1
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2024:S0022-202X(24)02076-1. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Donohoe ME, Morey R, Li Y, Pizzo D, Kallol S, Cho HY, Soncin F, Parast MM. Identification of HTRA4 as a Transcriptional Target of p63 in Trophoblast. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1162-1170. [PMID: 38880601 PMCID: PMC11220921 DOI: 10.1016/j.ajpath.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 06/18/2024]
Abstract
The placenta plays a crucial role in pregnancy success. ΔNp63α (p63), a transcription factor from the TP53 family, is highly expressed in villous cytotrophoblasts (CTBs), the epithelial stem cells of the human placenta, and is involved in CTB maintenance and differentiation. We examined the mechanisms of action of p63 by identifying its downstream targets. Gene expression changes were evaluated following overexpression and knockdown of p63 in the JEG3 choriocarcinoma cell line, using microarray-based RNA profiling. High-temperature requirement A4 (HTRA4), a placenta-specific serine protease involved in trophoblast differentiation and altered in preeclampsia, was identified as a gene reciprocally regulated by p63, and its expression was characterized in primary human placental tissues by RNA-sequencing and in situ hybridization. Potential p63 DNA-binding motifs were identified in the HTRA4 promoter, and p63 occupancy at some of these sites was confirmed using chromatin immunoprecipitation, followed by quantitative PCR in both JEG3 and trophoblast stem cells. These data begin to identify members of the transcriptional network downstream of p63, thus laying the groundwork for probing mechanisms by which this important transcription factor regulates trophoblast stemness and differentiation.
Collapse
Affiliation(s)
- Mary E Donohoe
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Robert Morey
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Yingchun Li
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Sampada Kallol
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Hee-Young Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, California; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
3
|
Maia-Silva D, Cunniff PJ, Schier AC, Skopelitis D, Trousdell MC, Moresco P, Gao Y, Kechejian V, He XY, Sahin Y, Wan L, Alpsoy A, Liverpool J, Krainer AR, Egeblad M, Spector DL, Fearon DT, Dos Santos CO, Taatjes DJ, Vakoc CR. Interaction between MED12 and ΔNp63 activates basal identity in pancreatic ductal adenocarcinoma. Nat Genet 2024; 56:1377-1385. [PMID: 38886586 PMCID: PMC11438066 DOI: 10.1038/s41588-024-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The presence of basal lineage characteristics signifies hyperaggressive human adenocarcinomas of the breast, bladder and pancreas. However, the biochemical mechanisms that maintain this aberrant cell state are poorly understood. Here we performed marker-based genetic screens in search of factors needed to maintain basal identity in pancreatic ductal adenocarcinoma (PDAC). This approach revealed MED12 as a powerful regulator of the basal cell state in this disease. Using biochemical reconstitution and epigenomics, we show that MED12 carries out this function by bridging the transcription factor ΔNp63, a known master regulator of the basal lineage, with the Mediator complex to activate lineage-specific enhancer elements. Consistent with this finding, the growth of basal-like PDAC is hypersensitive to MED12 loss when compared to PDAC cells lacking basal characteristics. Taken together, our genetic screens have revealed a biochemical interaction that sustains basal identity in human cancer, which could serve as a target for tumor lineage-directed therapeutics.
Collapse
Affiliation(s)
| | | | - Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | | | | | - Philip Moresco
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yunus Sahin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Aktan Alpsoy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
4
|
Tong X, Patel AS, Kim E, Li H, Chen Y, Li S, Liu S, Dilly J, Kapner KS, Zhang N, Xue Y, Hover L, Mukhopadhyay S, Sherman F, Myndzar K, Sahu P, Gao Y, Li F, Li F, Fang Z, Jin Y, Gao J, Shi M, Sinha S, Chen L, Chen Y, Kheoh T, Yang W, Yanai I, Moreira AL, Velcheti V, Neel BG, Hu L, Christensen JG, Olson P, Gao D, Zhang MQ, Aguirre AJ, Wong KK, Ji H. Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. Cancer Cell 2024; 42:413-428.e7. [PMID: 38402609 DOI: 10.1016/j.ccell.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ayushi S Patel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eejung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongjun Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yueqing Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and biomedical sciences program, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Laura Hover
- Monoceros Biosystems, LLC, San Diego, CA 92129, USA
| | - Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Khrystyna Myndzar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juntao Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing 100084, China
| | - Minglei Shi
- Institute of Medical Innovation, Peking University Third Hospital, Beijing 100191, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Thian Kheoh
- Mirati Therapeutics, San Diego, CA 92121, USA
| | | | - Itai Yanai
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Institute of Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Andre L Moreira
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Peter Olson
- Mirati Therapeutics, San Diego, CA 92121, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| |
Collapse
|
5
|
Katoh I, Tsukinoki K, Hata RI, Kurata SI. ΔNp63 silencing, DNA methylation shifts, and epithelial-mesenchymal transition resulted from TAp63 genome editing in squamous cell carcinoma. Neoplasia 2023; 45:100938. [PMID: 37778252 PMCID: PMC10544079 DOI: 10.1016/j.neo.2023.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
TP63 (p63) is strongly expressed in lower-grade carcinomas of the head and neck, skin, breast, and urothelium to maintain a well-differentiated phenotype. TP63 has two transcription start sites at exons 1 and 3' that produce TAp63 and ΔNp63 isoforms, respectively. The major protein, ΔNp63α, epigenetically activates genes essential for epidermal/craniofacial differentiation, including ΔNp63 itself. To examine the specific role of weakly expressed TAp63, we disrupted exon 1 using CRISPR-Cas9 homology-directed repair in a head and neck squamous cell carcinoma (SCC) line. Surprisingly, TAp63 knockout cells having either monoallelic GFP cassette insertion paired with a frameshift deletion allele or biallelic GFP cassette insertion exhibited ΔNp63 silencing. Loss of keratinocyte-specific gene expression, switching of intermediate filament genes from KRT(s) to VIM, and suppression of cell-cell and cell-matrix adhesion components indicated the core events of epithelial-mesenchymal transition. Many of the positively and negatively affected genes, including ΔNp63, displayed local DNA methylation changes. Furthermore, ΔNp63 expression was partially rescued by transfection of the TAp63 knockout cells with TAp63α and application of DNA methyltransferase inhibitor zebularine. These results suggest that TAp63, a minor part of the TP63 gene, may be involved in the auto-activation mechanism of ΔNp63 by which the keratinocyte-specific epigenome is maintained in SCC.
Collapse
Affiliation(s)
- Iyoko Katoh
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Ryu-Ichiro Hata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Shun-Ichi Kurata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
6
|
Maia-Silva D, Schier AC, Skopelitis D, Kechejian V, Alpsoy A, Liverpool J, Taatjes DJ, Vakoc CR. Marker-based CRISPR screening reveals a MED12-p63 interaction that activates basal identity in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563848. [PMID: 37961243 PMCID: PMC10634811 DOI: 10.1101/2023.10.24.563848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The presence of basal lineage characteristics signifies hyper-aggressive human adenocarcinomas of the breast, bladder, and pancreas. However, the biochemical mechanisms that maintain this aberrant cell state are poorly understood. Here we performed marker-based genetic screens in search of factors needed to maintain basal identity in pancreatic ductal adenocarcinoma (PDAC). This approach revealed MED12 as a powerful regulator of the basal cell state in this disease. Using biochemical reconstitution and epigenomics, we show that MED12 carries out this function by bridging the transcription factor p63, a known master regulator of the basal lineage, with the Mediator complex to activate lineage-specific enhancer elements. Consistent with this finding, the growth of basal-like PDAC is hypersensitive to MED12 loss when compared to classical PDAC. Taken together, our comprehensive genetic screens have revealed a biochemical interaction that sustains basal identity in human cancer, which could serve as a target for tumor lineage-directed therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Aktan Alpsoy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | |
Collapse
|
7
|
Balinth S, Fisher ML, Hwangbo Y, Wu C, Ballon C, Sun X, Mills AA. EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene 2022; 41:4130-4144. [PMID: 35864175 PMCID: PMC10132824 DOI: 10.1038/s41388-022-02417-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.
