1
|
Buvoli M, Wilson GC, Buvoli A, Gugel JF, Hau A, Bönnemann CG, Paradas C, Ryba DM, Woulfe KC, Walker LA, Buvoli T, Ochala J, Leinwand LA. A Laing distal myopathy-associated proline substitution in the β-myosin rod perturbs myosin cross-bridging activity. J Clin Invest 2024; 134:e172599. [PMID: 38690726 PMCID: PMC11060730 DOI: 10.1172/jci172599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
Proline substitutions within the coiled-coil rod region of the β-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Genevieve C.K. Wilson
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Ada Buvoli
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jack F. Gugel
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Abbi Hau
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, and
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, United Kingdom
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Lori A. Walker
- Division of Cardiology, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Tommaso Buvoli
- Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
| | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, and
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, United Kingdom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, and
- BioFrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
2
|
Xiao L, Liu J, Sun Z, Yin Y, Mao Y, Xu D, Liu L, Xu Z, Guo Q, Ding C, Sun W, Yang L, Zhou Z, Zhou D, Fu T, Zhou W, Zhu Y, Chen XW, Li JZ, Chen S, Xie X, Gan Z. AMPK-dependent and -independent coordination of mitochondrial function and muscle fiber type by FNIP1. PLoS Genet 2021; 17:e1009488. [PMID: 33780446 PMCID: PMC8031738 DOI: 10.1371/journal.pgen.1009488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/08/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are essential for maintaining skeletal muscle metabolic homeostasis during adaptive response to a myriad of physiologic or pathophysiological stresses. The mechanisms by which mitochondrial function and contractile fiber type are concordantly regulated to ensure muscle function remain poorly understood. Evidence is emerging that the Folliculin interacting protein 1 (Fnip1) is involved in skeletal muscle fiber type specification, function, and disease. In this study, Fnip1 was specifically expressed in skeletal muscle in Fnip1-transgenic (Fnip1Tg) mice. Fnip1Tg mice were crossed with Fnip1-knockout (Fnip1KO) mice to generate Fnip1TgKO mice expressing Fnip1 only in skeletal muscle but not in other tissues. Our results indicate that, in addition to the known role in type I fiber program, FNIP1 exerts control upon muscle mitochondrial oxidative program through AMPK signaling. Indeed, basal levels of FNIP1 are sufficient to inhibit AMPK but not mTORC1 activity in skeletal muscle cells. Gain-of-function and loss-of-function strategies in mice, together with assessment of primary muscle cells, demonstrated that skeletal muscle mitochondrial program is suppressed via the inhibitory actions of FNIP1 on AMPK. Surprisingly, the FNIP1 actions on type I fiber program is independent of AMPK and its downstream PGC-1α. These studies provide a vital framework for understanding the intrinsic role of FNIP1 as a crucial factor in the concerted regulation of mitochondrial function and muscle fiber type that determine muscle fitness. Mitochondria provide an essential source of energy to drive cellular processes and the function of mitochondria is particularly important in skeletal muscle, a metabolically demanding tissue that depends critically on mitochondria, accounting for ~40% of total body mass. In this study, we discovered an essential function of adaptor protein FNIP1 in the coordinated regulation of the mitochondrial and structural programs controlling muscle fitness. Using both gain-of-function and loss-of-function strategies in mice and muscle cells, we provide clear genetic data that demonstrate FNIP1-dependent signaling is crucial for muscle mitochondrial remodeling as well as type I muscle fiber specification. We also uncover that FNIP1 exerts control upon muscle mitochondrial program through AMPK but not mTORC1 signaling. Furthermore, we demonstrate that FNIP1 acts independently of PGC-1α to regulate fiber type specification. Hence, our study emphasizes FNIP1 as a dominant factor that coordinates mitochondrial and muscle fiber type programs that govern muscle fitness.
Collapse
Affiliation(s)
- Liwei Xiao
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jing Liu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zongchao Sun
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yujing Yin
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yan Mao
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lin Liu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhisheng Xu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Chenyun Ding
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wanping Sun
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Likun Yang
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zheng Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danxia Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tingting Fu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wenjing Zhou
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yuangang Zhu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiao-Wei Chen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xiaoduo Xie
- Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
3
|
Zou Y, Dong Y, Meng Q, Zhao Y, Li N. Incorporation of a skeletal muscle-specific enhancer in the regulatory region of Igf1 upregulates IGF1 expression and induces skeletal muscle hypertrophy. Sci Rep 2018; 8:2781. [PMID: 29426944 PMCID: PMC5807547 DOI: 10.1038/s41598-018-21122-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
In this study, we upregulated insulin-like growth factor-1 (IGF1) expression specifically in skeletal muscle by engineering an enhancer into its non-coding regions and verified the expected phenotype in a mouse model. To select an appropriate site for introducing a skeletal muscle-specific myosin light chain (MLC) enhancer, three candidate sites that exhibited the least evolutionary conservation were chosen and validated in C2C12 single-cell colonies harbouring the MLC enhancer at each site. IGF1 was dramatically upregulated in only the site 2 single-cell colony series, and it exhibited functional activity leading to the formation of extra myotubes. Therefore, we chose site 2 to generate a genetically modified (GM) mouse model with the MLC enhancer incorporated by CRISPR/Cas9 technology. The GM mice exhibited dramatically elevated IGF1 levels, which stimulated downstream pathways in skeletal muscle. Female GM mice exhibited more conspicuous muscle hypertrophy than male GM mice. The GM mice possessed similar circulating IGF1 levels and tibia length as their WT littermates; they also did not exhibit heart abnormalities. Our findings demonstrate that genetically modifying a non-coding region is a feasible method to upregulate gene expression and obtain animals with desirable traits.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
4
|
Call JA, Donet J, Martin KS, Sharma AK, Chen X, Zhang J, Cai J, Galarreta CA, Okutsu M, Du Z, Lira VA, Zhang M, Mehrad B, Annex BH, Klibanov AL, Bowler RP, Laubach VE, Peirce SM, Yan Z. Muscle-derived extracellular superoxide dismutase inhibits endothelial activation and protects against multiple organ dysfunction syndrome in mice. Free Radic Biol Med 2017; 113:212-223. [PMID: 28982599 PMCID: PMC5740866 DOI: 10.1016/j.freeradbiomed.2017.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
Multiple organ dysfunction syndrome (MODS) is a detrimental clinical complication in critically ill patients with high mortality. Emerging evidence suggests that oxidative stress and endothelial activation (induced expression of adhesion molecules) of vital organ vasculatures are key, early steps in the pathogenesis. We aimed to ascertain the role and mechanism(s) of enhanced extracellular superoxide dismutase (EcSOD) expression in skeletal muscle in protection against MODS induced by endotoxemia. We showed that EcSOD overexpressed in skeletal muscle-specific transgenic mice (TG) redistributes to other peripheral organs through the circulation and enriches at the endothelium of the vasculatures. TG mice are resistant to endotoxemia (induced by lipopolysaccharide [LPS] injection) in developing MODS with significantly reduced mortality and organ damages compared with the wild type littermates (WT). Heterogenic parabiosis between TG and WT mice conferred a significant protection to WT mice, whereas mice with R213G knock-in mutation, a human single nucleotide polymorphism leading to reduced binding EcSOD in peripheral organs, exacerbated the organ damages. Mechanistically, EcSOD inhibits vascular cell adhesion molecule 1 expression and inflammatory leukocyte adhesion to the vascular wall of vital organs, blocking an early step of the pathology in organ damage under endotoxemia. Therefore, enhanced expression of EcSOD in skeletal muscle profoundly protects against MODS by inhibiting endothelial activation and inflammatory cell adhesion, which could be a promising therapy for MODS.
Collapse
Affiliation(s)
- Jarrod A Call
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jean Donet
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle S Martin
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Ashish K Sharma
- Departments of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaobin Chen
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Cardiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Jiuzhi Zhang
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Critical Care Medicine and Institute of Critical Care Medicine, First Affiliate Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning Province 116011, China
| | - Jie Cai
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Infectious Disease, First Affiliate Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Carolina A Galarreta
- Departments of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mitsuharu Okutsu
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhongmin Du
- Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Vitor A Lira
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mei Zhang
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Borna Mehrad
- Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Brian H Annex
- Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Russell P Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Victor E Laubach
- Departments of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Shayn M Peirce
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zhen Yan
- Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Departments of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Departments of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; Departments of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison WN, Lowery JW, Urata M, Hudnall AM, Hitomi S, Nakatomi M, Sato T, Osawa K, Yoda T, Rosen V, Jimi E. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem 2017; 292:12885-12894. [PMID: 28607151 DOI: 10.1074/jbc.m116.774570] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity.
