1
|
Teli G, Pal R, Maji L, Purawarga Matada GS, Sengupta S. Explanatory review on pyrimidine/fused pyrimidine derivatives as anticancer agents targeting Src kinase. J Biomol Struct Dyn 2024; 42:1582-1614. [PMID: 37144746 DOI: 10.1080/07391102.2023.2205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
3
|
Jia Y, Benjamin S, Liu Q, Xu Y, Dogga SK, Liu J, Matthews S, Soldati-Favre D. Toxoplasma gondii immune mapped protein 1 is anchored to the inner leaflet of the plasma membrane and adopts a novel protein fold. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:208-219. [PMID: 27888074 PMCID: PMC5716462 DOI: 10.1016/j.bbapap.2016.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/30/2023]
Abstract
The immune mapped protein 1 (IMP1) was first identified as a protective antigen in Eimeria maxima and described as vaccine candidate and invasion factor in Toxoplasma gondii. We show here that TgIMP1 localizes to the inner leaflet of plasma membrane (PM) via dual acylation. Mutations either in the N-terminal myristoylation or palmitoylation sites (G2 and C5) cause relocalization of TgIMP1 to the cytosol. The first 11 amino acids are sufficient for PM targeting and the presence of lysine (K7) is critical. Disruption of TgIMP1 gene by double homologous recombination revealed no invasion defect or any measurable alteration in the lytic cycle of tachyzoites. Following immunization with TgIMP1 DNA vaccine, mice challenged with either wild type or IMP1-ko parasites showed no significant difference in protection. The sequence analysis identified a structured C-terminal domain that is present in a broader family of IMP1-like proteins conserved across the members of Apicomplexa. We present the solution structure of this domain determined from NMR data and describe a new protein fold not seen before.
Collapse
Affiliation(s)
- Yonggen Jia
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Stefi Benjamin
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Domain Interaction Studies of Herpes Simplex Virus 1 Tegument Protein UL16 Reveal Its Interaction with Mitochondria. J Virol 2017; 91:JVI.01995-16. [PMID: 27847362 DOI: 10.1128/jvi.01995-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
The UL16 tegument protein of herpes simplex virus 1 (HSV-1) is conserved among all herpesviruses and plays many roles during replication. This protein has an N-terminal domain (NTD) that has been shown to bind to several viral proteins, including UL11, VP22, and glycoprotein E, and these interactions are negatively regulated by a C-terminal domain (CTD). Thus, in pairwise transfections, UL16 binding is enabled only when the CTD is absent or altered. Based on these results, we hypothesized that direct interactions occur between the NTD and the CTD. Here we report that the separated and coexpressed functional domains of UL16 are mutually responsive to each other in transfected cells and form complexes that are stable enough to be captured in coimmunoprecipitation assays. Moreover, we found that the CTD can associate with itself. To our surprise, the CTD was also found to contain a novel and intrinsic ability to localize to specific spots on mitochondria in transfected cells. Subsequent analyses of HSV-infected cells by immunogold electron microscopy and live-cell confocal imaging revealed a population of UL16 that does not merely accumulate on mitochondria but in fact makes dynamic contacts with these organelles in a time-dependent manner. These findings suggest that the domain interactions of UL16 serve to regulate not just the interaction of this tegument protein with its viral binding partners but also its interactions with mitochondria. The purpose of this novel interaction remains to be determined. IMPORTANCE The HSV-1-encoded tegument protein UL16 is involved in multiple events of the virus replication cycle, ranging from virus assembly to cell-cell spread of the virus, and hence it can serve as an important drug target. Unfortunately, a lack of both structural and functional information limits our understanding of this protein. The discovery of domain interactions within UL16 and the novel ability of UL16 to interact with mitochondria in HSV-infected cells lays a foundational framework for future investigations aimed at deciphering the structure and function of not just UL16 of HSV-1 but also its homologs in other herpesviruses.
Collapse
|
5
|
Khajah MA, Luqmani YA. Involvement of Membrane Blebbing in Immunological Disorders and Cancer. Med Princ Pract 2016; 25 Suppl 2:18-27. [PMID: 26488882 PMCID: PMC5588526 DOI: 10.1159/000441848] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022] Open
Abstract
Cellular blebbing is a unique form of dynamic protrusion emanating from the plasma membrane which can be either apoptotic or nonapoptotic in nature. Blebs have been observed in a wide variety of cell types and in response to multiple mechanical and chemical stimuli. They have been linked to various physiological and pathological processes including tumor motility and invasion, as well as to various immunological disorders. They can form and retract extremely rapidly in seconds or minutes, or slowly over hours or days. This review focuses on recent evidence regarding the role of blebbing in cell locomotion with particular emphasis on its role in tumor metastasis, indicating the role of specific causative molecules. The phenomenon of blebbing has been observed in endocrine-resistant breast cancer cells in response to brief exposure to extracellular alkaline pH, which leads to enhanced invasive capacity. Genetic or pharmacological targeting of cellular blebs could serve as a potential therapeutic option to control tumor metastasis.
Collapse
Affiliation(s)
| | - Yunus A. Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
- *Yunus A. Luqmani, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
6
|
Sladitschek HL, Neveu PA. MXS-Chaining: A Highly Efficient Cloning Platform for Imaging and Flow Cytometry Approaches in Mammalian Systems. PLoS One 2015; 10:e0124958. [PMID: 25909630 PMCID: PMC4409215 DOI: 10.1371/journal.pone.0124958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 11/25/2022] Open
Abstract
The continuous improvement of imaging technologies has driven the development of sophisticated reporters to monitor biological processes. Such constructs should ideally be assembled in a flexible enough way to allow for their optimization. Here we describe a highly reliable cloning method to efficiently assemble constructs for imaging or flow cytometry applications in mammalian cell culture systems. We bioinformatically identified a list of restriction enzymes whose sites are rarely found in human and mouse cDNA libraries. From the best candidates, we chose an enzyme combination (MluI, XhoI and SalI: MXS) that enables iterative chaining of individual building blocks. The ligation scar resulting from the compatible XhoI- and SalI-sticky ends can be translated and hence enables easy in-frame cloning of coding sequences. The robustness of the MXS-chaining approach was validated by assembling constructs up to 20 kb long and comprising up to 34 individual building blocks. By assessing the success rate of 400 ligation reactions, we determined cloning efficiency to be 90% on average. Large polycistronic constructs for single-cell imaging or flow cytometry applications were generated to demonstrate the versatility of the MXS-chaining approach. We devised several constructs that fluorescently label subcellular structures, an adapted version of FUCCI (fluorescent, ubiquitination-based cell cycle indicator) optimized to visualize cell cycle progression in mouse embryonic stem cells and an array of artificial promoters enabling dosage of doxycyline-inducible transgene expression. We made publicly available through the Addgene repository a comprehensive set of MXS-building blocks comprising custom vectors, a set of fluorescent proteins, constitutive promoters, polyadenylation signals, selection cassettes and tools for inducible gene expression. Finally, detailed guidelines describe how to chain together prebuilt MXS-building blocks and how to generate new customized MXS-building blocks.
Collapse
Affiliation(s)
- Hanna L. Sladitschek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
| | - Pierre A. Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
7
|
Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism. Sci Rep 2013; 3:1295. [PMID: 23416516 PMCID: PMC3575015 DOI: 10.1038/srep01295] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022] Open
Abstract
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.
Collapse
|
8
|
Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 2010; 30:4094-107. [PMID: 20584982 DOI: 10.1128/mcb.00246-10] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myristoylation is critical for membrane association of Src kinases, but a role for myristate in regulating other aspects of Src biology has not been explored. In the c-Abl tyrosine kinase, myristate binds within a hydrophobic pocket at the base of the kinase domain and latches the protein into an autoinhibitory conformation. A similar pocket has been predicted to exist in c-Src, raising the possibility that Src might also be regulated by myristoylation. Here we show that in contrast to the case for c-Abl, myristoylation exerts a positive effect on c-Src kinase activity. We also demonstrate that myristoylation and membrane binding regulate c-Src ubiquitination and degradation. Nonmyristoylated c-Src exhibited reduced kinase activity but had enhanced stability compared to myristoylated c-Src. We then mutated critical residues in the predicted myristate binding pocket of c-Src. Mutation of L360 and/or E486 had no effect on c-Src membrane binding or localization. However, constructs containing a T456A mutation were partially released from the membrane, suggesting that mutagenesis could induce c-Src to undergo an artificial myristoyl switch. All of the pocket mutants exhibited decreased kinase activity. We concluded that myristoylation and the pocket residues regulate c-Src, but in a manner very different from that for c-Abl.
Collapse
|
9
|
Monaghan-Benson E, Mastick CC, McKeown-Longo PJ. A dual role for caveolin-1 in the regulation of fibronectin matrix assembly by uPAR. J Cell Sci 2008; 121:3693-703. [PMID: 18957516 DOI: 10.1242/jcs.028423] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between the plasminogen activator system and integrin function is well documented but incompletely understood. The mechanism of uPAR-mediated signaling across the membrane and the molecular basis of uPAR-dependent activation of integrins remain important issues. The present study was undertaken to identify the molecular intermediates involved in the uPAR signaling pathway controlling alpha5beta1-integrin activation and fibronectin polymerization. Disruption of lipid rafts with MbetaCD or depletion of caveolin-1 by siRNA led to the inhibition of uPAR-dependent integrin activation and stimulation of fibronectin polymerization in human dermal fibroblasts. The data indicate a dual role for caveolin-1 in the uPAR signaling pathway, leading to integrin activation. Caveolin-1 functions initially as a membrane adaptor or scaffold to mediate uPAR-dependent activation of Src and EGFR. Subsequently, in its phosphorylated form, caveolin-1 acts as an accessory molecule to direct trafficking of activated EGFR to focal adhesions. These studies provide a novel paradigm for the regulation of crosstalk among integrins, growth-factor receptors and uPAR.