Collapse
Affiliation(s)
- Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | | | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xueqin Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
8
|
Kurinna S, Seltmann K, Bachmann AL, Schwendimann A, Thiagarajan L, Hennig P, Beer HD, Mollo MR, Missero C, Werner S. Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis. Nucleic Acids Res 2021; 49:3748-3763. [PMID: 33764436 PMCID: PMC8053124 DOI: 10.1093/nar/gkab167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Epigenetic regulation of cell and tissue function requires the coordinated action of transcription factors. However, their combinatorial activities during regeneration remain largely unexplored. Here, we discover an unexpected interaction between the cytoprotective transcription factor NRF2 and p63- a key player in epithelial morphogenesis. Chromatin immunoprecipitation combined with sequencing and reporter assays identifies enhancers and promoters that are simultaneously activated by NRF2 and p63 in human keratinocytes. Modeling of p63 and NRF2 binding to nucleosomal DNA suggests their chromatin-assisted interaction. Pharmacological and genetic activation of NRF2 increases NRF2–p63 binding to enhancers and promotes keratinocyte proliferation, which involves the common NRF2–p63 target cyclin-dependent kinase 12. These results unravel a collaborative function of NRF2 and p63 in the control of epidermal renewal and suggest their combined activation as a strategy to promote repair of human skin and other stratified epithelia.
Collapse
Affiliation(s)
- Svitlana Kurinna
- Division of Cell Matrix Biology and Regenerative Medicine, FBMH, University of Manchester, M13 9PT, United Kingdom
| | - Kristin Seltmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas L Bachmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Schwendimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lalitha Thiagarajan
- Division of Cell Matrix Biology and Regenerative Medicine, FBMH, University of Manchester, M13 9PT, United Kingdom
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Maria Rosaria Mollo
- CEINGE Biotecnologie Avanzate, Naples, Italy, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Naples, Italy, University of Naples Federico II, 80131 Naples, Italy
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Jiang Y, Jiang YY, Lin DC. Super-enhancer-mediated core regulatory circuitry in human cancer. Comput Struct Biotechnol J 2021; 19:2790-2795. [PMID: 34093993 PMCID: PMC8138668 DOI: 10.1016/j.csbj.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
Super-enhancers (SEs) are congregated enhancer clusters with high level of loading of transcription factors (TFs), cofactors and epigenetic modifications. Through direct co-occupancy at their own SEs as well as each other's, a small set of so called "master" TFs form interconnected core regulatory circuitry (CRCs) to orchestrate transcriptional programs in both normal and malignant cells. These master TFs can be predicted mathematically using epigenomic methods. In this Review, we summarize the identification of SEs and CRCs in cancer cells, the mechanisms by which master TFs and SEs cooperatively regulate cancer-type-specific expression programs, and the cancer-type- and subtype-specificity of CRC and the significance in cancer biology.
Collapse
Affiliation(s)
- Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan-Yi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| |
Collapse
|
10
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
11
|
Reichrath J, Reichrath S. The Impact of Notch Signaling for Carcinogenesis and Progression of Nonmelanoma Skin Cancer: Lessons Learned from Cancer Stem Cells, Tumor Angiogenesis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:123-154. [PMID: 33034030 DOI: 10.1007/978-3-030-55031-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since many decades, nonmelanoma skin cancer (NMSCs) is the most common malignancy worldwide. Basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) are the major types of NMSCs, representing approximately 70% and 25% of these neoplasias, respectively. Because of their continuously rising incidence rates, NMSCs represent a constantly increasing global challenge for healthcare, although they are in most cases nonlethal and curable (e.g., by surgery). While at present, carcinogenesis of NMSC is still not fully understood, the relevance of genetic and molecular alterations in several pathways, including evolutionary highly conserved Notch signaling, has now been shown convincingly. The Notch pathway, which was first developed during evolution in metazoans and that was first discovered in fruit flies (Drosophila melanogaster), governs cell fate decisions and many other fundamental processes that are of high relevance not only for embryonic development, but also for initiation, promotion, and progression of cancer. Choosing NMSC as a model, we give in this review a brief overview on the interaction of Notch signaling with important oncogenic and tumor suppressor pathways and on its role for several hallmarks of carcinogenesis and cancer progression, including the regulation of cancer stem cells, tumor angiogenesis, and senescence.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.,School of Health Professions, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
12
|
Jiang YY, Jiang Y, Li CQ, Zhang Y, Dakle P, Kaur H, Deng JW, Lin RYT, Han L, Xie JJ, Yan Y, Doan N, Zheng Y, Mayakonda A, Hazawa M, Xu L, Li Y, Aswad L, Jeitany M, Kanojia D, Guan XY, Said JW, Yang W, Fullwood MJ, Lin DC, Koeffler HP. TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology 2020; 159:1311-1327.e19. [PMID: 32619460 DOI: 10.1053/j.gastro.2020.06.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS We investigated the transcriptome of esophageal squamous cell carcinoma (ESCC) cells, activity of gene regulatory (enhancer and promoter regions), and the effects of blocking epigenetic regulatory proteins. METHODS We performed chromatin immunoprecipitation sequencing with antibodies against H3K4me1, H3K4me3, and H3K27ac and an assay for transposase-accessible chromatin to map the enhancer regions and accessible chromatin in 8 ESCC cell lines. We used the CRC_Mapper algorithm to identify core regulatory circuitry transcription factors in ESCC cell lines, and determined genome occupancy profiles for 3 of these factors. In ESCC cell lines, expression of transcription factors was knocked down with small hairpin RNAs, promoter and enhancer regions were disrupted by CRISPR/Cas9 genome editing, or bromodomains and extraterminal (BET) family proteins and histone deacetylases (HDACs) were inhibited with ARV-771 and romidepsin, respectively. ESCC cell lines were then analyzed by whole-transcriptome sequencing, immunoprecipitation, immunoblots, immunohistochemistry, and viability assays. Interactions between distal enhancers and promoters were identified and verified with circular chromosome conformation capture sequencing. NOD-SCID mice were given injections of modified ESCC cells, some mice where given injections of HDAC or BET inhibitors, and growth of xenograft tumors was measured. RESULTS We identified super-enhancer-regulated circuits and transcription factors TP63, SOX2, and KLF5 as core regulatory factors in ESCC cells. Super-enhancer regulation of ALDH3A1 mediated by core regulatory factors was required for ESCC viability. We observed direct interactions between the promoter region of TP63 and functional enhancers, mediated by the core regulatory circuitry transcription factors. Deletion of enhancer regions from ESCC cells decreased expression of the core regulatory circuitry transcription factors and reduced cell viability; these same results were observed with knockdown of each core regulatory circuitry transcription factor. Incubation of ESCC cells with BET and HDAC disrupted the core regulatory circuitry program and the epigenetic modifications observed in these cells; mice given injections of HDAC or BET inhibitors developed smaller xenograft tumors from the ESCC cell lines. Xenograft tumors grew more slowly in mice given the combination of ARV-771 and romidepsin than mice given either agent alone. CONCLUSIONS In epigenetic and transcriptional analyses of ESCC cell lines, we found the transcription factors TP63, SOX2, and KLF5 to be part of a core regulatory network that determines chromatin accessibility, epigenetic modifications, and gene expression patterns in these cells. A combination of epigenetic inhibitors slowed growth of xenograft tumors derived from ESCC cells in mice.
