealed that the effect of PB on β-catenin signaling was independent of the activation of CAR and also independent of the cytosolic multi-protein complex responsible for physiological post-translation control of the β-catenin pathway via initiation of β-catenin degradation. Instead, evidence is provided that PB diminishes β-catenin protein production by inhibition of protein synthesis via signal transduction through EGFR and Src. The proposed mechanism is well in agreement with previously published activities of PB at the EGFR and Src-mediated regulation of β-catenin mRNA translation. Inhibition of β-catenin signaling by PB through the proposed mechanism might explain the inhibitory effect of PB on the growth of specific sub-populations of mouse liver tumors. In conclusion, the present data comprehensively characterize the effect of PB on β-catenin signaling in mouse hepatoma cells in vitro and provides mechanistic insight into the molecular processes underlying the observed effect.
Collapse
Affiliation(s)
- Nicola Groll
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Tamara Petrikat
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Silvia Vetter
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Christine Wenz
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Joern Dengjel
- University of Fribourg, Dept. of Biology, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Christine Gretzmeier
- University of Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Frederik Weiss
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Oliver Poetz
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Thomas O Joos
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Michael Schwarz
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Albert Braeuning
- University of Tübingen, Dept. of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany; Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
17
|
4.1N is involved in a flotillin-1/β-catenin/Wnt pathway and suppresses cell proliferation and migration in non-small cell lung cancer cell lines. Tumour Biol 2016; 37:12713-12723. [DOI: 10.1007/s13277-016-5146-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023] Open
|
18
|
Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S, Rimm DL, Győrffy B, Santarpia L, Pusztai L, Saltzman WM, Slack FJ. miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer. Cancer Res 2015; 76:927-39. [PMID: 26676753 DOI: 10.1158/0008-5472.can-15-2321] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with no clinically proven biologically targeted treatment options. The molecular heterogeneity of TNBC and lack of high frequency driver mutations other than TP53 have hindered the development of new and effective therapies that significantly improve patient outcomes. miRNAs, global regulators of survival and proliferation pathways important in tumor development and maintenance, are becoming promising therapeutic agents. We performed miRNA-profiling studies in different TNBC subtypes to identify miRNAs that significantly contribute to disease progression. We found that miR-34a was lost in TNBC, specifically within mesenchymal and mesenchymal stem cell-like subtypes, whereas expression of miR-34a targets was significantly enriched. Furthermore, restoration of miR-34a in cell lines representing these subtypes inhibited proliferation and invasion, activated senescence, and promoted sensitivity to dasatinib by targeting the proto-oncogene c-SRC. Notably, SRC depletion in TNBC cell lines phenocopied the effects of miR-34a reintroduction, whereas SRC overexpression rescued the antitumorigenic properties mediated by miR-34a. miR-34a levels also increased when cells were treated with c-SRC inhibitors, suggesting a negative feedback exists between miR-34a and c-SRC. Moreover, miR-34a administration significantly delayed tumor growth of subcutaneously and orthotopically implanted tumors in nude mice, and was accompanied by c-SRC downregulation. Finally, we found that miR-34a and SRC levels were inversely correlated in human tumor specimens. Together, our results demonstrate that miR-34a exerts potent antitumorigenic effects in vitro and in vivo and suggests that miR-34a replacement therapy, which is currently being tested in human clinical trials, represents a promising therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Brian D Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Vikram B Wali
- Yale Cancer Center Genetics and Genomics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher J Cheng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut. Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Sachi Inukai
- Institute for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Seema Agarwal
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary. MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Libero Santarpia
- Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Lajos Pusztai
- Yale Cancer Center Genetics and Genomics Program, Yale University School of Medicine, New Haven, Connecticut
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Frank J Slack
- Institute for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
19
|
Jain S, Wang X, Chang CC, Ibarra-Drendall C, Wang H, Zhang Q, Brady SW, Li P, Zhao H, Dobbs J, Kyrish M, Tkaczyk TS, Ambrose A, Sistrunk C, Arun BK, Richards-Kortum R, Jia W, Seewaldt VL, Yu D. Src Inhibition Blocks c-Myc Translation and Glucose Metabolism to Prevent the Development of Breast Cancer. Cancer Res 2015; 75:4863-75. [PMID: 26383165 DOI: 10.1158/0008-5472.can-14-2345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 07/31/2015] [Indexed: 11/16/2022]
Abstract
Preventing breast cancer will require the development of targeted strategies that can effectively block disease progression. Tamoxifen and aromatase inhibitors are effective in addressing estrogen receptor-positive (ER(+)) breast cancer development, but estrogen receptor-negative (ER(-)) breast cancer remains an unmet challenge due to gaps in pathobiologic understanding. In this study, we used reverse-phase protein array to identify activation of Src kinase as an early signaling alteration in premalignant breast lesions of women who did not respond to tamoxifen, a widely used ER antagonist for hormonal therapy of breast cancer. Src kinase blockade with the small-molecule inhibitor saracatinib prevented the disorganized three-dimensional growth of ER(-) mammary epithelial cells in vitro and delayed the development of premalignant lesions and tumors in vivo in mouse models developing HER2(+) and ER(-) mammary tumors, extending tumor-free and overall survival. Mechanistic investigations revealed that Src blockade reduced glucose metabolism as a result of an inhibition in ERK1/2-MNK1-eIF4E-mediated cap-dependent translation of c-Myc and transcription of the glucose transporter GLUT1, thereby limiting energy available for cell growth. Taken together, our results provide a sound rationale to target Src pathways in premalignant breast lesions to limit the development of breast cancers.
Collapse
Affiliation(s)
- Shalini Jain
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chia-Chi Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Cancer Biology Program, University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | | | - Hai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samuel W Brady
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Cancer Biology Program, University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica Dobbs
- Bioengineering Department, Rice University, Houston, Texas
| | - Matt Kyrish
- Bioengineering Department, Rice University, Houston, Texas
| | | | - Adrian Ambrose
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Wei Jia
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Monoa, Honolulu. Hawaii
| | | | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Timmermans-Sprang EPM, Gracanin A, Mol JA. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression. BMC Cancer 2015. [PMID: 26205886 PMCID: PMC4513708 DOI: 10.1186/s12885-015-1544-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Methods Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. Results High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. Conclusions High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated, however, canonical Wnt signaling, whereas the inhibitory effect with the cSRC inhibitor Src-I1 on the Wnt activity further suggested a connection between Wnt and HER2/3-signaling.