Collapse
Affiliation(s)
- Elizabeth Monaghan-Benson
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
10
|
Perez M, Greenwald DL, de la Torre JC. Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 2004; 78:11443-8. [PMID: 15452271 PMCID: PMC521847 DOI: 10.1128/jvi.78.20.11443-11448.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arenavirus small RING finger Z protein is the main driving force of arenavirus budding. The primary structure of Z is devoid of hydrophobic transmembrane domains, but both lymphocytic choriomeningitis virus (LCMV) and Lassa fever virus Z proteins accumulate near the inner surface of the plasma membrane and are strongly membrane associated. All known arenavirus Z proteins contain a glycine (G) at position 2, which is a potential acceptor site for a myristoyl moiety. Metabolic labeling showed incorporation of [(3)H]myristic acid by wild-type Z protein but not by the G2A mutant. The mutation G2A eliminated Z-mediated budding. Likewise, treatment with the myristoylation inhibitor 2-hydroxymyristic acid inhibited Z-mediated budding, eliminated formation of virus-like particles, and caused a dramatic reduction in virus production in LCMV-infected cells. Budding activity was restored in G2A mutant Z proteins by the addition of the myristoylation domain of the tyrosine protein kinase Src to their N termini. These findings indicate N-terminal myristoylation of Z plays a key role in arenavirus budding.
Collapse
Affiliation(s)
- Mar Perez
- The Scripps Research Institute, IMM6, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
11
|
Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M, Bray PF, Saylor VL, McMahon M. Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 2001; 21:3192-205. [PMID: 11287623 PMCID: PMC86954 DOI: 10.1128/mcb.21.9.3192-3205.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alterations in the expression of integrin receptors for extracellular matrix (ECM) proteins are strongly associated with the acquisition of invasive and/or metastatic properties by human cancer cells. Despite this, comparatively little is known of the biochemical mechanisms that regulate the expression of integrin genes in cells. Here we demonstrate that the Ras-activated Raf-MEK-extracellular signal-regulated kinase (ERK) signaling pathway can specifically control the expression of individual integrin subunits in a variety of human and mouse cell lines. Pharmacological inhibition of MEK1 in a number of human melanoma and pancreatic carcinoma cell lines led to reduced cell surface expression of alpha6- and beta3-integrin. Consistent with this, conditional activation of the Raf-MEK-ERK pathway in NIH 3T3 cells led to a 5 to 20-fold induction of cell surface alpha6- and beta3-integrin expression. Induced beta3-integrin was expressed on the cell surface as a heterodimer with alphav-integrin; however, the overall level of alphav-integrin expression was not altered by Ras or Raf. Raf-induced beta3-integrin was observed in primary and established mouse fibroblast lines and in mouse and human endothelial cells. Consistent with previous reports of the ability of the Raf-MEK-ERK signaling pathway to induce beta3-integrin gene transcription in human K-562 erythroleukemia cells, Raf activation in NIH 3T3 cells led to elevated beta3-integrin mRNA. However, unlike immediate-early Raf targets such as heparin binding epidermal growth factor and Mdm2, beta3-integrin mRNA was induced by Raf in a manner that was cycloheximide sensitive. Surprisingly, activation of the Raf-MEK-ERK signaling pathway by growth factors and mitogens had little or no effect on beta3-integrin expression, suggesting that the expression of this gene requires sustained activation of this signaling pathway. In addition, despite the robust induction of cell surface alphavbeta3-integrin expression by Raf in NIH 3T3 cells, such cells display decreased spreading and adhesion, with a loss of focal adhesions and actin stress fibers. These data suggest that oncogene-induced alterations in integrin gene expression may participate in the changes in cell adhesion and migration that accompany the process of oncogenic transformation.
Collapse
Affiliation(s)
- D Woods
- Cancer Research Institute and Department of Cellular and Molecular Pharmacology, San Francisco, California 94115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van't Hof W, Resh MD. Dual fatty acylation of p59(Fyn) is required for association with the T cell receptor zeta chain through phosphotyrosine-Src homology domain-2 interactions. J Biophys Biochem Cytol 1999; 145:377-89. [PMID: 10209031 PMCID: PMC2133112 DOI: 10.1083/jcb.145.2.377] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The first 10 residues within the Src homology domain (SH)-4 domain of the Src family kinase Fyn are required for binding to the immune receptor tyrosine-based activation motif (ITAM) of T cell receptor (TCR) subunits. Recently, mutation of glycine 2, cysteine 3, and lysines 7 and 9 was shown to block binding of Fyn to TCR zeta chain ITAMs, prompting the designation of these residues as an ITAM recognition motif (Gauen, L.K.T., M.E. Linder, and A.S. Shaw. 1996. J. Cell Biol. 133:1007-1015). Here we show that these residues do not mediate direct interactions with TCR ITAMs, but rather are required for efficient myristoylation and palmitoylation of Fyn. Specifically, coexpression of a K7,9A-Fyn mutant with N-myristoyltransferase restored myristoylation, membrane binding, and association with the cytoplasmic tail of TCR zeta fused to CD8. Conversely, treatment of cells with 2-hydroxymyristate, a myristoylation inhibitor, blocked association of wild-type Fyn with zeta. The Fyn NH2 terminus was necessary but not sufficient for interaction with zeta and both Fyn kinase and SH2 domains were required, directing phosphorylation of zeta ITAM tyrosines and binding to zeta ITAM phosphotyrosines. Fyn/zeta interaction was sensitive to octylglucoside and filipin, agents that disrupt membrane rafts. Moreover, a plasma membrane bound, farnesylated Fyn construct, G2A,C3S-FynKRas, was not enriched in the detergent insoluble fraction and did not associate with zeta. We conclude that the Fyn SH4 domain provides the signals for fatty acylation and specific plasma membrane localization, stabilizing the interactions between the Fyn SH2 domain and phosphotyrosines in TCR zeta chain ITAMs.
Collapse
Affiliation(s)
- W van't Hof
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | |
Collapse
|
13
|
Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol 1999; 73:2052-7. [PMID: 9971786 PMCID: PMC104448 DOI: 10.1128/jvi.73.3.2052-2057.1999] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During the life cycle of hepatitis B virus (HBV), the large envelope protein (L) plays a pivotal role. Indeed, this polypeptide is essential for viral assembly and probably for the infection process. By performing mutagenesis experiments, we have previously excluded a putative involvement of the pre-S2 domain of the L protein in viral infectivity. In the present study, we have evaluated the role of the pre-S1 region in HBV infection. For this purpose, 21 mutants of the L protein were created. The entire pre-S1 domain was covered by contiguous deletions of 5 amino acids. First, after transfection into HepG2 cells, the efficient expression of both glycosylated and unglycosylated L mutant proteins was verified. The secretion rate of envelope proteins was modified positively or negatively by deletions, indicating that the pre-S1 domain contains several regulating sequences able to influence the surface protein secretion. The ability of mutant proteins to support the production of virions was then studied. Only the four C-terminal deletions, covering the 17 amino acids suspected to interact with the cytoplasmic nucleocapsids, inhibited virion release. Finally, the presence of the modified pre-S1 domain at the external side of all secreted virions was confirmed, and their infectivity was assayed on normal human hepatocytes in primary culture. Only a short sequence including amino acids 78 to 87 tolerates internal deletions without affecting viral infectivity. These results confirm the involvement of the L protein in the infection step and demonstrate that the sequence between amino acids 3 and 77 is involved in this process.
Collapse
Affiliation(s)
- J Le Seyec
- Unité de Recherches Hépatologiques U 49, Institut National de la Santé et de la Recherche Médicale, Hôpital de Pontchaillou, 35033 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Aziz N, Cherwinski H, McMahon M. Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol 1999; 19:1101-15. [PMID: 9891045 PMCID: PMC116040 DOI: 10.1128/mcb.19.2.1101] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ras-activated signal transduction pathways are implicated in the control of cell proliferation, differentiation, apoptosis, and tumorigenesis, but the molecular mechanisms mediating these diverse functions have yet to be fully elucidated. Conditionally active forms of Raf, v-Src, and MEK1 were used to identify changes in gene expression that participate in oncogenic transformation, as well as in normal growth control. Activation of Raf, v-Src, and MEK1 led to induced expression of c-Myc and cyclin D1. Induction of c-Myc mRNA by Raf was an immediate-early response, whereas the induction of cyclin D1 mRNA was delayed and inhibited by cycloheximide. Raf activation also resulted in the induction of an established c-Myc target gene, ornithine decarboxylase (ODC). ODC induction by Raf was mediated, in part, by tandem E-boxes contained in the first intron of the gene. Activation of the human colony-stimulating factor 1 (CSF-1) receptor in NIH 3T3 cells leads to activation of the mitogen-activated protein (MAP) kinase pathway and induced expression of c-Fos, c-Myc, and cyclin D1, leading to a potent mitogenic response. By contrast, a mutated form of this receptor fails to activate the MAP kinases or induce c-Myc and cyclin D1 expression and fails to elicit a mitogenic response. The biological significance of c-Myc and cyclin D1 induction by Raf and v-Src was confirmed by the demonstration that both of these protein kinases complemented the signaling and mitogenic defects of cells expressing this mutated form of the human CSF-1 receptor. Furthermore, the induction of c-Myc and cyclin D1 by oncogenes and growth factors was inhibited by PD098059, a specific MAP kinase kinase (MEK) inhibitor. These data suggest that the Raf/MEK/MAP kinase pathway plays an important role in the regulation of c-Myc and cyclin D1 expression in NIH 3T3 cells. The ability of oncogenes such as Raf and v-Src to regulate the expression of these proteins reveals new lines of communication between cytosolic signal transducers and the cell cycle machinery.