Collapse
Affiliation(s)
- Yan-Yi Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yuan Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Chun-Quan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Ying Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Harvinder Kaur
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jian-Wen Deng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ruby Yu-Tong Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Yiwu Yan
- Cedars-Sinai Medical Center, Departments of Surgery and Biomedical Sciences, Los Angeles, California
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yueyuan Zheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - YanYu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Luay Aswad
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Maya Jeitany
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Wei Yang
- Cedars-Sinai Medical Center, Departments of Surgery and Biomedical Sciences, Los Angeles, California
| | - Melissa J Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cancer Science Institute of Singapore, National University of Singapore, Singapore; National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
13
|
Zheng J, Yun W, Park J, Kang PJ, Lee G, Song G, Kim IY, You S. Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. J Biomed Sci 2020; 27:56. [PMID: 32312260 PMCID: PMC7171822 DOI: 10.1186/s12929-020-00642-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 11/29/2022] Open
Abstract
Background Human keratinocytes and derived products are crucial for skin repair and regeneration. Despite substantial advances in engineered skin equivalents, their poor availability and immunorejection remain major challenges in skin grafting. Methods Induced keratinocyte-like cells (iKCs) were directly reprogrammed from human urine cells by retroviral transduction of two lineage-specific transcription factors BMI1 and △NP63α (BN). Expression of keratinocyte stem cell or their differentiation markers were assessed by PCR, immunofluorescence and RNA-Sequencing. Regeneration capacity of iKCs were assessed by reconstitution of a human skin equivalent under air-interface condition. Results BN-driven iKCs were similar to primary keratinocytes (pKCs) in terms of their morphology, protein expression, differentiation potential, and global gene expression. Moreover, BN-iKCs self-assembled to form stratified skin equivalents in vitro. Conclusions This study demonstrated an approach to generate human iKCs that could be directly reprogrammed from human somatic cells and extensively expanded in serum- and feeder cell-free systems, which will facilitate their broad applicability in an efficient and patient-specific manner.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junghyun Park
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Phil Jun Kang
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gilju Lee
- Department of Pathology, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - In Yong Kim
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. .,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
14
|
Prieto‐Garcia C, Hartmann O, Reissland M, Braun F, Fischer T, Walz S, Schülein‐Völk C, Eilers U, Ade CP, Calzado MA, Orian A, Maric HM, Münch C, Rosenfeldt M, Eilers M, Diefenbacher ME. Maintaining protein stability of ∆Np63 via USP28 is required by squamous cancer cells. EMBO Mol Med 2020; 12:e11101. [PMID: 32128997 PMCID: PMC7136964 DOI: 10.15252/emmm.201911101] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9-engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.
Collapse
Affiliation(s)
- Cristian Prieto‐Garcia
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Oliver Hartmann
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Michaela Reissland
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Fabian Braun
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| | - Thomas Fischer
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Department for RadiotherapyUniversity Hospital WürzburgWürzburgGermany
| | - Susanne Walz
- Core Unit BioinformaticsComprehensive Cancer Centre MainfrankenUniversity of WürzburgWürzburgGermany
| | | | - Ursula Eilers
- Core Unit High‐Content MicroscopyBiocenterUniversity of WürzburgWürzburgGermany
| | - Carsten P Ade
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Department of Biochemistry and Molecular BiologyUniversity of WürzburgWürzburgGermany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)CórdobaSpain
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de CórdobaCórdobaSpain
- Hospital Universitario Reina SofíaCórdobaSpain
| | - Amir Orian
- Faculty of MedicineTICCTechnion HaifaIsrael
| | - Hans M Maric
- Rudolf‐Virchow‐Center for Experimental BiomedicineWürzburgGermany
| | - Christian Münch
- Institute of Biochemistry IIGoethe UniversityFrankfurtGermany
| | - Mathias Rosenfeldt
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Institute for PathologyUniversity of WürzburgWürzburgGermany
| | - Martin Eilers
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
- Department of Biochemistry and Molecular BiologyUniversity of WürzburgWürzburgGermany
| | - Markus E Diefenbacher
- Department of Biochemistry and Molecular BiologyProtein Stability and Cancer GroupUniversity of WürzburgWürzburgGermany
- Comprehensive Cancer Centre MainfrankenWürzburgGermany
| |
Collapse
|
15
|
Klein K, Habiger C, Iftner T, Stubenrauch F. A TGF-β– and p63-Responsive Enhancer Regulates IFN-κ Expression in Human Keratinocytes. THE JOURNAL OF IMMUNOLOGY 2020; 204:1825-1835. [DOI: 10.4049/jimmunol.1901178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/19/2020] [Indexed: 12/31/2022]
|
16
|
Bhattacharya S, Serror L, Nir E, Dhiraj D, Altshuler A, Khreish M, Tiosano B, Hasson P, Panman L, Luxenburg C, Aberdam D, Shalom-Feuerstein R. SOX2 Regulates P63 and Stem/Progenitor Cell State in the Corneal Epithelium. Stem Cells 2019; 37:417-429. [PMID: 30548157 PMCID: PMC6850148 DOI: 10.1002/stem.2959] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 11/22/2022]
Abstract
Mutations in key transcription factors SOX2 and P63 were linked with developmental defects and postnatal abnormalities such as corneal opacification, neovascularization, and blindness. The latter phenotypes suggest that SOX2 and P63 may be involved in corneal epithelial regeneration. Although P63 has been shown to be a key regulator of limbal stem cells, the expression pattern and function of SOX2 in the adult cornea remained unclear. Here, we show that SOX2 regulates P63 to control corneal epithelial stem/progenitor cell function. SOX2 and P63 were co‐expressed in the stem/progenitor cell compartments of the murine cornea in vivo and in undifferentiated human limbal epithelial stem/progenitor cells in vitro. In line, a new consensus site that allows SOX2‐mediated regulation of P63 enhancer was identified while repression of SOX2 reduced P63 expression, suggesting that SOX2 is upstream to P63. Importantly, knockdown of SOX2 significantly attenuated cell proliferation, long‐term colony‐forming potential of stem/progenitor cells, and induced robust cell differentiation. However, this effect was reverted by forced expression of P63, suggesting that SOX2 acts, at least in part, through P63. Finally, miR‐450b was identified as a direct repressor of SOX2 that was required for SOX2/P63 downregulation and cell differentiation. Altogether, we propose that SOX2/P63 pathway is an essential regulator of corneal stem/progenitor cells while mutations in SOX2 or P63 may disrupt epithelial regeneration, leading to loss of corneal transparency and blindness. Stem Cells2019;37:417–429
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laura Serror
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eshkar Nir
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dalbir Dhiraj
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maroun Khreish
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lia Panman
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Miro C, Ambrosio R, De Stefano MA, Di Girolamo D, Di Cicco E, Cicatiello AG, Mancino G, Porcelli T, Raia M, Del Vecchio L, Salvatore D, Dentice M. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells. Thyroid 2017; 27:567-576. [PMID: 28088877 DOI: 10.1089/thy.2016.0532] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. METHODS We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. RESULTS Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. CONCLUSION Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated entry into the G1-S phase. These findings reinforce the concept that TH is a potential therapeutic target in human BCC.
Collapse
Affiliation(s)
- Caterina Miro
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
| | - Raffaele Ambrosio
- 2 Istituto di Ricovero e Cura a Carattere Scientifico-SDN , Naples, Italy
| | - Maria Angela De Stefano
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
| | - Daniela Di Girolamo
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
| | - Emery Di Cicco
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
| | | | - Giuseppina Mancino
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
| | - Tommaso Porcelli
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
| | - Maddalena Raia
- 3 Centro di Ingegneria Genetica-Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Luigi Del Vecchio
- 3 Centro di Ingegneria Genetica-Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Domenico Salvatore
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
- 3 Centro di Ingegneria Genetica-Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| | - Monica Dentice
- 1 Department of Clinical Medicine and Surgery, University of Naples "Federico II" , Napoli, Italy
- 3 Centro di Ingegneria Genetica-Biotecnologie Avanzate s.c. a r.l., Naples, Italy
| |
Collapse
|
18
|
Di Girolamo D, Ambrosio R, De Stefano MA, Mancino G, Porcelli T, Luongo C, Di Cicco E, Scalia G, Vecchio LD, Colao A, Dlugosz AA, Missero C, Salvatore D, Dentice M. Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway-driven skin tumorigenesis. J Clin Invest 2016; 126:2308-20. [PMID: 27159391 DOI: 10.1172/jci84465] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Abstract
The thyroid hormone-inactivating (TH-inactivating) enzyme type 3 iodothyronine deiodinase (D3) is an oncofetal protein that is rarely expressed in adult life but has been shown to be reactivated in the context of proliferation and neoplasms. D3 terminates TH action within the tumor microenvironment, thereby enhancing cancer cell proliferation. However, the pathological role of D3 and the contribution of TH metabolism in cancer have yet to be fully explored. Here, we describe a reciprocal regulation between TH action and the cancer-associated microRNA-21 (miR21) in basal cell carcinoma (BCC) skin tumors. We found that, besides being negatively regulated by TH at the transcriptional level, miR21 attenuates the TH signal by increasing D3 levels. The ability of miR21 to positively regulate D3 was mediated by the tumor suppressor gene GRHL3, a hitherto unrecognized D3 transcriptional inhibitor. Finally, in a BCC mouse model, keratinocyte-specific D3 depletion markedly reduced tumor growth. Together, our results establish TH action as a critical hub of multiple oncogenic pathways and provide functional and mechanistic evidence of the involvement of TH metabolism in BCC tumorigenesis. Moreover, our results identify a miR21/GRHL3/D3 axis that reduces TH in the tumor microenvironment and has potential to be targeted as a therapeutic approach to BCC.