Collapse
Affiliation(s)
- Elpetra P M Timmermans-Sprang
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Chen Q, Su Y, Wesslowski J, Hagemann AI, Ramialison M, Wittbrodt J, Scholpp S, Davidson G. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling. EMBO Rep 2014; 15:1254-67. [PMID: 25391905 DOI: 10.15252/embr.201439644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6.
Collapse
Affiliation(s)
- Qing Chen
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yi Su
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janine Wesslowski
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anja I Hagemann
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gary Davidson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
22
|
Dong S, Khoo A, Wei J, Bowser RK, Weathington NM, Xiao S, Zhang L, Ma H, Zhao Y, Zhao J. Serum starvation regulates E-cadherin upregulation via activation of c-Src in non-small-cell lung cancer A549 cells. Am J Physiol Cell Physiol 2014; 307:C893-9. [PMID: 25163517 DOI: 10.1152/ajpcell.00132.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
E-cadherin is essential for the integrity of adherens junctions between lung epithelial cells, and the loss of E-cadherin allows cell motility and is thought to promote lung cancer metastasis. While the downregulation of E-cadherin expression has been well characterized and is seen with transforming growth factor-β1 (TGF-β1) exposure, few studies have focused on E-cadherin upregulation. Here, we show that serum starvation causes increased E-cadherin expression via the activation of c-Src kinase in non-small-cell lung cancer A549 cells. Serum starvation increased E-cadherin protein levels in a time- and dose-dependent manner. E-cadherin mRNA transcripts were unchanged with starvation, while protein translation inhibition with cycloheximide attenuated E-cadherin protein induction by starvation, suggesting that E-cadherin is regulated at the translational level by serum starvation. c-Src is a nonreceptor tyrosine kinase known to regulate protein translation machinery; serum starvation caused early and sustained activation of c-Src in A549 cells followed by E-cadherin upregulation. Furthermore, overexpression of a dominant negative c-Src attenuated the induction of E-cadherin by serum deprivation. Finally, we observed that TGF-β1 treatment attenuated the serum activation of c-Src as well as E-cadherin expression when cells were deprived of serum. In conclusion, our data demonstrate that the c-Src kinase is activated by serum starvation to increase E-cadherin expression in A549 cells, and these phenomena are antagonized by TGF-β1. These novel observations implicate the c-Src kinase as an upstream inducer of E-cadherin protein translation with serum starvation and TGF-β1 diametrically regulating c-Src kinase activity and thus E-cadherin abundance in A549 cells.
Collapse
Affiliation(s)
- Su Dong
- Department of Anesthesia, First Hospital of Jilin University, Changchun, Jilin, China; Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Andrew Khoo
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Jianxin Wei
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Rachel K Bowser
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Nathaniel M Weathington
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Shuqi Xiao
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haichun Ma
- Department of Anesthesia, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yutong Zhao
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Jing Zhao
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
23
|
Yin X, Kim RH, Sun G, Miller JK, Li BD. Overexpression of Eukaryotic Initiation Factor 4E Is Correlated with Increased Risk for Systemic Dissemination in Node-Positive Breast Cancer Patients. J Am Coll Surg 2014; 218:663-71. [DOI: 10.1016/j.jamcollsurg.2013.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
24
|
Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. J Thorac Oncol 2014; 8:1142-7. [PMID: 23883783 DOI: 10.1097/jto.0b013e31829ce963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION For the majority of patients with non-small-cell lung cancer (NSCLC), response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is suboptimal. In models of acquired resistance to EGFR-TKI, activation of Akt phosphorylation is frequently observed. Because Akt activation results in downstream initiation of cap-dependent protein translation, we hypothesized that a strategy of targeting cap-dependent translation in combination with erlotinib might enhance therapy. METHODS NSCLC cells that are wild type for EGFR were assayed for sensitivity to erlotinib. Serum-starved NSCLC cells were assayed for EGFR signaling and downstream pathway activation by immunoblot after stimulation with epidermal growth factor. EGFR signaling and signaling mediators of cap-dependent translation were assayed by immunoblot under serum-replete conditions 24 hours after treatment with erlotinib. Finally, combination treatment with erlotinib and two different cap-dependent translation inhibitors were done to assess the effect on cell viability. RESULTS EGFR signaling is coupled to activation of cap-dependent translation in EGFR wild-type cells. Erlotinib inhibits EGFR phosphorylation in EGFR-TKI resistant cells, however, results in activation of downstream signaling molecules including Akt and extracellular regulated kinase, ERK 1/2, resulting in maintenance of eukaryotic initiation factor 4F (eIF4F) activation. eIF4F cap-complex formation is maintained in erlotinib-resistant cells, but not in erlotinib-sensitive cells. Finally, using an antisense oligonucleotide against eukaryotic translation initiation factor 4E and a small-molecule inhibitor to disrupt eIF4F formation, we show that cap-dependent translation inhibition can enhance sensitivity to erlotinib. CONCLUSION The results of these studies support further clinical development of translation inhibitors for treatment of NSCLC in combination with erlotinib.
Collapse
|
25
|
Soung YH, Korneeva N, Kim TH, Chung J. The role of c-Src in integrin (α6β4) dependent translational control. BMC Cell Biol 2013; 14:49. [PMID: 24180592 PMCID: PMC4228388 DOI: 10.1186/1471-2121-14-49] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Integrin α6β4 contributes to cancer progression by stimulating transcription as well as translation of cancer related genes. Our previous study demonstrated that α6β4 stimulates translation initiation of survival factors such as VEGF by activating mTOR pathway. However, the immediate early signaling events that link α6β4 to mTOR activation needs to be defined. Results In the current studies, we demonstrated that c-Src is an immediate early signaling molecule that acts upstream of α6β4 dependent mTOR activation and subsequent translation of VEGF in MDA-MB-435/β4 and MDA-MB-231 cancer cells. m7GTP-Sepharose–binding assay revealed that Src activity is required to form eIF4F complex which is necessary for Cap-dependent translation in α6β4 expressing human cancer cells. Conclusions Overall, our studies suggest that integrin β4 and c-Src activation is important early signaling events to lead mTOR activation and cap-dependent translation of VEGF.