Collapse
Affiliation(s)
- N Aziz
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304-1104, USA
| | | | | |
Collapse
|
15
|
Tognon CE, Kirk HE, Passmore LA, Whitehead IP, Der CJ, Kay RJ. Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol Cell Biol 1998; 18:6995-7008. [PMID: 9819387 PMCID: PMC109282 DOI: 10.1128/mcb.18.12.6995] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1998] [Accepted: 08/21/1998] [Indexed: 12/31/2022] Open
Abstract
As part of a cDNA library screen for clones that induce transformation of NIH 3T3 fibroblasts, we have isolated a cDNA encoding the murine homolog of the guanine nucleotide exchange factor RasGRP. A point mutation predicted to prevent interaction with Ras abolished the ability of murine RasGRP (mRasGRP) to transform fibroblasts and to activate mitogen-activated protein kinases (MAP kinases). MAP kinase activation via mRasGRP was enhanced by coexpression of H-, K-, and N-Ras and was partially suppressed by coexpression of dominant negative forms of H- and K-Ras. The C terminus of mRasGRP contains a pair of EF hands and a C1 domain which is very similar to the phorbol ester- and diacylglycerol-binding C1 domains of protein kinase Cs. The EF hands could be deleted without affecting the ability of mRasGRP to transform NIH 3T3 cells. In contrast, deletion of the C1 domain or an adjacent cluster of basic amino acids eliminated the transforming activity of mRasGRP. Transformation and MAP kinase activation via mRasGRP were restored if the deleted C1 domain was replaced either by a membrane-localizing prenylation signal or by a diacylglycerol- and phorbol ester-binding C1 domain of protein kinase C. The transforming activity of mRasGRP could be regulated by phorbol ester when serum concentrations were low, and this effect of phorbol ester was dependent on the C1 domain of mRasGRP. The C1 domain could also confer phorbol myristate acetate-regulated transforming activity on a prenylation-defective mutant of K-Ras. The C1 domain mediated the translocation of mRasGRP to cell membranes in response to either phorbol ester or serum stimulation. These results suggest that the primary mechanism of activation of mRasGRP in fibroblasts is through its recruitment to diacylglycerol-enriched membranes. mRasGRP is expressed in lymphoid tissues and the brain, as well as in some lymphoid cell lines. In these cells, RasGRP has the potential to serve as a direct link between receptors which stimulate diacylglycerol-generating phospholipase Cs and the activation of Ras.
Collapse
Affiliation(s)
- C E Tognon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6
| | | | | | | | | | | |
Collapse
|
16
|
Graef IA, Holsinger LJ, Diver S, Schreiber SL, Crabtree GR. Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70. EMBO J 1997; 16:5618-28. [PMID: 9312021 PMCID: PMC1170194 DOI: 10.1093/emboj/16.18.5618] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Signaling by the antigen receptor of T lymphocytes initiates different developmental transitions, each of which require the tyrosine kinase ZAP70. Previous studies with agonist and antagonist peptides have indicated that ZAP70 might respond differently to different structures of the TCR-CD3 complex induced by bound peptides. The roles of membrane proximity and orientation in activation of ZAP70 signaling were explored using synthetic ligands and their binding proteins designed to produce different architectures of membrane-bound complexes composed of ZAP70 fusion proteins. Transient membrane recruitment of physiological levels of ZAP70 with the membrane-permeable synthetic ligand FK1012A leads to rapid phosphorylation of ZAP70 and activation of the ras/MAPK and Ca2+/calcineurin signaling pathways. ZAP70 SH2 domains are not required for signaling when the kinase is artifically recruited to the membrane, indicating that the SH2 domains function solely in recruitment and not in kinase activation. Using additional synthetic ligands and their binding proteins that recruit ZAP70 equally well but orient it at the cell membrane in different ways, we define a requirement for a specific presentation of ZAP70 to its downstream targets. These results provide a mechanism by which ZAP70, bound to the phosphorylated receptor, could discriminate between conformational changes induced by the binding of different MHC-peptide complexes to the antigen receptor and introduce an approach to exploring the role of spatial orientation of signaling complexes in living cells.
Collapse
Affiliation(s)
- I A Graef
- Department of Developmental Biology, Howard Hughes Institute at Stanford University, 300 Pasteur Drive, Beckman Center Room B211, Stanford University Medical School, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
17
|
Soneoka Y, Kingsman SM, Kingsman AJ. Mutagenesis analysis of the murine leukemia virus matrix protein: identification of regions important for membrane localization and intracellular transport. J Virol 1997; 71:5549-59. [PMID: 9188629 PMCID: PMC191797 DOI: 10.1128/jvi.71.7.5549-5559.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have created two sets of substitution mutations in the Moloney murine leukemia virus (Mo-MuLV) matrix protein in order to identify domains involved in association with the plasma membrane and in incorporation of the viral envelope glycoproteins into virus particles. The first set of mutations was targeted at putative membrane-associating regions similar to those of the human immunodeficiency virus type 1 matrix protein, which include a polybasic region at the N terminus of the Mo-MuLV matrix protein and two regions predicted to form beta strands. The second set of mutations was created within hydrophobic residues to test for the production of virus particles lacking envelope proteins, with the speculation of an involvement of the membrane-spanning region of the envelope protein in incorporation into virus particles. We have found that mutation of the N-terminal polybasic region redirected virus assembly to the cytoplasm, and we show that tryptophan residues may also play a significant role in the intracellular transport of the matrix protein. In total, 21 mutants of the Mo-MuLV matrix protein were produced, but we did not observe any mutant virus particles lacking the envelope glycoproteins, suggesting that a direct interaction between the Mo-MuLV matrix protein and envelope proteins either may not exist or may occur through multiple redundant interactions.
Collapse
Affiliation(s)
- Y Soneoka
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
18
|
Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996; 271:29182-90. [PMID: 8910575 PMCID: PMC6687395 DOI: 10.1074/jbc.271.46.29182] [Citation(s) in RCA: 612] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Caveolae are plasma membrane specializations present in most cell types. Caveolin, a 22-kDa integral membrane protein, is a principal structural and regulatory component of caveolae membranes. Previous studies have demonstrated that caveolin co-purifies with lipid modified signaling molecules, including Galpha subunits, H-Ras, c-Src, and other related Src family tyrosine kinases. In addition, it has been shown that caveolin interacts directly with Galpha subunits and H-Ras, preferentially recognizing the inactive conformation of these molecules. However, it is not known whether caveolin interacts directly or indirectly with Src family tyrosine kinases. Here, we examine the structural and functional interaction of caveolin with Src family tyrosine kinases. Caveolin was recombinantly expressed as a glutathione S-transferase fusion. Using an established in vitro binding assay, we find that caveolin interacts with wild-type Src (c-Src) but does not form a stable complex with mutationally activated Src (v-Src). Thus, it appears that caveolin prefers the inactive conformation of Src. Deletion mutagenesis indicates that the Src-interacting domain of caveolin is located within residues 82-101, a cytosolic membrane-proximal region of caveolin. A caveolin peptide derived from this region (residues 82-101) functionally suppressed the auto-activation of purified recombinant c-Src tyrosine kinase and Fyn, a related Src family tyrosine kinase. We further analyzed the effect of caveolin on c-Src activity in vivo by transiently co-expressing full-length caveolin and c-Src tyrosine kinase in 293T cells. Co-expression with caveolin dramatically suppressed the tyrosine kinase activity of c-Src as measured via an immune complex kinase assay. Thus, it appears that caveolin structurally and functionally interacts with wild-type c-Src via caveolin residues 82-101. Besides interacting with Src family kinases, this cytosolic caveolin domain (residues 82-101) has the following unique features. First, it is required to form multivalent homo-oligomers of caveolin. Second, it interacts with G-protein alpha-subunits and down-regulates their GTPase activity. Third, it binds to wild-type H-Ras. Fourth, it is membrane-proximal, suggesting that it may be involved in other potential protein-protein interactions. Thus, we have termed this 20-amino acid stretch of caveolin residues the caveolin scaffolding domain.