Collapse
Affiliation(s)
- Shoichiro Kokabu
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115.
| | - Chihiro Nakatomi
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Takuma Matsubara
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8102, Japan
| | - William N Addison
- Research Unit, Department of Human Genetics, Shriners Hospitals for Children, McGill University, Montreal, Quebec H4A 0A9, Canada
| | - Jonathan W Lowery
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana 46222
| | - Mariko Urata
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Aaron M Hudnall
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana 46222
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kenji Osawa
- Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tetsuya Yoda
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Eijiro Jimi
- Divisions of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu 803-8580, Japan; Oral Health Brain Health Total Health, Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Cenik BK, Garg A, McAnally JR, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN, Liu N. Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3. J Clin Invest 2015; 125:1569-78. [PMID: 25774500 DOI: 10.1172/jci80115] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/29/2015] [Indexed: 01/18/2023] Open
Abstract
Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy.
Collapse
|
7
|
Garg A, O'Rourke J, Long C, Doering J, Ravenscroft G, Bezprozvannaya S, Nelson BR, Beetz N, Li L, Chen S, Laing NG, Grange RW, Bassel-Duby R, Olson EN. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J Clin Invest 2014; 124:3529-39. [PMID: 24960163 DOI: 10.1172/jci74994] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40-/- mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients.
Collapse
|
8
|
Wu YJ, Fang YH, Chi HC, Chang LC, Chung SY, Huang WC, Wang XW, Lee KW, Chen SL. Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One 2014; 9:e88450. [PMID: 24551104 PMCID: PMC3923792 DOI: 10.1371/journal.pone.0088450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Most recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT). The nuclear shuttling of FoxO1 in PMB could be prevented by leptomycin B and we further found that cytoplasmic accumulation of FoxO1 in myotubes was caused by the blockade of its nuclear import. Although over-expression of wildtype FoxO1 in C2C12 myoblasts significantly blocked their myogenic differentiation under serum withdrawal condition, application of insulin and LiCl, an activator of Wnt signaling pathway, to these cells successfully rescued their myogenic differentiation and generated myotubes with larger diameters. Interestingly, insulin treatment significantly reduced FoxO1 level and also delayed nuclear re-accumulation of FoxO1 triggered by mitogen deprivation. We further found that FoxO1 directly repressed the promoter activity of myogenic genes and this repression can be relieved by insulin and LiCl treatment. These results suggest that FoxO1 inhibits myogenesis in serum withdrawal condition but turns into a hypertrophy potentiator when other myogenic signals, such as Wnt and insulin, are available.
Collapse
Affiliation(s)
- Yi Ju Wu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Yen Hsin Fang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Hsiang Cheng Chi
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li Chiung Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shih Ying Chung
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Wei Chieh Huang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Xiao Wen Wang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Kuan Wei Lee
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Meng ZX, Li S, Wang L, Ko HJ, Lee Y, Jung DY, Okutsu M, Yan Z, Kim JK, Lin JD. Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat Med 2013; 19:640-5. [PMID: 23563706 PMCID: PMC3650110 DOI: 10.1038/nm.3144] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/04/2013] [Indexed: 12/04/2022]
Abstract
A shift from oxidative to glycolytic metabolism has been associated with skeletal muscle insulin resistance in type 2 diabetes1–5. However, whether this metabolic switch is deleterious or adaptive remains controversial6–8, in part due to limited understanding of the regulatory network that directs the metabolic and contractile specification of fast-twitch glycolytic muscle. Here we show that BAF60c, a transcriptional cofactor enriched in fast-twitch muscle, promotes a switch from oxidative to glycolytic myofiber type through Deptor-mediated AKT activation. Muscle-specific transgenic expression of BAF60c activates a program of molecular, metabolic, and contractile changes characteristic of glycolytic muscle. In addition, BAF60c is required for maintaining glycolytic capacity in adult skeletal muscle in vivo. BAF60c expression is significantly decreased in skeletal muscle from obese mice. Unexpectedly, transgenic activation of the glycolytic muscle program by BAF60c protects mice from diet-induced insulin resistance and glucose intolerance. Further mechanistic studies revealed that Deptor is induced by the BAF60c/Six4 transcriptional complex and mediates activation of AKT and glycolytic metabolism by BAF60c in a cell-autonomous manner. This work defines a fundamental mechanism underlying the specification of fast glycolytic muscle and illustrates that the oxidative to glycolytic metabolic shift in skeletal muscle is potentially adaptive and beneficial in the diabetic state.
Collapse
Affiliation(s)
- Zhuo-Xian Meng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shi X, Wallis AM, Gerard RD, Voelker KA, Grange RW, DePinho RA, Garry MG, Garry DJ. Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2. J Cell Sci 2012; 125:5329-37. [PMID: 22956541 DOI: 10.1242/jcs.105239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation. Collectively, we have established that Foxk1 promotes MPC proliferation by repressing Foxo4 transcriptional activity and inhibits myogenic differentiation by repressing Mef2 activity. These studies enhance our understanding of the transcriptional networks that regulate the MPC population and muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci U S A 2011; 108:E899-906. [PMID: 21987816 DOI: 10.1073/pnas.1108559108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial hypertrophy and heart failure. The aim of this study was to investigate the role of cardiac Fstl1 in the remodeling response to pressure overload. Cardiac myocyte-specific Fstl1-KO mice were constructed and subjected to pressure overload induced by transverse aortic constriction (TAC). Although Fstl1-KO mice displayed no detectable baseline phenotype, TAC led to enhanced cardiac hypertrophic growth and a pronounced loss in ventricular performance by 4 wk compared with control mice. Conversely, mice that acutely or chronically overexpressed Fstl1 were resistant to pressure overload-induced hypertrophy and cardiac failure. Fstl1-deficient mice displayed a reduction in TAC-induced AMP-activated protein kinase (AMPK) activation in heart, whereas Fstl1 overexpression led to increased myocardial AMPK activation under these conditions. In cultured neonatal cardiomyocytes, administration of Fstl1 promoted AMPK activation and antagonized phenylephrine-induced hypertrophy. Inhibition of AMPK attenuated the antihypertrophic effect of Fstl1 treatment. These results document that cardiac Fstl1 functions as an autocrine/paracrine regulatory factor that antagonizes myocyte hypertrophic growth and the loss of ventricular performance in response to pressure overload, possibly through a mechanism involving the activation of the AMPK signaling axis.
Collapse
|
12
|
Liu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, Bassel-Duby R, Olson EN. Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. J Clin Invest 2011; 121:3258-68. [PMID: 21737882 DOI: 10.1172/jci46267] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/11/2011] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs modulate cellular phenotypes by inhibiting expression of mRNA targets. In this study, we have shown that the muscle-specific microRNAs miR-133a-1 and miR-133a-2 are essential for multiple facets of skeletal muscle function and homeostasis in mice. Mice with genetic deletions of miR-133a-1 and miR-133a-2 developed adult-onset centronuclear myopathy in type II (fast-twitch) myofibers, accompanied by impaired mitochondrial function, fast-to-slow myofiber conversion, and disarray of muscle triads (sites of excitation- contraction coupling). These abnormalities mimicked human centronuclear myopathies and could be ascribed, at least in part, to dysregulation of the miR-133a target mRNA that encodes dynamin 2, a GTPase implicated in human centronuclear myopathy. Our findings reveal an essential role for miR-133a in the maintenance of adult skeletal muscle structure, function, bioenergetics, and myofiber identity; they also identify a potential modulator of centronuclear myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology and 2Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75930-9148, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tai PW, Fisher-Aylor KI, Himeda CL, Smith CL, Mackenzie AP, Helterline DL, Angello JC, Welikson RE, Wold BJ, Hauschka SD. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skelet Muscle 2011; 1:25. [PMID: 21797989 PMCID: PMC3157005 DOI: 10.1186/2044-5040-1-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hundreds of genes, including muscle creatine kinase (MCK), are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. RESULTS Modulatory region 1 (MR1) is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE) containing a paired E-box/myocyte enhancer factor 2 (MEF2) regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively), but is not required for expression in fast-twitch muscle fibers (types IIb and IId). CONCLUSIONS In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.