Collapse
Affiliation(s)
| | | | | | - Jun Chung
- Department of Physiology and Stephenson Cancer Center, The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA.
| |
Collapse
|
26
|
Regulation of onco and tumor suppressor MiRNAs by mTORC1 inhibitor PRP-1 in human chondrosarcoma. Tumour Biol 2013; 35:2335-41. [PMID: 24178909 DOI: 10.1007/s13277-013-1309-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 01/22/2023] Open
Abstract
Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. This study aimed to reveal the comparative analysis of miRNAs and their targets in human JJ012 chondrosarcoma cell line between control and experimental samples, treated with mTORC1 inhibitor, cytostatic antiproliferative proline-rich polypeptide (PRP-1). Examination of tumor-specific microRNA expression profiles has revealed widespread deregulation of these molecules in diverse cancers. It was reported that microRNAs can function as novel biomarkers for disease diagnostics and therapy, as well as a novel class of oncogenes and tumor suppressor genes. mTORC 1 inhibitor PRP-1 caused significant upregulation of tumor suppressors, such as miR20a, miR125b, and miR192; and downregulation of onco miRNAs, miR509-3p, miR589, miR490-3p, miR 550 in human chondrosarcoma JJ012 cell line.
Collapse
|
27
|
Liao X, Lu S, Wu Y, Xu W, Zhuo Y, Peng Q, Li B, Zhang L, Wang Y. The effect of differentiation induction on FAK and Src activity in live HMSCs visualized by FRET. PLoS One 2013; 8:e72233. [PMID: 24015220 PMCID: PMC3754985 DOI: 10.1371/journal.pone.0072233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022] Open
Abstract
FAK and Src signaling play important roles in cell differentiation, survival and migration. However, it remains unclear how FAK and Src activities are regulated at the initial stage of stem cell differentiation. We utilized fluorescence resonance energy transfer (FRET)-based FAK and Src biosensors to visualize these kinase activities at the plasma membrane of human mesenchymal stem cells (HMSCs) under the stimulation of osteogenic, myoblastic, or neural induction reagents. Our results indicate that the membrane FAK and Src activities are distinctively regulated by these differentiation induction reagents. FAK and Src activities were both up-regulated with positive feedback upon osteogenic induction, while myoblastic induction only activated Src, but not FAK. Neural induction, however, transiently activated FAK and subsequently Src, which triggered a negative feedback to partially inhibit FAK activity. These results unravel distinct regulation mechanisms of FAK and Src activities during HMSC fate decision, which should advance our understanding of stem cell differentiation in tissue engineering.
Collapse
Affiliation(s)
- Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
- Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Department of Integrative and Molecular Physiology, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Shaoying Lu
- Department of Bioengineering, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Yiqian Wu
- Biomedical Engineering Programme, Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, NT, Hong Kong, People's Republic of China
| | - Wenfeng Xu
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
| | - Yue Zhuo
- Department of Bioengineering, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Qin Peng
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Bo Li
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
| | - Ling Zhang
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and technology, Chongqing, People's Republic of China
| | - Yingxiao Wang
- Department of Bioengineering, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, Center for Biophysics and Computational Biology, Department of Integrative and Molecular Physiology, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Saud SM, Young MR, Jones-Hall YL, Ileva L, Evbuomwan MO, Wise J, Colburn NH, Kim YS, Bobe G. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin. Cancer Res 2013; 73:5473-84. [PMID: 23824743 DOI: 10.1158/0008-5472.can-13-0525] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Analysis of the Polyp Prevention Trial showed an association between an isorhamnetin-rich diet and a reduced risk of advanced adenoma recurrence; however, the mechanism behind the chemoprotective effects of isorhamnetin remains unclear. Here, we show that isorhamnetin prevents colorectal tumorigenesis of FVB/N mice treated with the chemical carcinogen azoxymethane and subsequently exposed to colonic irritant dextran sodium sulfate (DSS). Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. MRI, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than the control diet. Isorhamnetin inhibited AOM/DSS-induced oncogenic c-Src activation and β-catenin nuclear translocation, while promoting the expression of C-terminal Src kinase (CSK), a negative regulator of Src family of tyrosine kinases. Similarly, in HT-29 colon cancer cells, isorhamnetin inhibited oncogenic Src activity and β-catenin nuclear translocation by inducing expression of csk, as verified by RNA interference knockdown of csk. Our observations suggest the chemoprotective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression.
Collapse
Affiliation(s)
- Shakir M Saud
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Corvallis, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A 2013; 110:E2298-307. [PMID: 23737503 DOI: 10.1073/pnas.1301838110] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia responds well to therapy targeting the oncogenic fusion protein BCR-ABL1 in chronic phase, but is resistant to treatment after it progresses to blast crisis (BC). BC is characterized by elevated β-catenin signaling in granulocyte macrophage progenitors (GMPs), which enables this population to function as leukemia stem cells (LSCs) and act as a reservoir for resistance. Because normal hematopoietic stem cells (HSCs) and LSCs depend on β-catenin signaling for self-renewal, strategies to specifically target BC will require identification of drugable factors capable of distinguishing between self-renewal in BC LSCs and normal HSCs. Here, we show that the MAP kinase interacting serine/threonine kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis is overexpressed in BC GMPs but not normal HSCs, and that MNK kinase-dependent eIF4E phosphorylation at serine 209 activates β-catenin signaling in BC GMPs. Mechanistically, eIF4E overexpression and phosphorylation leads to increased β-catenin protein synthesis, whereas MNK-dependent eIF4E phosphorylation is required for nuclear translocation and activation of β-catenin. Accordingly, we found that a panel of small molecule MNK kinase inhibitors prevented eIF4E phosphorylation, β-catenin activation, and BC LSC function in vitro and in vivo. Our findings identify the MNK-eIF4E axis as a specific and critical regulator of BC self-renewal, and suggest that pharmacologic inhibition of the MNK kinases may be therapeutically useful in BC chronic myeloid leukemia.
Collapse
|
30
|
Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, deVere White RW, Kung HJ. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 2013; 33:2495-503. [PMID: 23728339 DOI: 10.1038/onc.2013.200] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/14/2013] [Accepted: 04/12/2013] [Indexed: 12/22/2022]
Abstract
Src tyrosine kinase (Src) is implicated in the development of bone metastasis and castration resistance of prostate cancer. Src inhibitors are currently being tested in clinical trials for such diseases. Understanding the molecular and cellular actions of Src inhibitors holds the key to future improvement of this line of therapy. Here we describe the microRNA expression profiles modulated by two Src inhibitors and demonstrate that the miR-30 family members are the most prominently induced species. Consistent with its tumor suppressor role, miR-30 is downmodulated by oncogenic signals such as epidermal growth factor (EGF) and hepatocyte growth factor, and is generally underexpressed in prostate cancer specimens. A number of epithelial-to-mesenchymal transition (EMT)-associated genes are predicted targets of miR-30. Among these genes the Ets-related gene (ERG) is the most frequently overexpressed oncogene in prostate cancer activated by genomic fusion events between promoter upstream sequences of the TMPRSS2 and coding sequences of ERG. We showed by ERG 3' untranslated region reporter and mutagenesis assays that ERG is a direct target of miR-30. Overexpression of miR-30 in prostate cancer cells suppresses EMT phenotypes and inhibits cell migration and invasion. It also inhibits the in vitro and in vivo growth of VCaP cells, which depends on TMPRSS2-ERG for proliferation. TMPRSS2-ERG is generally regulated by androgen at the transcriptional level. Our finding reveals a new post-transcriptional mechanism of TMPRSS2-ERG regulation by Src and growth signals via miR-30 providing a rationale for targeting ERG-positive castration-resistant tumors with Src inhibitors.