Collapse
Affiliation(s)
- S Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142-1479, USA.
| | | | | |
Collapse
|
19
|
Timson Gauen LK, Linder ME, Shaw AS. Multiple features of the p59fyn src homology 4 domain define a motif for immune-receptor tyrosine-based activation motif (ITAM) binding and for plasma membrane localization. J Cell Biol 1996; 133:1007-15. [PMID: 8655574 PMCID: PMC2120852 DOI: 10.1083/jcb.133.5.1007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The src family tyrosine kinase p59fyn binds to a signaling motif contained in subunits of the TCR known as the immune-receptor tyrosine-based activation motif (ITAM). This is a specific property of p59fyn because two related src family kinases, p60src and p56lck, do not bind to ITAMs. In this study, we identify the residues of p59fyn that are required for binding to ITAMs. We previously demonstrated that the first 10 residues of p59fyn direct its association with the ITAM. Because this region of src family kinases also directs their fatty acylation and membrane association (Resh, M.D. 1993, Biochim. Biophys. Acta 1155:307-322; Resh, M.D. 1994. Cell. 76:411-413), we determined whether fatty acylation and membrane association of p59fyn correlates with its ability to bind ITAMs. Four residues (Gly2, Cys3, Lys7, and Lys9) were required for efficient binding of p59fyn to the TCR. Interestingly, the same four residues are present in p56lyn, the other src family tyrosine kinase known to bind to the ITAM, suggesting that this set of residues constitutes an ITAM recognition motif. These residues were also required for efficient fatty acylation (myristoylation at Gly2 and palmitoylation at Cys3), and plasma membrane targeting of p59fyn. Thus, the signals that direct p59fyn fatty acylation and plasma membrane targeting also direct its specific ability to bind to TCR proteins.
Collapse
Affiliation(s)
- L K Timson Gauen
- Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
20
|
Robbins SM, Quintrell NA, Bishop JM. Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol 1995; 15:3507-15. [PMID: 7791757 PMCID: PMC230587 DOI: 10.1128/mcb.15.7.3507] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human proto-oncogene HCK encodes two versions of a protein-tyrosine kinase, with molecular weights of 59,000 (p59hck) and 61,000 (p61hck). The two proteins arise from a single mRNA by alternative initiations of translation. In this study, we explored the functions of these proteins by determining their locations within cells and by characterizing lipid modifications required for the proteins to reach those locations. We found that p59hck is entirely associated with cellular membranes, including the organelles known as caveolae; in contrast, only a portion of p61hck is situated on membranes, and none is detectable in preparations of caveolae. These distinctions can be attributed to differential modification of the two HCK proteins with fatty acids. Both proteins are at least in part myristoylated, p59hck more so than p61hck. In addition, however, p59hck is palmitoylated on cysteine 3 in the protein. Palmitoylation of the protein requires prior myristoylation and, in turn, is required for targeting to caveolae. These findings are in accord with recent reports for other members of the SRC family of protein-tyrosine kinases. Taken together, the results suggest that HCK and several of its relatives may participate in the functions of caveolae, which apparently include the transduction of signals across the plasma membrane to the interior of the cell.
Collapse
Affiliation(s)
- S M Robbins
- Department of Microbiology, University of California, San Francisco 94143-0552, USA
| | | | | |
Collapse
|
21
|
Chazal N, Gay B, Carrière C, Tournier J, Boulanger P. Human immunodeficiency virus type 1 MA deletion mutants expressed in baculovirus-infected cells: cis and trans effects on the Gag precursor assembly pathway. J Virol 1995; 69:365-75. [PMID: 7983731 PMCID: PMC188584 DOI: 10.1128/jvi.69.1.365-375.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The role of the matrix protein (MA) of human immunodeficiency virus type 1 in intracellular transport, assembly, and extracellular release of Gag polyprotein precursor (Pr55gag) was investigated by deletion mutagenesis of the MA domain of recombinant Gag precursor expressed in baculovirus-infected cells. In addition, three carboxy-terminally truncated forms of the Gag precursor, representing mainly the MA, were constructed. One corresponded to an MA with a deletion of its last 12 residues (amb120), while the others corresponded to the entire MA with an additional sequence from the N-terminal portion of the CA (amb143 and och180). Deletions within the MA central region (residues 41 to 78) appeared to be detrimental to Gag particle assembly and budding from the plasma membrane. A slightly narrower domain, between amino acids 41 and 68, was found to be critical for soluble Gag secretion. Mutations which totally or partially deleted one or the other of the two polybasic signals altered the transport of N-myristylated Gag precursor to the plasma membrane. In coexpression with wild-type Gag precursor, a discrete trans-dominant negative effect on wild-type Gag particle assembly and release was observed with deletion mutants located in the central MA region (residues 41 to 78). A more significant negative effect was obtained with the two recombinant proteins of amb120 and och180, which redirected the Gag particle assembly pathway from the plasma membrane compartment to intracellular vesicles (amb120) and to the nuclear compartment (och180).
Collapse
Affiliation(s)
- N Chazal
- Laboratoire de Virologie et Pathogénèse Moléculaires, CNRS URA-1487, Faculté de Médecine, Montpellier, France
| | | | | | | | | |
Collapse
|
22
|
Sigal CT, Zhou W, Buser CA, McLaughlin S, Resh MD. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc Natl Acad Sci U S A 1994; 91:12253-7. [PMID: 7527558 PMCID: PMC45415 DOI: 10.1073/pnas.91.25.12253] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Membrane targeting of pp60src (Src) is mediated by its myristoylated amino terminus. We demonstrate that, in addition to myristate, six basic residues in the amino terminus are essential for high-affinity binding to the lipid bilayer via electrostatic interaction with acidic phospholipids. Specifically, c-Src was shown to bind 2500-fold more strongly to vesicles composed of the physiological ratio of 2:1 phosphatidylcholine (PC)/phosphatidylserine (PS) than to neutral PC bilayer vesicles. The apparent Kd for binding of c-Src to the PC/PS bilayer was 6 x 10(-7) M. This interaction is sufficiently strong to account for c-Src membrane targeting. Mutants of c-Src in which the amino-terminal basic residues were replaced by neutral asparagine residues exhibited binding isotherms approaching that of wild-type binding to neutral bilayers (apparent Kd of 2 x 10(-3) M). The transforming v-Src and activated c-Src (Y527F) proteins also bound more strongly to PC/PS bilayers (apparent Kd of approximately 1 x 10(-5) M) than to neutral PC bilayers. In vivo experiments with Src mutants confirmed the role of positive charge in mediating membrane binding and cellular transformation.
Collapse
Affiliation(s)
- C T Sigal
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | | | |
Collapse
|
23
|
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase known to be highly expressed in hematopoietic cells. To investigate fps/fes biological function, an activating mutation was introduced into the human fps/fes gene which directs amino-terminal myristylation of the Fps/Fes protein. This mutant, myristylated protein induced transformation of Rat-2 fibroblasts. The mutant fps/fes allele was incorporated into the mouse germ line and was found to be appropriately expressed in transgenic mice, in a tissue-specific pattern indistinguishable from that of the endogenous mouse gene. These mice displayed widespread hypervascularity, progressing to multifocal hemangiomas. High levels of both the transgenic human and endogenous murine fps/fes transcripts were detected in vascular tumors by using RNase protection, and fps/fes transcripts were localized to endothelial cells of both the vascular tumors and normal blood vessels by in situ RNA hybridization. Primary human umbilical vein endothelial cultures were also shown to express fps/fes transcripts and the Fps/Fes tyrosine kinase. These results indicate that fps/fes expression is intrinsic to cells of the vascular endothelial lineage and suggest a direct role of the Fps/Fes protein-tyrosine kinase in the regulation of angiogenesis.
Collapse
|
24
|
Greer P, Haigh J, Mbamalu G, Khoo W, Bernstein A, Pawson T. The Fps/Fes protein-tyrosine kinase promotes angiogenesis in transgenic mice. Mol Cell Biol 1994; 14:6755-63. [PMID: 7523858 PMCID: PMC359206 DOI: 10.1128/mcb.14.10.6755-6763.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase known to be highly expressed in hematopoietic cells. To investigate fps/fes biological function, an activating mutation was introduced into the human fps/fes gene which directs amino-terminal myristylation of the Fps/Fes protein. This mutant, myristylated protein induced transformation of Rat-2 fibroblasts. The mutant fps/fes allele was incorporated into the mouse germ line and was found to be appropriately expressed in transgenic mice, in a tissue-specific pattern indistinguishable from that of the endogenous mouse gene. These mice displayed widespread hypervascularity, progressing to multifocal hemangiomas. High levels of both the transgenic human and endogenous murine fps/fes transcripts were detected in vascular tumors by using RNase protection, and fps/fes transcripts were localized to endothelial cells of both the vascular tumors and normal blood vessels by in situ RNA hybridization. Primary human umbilical vein endothelial cultures were also shown to express fps/fes transcripts and the Fps/Fes tyrosine kinase. These results indicate that fps/fes expression is intrinsic to cells of the vascular endothelial lineage and suggest a direct role of the Fps/Fes protein-tyrosine kinase in the regulation of angiogenesis.
Collapse
Affiliation(s)
- P Greer
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Biophys Biochem Cytol 1994; 126:353-63. [PMID: 7518463 PMCID: PMC2200018 DOI: 10.1083/jcb.126.2.353] [Citation(s) in RCA: 324] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent work has demonstrated that p56lck, a member of the Src family of protein tyrosine kinases (PTKs), is modified by palmitoylation of a cysteine residue(s) within the first 10 amino acids of the protein (in addition to amino-terminal myristoylation that is a common modification of the Src family of PTKs). This is now extended to three other members of this family by showing incorporation of [3H]palmitate into p59fyn, p55fgr, and p56hck, but not into p60src. The [3H]palmitate was released by treatment with neutral hydroxylamine, indicating a thioester linkage to the protein. Individual replacement of the two cysteine residues within the first 10 amino acids of p59fyn and p56lck with serine indicated that Cys3 was the major determinant of palmitoylation, as well as association of the PTK with glycosyl-phosphatidylinositol-anchored proteins. Introduction of Cys3 into p60src led to its palmitoylation. p59fyn but not p60src partitioned into Triton-insoluble complexes that contain caveolae, microinvaginations of the plasma membrane. Mapping of the requirement for partitioning into caveolae demonstrated that the amino-terminal sequence Met-Gly-Cys is both necessary and sufficient within the context of a Src family PTK to confer localization into caveolae. Palmitoylation of this motif in p59fyn also modestly increased its overall avidity for membranes. These results highlight the role of the amino-terminal motif Met-Gly-Cys in determining the structure and properties of members of the Src family of PTKs.