Collapse
|
19
|
Eisenhoffer GT, Slattum G, Ruiz OE, Otsuna H, Bryan CD, Lopez J, Wagner DS, Bonkowsky JL, Chien CB, Dorsky RI, Rosenblatt J. A toolbox to study epidermal cell types in zebrafish. J Cell Sci 2016; 130:269-277. [PMID: 27149923 DOI: 10.1242/jcs.184341] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/20/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelia provide a crucial protective barrier for our organs and are also the sites where the majority of carcinomas form. Most studies on epithelia and carcinomas use cell culture or organisms where high-resolution live imaging is inaccessible without invasive techniques. Here, we introduce the developing zebrafish epidermis as an excellent in vivo model system for studying a living epithelium. We developed tools to fluorescently tag specific epithelial cell types and express genes in a mosaic fashion using five Gal4 lines identified from an enhancer trap screen. When crossed to a variety of UAS effector lines, we can now track, ablate or monitor single cells at sub-cellular resolution. Using photo-cleavable morpholino oligonucleotides that target gal4, we can also express genes in a mosaic fashion at specific times during development. Together, this system provides an excellent in vivo alternative to tissue culture cells, without the intrinsic concerns of culture conditions or transformation, and enables the investigation of distinct cell types within living epithelial tissues.
Collapse
Affiliation(s)
- George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Unit 1010, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | - Gloria Slattum
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Oscar E Ruiz
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Unit 1010, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | - Hideo Otsuna
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Chase D Bryan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Justin Lopez
- Department of BioSciences, Rice University, W100 George R. Brown Hall, Houston, TX 77251-1892, USA
| | - Daniel S Wagner
- Department of BioSciences, Rice University, W100 George R. Brown Hall, Houston, TX 77251-1892, USA
| | - Joshua L Bonkowsky
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 320 BPRB, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Jody Rosenblatt
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Barbaro V, Nasti AA, Del Vecchio C, Ferrari S, Migliorati A, Raffa P, Lariccia V, Nespeca P, Biasolo M, Willoughby CE, Ponzin D, Palù G, Parolin C, Di Iorio E. Correction of Mutant p63 in EEC Syndrome Using siRNA Mediated Allele-Specific Silencing Restores Defective Stem Cell Function. Stem Cells 2016; 34:1588-600. [PMID: 26891374 DOI: 10.1002/stem.2343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/14/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022]
Abstract
Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is a rare autosomal dominant disease caused by heterozygous mutations in the p63 gene and characterized by limb defects, orofacial clefting, ectodermal dysplasia, and ocular defects. Patients develop progressive total bilateral limbal stem cell deficiency, which eventually results in corneal blindness. Medical and surgical treatments are ineffective and of limited benefit. Oral mucosa epithelial stem cells (OMESCs) represent an alternative source of stem cells capable of regenerating the corneal epithelium and, combined with gene therapy, could provide an attractive therapeutic avenue. OMESCs from EEC patients carrying the most severe p63 mutations (p.R279H and p.R304Q) were characterized and the genetic defect of p.R279H silenced using allele-specific (AS) small interfering RNAs (siRNAs). Systematic screening of locked nucleic acid (LNA)-siRNAs against R279H-p63 allele in (i) stable WT-ΔNp63α-RFP and R279H-ΔNp63α-EGFP cell lines, (ii) transient doubly transfected cell lines, and (iii) p.R279H OMESCs, identified a number of potent siRNA inhibitors for the mutant allele, which had no effect on wild-type p63. In addition, siRNA treatment led to longer acquired life span of mutated stem cells compared to controls, less accelerated stem cell differentiation in vitro, reduced proliferation properties, and effective ability in correcting the epithelial hypoplasia, thus giving rise to full thickness stratified and differentiated epithelia. This study demonstrates the phenotypic correction of mutant stem cells (OMESCs) in EEC syndrome by means of siRNA mediated AS silencing with restoration of function. The application of siRNA, alone or in combination with cell-based therapies, offers a therapeutic strategy for corneal blindness in EEC syndrome. Stem Cells 2016;34:1588-1600.
Collapse
Affiliation(s)
- Vanessa Barbaro
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy
| | - Annamaria A Nasti
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | | | - Stefano Ferrari
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy
| | - Angelo Migliorati
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Paolo Raffa
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60120, Ancona, Italy
| | - Patrizia Nespeca
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Mariangela Biasolo
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Colin E Willoughby
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Diego Ponzin
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Enzo Di Iorio
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy.,Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| |
Collapse
|
21
|
Warshauer E, Samuelov L, Sarig O, Vodo D, Bindereif A, Kanaan M, Gat U, Fuchs-Telem D, Shomron N, Farberov L, Pasmanik-Chor M, Nardini G, Winkler E, Meilik B, Petit I, Aberdam D, Paus R, Sprecher E, Nousbeck J. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR-203 and p63. Exp Dermatol 2015; 24:618-22. [PMID: 25939713 DOI: 10.1111/exd.12737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
Abstract
Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth. When RBM28 was downregulated in human hair follicle (HF) organ cultures, we observed catagen induction and HF growth arrest, indicating that RBM28 is necessary for normal hair growth. We also aimed at identifying molecular targets of RBM28. Given that an RBM28 homologue was recently found to regulate miRNA biogenesis in C. elegans and given the known pivotal importance of miRNAs for proper hair follicle development, we studied global miRNA expression profile in cells knocked down for RBM28. This analysis revealed that RBM28 controls the expression of miR-203. miR-203 was found to regulate in turn TP63, encoding the transcription factor p63, which is critical for hair morphogenesis. In conclusion, RBM28 contributes to HF growth regulation through modulation of miR-203 and p63 activity.
Collapse
Affiliation(s)
- Emily Warshauer
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Samuelov
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Vodo
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Moien Kanaan
- Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Uri Gat
- Department of Cell and Developmental Biology, The Hebrew University, Jerusalem, Israel
| | - Dana Fuchs-Telem
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Luba Farberov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- The Bioinformatics Unit, The Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Nardini
- Department of Plastic and Reconstructive Surgery, The Chaim Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Eyal Winkler
- Department of Plastic and Reconstructive Surgery, The Chaim Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Benjamin Meilik
- Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Isabelle Petit
- INSERM UMR-S976, Hôpital Saint-Louis, Paris, France.,Université Paris-Diderot, Paris, France
| | - Daniel Aberdam
- INSERM UMR-S976, Hôpital Saint-Louis, Paris, France.,Université Paris-Diderot, Paris, France
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janna Nousbeck
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
22
|
Kouwenhoven EN, van Bokhoven H, Zhou H. Gene regulatory mechanisms orchestrated by p63 in epithelial development and related disorders. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:590-600. [PMID: 25797018 DOI: 10.1016/j.bbagrm.2015.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
Abstract
The transcription factor p63 belongs to the p53 family and is a key regulator in epithelial commitment and development. Mutations in p63 give rise to several epithelial related disorders with defects in skin, limb and orofacial structures. Since the discovery of p63, efforts have been made to identify its target genes using individual gene approaches and to understand p63 function in normal epithelial development and related diseases. Recent genome-wide approaches have identified tens of thousands of potential p63-regulated target genes and regulatory elements, and reshaped the concept of gene regulation orchestrated by p63. These data also provide insights into p63-related disease mechanisms. In this review, we discuss the regulatory role of p63 in normal and diseased epithelial development in light of these novel findings. We also propose future perspectives for dissecting the molecular mechanism of p63-mediated epithelial development and related disorders as well as for potential therapeutic strategies.