Collapse
Affiliation(s)
- Phillip Wl Tai
- Department of Biochemistry, 1705 NE Pacific St,, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Londhe P, Davie JK. Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet Muscle 2011; 1:14. [PMID: 21798092 PMCID: PMC3156637 DOI: 10.1186/2044-5040-1-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/04/2011] [Indexed: 11/29/2022] Open
Abstract
Background Gene expression in skeletal muscle is controlled by a family of basic helix-loop-helix transcription factors known as the myogenic regulatory factors (MRFs). The MRFs work in conjunction with E proteins to regulate gene expression during myogenesis. However, the precise mechanism by which the MRFs activate gene expression is unclear. In this work, we sought to define the binding profiles of MRFs and E proteins on muscle-specific genes throughout a time course of differentiation. Results We performed chromatin immunoprecipitation (ChIP) assays for myogenin, MyoD, Myf5 and E proteins over a time course of C2C12 differentiation, resulting in several surprising findings. The pattern of recruitment is specific to each promoter tested. The recruitment of E proteins often coincides with the arrival of the MRFs, but the binding profile does not entirely overlap with the MRF binding profiles. We found that E12/E47 is bound to certain promoters during proliferation, but every gene tested is preferentially bound by HEB during differentiation. We also show that MyoD, myogenin and Myf5 have transient roles on each of these promoters during muscle differentiation. We also found that RNA polymerase II occupancy correlates with the transcription profile of these promoters. ChIP sequencing assays confirmed that MyoD, myogenin and Myf5 co-occupy promoters. Conclusions Our data reveal the sequential association of MyoD, myogenin, Myf5 and HEB on muscle-specific promoters. These data suggest that each of the MRFs, including Myf5, contribute to gene expression at each of the geness analyzed here.. The dynamic binding profiles observed suggest that MRFs and E proteins are recruited independently to promoters.
Collapse
Affiliation(s)
- Priya Londhe
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | | |
Collapse
|
15
|
Kielbasa OM, Reynolds JG, Wu CL, Snyder CM, Cho MY, Weiler H, Kandarian S, Naya FJ. Myospryn is a calcineurin-interacting protein that negatively modulates slow-fiber-type transformation and skeletal muscle regeneration. FASEB J 2011; 25:2276-86. [PMID: 21427212 DOI: 10.1096/fj.10-169219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The calcium-calmodulin-regulated protein phosphatase calcineurin plays an important regulatory role in muscle differentiation, fiber-type determination, hypertrophy, and muscle regeneration. Because calcineurin functions in numerous processes in muscle, multiple mechanisms are likely necessary to ensure that the activity of this phosphatase is appropriately regulated. Here we demonstrate that the muscle-specific scaffolding protein myospryn modulates calcineurin signaling by inhibiting calcineurin-dependent transcriptional activity in C2C12 myoblasts through direct interaction with the enzyme via its noncanonical tripartite motif (TRIM-like). Consistent with these data, transgenic mice overexpressing both the TRIM-like domain of myospryn and constitutively active calcineurin displayed a severe attenuation in the ability of calcineurin to induce a slow-fiber phenotype. Furthermore, transgenic mice overexpressing the TRIM-like domain of myospryn displayed attenuated muscle regeneration after cardiotoxin-induced muscle injury. These results indicate that myospryn functions as a novel inhibitor of the calcineurin signaling pathway in skeletal muscle.
Collapse
Affiliation(s)
- Ondra M Kielbasa
- Department of Biology, Boston University, 24 Cummington St., Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zeng L, Akasaki Y, Sato K, Ouchi N, Izumiya Y, Walsh K. Insulin-like 6 is induced by muscle injury and functions as a regenerative factor. J Biol Chem 2010; 285:36060-9. [PMID: 20807758 DOI: 10.1074/jbc.m110.160879] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The insulin-like family of factors are involved in the regulation of a variety of physiological processes, but the function of the family member termed insulin-like 6 (Insl6) in skeletal muscle has not been reported. We show that Insl6 is a myokine that is up-regulated in skeletal muscle downstream of Akt signaling and in regenerating muscle in response to cardiotoxin (CTX)-induced injury. In the CTX injury model, myofiber regeneration was improved by the intramuscular or systemic delivery of an adenovirus expressing Insl6. Skeletal muscle-specific Insl6 transgenic mice exhibited normal muscle mass under basal conditions but elevated satellite cell activation and enhanced muscle regeneration in response to CTX injury. The Insl6-mediated regenerative response was associated with reductions in muscle cell apoptosis and reduced serum levels of creatine kinase M. Overexpression of Insl6 stimulated proliferation and reduced apoptosis in cultured myogenic cells. Conversely, knockdown of Insl6 reduced proliferation and increased apoptosis. These data indicate that Insl6 is an injury-regulated myokine that functions as a myogenic regenerative factor.
Collapse
Affiliation(s)
- Ling Zeng
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
17
|
A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009; 17:662-73. [PMID: 19922871 DOI: 10.1016/j.devcel.2009.10.013] [Citation(s) in RCA: 733] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 12/15/2022]
Abstract
Myosin is the primary regulator of muscle strength and contractility. Here we show that three myosin genes, Myh6, Myh7, and Myh7b, encode related intronic microRNAs (miRNAs), which, in turn, control muscle myosin content, myofiber identity, and muscle performance. Within the adult heart, the Myh6 gene, encoding a fast myosin, coexpresses miR-208a, which regulates the expression of two slow myosins and their intronic miRNAs, Myh7/miR-208b and Myh7b/miR-499, respectively. miR-208b and miR-499 play redundant roles in the specification of muscle fiber identity by activating slow and repressing fast myofiber gene programs. The actions of these miRNAs are mediated in part by a collection of transcriptional repressors of slow myofiber genes. These findings reveal that myosin genes not only encode the major contractile proteins of muscle, but act more broadly to influence muscle function by encoding a network of intronic miRNAs that control muscle gene expression and performance.
Collapse
|
18
|
Synergistic up-regulation of muscle LIM protein expression in C2C12 and NIH3T3 cells by myogenin and MEF2C. Mol Genet Genomics 2008; 281:1-10. [PMID: 18987887 DOI: 10.1007/s00438-008-0393-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/15/2008] [Indexed: 01/29/2023]
Abstract
Although the role of muscle LIM protein (MLP, also known as CRP3), a LIM-only protein of LIM domain-containing protein family, is well-characterized, the mechanism by which the MLP gene expresses remains unclear. Herein, we demonstrate that myogenin and myocyte enhancer factor 2C (MEF2C) cooperate in activating the MLP gene in myogenesis. RT-PCR, real-time PCR and Western blotting showed that overexpression of myogenin or myogenin plus MEF2C led to induction of the MLP gene in differentiating C2C12 and NIH3T3 fibroblasts. By contrary, knocking-down of myogenin by RNA interference (RNAi) suppressed MLP expression in differentiating C2C12. Deletion and reporter enzyme assay revealed that the promoter activity was determined largely by the region extending from -260 to -173, which containing three E-box (CANNTG motif) candidates. Site-directed mutagenesis demonstrated that the E-box at position -186 to -180 was crucial for activating the promoter by myogenin. Furthermore, MEF2C could enhance myogenin-mediated activation of the promoter. In addition, chromatin immunoprecipitation (ChIP) and re-ChIP showed that myogenin and MEF2C were associated with the activated MLP promoter. Together, these results suggest that myogenin and MEF2C cooperate in the MLP gene activation. The linking of the MLP gene activation with myogenin and MEF2C may facilitate myogenin-mediated differentiation of striated muscle.