Collapse
Affiliation(s)
- A M Shenoy-Scaria
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
26
|
Dohlman HG, Goldsmith P, Spiegel AM, Thorner J. Pheromone action regulates G-protein alpha-subunit myristoylation in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1993; 90:9688-92. [PMID: 8415763 PMCID: PMC47635 DOI: 10.1073/pnas.90.20.9688] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Myristic acid (C14:0) is added to the N-terminal glycine residue of the alpha subunits of certain receptor-coupled guanine nucleotide-binding regulatory proteins (G proteins). The G alpha subunit (GPA1 gene product) coupled to yeast pheromone receptors exists as a pool of both myristoylated and unmyristolyated species. After treatment of MATa cells with alpha factor, the myristoylated form of Gpa1p increases dramatically, and the unmyristoylated form decreases concomitantly. This pheromone-stimulated shift depends on the function of STE2 (alpha-factor receptor), STE11 (a protein kinase in the response pathway), and NMT1 (myristoyl-CoA:protein N-myristoyltransferase) genes and uses the existing pool of fatty acids (is not blocked by cerulenin). Myristoylated Gpa1p persists long after pheromone is removed. Because myristoylation is essential for proper G alpha-G beta gamma association and receptor coupling, pheromone-dependent stimulation of Gpa1p myristoylation may be an important contributing factor in adaptation after signal transmission.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
27
|
Shugars DC, Smith MS, Glueck DH, Nantermet PV, Seillier-Moiseiwitsch F, Swanstrom R. Analysis of human immunodeficiency virus type 1 nef gene sequences present in vivo. J Virol 1993; 67:4639-50. [PMID: 8043040 PMCID: PMC237849 DOI: 10.1128/jvi.67.8.4639-4650.1993] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nef genes of the human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) and the related simian immunodeficiency viruses (SIVs) encode a protein (Nef) whose role in virus replication and cytopathicity remains uncertain. As an attempt to elucidate the function of nef, we characterized the nucleotide and corresponding protein sequences of naturally occurring nef genes obtained from several HIV-1-infected individuals. A consensus Nef sequence was derived and used to identify several features that were highly conserved among the Nef sequences. These features included a nearly invariant myristylation signal, regions of sequence polymorphism and variable duplication, a region with an acidic charge, a (Pxx)4 repeat sequence, and a potential protein kinase C phosphorylation site. Clustering of premature stop codons at position 124 was noted in 6 of the 54 Nef sequences. Further analysis revealed four stretches of residues that were highly conserved not only among the patient-derived HIV-1 Nef sequences, but also among the Nef sequences of HIV-2 and the SIVs, suggesting that Nef proteins expressed by these retroviruses are functionally equivalent. The "Nef-defining" sequences were used to evaluate the sequence alignments of known proteins reported to share sequence similarity with Nef sequences and to conduct additional computer-based searches for similar protein sequences. A gene encoding the consensus Nef sequence was also generated. This gene encodes a full-length Nef protein that should be a valuable tool in further studies of Nef function.
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/blood
- Acquired Immunodeficiency Syndrome/microbiology
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Viral/blood
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Databases, Factual
- Gene Products, nef/analysis
- Gene Products, nef/biosynthesis
- Gene Products, nef/genetics
- Genes, nef
- Genetic Vectors
- HIV-1/genetics
- HIV-1/isolation & purification
- HIV-1/metabolism
- HeLa Cells
- Humans
- Immunoblotting
- Molecular Sequence Data
- Moloney murine leukemia virus/genetics
- Oligodeoxyribonucleotides
- Polymerase Chain Reaction/methods
- Proviruses/genetics
- Proviruses/isolation & purification
- Proviruses/metabolism
- Sequence Homology, Amino Acid
- Transduction, Genetic
- Transfection
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- D C Shugars
- Department of Microbiology and Immunology, UNC School of Dentistry, Chapel Hill
| | | | | | | | | | | |
Collapse
|
28
|
Heyeck SD, Berg LJ. Developmental regulation of a murine T-cell-specific tyrosine kinase gene, Tsk. Proc Natl Acad Sci U S A 1993; 90:669-73. [PMID: 8421704 PMCID: PMC45725 DOI: 10.1073/pnas.90.2.669] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein-tyrosine kinases have been implicated in signal transduction in T lymphocytes after stimulation of many cell-surface molecules, including the T-cell antigen receptor, CD4, CD8, CD2, CD5, and CD28. Yet the identities of many of these tyrosine kinases remain unknown. We have isolated a murine tyrosine kinase gene, called Tsk for T-cell-specific kinase, that appears to be exclusively expressed in T lymphocytes. The Tsk cDNA clone encodes a polypeptide of 70 kDa, which is similar in sequence to both the src and abl families of tyrosine kinases. Sequence comparisons also indicate that Tsk contains one src-homology region 2 domain and one src-homology 3 domain but lacks the negative regulatory tyrosine (src Tyr-527) common to src-family kinases. In addition, Tsk expression is developmentally regulated. Steady-state Tsk mRNA levels are 5- to 10-fold higher in thymocytes than in peripheral T cells and increase in the thymus during mouse development from neonate to adult. Furthermore, Tsk is expressed in day 14 fetal thymus, suggesting a role for Tsk in early T-lymphocyte differentiation.
Collapse
Affiliation(s)
- S D Heyeck
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
29
|
Silverman L, Resh MD. Lysine residues form an integral component of a novel NH2-terminal membrane targeting motif for myristylated pp60v-src. J Cell Biol 1992; 119:415-25. [PMID: 1400583 PMCID: PMC2289653 DOI: 10.1083/jcb.119.2.415] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Association of pp60v-src with the plasma membrane is fundamental to generation of the transformed phenotype. Although myristylation of pp60v-src is required for interaction with a membrane-bound receptor, the importance of NH2-terminal amino acids in receptor binding has not yet been uncoupled from their role in signaling myristylation. Using chimeric src proteins, peptides identical or related to the NH2 terminus of src, and site-directed mutagenesis, we demonstrate that NH2-terminal lysines in conjunction with myristate are essential for membrane localization. Subsequent to NH2-terminal interaction with the "src receptor," internal regions of the src protein also participate in membrane binding. This novel NH2-terminal motif and internal contact mechanism may direct other members of the src family of tyrosine kinases to their membrane receptors.
Collapse
Affiliation(s)
- L Silverman
- Department of Cell Biology and Genetics, Memorial Sloan-Kettering Cancer, Center, New York 10021
| | | |
Collapse
|
30
|
McGlade J, Cheng A, Pelicci G, Pelicci PG, Pawson T. Shc proteins are phosphorylated and regulated by the v-Src and v-Fps protein-tyrosine kinases. Proc Natl Acad Sci U S A 1992; 89:8869-73. [PMID: 1409579 PMCID: PMC50025 DOI: 10.1073/pnas.89.19.8869] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mammalian shc gene encodes two overlapping proteins of 46 and 52 kDa, each with a C-terminal Src homology 2 (SH2) domain and an N-terminal glycine/proline-rich sequence, that induce malignant transformation when overexpressed in mouse fibroblasts. p46shc, p52shc, and an additional 66-kDa shc gene product become highly tyrosine phosphorylated in Rat-2 cells transformed by the v-src or v-fps oncogene. Experiments using temperature-sensitive v-src and v-fps mutants indicate that Shc tyrosine phosphorylation is rapidly induced upon activation of the v-Src or v-Fps tyrosine kinases. These results suggest that Shc proteins may be directly phosphorylated by the v-Src and v-Fps oncoproteins in vivo. In cells transformed by v-src or v-fps, or in normal cells stimulated with epidermal growth factor, Shc proteins complex with a poorly phosphorylated 23-kDa polypeptide (p23). Activated tyrosine kinases therefore regulate the association of Shc proteins with p23 and may thereby control the stimulation of an Shc-mediated signal transduction pathway. The efficient phosphorylation of Shc proteins and the apparent induction of their p23-binding activity in v-src- and v-fps-transformed cells are consistent with the proposition that the SH2-containing Shc polypeptides are biologically relevant substrates of the oncogenic v-Src and v-Fps tyrosine kinases.