Collapse
Affiliation(s)
- Evelyn N Kouwenhoven
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Hans van Bokhoven
- Radboud university medical center, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Huiqing Zhou
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands; Radboud university medical center, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Epidermal cell junctions and their regulation by p63 in health and disease. Cell Tissue Res 2015; 360:513-28. [PMID: 25645146 DOI: 10.1007/s00441-014-2108-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022]
Abstract
As the outermost tissue of the body, the epidermis is the first physical barrier for any pressure, stress or trauma. Several specialized cell-matrix and cell-cell adhesion structures, together with an intracellular network of dedicated intermediate filaments, are required to confer critical resilience to mechanical stress. The transcription factor p63 is a master regulator of gene expression in the epidermis and in other stratified epithelia. It has been extensively demonstrated that p63 positively controls a large number of tissue-specific genes, including those encoding a large fraction of tissue-restricted cell adhesion molecules. Consistent with p63 functions in cell adhesion and in epidermal differentiation, heterozygous mutations clustered mainly in the p63 C-terminus are causative of AEC syndrome, an autosomal dominant disorder characterized by cleft palate, ankyloblepharon and ectodermal dysplasia associated with severe skin erosions, bleeding and infections. The molecular basis of skin erosions in AEC patients is not fully understood, although defects in desmosomes and in other cell junctions are likely to be involved. Here, we provide an extensive review of the different epidermal cell junctions that cooperate to withstand mechanical stress and on the mechanisms by which p63 regulates gene expression of their components in healthy skin and in AEC syndrome. Collectively, advancement in understanding the molecular mechanisms by which epidermal cell junctions precisely exert their functions and how p63 orchestrates their coordinated expression, will ultimately lead to insight into developing future strategies for the treatment of AEC syndrome and more in generally for diseases that share an overlapping phenotype.
Collapse
|
24
|
Antonini D, Sirico A, Aberdam E, Ambrosio R, Campanile C, Fagoonee S, Altruda F, Aberdam D, Brissette JL, Missero C. A composite enhancer regulates p63 gene expression in epidermal morphogenesis and in keratinocyte differentiation by multiple mechanisms. Nucleic Acids Res 2015; 43:862-74. [PMID: 25567987 PMCID: PMC4333422 DOI: 10.1093/nar/gku1396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63. p63LRE activity is dependent on p63 expression in embryonic skin, and also in the commitment of human induced pluripotent stem cells toward an epithelial cell fate. A search for other transcription factors involved in p63LRE regulation revealed that the CAAT enhancer binding proteins Cebpa and Cebpb and the POU domain-containing protein Pou3f1 repress p63 expression during keratinocyte differentiation by binding the p63LRE enhancer. Collectively, our data indicate that p63LRE is composed of additive and partly redundant enhancer modules that act to direct robust p63 expression selectively in the basal layer of the epidermis.
Collapse
Affiliation(s)
| | - Anna Sirico
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Edith Aberdam
- INSERM UMR-S 976, Paris, France Université Paris-Diderot, Hopital St-Louis, Paris, France
| | | | | | - Sharmila Fagoonee
- Institute for Biostructures and Bioimages (CNR), c/o Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Daniel Aberdam
- INSERM UMR-S 976, Paris, France Université Paris-Diderot, Hopital St-Louis, Paris, France
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Medical Center, NY, USA
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy Department of Biology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
25
|
Yoh K, Prywes R. Pathway Regulation of p63, a Director of Epithelial Cell Fate. Front Endocrinol (Lausanne) 2015; 6:51. [PMID: 25972840 PMCID: PMC4412127 DOI: 10.3389/fendo.2015.00051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023] Open
Abstract
The p53-related gene p63 is required for epithelial cell establishment and its expression is often altered in tumor cells. Great strides have been made in understanding the pathways and mechanisms that regulate p63 levels, such as the Wnt, Hedgehog, Notch, and EGFR pathways. We discuss here the multiple signaling pathways that control p63 expression as well as transcription factors and post-transcriptional mechanisms that regulate p63 levels. While a unified picture has not emerged, it is clear that the fine-tuning of p63 has evolved to carefully control epithelial cell differentiation and fate.
Collapse
Affiliation(s)
- Kathryn Yoh
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, NY, USA
- *Correspondence: Ron Prywes, Department of Biological Sciences, Columbia University, Fairchild 813A, MC2420, 1212 Amsterdam Avenue, New York, NY 10027, USA,
| |
Collapse
|
26
|
Regulatory network decoded from epigenomes of surface ectoderm-derived cell types. Nat Commun 2014; 5:5442. [PMID: 25421844 PMCID: PMC4385735 DOI: 10.1038/ncomms6442] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022] Open
Abstract
Developmental history shapes the epigenome and biological function of differentiated cells. Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we investigate how developmental origin influences epigenomes. We compare key epigenomes of cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal fibroblasts to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin contributes to DNA methylation patterning, while shared skin tissue environment has limited effect on epidermal keratinocytes. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. They are also enriched for enhancer- and promoter-associated histone modifications in SE-derived cells, and for binding motifs of transcription factors important in keratinocyte and mammary gland biology. Thus, epigenomic analysis of cell types with common developmental origin reveals an epigenetic signature that underlies a shared gene regulatory network.
Collapse
|
27
|
Missero C, Antonini D. Crosstalk among p53 family members in cutaneous carcinoma. Exp Dermatol 2014; 23:143-6. [PMID: 24417641 DOI: 10.1111/exd.12320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/27/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with a frequency increasing worldwide. The risk of developing cSCC has been strongly associated with chronic sun exposure, especially in light skin people. The aim of this viewpoint is to discuss the contribution of the tumor suppressor p53 and its homologues p63 and p73 in the formation and progression of cSCC. Mutations in the p53 gene are early and frequent events in skin carcinogenesis mainly as a consequence of UV light exposure, often followed by loss of function of the second allele. Although rarely mutated in cancer, p63 and p73 play key roles in human cancers, with their truncated isoforms lacking the N-terminal transactivating domain (∆N) being often upregulated as compared to normal tissues. ∆Np63 is abundantly expressed in cSCC, and it is likely to favour tumor initiation and progression. The function of p73 in cSCC is more enigmatic and awaits further studies. Interestingly, an intimate interplay exists between both p53 and p63, and the Notch signalling pathway, often inactivated in cSCC. Here, we summarize our current knowledge about the biological activities of p53 family members in cSCC and propose that integration of their signalling with Notch is key to cSCC formation and progression.
Collapse
|
28
|
McDade SS, Patel D, Moran M, Campbell J, Fenwick K, Kozarewa I, Orr NJ, Lord CJ, Ashworth AA, McCance DJ. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress. Nucleic Acids Res 2014; 42:6270-85. [PMID: 24823795 PMCID: PMC4041465 DOI: 10.1093/nar/gku299] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/18/2014] [Accepted: 03/29/2014] [Indexed: 01/07/2023] Open
Abstract
In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.
Collapse
Affiliation(s)
- Simon S McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Daksha Patel
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Michael Moran
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - James Campbell
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Kerry Fenwick
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Iwanka Kozarewa
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Nicholas J Orr
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Christopher J Lord
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Alan A Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute for Cancer Research, Chelsea, London SW3 6JB, UK
| | - Dennis J McCance
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
29
|
Goldsmith T, Eytan O, Magal L, Solomon M, Israeli S, Warshauer E, Grafi-Cohen M, Aberdam D, van Bokhoven H, Zhou H, Sarig O, Sprecher E, Nousbeck J. A mutation in TP63 causing a mild ectodermal dysplasia phenotype. J Invest Dermatol 2014; 134:2277-2280. [PMID: 24675753 DOI: 10.1038/jid.2014.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomer Goldsmith
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ori Eytan
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lee Magal
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Solomon
- Department of Dermatology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Shirli Israeli
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Emily Warshauer
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Meital Grafi-Cohen
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Daniel Aberdam
- INSERM U976, Paris, France; University of Paris Diderot, Paris, France
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Radboud University, Radboud, The Netherlands
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Janna Nousbeck
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
30
|
Buckley NE, D'Costa Z, Kaminska M, Mullan PB. S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability. Cell Death Dis 2014; 5:e1070. [PMID: 24556685 PMCID: PMC3944248 DOI: 10.1038/cddis.2014.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/23/2022]
Abstract
Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.