Collapse
|
19
|
Himeda CL, Ranish JA, Hauschka SD. Quantitative proteomic identification of MAZ as a transcriptional regulator of muscle-specific genes in skeletal and cardiac myocytes. Mol Cell Biol 2008; 28:6521-35. [PMID: 18710939 PMCID: PMC2577440 DOI: 10.1128/mcb.00306-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/23/2008] [Accepted: 08/09/2008] [Indexed: 11/20/2022] Open
Abstract
We identified a conserved sequence within the Muscle creatine kinase (MCK) promoter that is critical for high-level activity in skeletal and cardiac myocytes (MCK Promoter Element X [MPEX]). After selectively enriching for MPEX-binding factor(s) (MPEX-BFs), ICAT-based quantitative proteomics was used to identify MPEX-BF candidates, one of which was MAZ (Myc-associated zinc finger protein). MAZ transactivates the MCK promoter and binds the MPEX site in vitro, and chromatin immunoprecipitation analysis demonstrates enrichment of MAZ at the endogenous MCK promoter and other muscle gene promoters (Skeletal alpha-actin, Desmin, and alpha-Myosin heavy chain) in skeletal and cardiac myocytes. Consistent with its role in muscle gene transcription, MAZ transcripts and DNA-binding activity are upregulated during skeletal myocyte differentiation. Furthermore, MAZ was shown to bind numerous sequences (e.g., CTCCTCCC and CTCCACCC) that diverge from the GA box binding motif. Alternate motifs were identified in many muscle promoters, including Myogenin and MEF2C, and one motif was shown to be critical for Six4 promoter activity in both skeletal and cardiac myocytes. Interestingly, MAZ occupies and is able to transactivate the Six4 promoter in skeletal but not cardiac myocytes. Taken together, these findings are consistent with a previously unrecognized role for MAZ in muscle gene regulation.
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
20
|
Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice. Proc Natl Acad Sci U S A 2008; 105:11406-11. [PMID: 18685098 DOI: 10.1073/pnas.0801683105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrin and its receptor MuSK are required for the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). In the current model the local deposition of agrin by the nerve and the resulting local activation of MuSK are responsible for creating and maintaining the postsynaptic apparatus including clusters of acetylcholine receptors (AChRs). Concomitantly, the release of acetylcholine (ACh) and the resulting depolarization disperses those postsynaptic structures that are not apposed by the nerve and thus not stabilized by agrin-MuSK signaling. Here we show that a miniaturized form of agrin, consisting of the laminin-binding and MuSK-activating domains, is sufficient to fully restore NMJs in agrin mutant mice when expressed by developing muscle. Although miniagrin is expressed uniformly throughout muscle fibers and induces ectopic AChR clusters, the size and the number of those AChR clusters contacted by the motor nerve increase during development. We provide experimental evidence that this is due to ACh, because the AChR agonist carbachol stabilizes AChR clusters in organotypic cultures of embryonic diaphragms. In summary, our results show that agrin function in NMJ development requires only two small domains, and that this function does not depend on the local deposition of agrin at synapses. Finally, they suggest a novel local function of ACh in stabilizing postsynaptic structures.
Collapse
|
21
|
Gould D, Yousaf N, Fatah R, Subang MC, Chernajovsky Y. Gene therapy with an improved doxycycline-regulated plasmid encoding a tumour necrosis factor-alpha inhibitor in experimental arthritis. Arthritis Res Ther 2007; 9:R7. [PMID: 17254348 PMCID: PMC1860065 DOI: 10.1186/ar2113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/20/2006] [Accepted: 01/25/2007] [Indexed: 02/04/2023] Open
Abstract
Inhibition of tumour necrosis factor (TNF)-alpha with biological molecules has proven an effective treatment for rheumatoid arthritis, achieving a 20% improvement in American College of Rheumatology score in up to 65% of patients. The main drawback to these and many other biological treatments has been their expense, which has precluded their widespread application. Biological molecules could alternatively be delivered by gene therapy as the encoding DNA. We have developed novel plasmid vectors termed pGTLMIK and pGTTMIK, from which luciferase and a dimeric TNF receptor II (dTNFR) are respectively expressed in a doxycycline (Dox)-regulated manner. Regulated expression of luciferase from the self-contained plasmid pGTLMIK was examined in vitro in a variety of cell lines and in vivo following intramuscular delivery with electroporation in DBA/1 mice. Dox-regulated expression of luciferase from pGTLMIK of approximately 1,000-fold was demonstrated in vitro, and efficient regulation was observed in vivo. The vector pGTTMIK encoding dTNFR was delivered by the same route with and without administration of Dox to mice with collagen-induced arthritis. When pGTTMIK was delivered after the onset of arthritis, progression of the disease in terms of both paw thickness and clinical score was inhibited when Dox was also administered. Vectors with similar regulation characteristics may be suitable for clinical application.
Collapse
Affiliation(s)
- David Gould
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Nasim Yousaf
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Rewas Fatah
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Maria Cristina Subang
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| | - Yuti Chernajovsky
- Bone and Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, University of London, London, EC1M 6BQ, UK
| |
Collapse
|
22
|
Luo J, McMullen JR, Sobkiw CL, Zhang L, Dorfman AL, Sherwood MC, Logsdon MN, Horner JW, DePinho RA, Izumo S, Cantley LC. Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol Cell Biol 2005; 25:9491-502. [PMID: 16227599 PMCID: PMC1265829 DOI: 10.1128/mcb.25.21.9491-9502.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Class I(A) phosphoinositide 3-kinases (PI3Ks) are activated by growth factor receptors, and they regulate, among other processes, cell growth and organ size. Studies using transgenic mice overexpressing constitutively active and dominant negative forms of the p110alpha catalytic subunit of class I(A) PI3K have implicated the role of this enzyme in regulating heart size and physiological cardiac hypertrophy. To further understand the role of class I(A) PI3K in controlling heart growth and to circumvent potential complications from the overexpression of dominant negative and constitutively active proteins, we generated mice with muscle-specific deletion of the p85alpha regulatory subunit and germ line deletion of the p85beta regulatory subunit of class I(A) PI3K. Here we show that mice with cardiac deletion of both p85 subunits exhibit attenuated Akt signaling in the heart, reduced heart size, and altered cardiac gene expression. Furthermore, exercise-induced cardiac hypertrophy is also attenuated in the p85 knockout hearts. Despite such defects in postnatal developmental growth and physiological hypertrophy, the p85 knockout hearts exhibit normal contractility and myocardial histology. Our results therefore provide strong genetic evidence that class I(A) PI3Ks are critical regulators for the developmental growth and physiological hypertrophy of the heart.
Collapse
Affiliation(s)
- Ji Luo
- Division of Systems Biology, Harvard Medical School, Beth Israel Deaconess Medical Center, 77 Avenue Louis Pasteur, 10th Floor, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakagawa O, Arnold M, Nakagawa M, Hamada H, Shelton JM, Kusano H, Harris TM, Childs G, Campbell KP, Richardson JA, Nishino I, Olson EN. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev 2005; 19:2066-77. [PMID: 16140986 PMCID: PMC1199576 DOI: 10.1101/gad.1338705] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Myocyte enhancer factor 2 (MEF2) plays essential roles in transcriptional control of muscle development. However, signaling pathways acting downstream of MEF2 are largely unknown. Here, we performed a microarray analysis using Mef2c-null mouse embryos and identified a novel MEF2-regulated gene encoding a muscle-specific protein kinase, Srpk3, belonging to the serine arginine protein kinase (SRPK) family, which phosphorylates serine/arginine repeat-containing proteins. The Srpk3 gene is specifically expressed in the heart and skeletal muscle from embryogenesis to adulthood and is controlled by a muscle-specific enhancer directly regulated by MEF2. Srpk3-null mice display a new entity of type 2 fiber-specific myopathy with a marked increase in centrally placed nuclei; while transgenic mice overexpressing Srpk3 in skeletal muscle show severe myofiber degeneration and early lethality. We conclude that normal muscle growth and homeostasis require MEF2-dependent signaling by Srpk3.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA/genetics
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- MEF2 Transcription Factors
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Muscle, Skeletal/embryology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Myogenic Regulatory Factors
- Myopathies, Structural, Congenital/enzymology
- Myopathies, Structural, Congenital/etiology
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Osamu Nakagawa
- Department of Molecular Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Scicchitano BM, Spath L, Musarò A, Molinaro M, Rosenthal N, Nervi C, Adamo S. Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways. Mol Biol Cell 2005; 16:3632-41. [PMID: 15930130 PMCID: PMC1182303 DOI: 10.1091/mbc.e05-01-0055] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 05/11/2005] [Accepted: 05/24/2005] [Indexed: 01/12/2023] Open
Abstract
Arg8-vasopressin (AVP) promotes the differentiation of myogenic cell lines and mouse primary satellite cells by mechanisms involving the transcriptional activation of myogenic bHLH regulatory factors and myocyte enhancer factor 2 (MEF2). We here report that AVP treatment of L6 cells results in the activation of calcineurin-dependent differentiation, increased expression of MEF2 and GATA2, and nuclear translocation of the calcineurin target NFATc1. Interaction of these three factors occurs at MEF2 sites of muscle specific genes. The different kinetics of AVP-dependent expression of early (myogenin) and late (MCK) muscle-specific genes correlate with different acetylation levels of histones at their MEF2 sites. The cooperative role of calcineurin and Ca2+/calmodulin-dependent kinase (CaMK) in AVP-dependent differentiation is demonstrated by the effect of inhibitors of the two pathways. We show here, for the first time, that AVP, a "novel" myogenesis promoting factor, activates both the calcineurin and the CaMK pathways, whose combined activation leads to the formation of multifactor complexes and is required for the full expression of the differentiated phenotype. Although MEF2-NFATc1 complexes appear to regulate the expression of an early muscle-specific gene product (myogenin), the activation of late muscle-specific gene expression (MCK) involves the formation of complexes including GATA2.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Department of Histology and Medical Embryology, University of Rome La Sapienza, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, Nordheim A, Olson EN. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci U S A 2005; 102:1082-7. [PMID: 15647354 PMCID: PMC545866 DOI: 10.1073/pnas.0409103102] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Serum response factor (SRF) controls the transcription of muscle genes by recruiting a variety of partner proteins, including members of the myocardin family of transcriptional coactivators. Mice lacking SRF fail to form mesoderm and die before gastrulation, precluding an analysis of the roles of SRF in muscle tissues. To investigate the functions of SRF in skeletal muscle development, we conditionally deleted the Srf gene in mice by skeletal muscle-specific expression of Cre recombinase. In mice lacking skeletal muscle SRF expression, muscle fibers formed, but failed to undergo hypertrophic growth after birth. Consequently, mutant mice died during the perinatal period from severe skeletal muscle hypoplasia. The myopathic phenotype of these mutant mice resembled that of mice expressing a dominant negative mutant of a myocardin family member in skeletal muscle. These findings reveal an essential role for the partnership of SRF and myocardin-related transcription factors in the control of skeletal muscle growth and maturation in vivo.