Collapse
Affiliation(s)
- C-J Kao
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, USA
| | - A Martiniez
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, USA
| | - X-B Shi
- Department of Urology, University of California-Davis, Sacramento, CA, USA
| | - J Yang
- Department of Urology, University of California-Davis, Sacramento, CA, USA
| | - C P Evans
- Department of Urology, University of California-Davis, Sacramento, CA, USA
| | - A Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, MD, USA
| | - R W deVere White
- Department of Urology, University of California-Davis, Sacramento, CA, USA
| | - H-J Kung
- 1] Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, USA [2] Institute of Molecular and Genomic Medicine, National Health Research Institutes, Maioli, Taiwan [3] Translational Medicine and Integrated Lab, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Condello S, Cao L, Matei D. Tissue transglutaminase regulates β-catenin signaling through a c-Src-dependent mechanism. FASEB J 2013; 27:3100-12. [PMID: 23640056 DOI: 10.1096/fj.12-222620] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional enzyme involved in protein cross-linking and cell adhesion to fibronectin (FN). In cancer, TG2 induces an epithelial to mesenchymal transition, contributing to metastasis. Because cadherins bind β-catenin at cell-cell junctions, disruption of adherens junctions destabilizes cadherin-catenin complexes. The goal of the present study was to analyze whether and how TG2 interacts with and regulates β-catenin signaling in ovarian cancer (OC) cells. We observed a significant correlation between TG2 and β-catenin expression levels in OC cells and tumors. TG2 augmented Wnt/β-catenin signaling, as evidenced by enhanced β-catenin transcriptional activity, inducing transcription of target genes cyclin D1 and c-Myc. By promoting integrin-mediated cell adhesion to FN, TG2 physically associates with and recruits c-Src, which in turn phosphorylates β-catenin at Tyr(654), releasing it from E-cadherin and rendering it available for transcriptional regulation. By interacting with FN and enhancing β-catenin signaling, complexed TG2 stimulates OC cell proliferation. In summary, our data demonstrate that TG2 regulates β-catenin expression and function in OC cells and define the c-Src-dependent mechanism through which this occurs.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
32
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
33
|
Ben-Hur V, Denichenko P, Siegfried Z, Maimon A, Krainer A, Davidson B, Karni R. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep 2012; 3:103-15. [PMID: 23273915 DOI: 10.1016/j.celrep.2012.11.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/09/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022] Open
Abstract
Ribosomal S6 kinase 1 (S6K1) is a major mTOR downstream signaling molecule that regulates cell size and translation efficiency. Here, we report that short isoforms of S6K1 are overproduced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1) induced opposite effects. It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induces transformation, suggesting that Iso-1 has a tumor-suppressor activity. Furthermore, we found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation, and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells, elevating oncogenic isoforms that activate mTORC1.
Collapse
Affiliation(s)
- Vered Ben-Hur
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
34
|
Ridgway RA, Serrels B, Mason S, Kinnaird A, Muir M, Patel H, Muller WJ, Sansom OJ, Brunton VG. Focal adhesion kinase is required for β-catenin-induced mobilization of epidermal stem cells. Carcinogenesis 2012; 33:2369-76. [PMID: 22971575 DOI: 10.1093/carcin/bgs284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates signals downstream of integrin and growth factor activation. Previously, we have shown that skin-specific loss of fak prevents chemically induced skin carcinogenesis in mice following phorbol ester treatment. In this study, we show that skin-specific deletion of fak prevents mobilization of stem cells within the bulge region of the hair follicle, which are the precursors of papillomas following phorbol ester treatment. We also show that phorbol ester treatment results in activation of-catenin within the skin and that FAK is required for β-catenin-induced stem cell mobilization. In addition, inhibition of Src kinase activity, a major binding partner of FAK also prevents stem cell mobilization. We show that FAK is required for the nuclear localization of β-catenin in the skin following phorbol ester treatment and the transcriptional activation of the β-catenin target gene c-Myc. This provides the first evidence of cross-talk between integrin and Wnt signalling pathways in the control of epidermal stem cells and the early events associated with skin carcinogenesis.
Collapse
Affiliation(s)
- Rachel A Ridgway
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ceci M, Welshhans K, Ciotti MT, Brandi R, Parisi C, Paoletti F, Pistillo L, Bassell GJ, Cattaneo A. RACK1 is a ribosome scaffold protein for β-actin mRNA/ZBP1 complex. PLoS One 2012; 7:e35034. [PMID: 22523568 PMCID: PMC3327689 DOI: 10.1371/journal.pone.0035034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 12/24/2022] Open
Abstract
In neurons, specific mRNAs are transported in a translationally repressed manner along dendrites or axons by transport ribonucleic-protein complexes called RNA granules. ZBP1 is one RNA binding protein present in transport RNPs, where it transports and represses the translation of cotransported mRNAs, including β-actin mRNA. The release of β-actin mRNA from ZBP1 and its subsequent translation depends on the phosphorylation of ZBP1 by Src kinase, but little is known about how this process is regulated. Here we demonstrate that the ribosomal-associated protein RACK1, another substrate of Src, binds the β-actin mRNA/ZBP1 complex on ribosomes and contributes to the release of β-actin mRNA from ZBP1 and to its translation. We identify the Src binding and phosphorylation site Y246 on RACK1 as the critical site for the binding to the β-actin mRNA/ZBP1 complex. Based on these results we propose RACK1 as a ribosomal scaffold protein for specific mRNA-RBP complexes to tightly regulate the translation of specific mRNAs.