Collapse
Affiliation(s)
- N E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Z D'Costa
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - M Kaminska
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - P B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
31
|
Antonini D, Sibilio A, Dentice M, Missero C. An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression. Front Endocrinol (Lausanne) 2013; 4:104. [PMID: 23986743 PMCID: PMC3749490 DOI: 10.3389/fendo.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body and plays a key role in protecting the individual from external insults. The barrier function of the skin is performed primarily by the epidermis, a self-renewing stratified squamous epithelium composed of cells that undergo a well-characterized and finely tuned process of terminal differentiation. By binding to their receptors thyroid hormones (TH) regulate epidermal cell proliferation, differentiation, and homeostasis. Thyroid dysfunction has multiple classical manifestations at skin level. Several TH-responsive genes, as well as genes critical for TH metabolism and action, are expressed at epidermal level. The role of TH in skin is still controversial, although it is generally recognized that TH signaling is central for skin physiology and homeostasis. Here we review the data on the epidermis and its function in relation to TH metabolism and regulation of gene expression. An understanding of the cellular and molecular basis of TH action in epidermal cells may lead to the identification of putative therapeutical targets for treatment of skin disorders.
Collapse
Affiliation(s)
| | - Annarita Sibilio
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Monica Dentice
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Fondazione IRCCS SDN, Napoli, Italy
- *Correspondence: Caterina Missero, CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 486, Napoli 80145, Italy e-mail:
| |
Collapse
|
32
|
Mateo RK, Johnson R, Lehmann OJ. Evidence for additional FREM1 heterogeneity in Manitoba oculotrichoanal syndrome. Mol Vis 2012; 18:1301-11. [PMID: 22690109 PMCID: PMC3369896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/24/2012] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Manitoba Oculotrichoanal (MOTA) syndrome is an autosomal recessive disorder present in First Nations families that is characterized by ocular (cryptophthalmos), facial, and genital anomalies. At the commencement of this study, its genetic basis was undefined. METHODS Homozygosity analysis was employed to map the causative locus using DNA samples from four probands of Cree ancestry. After single nucleotide polymorphism (SNP) genotyping, data were analyzed and exported to PLINK to identify regions identical by descent (IBD) and common to the probands. Candidate genes within and adjacent to the IBD interval were sequenced to identify pathogenic variants, with analyses of potential deletions or duplications undertaken using the B-allele frequency and log(2) ratio of SNP signal intensity. RESULTS Although no shared IBD region >1 Mb was evident on preliminary analysis, adjusting the criteria to permit the detection of smaller homozygous IBD regions revealed one 330 Kb segment on chromosome 9p22.3 present in all 4 probands. This interval comprising 152 SNPs, lies 16 Kb downstream of FRAS1-related extracellular matrix protein 1 (FREM1), and no copy number variations were detected either in the IBD region or FREM1. Subsequent sequencing of both genes in the IBD region, followed by FREM1, did not reveal any mutations. CONCLUSIONS This study illustrates the utility of studying geographically isolated populations to identify genomic regions responsible for disease through analysis of small numbers of affected individuals. The location of the IBD region 16 kb from FREM1 suggests the phenotype in these patients is attributable to a variant outside of FREM1, potentially in a regulatory element, whose identification may prove tractable to next generation sequencing. In the context of recent identification of FREM1 coding mutations in a proportion of MOTA cases, characterization of such additional variants offers scope both to enhance understanding of FREM1's role in cranio-facial biology and may facilitate genetic counselling in populations with high prevalences of MOTA to reduce the incidence of this disorder.
Collapse
Affiliation(s)
| | - Royce Johnson
- Department of Ophthalmology, University of Alberta, Edmonton, Canada
| | - Ordan J. Lehmann
- Department of Medical Genetics, University of Alberta, Edmonton, Canada,Department of Ophthalmology, University of Alberta, Edmonton, Canada
| |
Collapse
|
33
|
Cell density-dependent acetylation of ΔNp63α is associated with p53-dependent cell cycle arrest. FEBS Lett 2012; 586:1128-34. [DOI: 10.1016/j.febslet.2012.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
|
34
|
Matsuura T, Kawata VKS, Nagoshi H, Tomooka Y, Sasaki K, Ikawa S. Regulation of proliferation and differentiation of mouse tooth germ epithelial cells by distinct isoforms of p51/p63. Arch Oral Biol 2012; 57:1108-15. [PMID: 22440406 DOI: 10.1016/j.archoralbio.2012.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/21/2012] [Accepted: 02/26/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVES p51/p63 gene, one of the p53 families, is specifically expressed in tooth germ epithelial cells and is essential for tooth development. This study aims to elucidate roles of p51/p63 in ameloblastic cell differentiation. MATERIALS AND METHODS We determined expression pattern of each of p51/p63 isoforms by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting using emtg (epithelium of molar tooth germ)-1, -2, -3, -4, and -5 cell lines established from a mandibular molar tooth germ of p53-deficient mice and SF2 cells which differentiates into ameloblasts upon exposure to NT4. Furthermore, we investigated the function of p51/p63 in these cells by Tet system, which enables inducible expression and knock down of the target genes of interest by exposing cells to doxycycline. RESULTS The expression of ΔNp51B/ΔNp63α, an isoform without transactivation domain, was detected at high level in immature cells, while the expression of TAp51/TAp63 isoforms, isoforms of with the transactivation domain, was detected at high level in mature cells. Moreover, induction of TAp51A/TAp63γ expression led to down-regulation of ΔNp51B/ΔNp63α expression and cell proliferation. Interestingly, this also led to up-regulation of ameloblastin expression, a differentiation marker of amelogenesis. CONCLUSIONS The results suggested that p51/p63 might regulate the cell proliferation and differentiation of tooth germ epithelial cells.
Collapse
Affiliation(s)
- Takashi Matsuura
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Paris M, Rouleau M, Pucéat M, Aberdam D. Regulation of skin aging and heart development by TAp63. Cell Death Differ 2011; 19:186-93. [PMID: 22158419 DOI: 10.1038/cdd.2011.181] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since the discovery of the TP63 gene in 1998, many studies have demonstrated that ΔNp63, a p63 isoform of the p53 gene family, is involved in multiple functions during skin development and in adult stem/progenitor cell regulation. In contrast, TAp63 studies have been mostly restricted to its apoptotic function and more recently as the guardian of oocyte integrity. TAp63 endogenous expression is barely detectable in embryos and adult (except in oocytes), presumably because of its rapid degradation and the lack of antibodies able to detect weak expression. Nevertheless, two recent independent studies have demonstrated novel functions for TAp63 that could have potential implications to human pathologies. The first discovery is related to the protective role of TAp63 on premature aging. TAp63 controls skin homeostasis by maintaining dermal and epidermal progenitor/stem cell pool and protecting them from senescence, DNA damage and genomic instability. The second study is related to the role of TAp63, expressed by the primitive endoderm, on heart development. This unexpected role for TAp63 has been discovered by manipulation of embryonic stem cells in vitro and confirmed by the severe cardiomyopathy observed in brdm2 p63-null embryonic hearts. Interestingly, in both cases, TAp63 acts in a cell-nonautonomous manner on adjacent cells. Here, we discuss these findings and their potential connection during development.
Collapse
Affiliation(s)
- M Paris
- L'OREAL Recherche, Clichy, France
| | | | | | | |
Collapse
|
36
|
Pyati UJ, Gjini E, Carbonneau S, Lee JS, Guo F, Jette CA, Kelsell DP, Look AT. p63 mediates an apoptotic response to pharmacological and disease-related ER stress in the developing epidermis. Dev Cell 2011; 21:492-505. [PMID: 21920315 DOI: 10.1016/j.devcel.2011.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 04/12/2011] [Accepted: 07/22/2011] [Indexed: 01/12/2023]
Abstract
Endoplasmic reticulum (ER) stress triggers tissue-specific responses that culminate in either cellular adaptation or apoptosis, but the genetic networks distinguishing these responses are not well understood. Here we demonstrate that ER stress induced in the developing zebrafish causes rapid apoptosis in the brain, spinal cord, tail epidermis, lens, and epiphysis. Focusing on the tail epidermis, we uncover an apoptotic response that depends on Puma, but not on p53 or Chop. puma is transcriptionally activated during this ER stress response in a p53-independent manner, and is an essential mediator of epidermal apoptosis. We demonstrate that the p63 transcription factor is upregulated to initiate this apoptotic pathway and directly activates puma transcription in response to ER stress. We also show that a mutation of human Connexin 31, which causes erythrokeratoderma variabilis, induces ER stress and p63-dependent epidermal apoptosis in the zebrafish embryo, thus implicating this pathway in the pathogenesis of inherited disease.