Collapse
Affiliation(s)
- Shijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Himeda CL, Ranish JA, Angello JC, Maire P, Aebersold R, Hauschka SD. Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 2004; 24:2132-43. [PMID: 14966291 PMCID: PMC350548 DOI: 10.1128/mcb.24.5.2132-2143.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/09/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins. Using gel shift assays and Six-specific antisera, we demonstrated that Six4 is TrexBF in mouse skeletal myocytes and embryonic day 10 chick skeletal and cardiac muscle, while Six5 is the major TrexBF in adult mouse heart. In cotransfection studies, Six4 transactivates the MCK enhancer as well as muscle-specific regulatory regions of Aldolase A and Cardiac troponin C via Trex/MEF3 sites. Our results are consistent with Six4 being a key regulator of muscle gene expression in adult skeletal muscle and in developing striated muscle. The Trex/MEF3 composite sequence ([C/A]ACC[C/T]GA) allowed us to identify novel putative Six-binding sites in six other muscle genes. Our proteomics strategy will be useful for identifying transcription factors from complex mixtures using only defined DNA fragments for purification.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chick Embryo
- Creatine Kinase/genetics
- Creatine Kinase/metabolism
- Creatine Kinase, MM Form
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Enzymologic
- Genes, Regulator
- HeLa Cells
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunomagnetic Separation
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteomics
- Trans-Activators
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
27
|
Falcone G, Ciuffini L, Gauzzi MC, Provenzano C, Strano S, Gallo R, Castellani L, Alemà S. v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels. Oncogene 2004; 22:8302-15. [PMID: 14614454 DOI: 10.1038/sj.onc.1206915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conversion of skeletal myoblasts to terminally differentiated myocytes is negatively controlled by several growth factors and oncoproteins. In this study, we have investigated the molecular mechanisms by which v-Src, a prototypic tyrosine kinase, perturbs myogenesis in primary avian myoblasts and in established murine C2C12 satellite cells. We determined the expression levels of the cell cycle regulators pRb, cyclin D1 and D3 and cyclin-dependent kinase inhibitors p21 and p27 in v-Src-transformed myoblasts and found that, in contrast to myogenin, they are normally modulated by differentiative cues, implying that v-Src affects myogenesis independent of cell proliferation. We then examined the levels of expression, DNA-binding ability and transcription-activation potentials of myogenic regulatory factors in transformed myoblasts and in myotubes after reactivation of a temperature-sensitive allele of v-Src. Our results reveal two distinct potential modes of repression targeted to myogenic factors. On the one hand, we show that v-Src reversibly inhibits the expression of MyoD and myogenin in C2C12 cells and of myogenin in quail myoblasts. Remarkably, these loci become resistant to activation of the kinase in the postmitotic compartment. On the other hand, we demonstrate that v-Src efficiently inhibits muscle gene expression by repressing the transcriptional activity of myogenic factors without affecting MyoD DNA-binding activity. Indeed, forced expression of MyoD and myogenin allows terminal differentiation of transformed myoblasts. Finally, we found that ectopic expression of the coactivator p300 restores transcription from extrachromosomal muscle-specific promoters.
Collapse
Affiliation(s)
- Germana Falcone
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo 00016, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio J, Olson EN, Bassel-Duby R, Williams R. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 2001; 20:6414-23. [PMID: 11707412 PMCID: PMC125719 DOI: 10.1093/emboj/20.22.6414] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene expression in skeletal muscles of adult vertebrates is altered profoundly by changing patterns of contractile work. Here we observed that the functional activity of MEF2 transcription factors is stimulated by sustained periods of endurance exercise or motor nerve pacing, as assessed by expression in trans genic mice of a MEF2-dependent reporter gene (desMEF2-lacZ). This response is accompanied by transformation of specialized myofiber subtypes, and is blocked either by cyclosporin A, a specific chemical inhibitor of calcineurin, or by forced expression of the endogenous calcineurin inhibitory protein, myocyte-enriched calcineurin interacting protein 1. Calcineurin removes phosphate groups from MEF2, and augments the potency of the transcriptional activation domain of MEF2 fused to a heterologous DNA binding domain. Across a broad range, the enzymatic activity of calcineurin correlates directly with expression of endogenous genes that are transcriptionally activated by muscle contractions. These results delineate a molecular pathway in which calcineurin and MEF2 participate in the adaptive mechanisms by which skeletal myofibers acquire specialized contractile and metabolic properties as a function of changing patterns of muscle contraction.
Collapse
MESH Headings
- Animals
- Calcineurin/metabolism
- Cyclosporine/pharmacology
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Genes, Reporter
- Immunoblotting
- Kinetics
- MEF2 Transcription Factors
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Muscle Contraction
- Muscle, Skeletal/metabolism
- Myogenic Regulatory Factors
- Myoglobin/biosynthesis
- Physical Conditioning, Animal
- Physical Exertion
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Hai Wu
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Beverly Rothermel
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Shane Kanatous
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Paul Rosenberg
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Francisco J. Naya
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - John M. Shelton
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Kelley A. Hutcheson
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - J.Michael DiMaio
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Eric N. Olson
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Rhonda Bassel-Duby
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - R.Sanders Williams
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| |
Collapse
|
29
|
Liu D, Black BL, Derynck R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 2001; 15:2950-66. [PMID: 11711431 PMCID: PMC312830 DOI: 10.1101/gad.925901] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent inhibitor of skeletal muscle differentiation, but the molecular mechanism and signaling events that lead to this inhibition are poorly characterized. Here we show that the TGF-beta intracellular effector Smad3, but not Smad2, mediates the inhibition of myogenic differentiation in MyoD-expressing C3H10T1/2 cells and C2C12 myoblasts by repressing the activity of the MyoD family of transcriptional factors. The Smad3-mediated repression was directed at the E-box sequence motif within muscle gene enhancers and the bHLH region of MyoD, the domain required for its association with E-protein partners such as E12 and E47. The repression could be overcome by supplying an excess of E12, and covalent tethering of E47 to MyoD rendered the E-box-dependent transcriptional activity refractory to the effects of Smad3 and TGF-beta. Smad3 physically interacted with the HLH domain of MyoD, and this interaction correlated with the ability of Smad3 to interfere with MyoD/E protein heterodimerization and binding of MyoD complexes to oligomerized E-box sites. Together, these results reveal a model for how TGF-beta, through Smad3-mediated transcriptional repression, inhibits myogenic differentiation.