Collapse
Affiliation(s)
- Marcello Ceci
- European Brain Research Institute (EBRI), Rome, Italy
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | | | | | - Chiara Parisi
- European Brain Research Institute (EBRI), Rome, Italy
| | | | | | - Gary J. Bassell
- Departments of Cell Biology, Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Rome, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
36
|
SRY-box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 2011; 31:13921-35. [PMID: 21957254 DOI: 10.1523/jneurosci.3343-11.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The SRY-box (Sox) transcription factors regulate oligodendrocyte differentiation, but their signaling targets are largely unknown. We have identified a major signal transduction pathway regulated by Sox containing gene 17 (Sox17) in the oligodendrocyte lineage. Microarray analysis in oligodendrocyte progenitor cells (OPCs) after Sox17 attenuation revealed upregulated genes associated with cell cycle control and activation of the Wingless and integration site (Wnt)/β-catenin pathway. Sox17 knockdown also increases the levels of cyclin D1, Axin2, and activated β-catenin. In OPCs, the expression pattern of Sox17, cyclin D1, and secreted Frizzled-related protein-1 in the presence of platelet-derived growth factor (PDGF) was coordinately accelerated by addition of thyroid hormone, indicating differentiation-induced regulation of Sox17 targets. In developing white matter, decreased total β-catenin, activated β-catenin, and cyclin D1 levels coincided with the peak of Sox17 expression, and immunoprecipitates showed a developmentally regulated interaction among Sox17, T-cell transcription factor 4, and β-catenin proteins. In OPCs, PDGF stimulated phosphorylation of glycogen synthase 3β and the Wnt coreceptor LRP6, and enhanced β-catenin-dependent gene expression. Sox17 overexpression inhibited PDGF-induced TOPFLASH and cyclin D1 promoter activity, and decreased endogenous cyclin D1, activated β-catenin, as well as total β-catenin levels. Recombinant Sox17 prevented Wnt3a from repressing myelin protein expression, and inhibition of Sox17-mediated proteasomal degradation of β-catenin blocked myelin protein induction. These results indicate that Sox17 suppresses cyclin D1 expression and cell proliferation by directly antagonizing β-catenin, whose activity in OPCs is stimulated not only by Wnt3a, but also by PDGF. Our identification of downstream targets of Sox17 thus defines signaling pathways and molecular mechanisms in OPCs that are regulated by Sox17 during cell cycle exit and the onset of differentiation in oligodendrocyte development.
Collapse
|
37
|
Chou HC, Chen YW, Lee TR, Wu FS, Chan HT, Lyu PC, Timms JF, Chan HL. Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Free Radic Biol Med 2010; 49:96-108. [PMID: 20385227 DOI: 10.1016/j.freeradbiomed.2010.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/26/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
Protein phosphorylation plays a crucial role in the signal transduction pathways that regulate gene expression, metabolism, cell adhesion, and cell survival in response to oxidative stress. In this study, we have used hydrogen peroxide treatment of H9C2 rat cardiomyocytes as a model of oxidative stress in heart ischemia-reperfusion injury. We show that oxidative stress induces a robust tyrosine phosphorylation of multiple proteins in this cell type. A phosphoproteomics approach using anti-phosphotyrosine affinity purification and LC-MS/MS was then used to identify the protein targets of this stress-induced phosphorylation. Twenty-three tyrosine-phosphorylated proteins were identified, with the majority known to be associated with cell-cell junctions, the actin cytoskeleton, and cell adhesion. This suggested that oxidative stress may have a profound effect on intercellular connections and the cytoskeleton to affect cell adhesion, morphology, and survival. Importantly, Src kinase was shown to be a major upstream regulator of these events. Immunofluorescence studies, fluorescence-activated cell sorting, and cell-based assays were used to demonstrate oxidative stress-induced modification of cell adhesion structures and the cytoskeleton, induced de-adhesion, and increased apoptosis, which were reversed by treatment with the Src kinase inhibitor PP1. These data demonstrate the critical role of Src kinase in oxidative stress-induced phosphorylation and cell damage in cardiomyocytes and suggest that targeting this kinase may be an effective strategy for preventing ischemia-reperfusion injury in the heart.
Collapse
Affiliation(s)
- Hsiu-Chuan Chou
- Tissue Regeneration Bio-Device Tech Lab, Medical Electronics and Device Technology Center, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 2010; 9:145. [PMID: 20540746 PMCID: PMC2903501 DOI: 10.1186/1476-4598-9-145] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 06/11/2010] [Indexed: 12/04/2022] Open
Abstract
Background Drug resistance is the outcome of multiple-gene interactions in cancer cells under stress of anticancer agents. MDR1 overexpression is most commonly detected in drug-resistant cancers and accompanied with other gene alterations including enhanced glucosylceramide synthase (GCS). MDR1 encodes for P-glycoprotein that extrudes anticancer drugs. Polymorphisms of MDR1 disrupt the effects of P-glycoprotein antagonists and limit the success of drug resistance reversal in clinical trials. GCS converts ceramide to glucosylceramide, reducing the impact of ceramide-induced apoptosis and increasing glycosphingolipid (GSL) synthesis. Understanding the molecular mechanisms underlying MDR1 overexpression and how it interacts with GCS may find effective approaches to reverse drug resistance. Results MDR1 and GCS were coincidently overexpressed in drug-resistant breast, ovary, cervical and colon cancer cells; silencing GCS using a novel mixed-backbone oligonucleotide (MBO-asGCS) sensitized these four drug-resistant cell lines to doxorubicin. This sensitization was correlated with the decreased MDR1 expression and the increased doxorubicin accumulation. Doxorubicin treatment induced GCS and MDR1 expression in tumors, but MBO-asGCS treatment eliminated "in-vivo" growth of drug-resistant tumor (NCI/ADR-RES). MBO-asGCS suppressed the expression of MDR1 with GCS and sensitized NCI/ADR-RES tumor to doxorubicin. The expression of P-glycoprotein and the function of its drug efflux of tumors were decreased by 4 and 8 times after MBO-asGCS treatment, even though this treatment did not have a significant effect on P-glycoprotein in normal small intestine. GCS transient transfection induced MDR1 overexpression and increased P-glycoprotein efflux in dose-dependent fashion in OVCAR-8 cancer cells. GSL profiling, silencing of globotriaosylceramide synthase and assessment of signaling pathway indicated that GCS transfection significantly increased globo series GSLs (globotriaosylceramide Gb3, globotetraosylceramide Gb4) on GSL-enriched microdomain (GEM), activated cSrc kinase, decreased β-catenin phosphorylation, and increased nuclear β-catenin. These consequently increased MDR1 promoter activation and its expression. Conversely, MBO-asGCS treatments decreased globo series GSLs (Gb3, Gb4), cSrc kinase and nuclear β-catenin, and suppressed MDR-1 expression in dose-dependent pattern. Conclusion This study demonstrates, for the first time, that GCS upregulates MDR1 expression modulating drug resistance of cancer. GSLs, in particular globo series GSLs mediate gene expression of MDR1 through cSrc and β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Robert F, Pelletier J. Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 2009; 13:1279-93. [PMID: 19705976 DOI: 10.1517/14728220903241625] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a master regulator of translation initiation that controls the recruitment of ribosomes to mRNA templates in response to intracellular and extracellular cues. Evidence suggests that mTOR and its direct downstream targets, S6K and eIF4E/4E-BP, play significant roles in oncogenesis, and that inhibiting this pathway holds promise as an anti-proliferative approach. Recent genome-wide analyses of mutations in human cancers indicate that transformed cells activate a handful of processes and signalling pathways that are major contributors to their phenotype. Here we review the current literature implicating mTOR and translation initiation downstream of many of these various signalling pathways and processes usurped in human cancers. This review highlights the widespread activation of mTOR/eIF4E following acquisition of oncogenic lesions and its implication in promoting the transformation phenotype and indicates that targeting the control of translation initiation makes logical sense as a broad-acting therapeutic approach.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry and Goodman cancer centre, McGill University, McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | | |
Collapse
|
40
|
Allam H, Ali N. Initiation factor eIF2-independent mode of c-Src mRNA translation occurs via an internal ribosome entry site. J Biol Chem 2009; 285:5713-25. [PMID: 20028973 DOI: 10.1074/jbc.m109.029462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Overexpression and activation of the c-Src protein have been linked to the development of a wide variety of cancers. The molecular mechanism(s) of c-Src overexpression in cancer cells is not clear. We report here an internal ribosome entry site (IRES) in the c-Src mRNA that is constituted by both 5'-noncoding and -coding regions. The inhibition of cap-dependent translation by m(7)GDP in the cell-free translation system or induction of endoplasmic reticulum stress in hepatoma-derived cells resulted in stimulation of the c-Src IRES activities. Sucrose density gradient analyses revealed formation of a stable binary complex between the c-Src IRES and purified HeLa 40 S ribosomal subunit in the absence of initiation factors. We further demonstrate eIF2-independent assembly of 80 S initiation complex on the c-Src IRES. These features of the c-Src IRES appear to be reminiscent of that of hepatitis C virus-like IRESs and translation initiation in prokaryotes. Transfection studies and genetic analysis revealed that the c-Src IRES permitted initiation at the authentic AUG351, which is also used for conventional translation initiation of the c-Src mRNA. Our studies unveiled a novel regulatory mechanism of c-Src synthesis mediated by an IRES element, which exhibits enhanced activity during cellular stress and is likely to cause c-Src overexpression during oncogenesis and metastasis.
Collapse
Affiliation(s)
- Heba Allam
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208-0183, USA
| | | |
Collapse
|
41
|
Yokoyama N, Malbon CC. Dishevelled-2 docks and activates Src in a Wnt-dependent manner. J Cell Sci 2009; 122:4439-51. [PMID: 19920076 DOI: 10.1242/jcs.051847] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wnt3a activates the ;canonical' signaling pathway, stimulating the nuclear accumulation of beta-catenin and activation of Lef/Tcf-sensitive transcription of developmentally important genes. Using totipotent mouse F9 teratocarcinoma cells expressing frizzled-1 (Fz1), we investigated roles of tyrosine kinase activity in Wnt/beta-catenin signaling. Treatment with either genistein or Src family kinase inhibitor PP2 attenuates Wnt3a-stimulated Lef/Tcf transcription activation and primitive endoderm formation. siRNA-induced knockdown of Src likewise attenuates Lef/Tcf transcription and primitive endoderm formation in response to Wnt3a, implicating Src as a positive regulator of Wnt/beta-catenin signaling. We discovered that Src binds dishevelled-2 (Dvl2), a key phosphoprotein in Wnt signaling, at two positions: an SH3-binding domain and a C-terminal domain. The Y18F mutant of Dvl2 attenuates the Wnt3a-stimulated Lef/Tcf-sensitive transcriptional response. Wnt3a stimulates Src docking to Dvl2 and activation of this tyrosine kinase. Activated Src, in turn, enhances Wnt activation of the canonical pathway. We show that Dvl2 and beta-catenin are crucially important substrates for tyrosine phosphorylation in the canonical Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Department of Pharmacology, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | |
Collapse
|
42
|
Lawler K, O'Sullivan G, Long A, Kenny D. Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 2009; 100:1082-7. [PMID: 19432901 PMCID: PMC11159203 DOI: 10.1111/j.1349-7006.2009.01160.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Metastatic disease is dependent on tumor cell migration through the venous and lymphatic systems and requires dynamic rearrangement of adherens junctions. Endocytosis of cadherins is a key mechanism to dynamically arrange adherens junctions, signaling, and motility in tumor cells; however, the role of shear in regulating this process in metastatic cells is unknown. In this study, the role of shear in regulating cell surface expression of E-cadherin was investigated. We found that exposure to venous shear (shear rate, 200/s) induced internalization of E-cadherin in adherent metastatic oesophageal tumor cells (OC-1 tumor cell line). Internalized E-cadherin was found localized to Rab5-positive endosomes and was not present in lysosomes. As the Src family of tyrosine kinase have been implicated in regulating cadherin expression, we investigated the role of shear in regulating E-cadherin through Src activity. Pretreatment of OC-1 cells with the specific Src kinase inhibitor 4-amino-5- (4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) prevented shear-induced internalization of E-cadherin. Direct measurement of Src activity (phosphorylation on Y416) showed that Src is activated in sheared OC-1 cells and that the shear-induced increase in phospho-Src is inhibited by the presence of PP1. Moreover, we show that shear stress significantly increased the invasive capacity of OC-1 cells (P < 0.001), a process inhibited by the presence of PP1. These results indicate a novel role for shear in regulating the endocytosis of E-cadherin and invasiveness in metastatic cells.
Collapse
Affiliation(s)
- Karen Lawler
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | |
Collapse
|
43
|
Uva P, Aurisicchio L, Watters J, Loboda A, Kulkarni A, Castle J, Palombo F, Viti V, Mesiti G, Zappulli V, Marconato L, Abramo F, Ciliberto G, Lahm A, La Monica N, de Rinaldis E. Comparative expression pathway analysis of human and canine mammary tumors. BMC Genomics 2009; 10:135. [PMID: 19327144 PMCID: PMC2670324 DOI: 10.1186/1471-2164-10-135] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 03/27/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved. RESULTS We analyzed human and dog gene expression data derived from both tumor and normal mammary samples. By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries. CONCLUSION Our data confirm and further strengthen the value of the canine mammary cancer model and open up new perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic biomarkers to be used in clinical studies.