Collapse
Affiliation(s)
- J McGlade
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
31
|
Pietrini G, Aggujaro D, Carrera P, Malyszko J, Vitale A, Borgese N. A single mRNA, transcribed from an alternative, erythroid-specific, promoter, codes for two non-myristylated forms of NADH-cytochrome b5 reductase. J Cell Biol 1992; 117:975-86. [PMID: 1577871 PMCID: PMC2289487 DOI: 10.1083/jcb.117.5.975] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two forms of NADH-cytochrome b5 reductase are produced from one gene: a myristylated membrane-bound enzyme, expressed in all tissues, and a soluble, erythrocyte-specific, isoform. The two forms are identical in a large cytoplasmic domain (Mr approximately 30,000) and differ at the NH2-terminus, which, in the membrane form, is responsible for binding to the bilayer, and which contains the myristylation consensus sequence and an additional 14 uncharged amino acids. To investigate how the two differently targeted forms of the reductase are produced, we cloned a reductase transcript from reticulocytes, and studied its relationship to the previously cloned liver cDNA. The reticulocyte transcript differs from the liver transcript in the 5' non-coding portion and at the beginning of the coding portion, where the seven codons specifying the myristoylation consensus are replaced by a reticulocyte-specific sequence which codes for 13 non-charged amino acids. Analysis of genomic reductase clones indicated that the ubiquitous transcript is generated from an upstream "housekeeping" type promoter, while the reticulocyte transcript originates from a downstream, erythroid-specific, promoter. In vitro translation of the reticulocyte-specific mRNA generated two products: a minor one originating from the first AUG, and a major one starting from a downstream AUG, as indicated by mutational analysis. Both the AUGs used as initiation codons were in an unfavorable sequence context. The major, lower relative molecular mass product behaved as a soluble protein, while the NH2-terminally extended minor product interacted with microsomes in vitro. The generation of soluble reductase from a downstream AUG was confirmed in vivo, in Xenopus oocytes. Thus, differently localized products, with respect both to tissues and to subcellular compartments, are generated from the same gene by a combination of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- G Pietrini
- C.N.R. Center for Cytopharmacology, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol Cell Biol 1992. [PMID: 1549129 DOI: 10.1128/mcb.12.4.1835] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The amino-termina, noncatalytic half of Src contains two domains, designated the Src homology 2 (SH2) and Src homology 3 (SH3) domains, that are highly conserved among members of the Src family of tyrosine kinases. The SH2 domain (which can be further divided into the B and C homology boxes) and the SH3 domain (also referred to as the A box) are also found in several proteins otherwise unrelated to protein tyrosine kinases. It is believed that these domains are important for directing specific protein-protein interactions necessary for the proper functioning of Src. To determine the importance of the SH2 and SH3 domains in regulating the functions of c-Src, we evaluated mutants of c-Src lacking the A box (residues 88 to 137), the B box (residues 148 to 187) or the C box (residues 220 to 231). Each of these deletions caused a 14- to 30-fold increase in the in vitro level of kinase activity of c-Src. Chicken embryo fibroblasts expressing the deletion mutants displayed a transformed cell morphology, formed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Src substrates p36, p85, p120, p125, the GTPase-activating protein (GAP), and several GAP-associated proteins were phosphorylated on tyrosine in cells expressing the A, B, or C box deletion mutant. p110 was highly phosphorylated in cells expressing the C box mutant, was weakly phosphorylated in cells expressing the B box mutant, and was not phosphorylated in cells expressing the A box mutant. Expression of the mutant proteins caused a reorganization of the actin cytoskeleton similar to that seen in v-Src-transformed cells. In addition, deletion of the A, B, or C box did not diminish the transforming or enzymatic activity of an activated variant of c-Src, E378G. These data indicate that deletion of the A, B, or C homology box causes an activation of the catalytic and transforming potential of c-Src and that while these mutations caused subtle differences in substrate phosphorylation, the homology boxes are not required for many of the phenotypic changes associated with transformation by Src.
Collapse
|
33
|
Seidel-Dugan C, Meyer BE, Thomas SM, Brugge JS. Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol Cell Biol 1992; 12:1835-45. [PMID: 1549129 PMCID: PMC369627 DOI: 10.1128/mcb.12.4.1835-1845.1992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amino-termina, noncatalytic half of Src contains two domains, designated the Src homology 2 (SH2) and Src homology 3 (SH3) domains, that are highly conserved among members of the Src family of tyrosine kinases. The SH2 domain (which can be further divided into the B and C homology boxes) and the SH3 domain (also referred to as the A box) are also found in several proteins otherwise unrelated to protein tyrosine kinases. It is believed that these domains are important for directing specific protein-protein interactions necessary for the proper functioning of Src. To determine the importance of the SH2 and SH3 domains in regulating the functions of c-Src, we evaluated mutants of c-Src lacking the A box (residues 88 to 137), the B box (residues 148 to 187) or the C box (residues 220 to 231). Each of these deletions caused a 14- to 30-fold increase in the in vitro level of kinase activity of c-Src. Chicken embryo fibroblasts expressing the deletion mutants displayed a transformed cell morphology, formed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Src substrates p36, p85, p120, p125, the GTPase-activating protein (GAP), and several GAP-associated proteins were phosphorylated on tyrosine in cells expressing the A, B, or C box deletion mutant. p110 was highly phosphorylated in cells expressing the C box mutant, was weakly phosphorylated in cells expressing the B box mutant, and was not phosphorylated in cells expressing the A box mutant. Expression of the mutant proteins caused a reorganization of the actin cytoskeleton similar to that seen in v-Src-transformed cells. In addition, deletion of the A, B, or C box did not diminish the transforming or enzymatic activity of an activated variant of c-Src, E378G. These data indicate that deletion of the A, B, or C homology box causes an activation of the catalytic and transforming potential of c-Src and that while these mutations caused subtle differences in substrate phosphorylation, the homology boxes are not required for many of the phenotypic changes associated with transformation by Src.
Collapse
Affiliation(s)
- C Seidel-Dugan
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
34
|
Wagner R, Fliessbach H, Wanner G, Motz M, Niedrig M, Deby G, von Brunn A, Wolf H. Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine. Arch Virol 1992; 127:117-37. [PMID: 1456888 DOI: 10.1007/bf01309579] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antigens in a particulate conformation were shown to be highly immunogenic in mammals. For this reason, the particle forming capacity of derivatives of the HIV-1 group specific core antigen p55 gag was assayed and compared dependent on various expression systems: recombinant bacteria, vaccinia- and baculoviruses were established encoding the entire core protein p55 either in its authentic sequence or lacking the myristylation consensus signal. Moreover, p55 gag was expressed in combination with the protease (p55-PR) or with the entire polymerase (p55-pol), respectively. Budding of 100-160 nm p55 core particles, resembling immature HIV-virions, was observed in the eucaryotic expression systems only. In comparison to the vaccinia virus driven expression of p55 in mammalian cells, considerably higher yields of particulate core antigen were obtained by infection of Spodoptera frugiperda (Sf9) insect cells with the recombinant Autographa californica nuclear polyhedrosis (AcMNPV) baculovirus. Mutation of the NH2-terminal myristylation signal sequence prevented budding of the immature core particles. Expression of the HIV p55-PR gene construct by recombinant baculovirus resulted in complete processing of the p55 gag precursor molecule in this system. The introduction of an artificial frameshift near the natural frameshift site resulted in constitutive expression of the viral protease and complete processing of p55, both in Escherichia coli and in vaccinia virus infected cells. Interestingly, significant processing of p55 resembling that of HIV infected H9 cells could also be achieved in the vaccinia system by fusing the entire pol gene to the gag gene. Moreover, processing was not found to be dependent on amino-terminal myristylation of the gag procursor molecule, which is in contrast to observations with type C and type D retrovirus. However, complete processing of p55 into p24, p17, p9 and p6 abolished particle formation. Purified immature HIV-virus like particles were highly immunogenic in rabbits, leading to a strong humoral immune response after immunization. Empty immature p55 gag particles represent a noninfectious and attractive candidate for a basic vaccine component.
Collapse
Affiliation(s)
- R Wagner
- Max von Pettenkofer Institute, University of Munich, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Phillips WD, Maimone MM, Merlie JP. Mutagenesis of the 43-kD postsynaptic protein defines domains involved in plasma membrane targeting and AChR clustering. J Cell Biol 1991; 115:1713-23. [PMID: 1757470 PMCID: PMC2289204 DOI: 10.1083/jcb.115.6.1713] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The postsynaptic membrane of the neuromuscular junction contains a myristoylated 43-kD protein (43k) that is closely associated with the cytoplasmic face of the nicotinic acetylcholine receptor (AChR)-rich plasma membrane. Previously, we described fibroblast cell lines expressing recombinant AChRs. Transfection of these cell lines with 43k was necessary and sufficient for reorganization of AChR into discrete 43k-rich plasma membrane domains (Phillips, W. D., C. Kopta, P. Blount, P. D. Gardner, J. H. Steinbach, and J. P. Merlie. 1991. Science (Wash. DC). 251:568-570). Here we demonstrate the utility of this expression system for the study of 43k function by site-directed mutagenesis. Substitution of a termination codon for Asp254 produced a truncated (28-kD) protein that associated poorly with the cell membrane. The conversion of Gly2 to Ala2, to preclude NH2-terminal myristoylation, reduced the frequency with which 43k formed plasma membrane domains by threefold, but did not eliminate the aggregation of AChRs at these domains. Since both NH2 and COOH-termini seemed important for association of 43k with the plasma membrane, a deletion mutant was constructed in which the codon Gln15 was fused in-frame to Ile255 to create a 19-kD protein. This mutated protein formed 43k-rich plasma membrane domains at wild-type frequency, but the domains failed to aggregate AChRs, suggesting that the central part of the 43k polypeptide may be involved in AChR aggregation. Our results suggest that membrane association and AChR interactions are separable functions of the 43k molecule.