Collapse
Affiliation(s)
- D Liu
- Department of Growth and Development, University of California at San Francisco, 94143, USA
| | | | | |
Collapse
|
30
|
MacLellan WR, Xiao G, Abdellatif M, Schneider MD. A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol Cell Biol 2000; 20:8903-15. [PMID: 11073990 PMCID: PMC86545 DOI: 10.1128/mcb.20.23.8903-8915.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma protein (Rb) regulates both the cell cycle and tissue-specific transcription, by modulating the activity of factors that associate with its A-B and C pockets. In skeletal muscle, Rb has been reported to regulate irreversible cell cycle exit and muscle-specific transcription. To identify factors interacting with Rb in muscle cells, we utilized the yeast two-hybrid system, using the A-B and C pockets of Rb as bait. A novel protein we have designated E1A-like inhibitor of differentiation 1 (EID-1), was the predominant Rb-binding clone isolated. It is preferentially expressed in adult cardiac and skeletal muscle and encodes a 187-amino-acid protein, with a classic Rb-binding motif (LXCXE) in its C terminus. Overexpression of EID-1 in skeletal muscle inhibited tissue-specific transcription. Repression of skeletal muscle-restricted genes was mediated by a block to transactivation by MyoD independent of G(1) exit and, surprisingly, was potentiated by a mutation that prevents EID-1 binding to Rb. Inhibition of MyoD may be explained by EID-1's ability to bind and inhibit p300's histone acetylase activity, an essential MyoD coactivator. Thus, EID-1 binds both Rb and p300 and is a novel repressor of MyoD function.
Collapse
Affiliation(s)
- W R MacLellan
- Cardiovascular Research Laboratories, Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
31
|
Dunn SE, Chin ER, Michel RN. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 2000; 151:663-72. [PMID: 11062266 PMCID: PMC2185582 DOI: 10.1083/jcb.151.3.663] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcineurin-dependent pathways have been implicated in the hypertrophic response of skeletal muscle to functional overload (OV) (Dunn, S.E., J.L. Burns, and R.N. Michel. 1999. J. Biol. Chem. 274:21908-21912). Here we show that skeletal muscles overexpressing an activated form of calcineurin (CnA*) exhibit a phenotype indistinguishable from wild-type counterparts under normal weightbearing conditions and respond to OV with a similar doubling in cell size and slow fiber number. These adaptations occurred despite the fact that CnA* muscles displayed threefold higher calcineurin activity and enhanced dephosphorylation of the calcineurin targets NFATc1, MEF2A, and MEF2D. Moreover, when calcineurin signaling is compromised with cyclosporin A, muscles from OV wild-type mice display a lower molecular weight form of CnA, originally detected in failing hearts, whereas CnA* muscles are spared this manifestation. We also show that OV-induced growth and type transformations are prevented in muscle fibers of transgenic mice overexpressing a peptide that inhibits calmodulin from signaling to target enzymes. Taken together, these findings provide evidence that both calcineurin and its activity-linked upstream signaling elements are crucial for muscle adaptations to OV and that, unless significantly compromised, endogenous levels of this enzyme can accommodate large fluctuations in upstream calcium-dependent signaling events.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Blotting, Western
- Body Weight
- Calcineurin/chemistry
- Calcineurin/genetics
- Calcineurin/metabolism
- Calcium Signaling/drug effects
- Calmodulin-Binding Proteins/genetics
- Calmodulin-Binding Proteins/metabolism
- Cell Count
- Cell Size
- Cyclosporine/pharmacology
- DNA-Binding Proteins/metabolism
- Enzyme Activation
- Gene Expression
- Genetic Variation/genetics
- Hypertrophy
- MEF2 Transcription Factors
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Weight
- Muscle Development
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Myogenic Regulatory Factors
- NFATC Transcription Factors
- Nuclear Proteins
- Organ Size
- Phosphorylation/drug effects
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Transcription Factors/metabolism
- Weight-Bearing/physiology
Collapse
Affiliation(s)
- S E Dunn
- Neuromuscular Research Laboratory, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | | | | |
Collapse
|
32
|
Gallo R, Serafini M, Castellani L, Falcone G, Alemà S. Distinct effects of Rac1 on differentiation of primary avian myoblasts. Mol Biol Cell 1999; 10:3137-50. [PMID: 10512856 PMCID: PMC25569 DOI: 10.1091/mbc.10.10.3137] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1999] [Accepted: 08/02/1999] [Indexed: 11/11/2022] Open
Abstract
Rho family GTPases have been implicated in the regulation of the actin cytoskeleton in response to extracellular cues and in the transduction of signals from the membrane to the nucleus. Their role in development and cell differentiation, however, is little understood. Here we show that the transient expression of constitutively active Rac1 and Cdc42 in unestablished avian myoblasts is sufficient to cause inhibition of myogenin expression and block of the transition to the myocyte compartment, whereas activated RhoA affects myogenic differentiation only marginally. Activation of c-Jun N-terminal kinase (JNK) appears not to be essential for block of differentiation because, although Rac1 and Cdc42 GTPases modestly activate JNK in quail myoblasts, a Rac1 mutant defective for JNK activation can still inhibit myogenic differentiation. Stable expression of active Rac1, attained by infection with a recombinant retrovirus, is permissive for terminal differentiation, but the resulting myotubes accumulate severely reduced levels of muscle-specific proteins. This inhibition is the consequence of posttranscriptional events and suggests the presence of a novel level of regulation of myogenesis. We also show that myotubes expressing constitutively active Rac1 fail to assemble ordered sarcomeres. Conversely, a dominant-negative Rac1 variant accelerates sarcomere maturation and inhibits v-Src-induced selective disassembly of I-Z-I complexes. Collectively, our findings provide a role for Rac1 during skeletal muscle differentiation and strongly suggest that Rac1 is required downstream of v-Src in the signaling pathways responsible for the dismantling of tissue-specific supramolecular structures.
Collapse
Affiliation(s)
- R Gallo
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Richerche, 00137 Rome, Italy
| | | | | | | | | |
Collapse
|
33
|
Lu J, Webb R, Richardson JA, Olson EN. MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD. Proc Natl Acad Sci U S A 1999; 96:552-7. [PMID: 9892671 PMCID: PMC15174 DOI: 10.1073/pnas.96.2.552] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle development is controlled by a family of muscle-specific basic helix-loop-helix (bHLH) transcription factors that activate muscle genes by binding E-boxes (CANNTG) as heterodimers with ubiquitous bHLH proteins, called E proteins. Myogenic bHLH factors are expressed in proliferating undifferentiated myoblasts, but they do not initiate myogenesis until myoblasts exit the cell cycle. We describe a bHLH protein, MyoR (for myogenic repressor), that is expressed in undifferentiated myoblasts in culture and is down-regulated during differentiation. MyoR is also expressed specifically in the skeletal muscle lineage between days 10.5 and 16.5 of mouse embryogenesis and down-regulated thereafter during the period of secondary myogenesis. MyoR forms heterodimers with E proteins that bind the same DNA sequence as myogenic bHLH/E protein heterodimers, but MyoR acts as a potent transcriptional repressor that blocks myogenesis and activation of E-box-dependent muscle genes. These results suggest a role for MyoR as a lineage-restricted transcriptional repressor of the muscle differentiation program.
Collapse
Affiliation(s)
- J Lu
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75235-9148, USA
| | | | | | | |
Collapse
|
34
|
Gupta M, Zak R, Libermann TA, Gupta MP. Tissue-restricted expression of the cardiac alpha-myosin heavy chain gene is controlled by a downstream repressor element containing a palindrome of two ets-binding sites. Mol Cell Biol 1998; 18:7243-58. [PMID: 9819411 PMCID: PMC109306 DOI: 10.1128/mcb.18.12.7243] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the alpha-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in alpha-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac alpha-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the alpha-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the alpha-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the alpha-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the alpha-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the alpha-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the alpha-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the alpha-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.