Collapse
Affiliation(s)
- Ujwal J Pyati
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fessing MY, Mardaryev AN, Gdula MR, Sharov AA, Sharova TY, Rapisarda V, Gordon KB, Smorodchenko AD, Poterlowicz K, Ferone G, Kohwi Y, Missero C, Kohwi-Shigematsu T, Botchkarev VA. p63 regulates Satb1 to control tissue-specific chromatin remodeling during development of the epidermis. ACTA ACUST UNITED AC 2011; 194:825-39. [PMID: 21930775 PMCID: PMC3207288 DOI: 10.1083/jcb.201101148] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During development, multipotent progenitor cells establish tissue-specific programs of gene expression. In this paper, we show that p63 transcription factor, a master regulator of epidermal morphogenesis, executes its function in part by directly regulating expression of the genome organizer Satb1 in progenitor cells. p63 binds to a proximal regulatory region of the Satb1 gene, and p63 ablation results in marked reduction in the Satb1 expression levels in the epidermis. Satb1(-/-) mice show impaired epidermal morphology. In Satb1-null epidermis, chromatin architecture of the epidermal differentiation complex locus containing genes associated with epidermal differentiation is altered primarily at its central domain, where Satb1 binding was confirmed by chromatin immunoprecipitation-on-chip analysis. Furthermore, genes within this domain fail to be properly activated upon terminal differentiation. Satb1 expression in p63(+/-) skin explants treated with p63 small interfering ribonucleic acid partially restored the epidermal phenotype of p63-deficient mice. These data provide a novel mechanism by which Satb1, a direct downstream target of p63, contributes in epidermal morphogenesis via establishing tissue-specific chromatin organization and gene expression in epidermal progenitor cells.
Collapse
Affiliation(s)
- Michael Y Fessing
- Centre for Skin Sciences, University of Bradford, Bradford BD7 1DP, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rouleau M, Medawar A, Hamon L, Shivtiel S, Wolchinsky Z, Zhou H, De Rosa L, Candi E, de la Forest Divonne S, Mikkola ML, van Bokhoven H, Missero C, Melino G, Pucéat M, Aberdam D. TAp63 Is Important for Cardiac Differentiation of Embryonic Stem Cells and Heart Development. Stem Cells 2011; 29:1672-83. [DOI: 10.1002/stem.723] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Murashima A, Miyagawa S, Ogino Y, Nishida-Fukuda H, Araki K, Matsumoto T, Kaneko T, Yoshinaga K, Yamamura KI, Kurita T, Kato S, Moon AM, Yamada G. Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology 2011; 152:1640-51. [PMID: 21303954 PMCID: PMC3060634 DOI: 10.1210/en.2010-1121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epididymis is a male accessory organ and functions for sperm maturation and storage under the control of androgen. The development of the epididymis is also androgen dependent. The Wolffian duct (WD), anlagen of the epididymis, is formed in both male and female embryos; however, it is stabilized only in male embryos by testicular androgen. Androgen drives subsequent differentiation of the WD into the epididymis. Although the essential roles of androgen in WD masculinization and epididymal function have been established, little is known about cellular events regulated precisely by androgen signaling during these processes. It is also unclear whether androgen signaling, especially in the epithelia, has further function for epididymal epithelial cell differentiation. In this study we examined the cellular death and proliferation controlled by androgen signaling via the androgen receptor (AR) in WD stabilization. Analyses using AR knockout mice revealed that androgen signaling inhibits epithelial cell death in this process. Analysis of AP2α-Cre;AR(flox/Y) mice, in which AR function is deleted in the WD epithelium, revealed that epithelial AR is not required for the WD stabilization but is required for epithelial cell differentiation in the epididymis. Specifically, loss of epithelial AR significantly reduced expression of p63 that is essential for differentiation of basal cells in the epididymal epithelium. We also interrogated the possibility of regulation of the p63 gene (Trp63) by AR in vitro and found that p63 is a likely direct target of AR regulation.
Collapse
Affiliation(s)
- Aki Murashima
- Institute of Molecular Embryology and Genetics, Graduate School of Medical and Pharmaceutical Sciences, Global Center of Excellence Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Buckley NE, Conlon SJ, Jirstrom K, Kay EW, Crawford NT, O'Grady A, Sheehan K, Mc Dade SS, Wang CW, McCance DJ, Johnston PG, Kennedy RD, Harkin DP, Mullan PB. The DeltaNp63 proteins are key allies of BRCA1 in the prevention of basal-like breast cancer. Cancer Res 2011; 71:1933-44. [PMID: 21363924 DOI: 10.1158/0008-5472.can-10-2717] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that ΔNp63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform ΔNp63γ along with transcription factor isoforms AP-2α and AP-2γ. BRCA1 required ΔNp63γ and AP-2γ to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the ΔNp63 isoforms. In mammary stem/progenitor cells, siRNA-mediated knockdown of ΔNp63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of ΔNp63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-ΔNp63 signaling are key events in the pathogenesis of basal-like breast cancer.
Collapse
Affiliation(s)
- Niamh E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Parisi S, Cozzuto L, Tarantino C, Passaro F, Ciriello S, Aloia L, Antonini D, De Simone V, Pastore L, Russo T. Direct targets of Klf5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state. BMC Biol 2010; 8:128. [PMID: 20875108 PMCID: PMC2955566 DOI: 10.1186/1741-7007-8-128] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/27/2010] [Indexed: 01/14/2023] Open
Abstract
Background A growing body of evidence has shown that Krüppel-like transcription factors play a crucial role in maintaining embryonic stem cell (ESC) pluripotency and in governing ESC fate decisions. Krüppel-like factor 5 (Klf5) appears to play a critical role in these processes, but detailed knowledge of the molecular mechanisms of this function is still not completely addressed. Results By combining genome-wide chromatin immunoprecipitation and microarray analysis, we have identified 161 putative primary targets of Klf5 in ESCs. We address three main points: (1) the relevance of the pathways governed by Klf5, demonstrating that suppression or constitutive expression of single Klf5 targets robustly affect the ESC undifferentiated phenotype; (2) the specificity of Klf5 compared to factors belonging to the same family, demonstrating that many Klf5 targets are not regulated by Klf2 and Klf4; and (3) the specificity of Klf5 function in ESCs, demonstrated by the significant differences between Klf5 targets in ESCs compared to adult cells, such as keratinocytes. Conclusions Taken together, these results, through the definition of a detailed list of Klf5 transcriptional targets in mouse ESCs, support the important and specific functional role of Klf5 in the maintenance of the undifferentiated ESC phenotype. See: http://www.biomedcental.com/1741-7007/8/125
Collapse
Affiliation(s)
- Silvia Parisi
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 482, 80145 Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional Repression of miR-34 Family Contributes to p63-Mediated Cell Cycle Progression in Epidermal Cells. J Invest Dermatol 2010; 130:1249-57. [DOI: 10.1038/jid.2009.438] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
C/EBPα and β couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat Cell Biol 2009; 11:1181-90. [DOI: 10.1038/ncb1960] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/10/2009] [Indexed: 01/21/2023]
|
44
|
De Rosa L, Antonini D, Ferone G, Russo MT, Yu PB, Han R, Missero C. p63 Suppresses non-epidermal lineage markers in a bone morphogenetic protein-dependent manner via repression of Smad7. J Biol Chem 2009; 284:30574-82. [PMID: 19717565 DOI: 10.1074/jbc.m109.049619] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p63, a p53 family member, plays an essential role in epidermal development by regulating its transcriptional program. Here we report a previously uncovered role of p63 in controlling bone morphogenetic protein (BMP) signaling, which is required for maintaining low expression levels of several non-epidermal genes. p63 represses transcription of the inhibitory Smad7 and activates Bmp7, thereby sustaining BMP signaling. In the absence of p63, compromised BMP signaling leads to inappropriate non-epidermal gene expression in postnatal mouse keratinocytes and in embryonic epidermis. Reactivation of BMP signaling by Smad7 knockdown and/or, to a lesser extent, by BMP treatment suppresses expression of non-epidermal genes in the absence of p63. Canonical BMP/Smad signaling is essential for control of non-epidermal genes as use of a specific inhibitor, or simultaneous knockdown of Smad1 and Smad5 counteract suppression of non-epidermal genes. Our data indicate that p63 prevents ectopic expression of non-epidermal genes by a mechanism involving Smad7 repression and, to a lesser extent, Bmp7 induction, with consequent enhancement of BMP/Smad signaling.