Collapse
Affiliation(s)
- W D Phillips
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
36
|
The amino-terminal 14 amino acids of v-src can functionally replace the extracellular and transmembrane domains of v-erbB. Mol Cell Biol 1991. [PMID: 1678856 DOI: 10.1128/mcb.11.9.4760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.
Collapse
|
37
|
Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol Cell Biol 1991. [PMID: 1875927 DOI: 10.1128/mcb.11.9.4363] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian hck, a member of the src family of tyrosine kinases, is expressed predominantly in cells of the myeloid and B-lymphoid lineages. Using mutational analysis, we have investigated the molecular basis of two immunoreactive forms of murine hck of 56 and 59 kDa found in numerous hemopoietic cell types. Our results indicate that translation of murine p59hck initiates from a CTG codon located 21 codons 5' of an ATG that is utilized to generate p56hck. We provide evidence that two human hck isoforms are generated by the same mechanism. Subcellular fractionation studies reveal that while p59hck and p56hck are associated with membranes of various murine B-lymphoid and myeloid cell lines, p59hck alone is also located in the cytosol. In contrast to membrane-associated p59hck, which is metabolically labeled with [3H]myristic acid and exhibits amphiphilic properties in Triton X-114 detergent, cytosolic p59hck is hydrophilic, suggesting that it is not acylated. Possible mechanisms are proposed to account for these observations.
Collapse
|
38
|
Lock P, Ralph S, Stanley E, Boulet I, Ramsay R, Dunn AR. Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol Cell Biol 1991; 11:4363-70. [PMID: 1875927 PMCID: PMC361298 DOI: 10.1128/mcb.11.9.4363-4370.1991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian hck, a member of the src family of tyrosine kinases, is expressed predominantly in cells of the myeloid and B-lymphoid lineages. Using mutational analysis, we have investigated the molecular basis of two immunoreactive forms of murine hck of 56 and 59 kDa found in numerous hemopoietic cell types. Our results indicate that translation of murine p59hck initiates from a CTG codon located 21 codons 5' of an ATG that is utilized to generate p56hck. We provide evidence that two human hck isoforms are generated by the same mechanism. Subcellular fractionation studies reveal that while p59hck and p56hck are associated with membranes of various murine B-lymphoid and myeloid cell lines, p59hck alone is also located in the cytosol. In contrast to membrane-associated p59hck, which is metabolically labeled with [3H]myristic acid and exhibits amphiphilic properties in Triton X-114 detergent, cytosolic p59hck is hydrophilic, suggesting that it is not acylated. Possible mechanisms are proposed to account for these observations.
Collapse
Affiliation(s)
- P Lock
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
39
|
McMahon M, Schatzman RC, Bishop JM. The amino-terminal 14 amino acids of v-src can functionally replace the extracellular and transmembrane domains of v-erbB. Mol Cell Biol 1991; 11:4760-70. [PMID: 1678856 PMCID: PMC361376 DOI: 10.1128/mcb.11.9.4760-4770.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.
Collapse
Affiliation(s)
- M McMahon
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | |
Collapse
|
40
|
A gene related to the proto-oncogene fps/fes is expressed at diverse times during the life cycle of Drosophila melanogaster. Mol Cell Biol 1991. [PMID: 1898762 DOI: 10.1128/mcb.11.1.226] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene fps/fes encodes a distinctive type of protein-tyrosine kinase. We identified a Drosophila gene (dfps85D) whose product resembles the proteins encoded by vertebrate fps/fes and the closely related gene fer. dfps85D is located at chromosomal position 85D10-13 and is unlikely to correspond to any previously defined genetic locus in Drosophila melanogaster. Expression of the gene is entirely zygotic in origin and occurs throughout the life cycle. But hybridization in situ revealed that the pattern of expression is specialized and evolves in a provocative manner. The most notable feature of expression is the diversity of developmental periods, tissues, and cells in which it occurs. In some tissues, expression is transient; in others, it is continuous. Expression occurs in both mitotic and terminally differentiated tissue and, at various times in development, is prominent in imaginal disks, gut, muscle, testes, ovaries, retina, and other neural tissues. It appears that the use of dfps85D is more diversified than that of other Drosophila protein-tyrosine kinases reported to date and contrasts sharply with the restricted expression of fps itself in vertebrates. The detailed description of expression provided here will help guide the search for mutants in dfps85D.
Collapse
|
41
|
Katzen AL, Montarras D, Jackson J, Paulson RF, Kornberg T, Bishop JM. A gene related to the proto-oncogene fps/fes is expressed at diverse times during the life cycle of Drosophila melanogaster. Mol Cell Biol 1991; 11:226-39. [PMID: 1898762 PMCID: PMC359613 DOI: 10.1128/mcb.11.1.226-239.1991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The proto-oncogene fps/fes encodes a distinctive type of protein-tyrosine kinase. We identified a Drosophila gene (dfps85D) whose product resembles the proteins encoded by vertebrate fps/fes and the closely related gene fer. dfps85D is located at chromosomal position 85D10-13 and is unlikely to correspond to any previously defined genetic locus in Drosophila melanogaster. Expression of the gene is entirely zygotic in origin and occurs throughout the life cycle. But hybridization in situ revealed that the pattern of expression is specialized and evolves in a provocative manner. The most notable feature of expression is the diversity of developmental periods, tissues, and cells in which it occurs. In some tissues, expression is transient; in others, it is continuous. Expression occurs in both mitotic and terminally differentiated tissue and, at various times in development, is prominent in imaginal disks, gut, muscle, testes, ovaries, retina, and other neural tissues. It appears that the use of dfps85D is more diversified than that of other Drosophila protein-tyrosine kinases reported to date and contrasts sharply with the restricted expression of fps itself in vertebrates. The detailed description of expression provided here will help guide the search for mutants in dfps85D.
Collapse
Affiliation(s)
- A L Katzen
- G. W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | | | | | | | | | |
Collapse
|
42
|
Erdie CR, Wills JW. Myristylation of Rous sarcoma virus Gag protein does not prevent replication in avian cells. J Virol 1990; 64:5204-8. [PMID: 2168997 PMCID: PMC248019 DOI: 10.1128/jvi.64.10.5204-5208.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rous sarcoma virus is an example of a replication-competent retrovirus whose Gag protein is not modified with myristic acid. The purpose of the experiments described in this report was to determine whether the addition of this 14-carbon fatty acid would interfere with the replication of Rous sarcoma virus. We found that myristylated derivatives of the Rous sarcoma virus Gag protein are fully functional for particle formation in avian cells and that the addition of myristic acid has very little effect on infectivity.
Collapse
Affiliation(s)
- C R Erdie
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | |
Collapse
|
43
|
Abstract
To investigate the importance of a conserved region spanning residues 137 to 241 in the noncatalytic domain of p60c-src (SH2 region), we used oligonucleotide-directed mutagenesis to change residues that are highly conserved in this region. Chicken embryo fibroblasts infected with a p60c-src variant containing arginine instead of tryptophan at residue 148 (W148R) appeared more rounded than cells overexpressing a normal c-src gene, and they formed colonies in soft agar. p60c-src variants containing serine instead of arginine at residue 155 (R155S) or isoleucine instead of glycine at residue 170 (G170I) also appeared transformed and were anchorage independent, but to a lesser extent than W148R. Mutation of residue 201 from histidine to leucine (H201L) had no observable effect. The in vitro kinase activity of cells infected with W148R or G170I was elevated twofold. Expression of p60W148R (or, to a lesser extent, of p60G170I) increased the number of proteins phosphorylated on tyrosine in infected cells. All of the mutants were phosphorylated in vivo on Tyr-527, instead of Tyr-416 as observed for p60v-src. Immunoprecipitated p60W148R and p60G170I were found to be associated with a phosphatidylinositol kinase activity, a factor which appears to be necessary for transformation by tyrosine-specific protein kinases. These results show that a single point mutation in the SH2 region of the cellular src gene can activate its transforming potential. This type of activation is in a new category of alterations at the amino terminus that activate but do not cause a shift in phosphorylation at the carboxy terminus.
Collapse
|
44
|
O'Brien MC, Fukui Y, Hanafusa H. Activation of the proto-oncogene p60c-src by point mutations in the SH2 domain. Mol Cell Biol 1990; 10:2855-62. [PMID: 2111444 PMCID: PMC360647 DOI: 10.1128/mcb.10.6.2855-2862.1990] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the importance of a conserved region spanning residues 137 to 241 in the noncatalytic domain of p60c-src (SH2 region), we used oligonucleotide-directed mutagenesis to change residues that are highly conserved in this region. Chicken embryo fibroblasts infected with a p60c-src variant containing arginine instead of tryptophan at residue 148 (W148R) appeared more rounded than cells overexpressing a normal c-src gene, and they formed colonies in soft agar. p60c-src variants containing serine instead of arginine at residue 155 (R155S) or isoleucine instead of glycine at residue 170 (G170I) also appeared transformed and were anchorage independent, but to a lesser extent than W148R. Mutation of residue 201 from histidine to leucine (H201L) had no observable effect. The in vitro kinase activity of cells infected with W148R or G170I was elevated twofold. Expression of p60W148R (or, to a lesser extent, of p60G170I) increased the number of proteins phosphorylated on tyrosine in infected cells. All of the mutants were phosphorylated in vivo on Tyr-527, instead of Tyr-416 as observed for p60v-src. Immunoprecipitated p60W148R and p60G170I were found to be associated with a phosphatidylinositol kinase activity, a factor which appears to be necessary for transformation by tyrosine-specific protein kinases. These results show that a single point mutation in the SH2 region of the cellular src gene can activate its transforming potential. This type of activation is in a new category of alterations at the amino terminus that activate but do not cause a shift in phosphorylation at the carboxy terminus.