Collapse
Affiliation(s)
- M Gupta
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, Illinois 60453, USA.
| | | | | | | |
Collapse
|
35
|
Shih HH, Tevosian SG, Yee AS. Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol Cell Biol 1998; 18:4732-43. [PMID: 9671483 PMCID: PMC109059 DOI: 10.1128/mcb.18.8.4732] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Differentiation is a coordinated process of irreversible cell cycle exit and tissue-specific gene expression. To probe the functions of the retinoblastoma protein (RB) family in cell differentiation, we isolated HBP1 as a specific target of RB and p130. Our previous work showed that HBP1 was a transcriptional repressor and a cell cycle inhibitor. The induction of HBP1, RB, and p130 upon differentiation in the muscle C2C12 cells suggested a coordinated role. Here we report that the expression of HBP1 unexpectedly blocked muscle cell differentiation without interfering with cell cycle exit. Moreover, the expression of MyoD and myogenin, but not Myf5, was inhibited in HBP1-expressing cells. HBP1 inhibited transcriptional activation by the MyoD family members. The inhibition of MyoD family function by HBP1 required binding to RB and/or p130. Since Myf5 might function upstream of MyoD, our data suggested that HBP1 probably blocked differentiation by disrupting Myf5 function, thus preventing expression of MyoD and myogenin. Consistent with this, the expression of each MyoD family member could reverse the inhibition of differentiation by HBP1. Further investigation implicated the relative ratio of RB to HBP1 as a determinant of whether cell cycle exit or full differentiation occurred. At a low RB/HBP1 ratio cell cycle exit occurred but there was no tissue-specific gene expression. At elevated RB/HBP1 ratios full differentiation occurred. Similar changes in the RB/HBP1 ratio have been observed in normal C2 differentiation. Thus, we postulate that the relative ratio of RB to HBP1 may be one signal for activation of the MyoD family. We propose a model in which a checkpoint of positive and negative regulation may coordinate cell cycle exit with MyoD family activation to give fidelity and progression in differentiation.
Collapse
Affiliation(s)
- H H Shih
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
36
|
Moch C, Spitz F, Porteu A, Kahn A, Daegelen D. The human pH aldolase A promoter directs widespread but muscle-predominant expression in transgenic mice. Transgenic Res 1998; 7:113-21. [PMID: 9608739 DOI: 10.1023/a:1008820409079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to identify regulatory elements that direct widespread in vivo expression of a linked gene, we have examined one of the human aldolase A alternative promoters, the ubiquitous pH promoter, which is active in most foetal and adult tissues. We have used the pH promoter region to drive expression of an heterologous CAT reporter gene in transgenic mice. We show that a short 820 bp pH promoter fragment is able to confer a ubiquitous and reproducible activity pattern on the CAT reporter gene in most of the transgenic lines analysed, with a particularly high level of expression in adult skeletal muscle. Activity of this transgene was detected from early embryonic stages. Therefore, this pH promoter region appears to be a powerful tool to direct ubiquitous and early expression of a transgene in vivo. Deletion analysis revealed that: (i) the region between -651 and -369 bp relative to the pH promoter transcription start site includes DNA elements capable of overriding effects of the surrounding chromatin at the integration site, (ii) the region between -285 and -211 bp is involved in pH promoter tissue-specific expression pattern in skeletal muscle and/or nervous tissues, (iii) the region located between -211 and -108 bp is necessary for its ubiquitous and muscle-predominant activity and (iv) the most proximal region downstream from -108 bp is still sufficient to confer an activity in brain and lung.
Collapse
Affiliation(s)
- C Moch
- Unité de Recherches en Physiologie, Institut Cochin de Génétique Moléculaires-Université René Descartes, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Gupta MP, Amin CS, Gupta M, Hay N, Zak R. Transcription enhancer factor 1 interacts with a basic helix-loop-helix zipper protein, Max, for positive regulation of cardiac alpha-myosin heavy-chain gene expression. Mol Cell Biol 1997; 17:3924-36. [PMID: 9199327 PMCID: PMC232245 DOI: 10.1128/mcb.17.7.3924] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The M-CAT binding factor transcription enhancer factor 1 (TEF-1) has been implicated in the regulation of several cardiac and skeletal muscle genes. Previously, we identified an E-box-M-CAT hybrid (EM) motif that is responsible for the basal and cyclic AMP-inducible expression of the rat cardiac alpha-myosin heavy chain (alpha-MHC) gene in cardiac myocytes. In this study, we report that two factors, TEF-1 and a basic helix-loop-helix leucine zipper protein, Max, bind to the alpha-MHC EM motif. We also found that Max was a part of the cardiac troponin T M-CAT-TEF-1 complex even when the DNA template did not contain an apparent E-box binding site. In the protein-protein interaction assay, a stable association of Max with TEF-1 was observed when glutathione S-transferase (GST)-TEF-1 or GST-Max was used to pull down in vitro-translated Max or TEF-1, respectively. In addition, Max was coimmunoprecipitated with TEF-1, thus documenting an in vivo TEF-1-Max interaction. In the transient transcription assay, overexpression of either Max or TEF-1 resulted a mild activation of the alpha-MHC-chloramphenicol acetyltransferase (CAT) reporter gene at lower concentrations and repression of this gene at higher concentrations. However, when Max and TEF-1 expression plasmids were transfected together, the repression mediated by a single expression plasmid was alleviated and a three- to fourfold transactivation of the alpha-MHC-CAT reporter gene was observed. This effect was abolished once the EM motif in the promoter-reporter construct was mutated, thus suggesting that the synergistic transactivation function of the TEF-1-Max heterotypic complex is mediated through binding of the complex to the EM motif. These results demonstrate a novel association between Max and TEF-1 and indicate a positive cooperation between these two factors in alpha-MHC gene regulation.
Collapse
Affiliation(s)
- M P Gupta
- Department of Medicine, The University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
38
|
Lee Y, Nadal-Ginard B, Mahdavi V, Izumo S. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene. Mol Cell Biol 1997; 17:2745-55. [PMID: 9111345 PMCID: PMC232125 DOI: 10.1128/mcb.17.5.2745] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The muscle-specific regulatory region of the alpha-cardiac myosin heavy-chain (MHC) gene contains the thyroid hormone response element (TRE) and two A/T-rich DNA sequences, designated A/T1 and A/T2, the putative myocyte-specific enhancer factor 2 (MEF2) binding sites. We investigated the roles of the TRE and MEF2 binding sites and the potential interaction between thyroid hormone receptor (TR) and MEF2 proteins regulating the alpha-MHC promoter. Deletion mutation analysis indicated that both the A/T2 motif and TRE were required for muscle-specific expression of the alpha-MHC gene. The alpha-MHC enhancer containing both the A/T2 motif and TRE was synergistically activated by coexpression of MEF2 and TR in nonmuscle cells, whereas neither factor by itself activated the alpha-MHC reporters. The reporter construct containing the A/T2 sequence and the TRE linked to a heterologous promoter also showed synergistic activation by coexpression of MEF2 and TR in nonmuscle cells. Moreover, protein binding assays demonstrated that MEF2 and TR specifically bound to one another in vitro and in vivo. The MADS domain of MEF2 and the DNA-binding domain of TR were necessary and sufficient to mediate their physical interaction. Our results suggest that the members of the MADS family (MEF2) and steroid receptor superfamily (TR) interact with one another to synergistically activate the alpha-cardiac MHC gene expression.