Collapse
Affiliation(s)
- Paolo Uva
- IRBM P Angeletti, Merck MRL-Rome, Pomezia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tsuda M, Toyomitsu E, Kometani M, Tozaki-Saitoh H, Inoue K. Mechanisms underlying fibronectin-induced up-regulation of P2X4R expression in microglia: distinct roles of PI3K-Akt and MEK-ERK signalling pathways. J Cell Mol Med 2009; 13:3251-9. [PMID: 19298529 PMCID: PMC4516482 DOI: 10.1111/j.1582-4934.2009.00719.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract Microglia are resident immune cells in the central nervous system that become activated and produce pro-inflammatory and neurotrophic factors upon activation of various cell-surface receptors. The P2X4 receptor (P2X4R) is a sub-type of the purinergic ion-channel receptors expressed in microglia. P2X4R expression is up-regulated under inflammatory or neurodegenerative conditions, and this up-regulation is implicated in disease pathology. However, the molecular mechanism underlying up-regulation of P2X4R in microglia remains unknown. In the present study, we investigated the intracellular signal transduction pathway that promotes P2X4R expression in microglia in response to fibronectin, an extracellular matrix protein that has previously been shown to stimulate P2X4R expression. We found that in fibronectin-stimulated microglia, activation of phosphatidylinositol 3-kinase (PI3K)–Akt and mitogen-activated protein kinase kinase (MAPK kinase, MEK)–extracellular signal-regulated kinase (ERK) signalling cascades occurred divergently downstream of Src-family kinases (SFKs). Pharmacological interference of PI3K–Akt signalling inhibited fibronectin-induced P2X4R gene expression. Activation of PI3K–Akt signalling resulted in a decrease in the protein level of the transcription factor p53 via mouse double minute 2 (MDM2), an effect that was prevented by MG-132, an inhibitor of the proteasome. In microglia pre-treated with MG-132, fibronectin failed to up-regulate P2X4R expression. Conversely, an inhibitor of p53 caused increased expression of P2X4R, implying a negative regulatory role of p53. On the other hand, inhibiting MEK–ERK signalling activated by fibronectin suppressed an increase in P2X4R protein but interestingly did not affect the level of P2X4R mRNA. We also found that fibronectin stimulation resulted in the activation of the translational factor eIF4E via MAPK-interacting protein kinase-1 (MNK1) in an MEK–ERK signalling-dependent manner, and an MNK1 inhibitor attenuated the increase in P2X4R protein. Together, these results suggest that the PI3K–Akt and MEK–ERK signalling cascades have distinct roles in the up-regulation of P2X4R expression in microglia at transcriptional and post-transcriptional levels, respectively.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
45
|
Liu X, Wu WKK, Yu L, Sung JJY, Srivastava G, Zhang ST, Cho CH. Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway. J Cell Biochem 2008; 105:53-60. [PMID: 18452159 DOI: 10.1002/jcb.21802] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Esophageal cancer is the sixth leading causes of cancer-related death in the world. It is suggested that beta-adrenoceptor is involved in the control of cell proliferation, but its role in the pathogenesis of esophageal cancer remains unknown. We therefore studied the role of beta-adrenergic signaling in the regulation of growth of an esophageal squamous-cell carcinoma cell line HKESC-1. Results showed that both beta(1)- and beta(2)-adrenoceptors were expressed in HKESC-1 cells. Stimulation of beta-adrenoceptors with epinephrine significantly increased HKESC-1 cell proliferation accompanied by elevation of intracellular cyclic AMP levels, which were abolished by beta(1)- or beta(2)-selective antagonists. Epinephrine also increased extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation as well as cyclooxygenase-2 (COX-2) and cytosolic phospholipase A(2) expression, which were blocked by beta(1)- or beta(2)-selective antagonists. Moreover, epinephrine increased cyclin D(1), cyclin E(2), cyclin-dependent kinase (CDK)-4, CDK-6, and E(2)F-1 expression and retinoblastoma protein phosphorylation at Ser807/811, all of which were abrogated by beta(1)-adrenoceptor antagonist. Furthermore, epinephrine increased the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR)-1 and -2 in a beta(2)-adrenoceptor-, mitogen-activated protein kinase/ERK kinase (MEK)-, and COX-2-dependent manner. MEK or COX-2 inhibitor also significantly inhibited HKESC-1 cell proliferation induced by epinephrine. Collectively, we demonstrate that epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of ERK/COX-2 pathway. Stimulation of beta(1)- and beta(2)-adrenoceptors also elicits a differential response on the expression of cell cycle regulators. These novel findings may shed new light on the understanding of beta-adrenergic signaling in the control of esophageal cancer cell growth.
Collapse
Affiliation(s)
- Xuan Liu
- Beijing Digestive Diseases Center and Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The splicing factor SF2/ASF is an oncoprotein that is up-regulated in many cancers and can transform immortal rodent fibroblasts when slightly overexpressed. The mTOR signaling pathway is activated in many cancers, and pharmacological blockers of this pathway are in clinical trials as anticancer drugs. We examined the activity of the mTOR pathway in cells transformed by SF2/ASF and found that this splicing factor activates the mTORC1 branch of the pathway, as measured by S6K and eIF4EBP1 phosphorylation. This activation is specific to mTORC1 because no activation of Akt, an mTORC2 substrate, was detected. mTORC1 activation by SF2/ASF bypasses upstream PI3K/Akt signaling and is essential for SF2/ASF-mediated transformation, as inhibition of mTOR by rapamycin blocked transformation by SF2/ASF in vitro and in vivo. Moreover, shRNA-mediated knockdown of mTOR, or of the specific mTORC1 and mTORC2 components Raptor and Rictor, abolished the tumorigenic potential of cells overexpressing SF2/ASF. These results suggest that clinical tumors with SF2/ASF up-regulation could be especially sensitive to mTOR inhibitors.