Collapse
Affiliation(s)
- M C O'Brien
- Rockefeller University, New York, New York 10021-6399
| | | | | |
Collapse
|
45
|
Site-directed mutagenesis of the SH2- and SH3-coding domains of c-src produces varied phenotypes, including oncogenic activation of p60c-src. Mol Cell Biol 1990. [PMID: 2108315 DOI: 10.1128/mcb.10.4.1307] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The products of the viral and cellular src genes, p60v-src and p60c-src, appear to be composed of multiple functional domains. Highly conserved regions called src homology 2 and 3 (SH2 and SH3), comprising amino acid residues 88 to 250, are believed to modulate the protein-tyrosine kinase activity present in the carboxy-terminal halves of the src proteins. To explore the functions of these regions more fully, we have made 34 site-directed mutations in a transformation-competent c-src gene encoding phenylalanine in place of tyrosine 527 (Y527F c-src). Twenty of the new mutations change only one or two amino acids, and the remainder delete small or large portions of the SH2-SH3 region. These mutant alleles have been incorporated into a replication-competent Rous sarcoma virus vector to examine the biochemical and biological properties of the mutant proteins after infection of chicken embryo fibroblasts. Four classes of mutant proteins were observed: class 1, mutants with only slight differences from the parental gene products; class 2, mutant proteins with diminished transforming and specific kinase activities; class 3, mutant proteins with normal or enhanced specific kinase activity but impaired biological activity, often as a consequence of instability; and class 4, mutant proteins with augmented biological and catalytic activities. In general, there was a strong correlation between total kinase activity (or amounts of intracellular phosphotyrosine-containing proteins) and transforming activity. Deletion mutations and some point mutations affecting residues 109 to 156 inhibited kinase and transforming functions, whereas deletions affecting residues 187 to 226 generally had positive effects on one or both of those functions, confirming that SH2-SH3 has complex regulatory properties. Five mutations that augmented the transforming and kinase activities of Y527F c-src [F172P, R175L, delta(198-205), delta(206-226), and delta(176-226)] conferred transformation competence on an otherwise normal c-src gene, indicating that mutations in SH2 (like previously described lesions in SH3, the kinase domain, and a carboxy-terminal inhibitory domain) can activate c-src.
Collapse
|
46
|
Hirai H, Varmus HE. Site-directed mutagenesis of the SH2- and SH3-coding domains of c-src produces varied phenotypes, including oncogenic activation of p60c-src. Mol Cell Biol 1990; 10:1307-18. [PMID: 2108315 PMCID: PMC362232 DOI: 10.1128/mcb.10.4.1307-1318.1990] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The products of the viral and cellular src genes, p60v-src and p60c-src, appear to be composed of multiple functional domains. Highly conserved regions called src homology 2 and 3 (SH2 and SH3), comprising amino acid residues 88 to 250, are believed to modulate the protein-tyrosine kinase activity present in the carboxy-terminal halves of the src proteins. To explore the functions of these regions more fully, we have made 34 site-directed mutations in a transformation-competent c-src gene encoding phenylalanine in place of tyrosine 527 (Y527F c-src). Twenty of the new mutations change only one or two amino acids, and the remainder delete small or large portions of the SH2-SH3 region. These mutant alleles have been incorporated into a replication-competent Rous sarcoma virus vector to examine the biochemical and biological properties of the mutant proteins after infection of chicken embryo fibroblasts. Four classes of mutant proteins were observed: class 1, mutants with only slight differences from the parental gene products; class 2, mutant proteins with diminished transforming and specific kinase activities; class 3, mutant proteins with normal or enhanced specific kinase activity but impaired biological activity, often as a consequence of instability; and class 4, mutant proteins with augmented biological and catalytic activities. In general, there was a strong correlation between total kinase activity (or amounts of intracellular phosphotyrosine-containing proteins) and transforming activity. Deletion mutations and some point mutations affecting residues 109 to 156 inhibited kinase and transforming functions, whereas deletions affecting residues 187 to 226 generally had positive effects on one or both of those functions, confirming that SH2-SH3 has complex regulatory properties. Five mutations that augmented the transforming and kinase activities of Y527F c-src [F172P, R175L, delta(198-205), delta(206-226), and delta(176-226)] conferred transformation competence on an otherwise normal c-src gene, indicating that mutations in SH2 (like previously described lesions in SH3, the kinase domain, and a carboxy-terminal inhibitory domain) can activate c-src.
Collapse
Affiliation(s)
- H Hirai
- Department of Microbiology, University of California, San Francisco 94143-0502
| | | |
Collapse
|
47
|
Abstract
The proteins encoded by the oncogene v-src and its cellular counterpart c-src (designated generically here as pp60src) are tightly associated with both plasma membranes and intracellular membranes. This association is due in part to the amino-terminal myristylation of pp60src, but several lines of evidence suggest that amino-terminal portions of the protein itself are also involved. We now report that pp60src contains at least three domains which, in conjunction with myristylation, are capable of mediating attachment to membranes and determining subcellular localization. We identified these domains by fusing various portions of pp60src to pyruvate kinase, which is normally a cytoplasmic protein. Amino acids 1 to 14 of pp60src are sufficient to mediate both myristylation and the attachment of pyruvate kinase to cytoplasmic granules. In contrast, amino acids 38 to 111 mediate association with the plasma membrane and perinuclear membranes, whereas amino acids 204 to 259 mediate association primarily with perinuclear membranes. We conclude that pp60src contains independent domains that target the protein to distinctive subcellular locations and thus may facilitate diverse biological functions of the protein.
Collapse
|
48
|
Kaplan JM, Varmus HE, Bishop JM. The src protein contains multiple domains for specific attachment to membranes. Mol Cell Biol 1990; 10:1000-9. [PMID: 1689455 PMCID: PMC360952 DOI: 10.1128/mcb.10.3.1000-1009.1990] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The proteins encoded by the oncogene v-src and its cellular counterpart c-src (designated generically here as pp60src) are tightly associated with both plasma membranes and intracellular membranes. This association is due in part to the amino-terminal myristylation of pp60src, but several lines of evidence suggest that amino-terminal portions of the protein itself are also involved. We now report that pp60src contains at least three domains which, in conjunction with myristylation, are capable of mediating attachment to membranes and determining subcellular localization. We identified these domains by fusing various portions of pp60src to pyruvate kinase, which is normally a cytoplasmic protein. Amino acids 1 to 14 of pp60src are sufficient to mediate both myristylation and the attachment of pyruvate kinase to cytoplasmic granules. In contrast, amino acids 38 to 111 mediate association with the plasma membrane and perinuclear membranes, whereas amino acids 204 to 259 mediate association primarily with perinuclear membranes. We conclude that pp60src contains independent domains that target the protein to distinctive subcellular locations and thus may facilitate diverse biological functions of the protein.
Collapse
Affiliation(s)
- J M Kaplan
- G.W. Hooper Research Foundation, University of California Medical Center, San Francisco 94143
| | | | | |
Collapse
|
49
|
Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci U S A 1990; 87:523-7. [PMID: 2405382 PMCID: PMC53297 DOI: 10.1073/pnas.87.2.523] [Citation(s) in RCA: 510] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Covalent linkage of myristic acid to the N-terminal glycine residue of Pr55gag, the precursor of the major structural proteins of human immunodeficiency virus 1 (HIV-1), facilitates an essential step in virus assembly and propagation. Substitution of the myristoyl-acceptor glycine with alanine, in a functional clone of HIV-1, eliminates virus replication. Complementation of this defect, in trans, restores infectious particle production. The nonmyristoylated (myr-) gag precursor accumulates in infected cells and is not processed into the mature capsid components of the intact virion. However, myr- Pr55gag can be processed by purified HIV protease in vitro, demonstrating that the myristoyl moiety is not required for cleavage by the protease. Myristoylation of Pr55gag is not necessary for localization but is required for stable membrane association and assembly of HIV-1.
Collapse
|
50
|
Structure and expression of STK, a src-related gene in the simple metazoan Hydra attenuata. Mol Cell Biol 1989. [PMID: 2479820 DOI: 10.1128/mcb.9.10.4141] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both cDNA clones and a genomic DNA clone encoding a 509-amino-acid protein that is 64% similar to chicken pp60c-src were isolated from the simple metazoan Hydra attenuata. We have designated this gene STK, for src-type kinase. Features of the amino acid sequence of the protein encoded by the STK gene suggest that it is likely to be myristoylated and regulated by phosphorylation in a manner similar to that found for pp60c-src. The genomic sequence encoding the protein was found to be interrupted by at least two introns, one of which was located in a position identical to that of one of the introns in the chicken src gene. The STK gene was expressed during early development of H. attenuata and at high levels in the epithelial cells of adult polyps. Probing of Hydra proteins with an antibody to phosphotyrosine indicated that the major phosphotyrosine-containing protein in H. attenuata may be the STK protein itself. H. attenuata is the simplest organism from which a protein-tyrosine kinase gene has been isolated. The presence of such a gene in the evolutionarily ancient phylum Cnidaria suggests that protein-tyrosine kinase genes arose concomitantly with or shortly after the appearance of multicellular organisms.
Collapse
|