Collapse
Affiliation(s)
- Laura De Rosa
- CEINGE Biotecnologie Avanzate, via Comunale Margherita 482, 80145 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Pozzi S, Boergesen M, Sinha S, Mandrup S, Mantovani R. Peroxisome proliferator-activated receptor-alpha is a functional target of p63 in adult human keratinocytes. J Invest Dermatol 2009; 129:2376-85. [PMID: 19458633 DOI: 10.1038/jid.2009.92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p63 is a master switch in the complex network of signaling pathways controlling the establishment and maintenance of stratified epithelia. We provide evidence that peroxisome proliferator-activated receptor-alpha (PPARalpha), a ligand-activated nuclear receptor that participates in the skin wound healing process, is a target of p63 in human keratinocytes. Silencing of p63 by RNA interference and transient transfections showed that p63 represses PPARalpha through a functional region of promoter B. Chromatin immunoprecipitation analyses indicate that p63 is bound to this region, in the absence of a recognizable p63-binding motif, suggesting that it acts through interactions with other transcription factors (TFs). Distinct PPARalpha transcripts are differentially regulated by p63, indicating a bimodal action in promoter and/or transcription start specification. PPARalpha repression is consistent with lack of expression in the interfollicular epidermis under physiological conditions. Furthermore, we show that PPARalpha is a negative regulator of DeltaNp63alpha levels and that it also binds to a functional region of the DeltaNp63 promoter that lacks PPRE motifs. Therefore, the reciprocal regulation is exerted either through binding to non-consensus sites or through interactions with other DNA-bound TFs. In conclusion, our data establish a link between two TFs intimately involved in the maintenance of skin homeostatic conditions.
Collapse
Affiliation(s)
- Silvia Pozzi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | |
Collapse
|
46
|
Abstract
p63 is a transcription factor required for the development and maintenance of ectodermal tissues in general, and skin keratinocytes in particular. The identification of its target genes is fundamental for understanding the complex network of gene regulation governing the development of epithelia. We report a list of almost 1000 targets derived from ChIP on chip analysis on two platforms; all genes analyzed changed in expression during differentiation of human keratinocytes. Functional annotation highlighted unexpected GO terms enrichments and confirmed that genes involved in transcriptional regulation are the most significant. A detailed analysis of these transcriptional regulators in condition of perturbed p63 levels confirmed the role of p63 in the regulatory network. Rather than a rigid master-slave hierarchical model, our data indicate that p63 connects different hubs involved in the multiple specific functions of the skin.
Collapse
|
47
|
Chavanas S, Adoue V, Méchin MC, Ying S, Dong S, Duplan H, Charveron M, Takahara H, Serre G, Simon M. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 2008; 3:e3408. [PMID: 18923650 PMCID: PMC2566589 DOI: 10.1371/journal.pone.0003408] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.
Collapse
Affiliation(s)
- Stéphane Chavanas
- UMR 5165, CNRS-Toulouse III University, CHU Purpan, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Long-range enhancer differentially regulated by c-Jun and JunD controls peptidylarginine deiminase-3 gene in keratinocytes. J Mol Biol 2008; 384:1048-57. [PMID: 18952102 DOI: 10.1016/j.jmb.2008.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 11/23/2022]
Abstract
Long-range cis elements are critical regulators of transcription, particularly for clustered paralogous genes. Such are the five PADI genes in 1p35-36 encoding peptidylarginine deiminases, which catalyze deimination, a Ca2+-dependent post-translational modification. Deimination has been implicated in the pathophysiology of severe human diseases such as multiple sclerosis and rheumatoid arthritis. The PADI genes present different expression patterns. PADI1-3 are expressed in the epidermis, with increased expression levels in the most differentiated keratinocytes. Previous studies on PADI proximal promoters failed to explain such specificity of expression. We identified a conserved intergenic sequence in the PADI locus (IG1), which may play a role in PADI transcriptional regulation. In this work, we identified two DNase I.hypersensitive sites located in IG1, PAD intergenic enhancer segment 1 (PIE-S1) and PIE-S2, which act in synergy as a bipartite enhancer of the PADI3 and probably PADI1 promoters in normal human epidermal keratinocytes differentiated by a high-calcium-containing medium (1.5 mM). PIE-S1 and PIE-S2 present all the hallmarks of transcriptional enhancers: orientation-independence, copy-number dependence and cell-type specificity. PIE-S1 and PIE-S2 comprise conserved putative binding sites for MIBP1/RFX1 and activator protein 1, respectively. Deletion mutant screening revealed that these sites are crucial for the enhancer activity. Furthermore, chromatin immunoprecipitation assays evidenced differential binding of JunD or c-Jun on the activator protein 1 site depending on the cell differentiation state. Our results reveal the molecular bases of the expression specificity of PADI1 and PADI3 during keratinocyte differentiation through a long-range enhancer and support a model of PADI gene regulation depending on c-Jun-JunD competition.
Collapse
|
49
|
Ortt K, Raveh E, Gat U, Sinha S. A chromatin immunoprecipitation screen in mouse keratinocytes reveals Runx1 as a direct transcriptional target of DeltaNp63. J Cell Biochem 2008; 104:1204-19. [PMID: 18275068 DOI: 10.1002/jcb.21700] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Development of the skin epidermis and appendages such as hair follicles involves coordinated processes of keratinocyte proliferation and differentiation. The transcription factor p63 plays a critical role in these steps as evident by a complete lack of these structures in p63 null mice. The p63 gene encodes for two proteins TAp63 and DeltaNp63, the latter being the more prevalent and dominant isoform expressed in keratinocytes. Although numerous p63 target genes have been identified, these studies have been limited to transformed human keratinocyte cell lines. Here, we have employed a genomic screening approach of chromatin immunoprecipitation (ChIP) coupled with an enrichment strategy to identify DeltaNp63 response elements in primary mouse keratinocytes. Analysis of p63-ChIP-derived DNA segments has revealed more than 100 potential target genes including novel as well as mouse counterparts of established human p63 targets. Among these is Runx1, a transcription factor important for hair follicle development. We demonstrate that DeltaNp63 binds to a p63-response element located within a well-conserved enhancer of the Runx1 gene. Furthermore, siRNA mediated reduction of DeltaNp63 in mouse keratinocytes reduces Runx1 expression. Consistent with this, endogenous Runx1 levels are lower in the skin of p63(+/-) animals as compared to wild type animals. Lastly, we demonstrate that DeltaNp63 and Runx1 are co-expressed in specific compartments of the hair follicle in a dynamic fashion. Taken together our data demonstrate that p63 directly regulates Runx1 gene expression through a novel enhancer element and suggests a role for these two transcription factors in dictating skin keratinocyte and appendage development.
Collapse
Affiliation(s)
- Kori Ortt
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
50
|
Della Gatta G, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C, di Bernardo D. Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Res 2008; 18:939-48. [PMID: 18441228 DOI: 10.1101/gr.073601.107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Genome-wide identification of bona-fide targets of transcription factors in mammalian cells is still a challenge. We present a novel integrated computational and experimental approach to identify direct targets of a transcription factor. This consists of measuring time-course (dynamic) gene expression profiles upon perturbation of the transcription factor under study, and in applying a novel "reverse-engineering" algorithm (TSNI) to rank genes according to their probability of being direct targets. Using primary keratinocytes as a model system, we identified novel transcriptional target genes of TRP63, a crucial regulator of skin development. TSNI-predicted TRP63 target genes were validated by Trp63 knockdown and by ChIP-chip to identify TRP63-bound regions in vivo. Our study revealed that short sampling times, in the order of minutes, are needed to capture the dynamics of gene expression in mammalian cells. We show that TRP63 transiently regulates a subset of its direct targets, thus highlighting the importance of considering temporal dynamics when identifying transcriptional targets. Using this approach, we uncovered a previously unsuspected transient regulation of the AP-1 complex by TRP63 through direct regulation of a subset of AP-1 components. The integrated experimental and computational approach described here is readily applicable to other transcription factors in mammalian systems and is complementary to genome-wide identification of transcription-factor binding sites.
Collapse
|