Collapse
|
47
|
Chang YM, Bai L, Liu S, Yang JC, Kung HJ, Evans CP. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene 2008; 27:6365-75. [PMID: 18679417 DOI: 10.1038/onc.2008.250] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is the most frequently diagnosed cancer in American men. We have previously demonstrated that Src mediates androgen-independent proliferation in prostate cancer. We sought to investigate the Src-mediated oncogenic pathways and tumor biology using AZD0530, a novel Src family kinase/Abl dual-kinase inhibitor that is entering phase II clinical trials. We show that while both Src and Abl are expressed in all prostate cancer cell lines, Src but not Abl is activated in the prostate. Furthermore, Src activation is inhibited by AZD0530 in a rapid and dose-dependent manner. We show that Src mediates cell proliferation in DU145 and PC3 cells at the G1 phase of cell cycle. Src inhibition resulted in decreased binding of beta-catenin to the promoters of G1 phase cell cycle regulators cyclin D1 and c-Myc. C-Myc may also be regulated at the protein level by extracellular signal-regulated kinase 1/2 and GSK3beta. Cell motility factors focal adhesion kinase, p130CAS and paxillin activation in DU145 and PC3 cells were also inhibited. Administration of AZD0530 in mice reduced orthotopic DU145 xenograft growth by 45%. We have further delineated the Src-mediated oncogenic growth and migration pathways in prostate cancer and established mechanistic rationale for Src inhibition as novel therapy in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Y-M Chang
- Department of Urology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
48
|
Vojtěchová M, Turečková J, Kučerová D, Šloncová E, Vachtenheim J, Tuháčková Z. Regulation of mTORC1 signaling by Src kinase activity is Akt1-independent in RSV-transformed cells. Neoplasia 2008; 10:99-107. [PMID: 18283331 PMCID: PMC2244684 DOI: 10.1593/neo.07905] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 11/18/2022]
Abstract
Increased activity of the Src tyrosine protein kinase that has been observed in a large number of human malignancies appears to be a promising target for drug therapy. In the present study, a critical role of the Src activity in the deregulation of mTOR signaling pathway in Rous sarcoma virus (RSV)-transformed hamster fibroblasts, H19 cells, was shown using these cells treated with the Src-specific inhibitor, SU6656, and clones of fibroblasts expressing either the active Src or the dominant-negative Src kinase-dead mutant. Disruption of the Src kinase activity results in substantial reduction of the phosphorylation and activity of the Akt/protein kinase B (PKB), phosphorylation of tuberin (TSC2), mammalian target of rapamycin (mTOR), S6K1, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 4E-BP1. The ectopic, active Akt1 that was expressed in Src-deficient cells significantly enhanced phosphorylation of TSC2 in these cells, but it failed to activate the inhibited components of the mTOR pathway that are downstream of TSC2. The data indicate that the Src kinase activity is essential for the activity of mTOR-dependent signaling pathway and suggest that mTOR targets may be controlled by Src independently of Akt1/TSC2 cascade in cells expressing hyperactive Src protein. These observations might have an implication in drug resistance to mTOR inhibitor-based cancer therapy in certain cell types.
Collapse
Affiliation(s)
- Martina Vojtěchová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jolana Turečková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eva Šloncová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Vachtenheim
- Laboratory of Molecular Biology, University Hospital, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdena Tuháčková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
49
|
Tanikawa R, Tanikawa T, Okada Y, Nakano K, Hirashima M, Yamauchi A, Hosokawa R, Tanaka Y. Interaction of galectin-9 with lipid rafts induces osteoblast proliferation through the c-Src/ERK signaling pathway. J Bone Miner Res 2008; 23:278-86. [PMID: 17907924 DOI: 10.1359/jbmr.071008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Galectin-9 is a beta-galactoside-binding lectin expressed in various tissues, including bone. The role of galectin-9 in human osteoblasts, however, remains unclear. This study showed that galectin-9 interacts with lipid rafts and induces osteoblast proliferation through the c-Src/ERK signaling pathway. INTRODUCTION Galectin-9 is a beta-galactoside-binding lectin that modulates many biological functions by interacting with particular carbohydrates attached to proteins and lipids. However, the role of galectin-9 in bone metabolism and osteoblast proliferation remains unclear. This study investigated the effects of galectin-9 on osteoblast proliferation and its signaling mechanisms. MATERIALS AND METHODS The effect of galectin-9 on osteoblast proliferation was tested by measuring the conversion of tetrazolium salt WST-8 to formazan. Protein phosphorylation was assayed by western blotting and confocal microscopy was used to localize lipid rafts. RESULTS Galectin-9-induced proliferation of the obtained osteoblasts in a dose-dependent manner, whereas galectin-1, -3, and -4 did not. Galectin-9-induced phosphorylation of c-Src and subsequent ERK1/ERK2 in the osteoblasts. The galectin-9-induced phosphorylation and proliferation were inhibited by PP2, a selective inhibitor of c-Src. Galectin-9-induced clustering of lipid rafts detected by cholera toxin B (CTB; binding the raft-resident ganglioside GM1) using confocal microscopy. Cross-linking of the GM1 ganglioside with CTB by anti-CTB antibody-induced phosphorylation of c-Src, whereas disruption of galectin-9-induced lipid rafts by beta-methylcyclodextrin reduced c-Src phosphorylation and proliferation of the cells. CONCLUSIONS These results suggest that galectin-9, but not other galectins, induced proliferation of human osteoblasts through clustering lipid rafts on membrane and subsequent phosphorylation of the c-Src/ERK signaling pathway.
Collapse
Affiliation(s)
- Rena Tanikawa
- First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Force T, Woulfe K, Koch WJ, Kerkelä R. Molecular Scaffolds Regulate Bidirectional Crosstalk Between Wnt and Classical Seven-Transmembrane Domain Receptor Signaling Pathways. ACTA ACUST UNITED AC 2007; 2007:pe41. [PMID: 17666710 DOI: 10.1126/stke.3972007pe41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signaling downstream of classical seven-transmembrane domain receptors (7TMRs) had generally been thought to recruit factors that are in large part separate from those recruited by atypical 7TMRs, such as Frizzleds (Fzs), receptors for the Wnt family of glycoproteins. Classical 7TMRs are also known as G protein-coupled receptors (GPCRs) and are mediated by signaling factors such as heterotrimeric guanine nucleotide-binding proteins (G proteins), GPCR kinases (GRKs), and beta-arrestins. Over the past few years, it has become increasingly apparent that classical and atypical 7TMRs share these factors, which are often associated with mediating classical 7TMR signaling, as well as the scaffolding proteins that were initially thought to be involved in transmitting atypical 7TMR signals. This sharing of signaling components by agonists that bind classical 7TMRs and those binding to atypical 7TMRs establishes the possibility of extensive crosstalk between these receptor classes. We discuss the evidence for, and against, crosstalk, and examine mechanisms by which this can occur.
Collapse
Affiliation(s)
- Thomas Force
- The Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|