Collapse
Affiliation(s)
- Y Lee
- Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor 48109-0644, USA.
| | | | | | | |
Collapse
|
39
|
Yang WL, Lim RW. Modulation of muscle creatine kinase promoter activity by the inducible orphan nuclear receptor TIS1. Biochem J 1997; 321 ( Pt 2):281-7. [PMID: 9020856 PMCID: PMC1218066 DOI: 10.1042/bj3210281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
TIS1, an inducible orphan nuclear receptor, was originally isolated as a tumour-promoter-inducible gene in mouse 3T3 cells and later shown to be induced by growth factors and other extracellular stimuli. We show here that TIS1 mRNA was expressed in proliferating C2C12 mouse skeletal muscle cells out that the level of TIS1 expression increased during muscle differentiation. Overexpression of TIS1 transactivated muscle creatine kinase (MCK) reporter genes containing as little as 80 bp of the proximal 5' flanking region. In contrast, a promoterless TIS1 construct and a frameshift mutant TIS1 construct were unable to transactivate the MCK reporter gene. Moreover, the effect exerted by TIS1 appeared to be selective for the MCK promoter. Treatment of C2C12 cells with forskolin, which is known to induce TIS1 expression, also stimulated MCK reporter gene activity. Interestingly, in vitro translated TIS1 protein failed to bind to the MCK promoter region, suggesting that the transactivation effect of TIS1 may be mediated without direct interaction of the protein with the MCK promoter DNA. Collectively, these results suggest that changing levels of TIS1 may help to modulate the expression of MCK, and perhaps other muscle-specific genes, in response to physiological changes.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cell Differentiation/genetics
- Cell Division/genetics
- Codon
- Colforsin/pharmacology
- Creatine Kinase/drug effects
- Creatine Kinase/genetics
- Enzyme Activation/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Genes, Reporter
- Mice
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Promoter Regions, Genetic
- Protein Binding/genetics
- RNA, Messenger/biosynthesis
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- W L Yang
- Department of Pharmacology, University of Missouri-Columbia 65212, USA
| | | |
Collapse
|
40
|
Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A 1996; 93:9366-73. [PMID: 8790335 PMCID: PMC38433 DOI: 10.1073/pnas.93.18.9366] [Citation(s) in RCA: 334] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Members of the MyoD family of muscle-specific basic helix-loop-helix (bHLH) proteins function within a genetic pathway to control skeletal muscle development. Mutational analyses of these factors suggested that their DNA binding domains mediated interaction with a coregulator required for activation of muscle-specific transcription. Members of the myocyte enhancer binding factor 2 (MEF2) family of MADS-box proteins are expressed at high levels in muscle and neural cells and at lower levels in several other cell types. MEF2 factors are unable to activate muscle gene expression alone, but they potentiate the transcriptional activity of myogenic bHLH proteins. This potentiation appears to be mediated by direct interactions between the DNA binding domains of these different types of transcription factors. Biochemical and genetic evidence suggests that MEF2 factors are the coregulators for myogenic bHLH proteins. The presence of MEF2 and cell-specific bHLH proteins in other cell types raises the possibility that these proteins may also cooperate to regulate other programs of cell-specific gene expression. We present a model to account for such cooperative interactions.
Collapse
Affiliation(s)
- J D Molkentin
- Hamon Center for Basic Cancer Research, University of Texas, Southwestern Medical Center at Dallas 75235-9148, USA
| | | |
Collapse
|
41
|
Shield MA, Haugen HS, Clegg CH, Hauschka SD. E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice. Mol Cell Biol 1996; 16:5058-68. [PMID: 8756664 PMCID: PMC231507 DOI: 10.1128/mcb.16.9.5058] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous analysis of the muscle creatine kinase (MCK) gene indicated that control elements required for transcription in adult mouse muscle differed from those required in cell culture, suggesting that distinct modes of muscle gene regulation occur in vivo. To examine this further, we measured the activity of MCK transgenes containing E-box and promoter deletions in a variety of striated muscles. Simultaneous mutation of three E boxes in the 1,256-bp MCK 5' region, which abolished transcription in muscle cultures, had strikingly different effects in mice. The mutations abolished transgene expression in cardiac and tongue muscle and caused a reduction in expression in the soleus muscle (a muscle with many slow fibers) but did not affect expression in predominantly fast muscles: quadriceps, abdominals, and extensor digitorum longus. Other regulatory sequences with muscle-type-specific activities were found within the 358-bp 5'-flanking region. This proximal region conferred relatively strong expression in limb and abdominal skeletal muscles but was inactive in cardiac and tongue muscles. However, when the 206-bp 5' enhancer was ligated to the 358-bp region, high levels of tissue-specific expression were restored in all muscle types. These results indicate that E boxes and a proximal regulatory region are differentially required for maximal MCK transgene expression in different striated muscles. The overall results also imply that within skeletal muscles, the steady-state expression of the MCK gene and possibly other muscle genes depends on transcriptional mechanisms that differ between fast and slow fibers as well as between the anatomical and physiological attributes of each specific muscle.
Collapse
Affiliation(s)
- M A Shield
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA
| | | | | | | |
Collapse
|
42
|
Molkentin JD, Firulli AB, Black BL, Martin JF, Hustad CM, Copeland N, Jenkins N, Lyons G, Olson EN. MEF2B is a potent transactivator expressed in early myogenic lineages. Mol Cell Biol 1996; 16:3814-24. [PMID: 8668199 PMCID: PMC231378 DOI: 10.1128/mcb.16.7.3814] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are four members of the myocyte enhancer binding factor 2 (MEF2) family of transcription factors, MEF2A, -B, -C, and -D, that have homology within an amino-terminal MADS box and an adjacent MEF2 domain that together mediate dimerization and DNA binding. MEF2A, -C, and -D have previously been shown to bind an A/T-rich DNA sequence in the control regions of numerous muscle-specific genes, whereas MEF2B was reported to be unable to bind this sequence unless the carboxyl terminus was deleted. To further define the functions of MEF2B, we analyzed its DNA binding and transcriptional activities. In contrast to previous studies, our results show that MEF2B binds the same DNA sequence as other members of the MEF2 family and acts as a strong transactivator through that sequence. Transcriptional activation by MEF2B is dependent on the carboxyl terminus, which contains two conserved sequence motifs found in all vertebrate MEF2 factors. During mouse embryogenesis, MEF2B transcripts are expressed in the developing cardiac and skeletal muscle lineages in a temporospatial pattern distinct from but overlapping with those of the other Mef2 genes. The mouse Mef2b gene maps to chromosome 8 and is unlinked to other Mef2 genes; its intron-exon organization is similar to that of the other vertebrate Mef2 genes and the single Drosophila Mef2 gene, consistent with the notion that these different Mef2 genes evolved from a common ancestral gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Consensus Sequence
- Crosses, Genetic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genomic Library
- Heart/embryology
- MEF2 Transcription Factors
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Mutagenesis, Site-Directed
- Myocardium/metabolism
- Myogenic Regulatory Factors
- Open Reading Frames
- Promoter Regions, Genetic
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Trans-Activators/biosynthesis
- Transcription Factors/biosynthesis
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- J D Molkentin
- Hamon Center for Basic Cancer Research, The University of Texas Southwestern Medical Center at Dallas, 75235-9148, YSA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Donoviel DB, Shield MA, Buskin JN, Haugen HS, Clegg CH, Hauschka SD. Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice. Mol Cell Biol 1996; 16:1649-58. [PMID: 8657140 PMCID: PMC231151 DOI: 10.1128/mcb.16.4.1649] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly reduced activity in cultured skeletal myocytes. However, the enhancer AT-rich element at nt - 1195 was critical for expression in transgenic skeletal muscle. Mutation of this site reduced skeletal muscle expression to the same level as transgenes lacking the 206-bp enhancer, although mutation of the AT-rich site did not affect cardiac muscle expression. These results demonstrate clear differences between the activity of MCK regulatory regions in cultured muscles cells and in whole adult transgenic muscle. This suggests that there are alternative mechanism of regulating the MCK gene in skeletal and cardiac muscle under different physiological states.
Collapse
Affiliation(s)
- D B Donoviel
- Department of Biochemistry, University of Washington, Seattle, 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
44
|
Peyton M, Stellrecht CM, Naya FJ, Huang HP, Samora PJ, Tsai MJ. BETA3, a novel helix-loop-helix protein, can act as a negative regulator of BETA2 and MyoD-responsive genes. Mol Cell Biol 1996; 16:626-33. [PMID: 8552091 PMCID: PMC231042 DOI: 10.1128/mcb.16.2.626] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Using degenerate PCR cloning we have identified a novel basic helix-loop-helix (bHLH) transcription factor, BETA3, from a hamster insulin tumor (HIT) cell cDNA library. Sequence analysis revealed that this factor belongs to the class B bHLH family and has the highest degree of homology with another bHLH transcription factor recently isolated in our laboratory, BETA2 (neuroD) (J. E. Lee, S. M. Hollenberg, L. Snider, D. L. Turner, N. Lipnick, and H. Weintraub, Science 268:836-844, 1995; F. J. Naya, C. M. M. Stellrecht, and M.-J. Tsai, Genes Dev. 8:1009-1019, 1995). BETA2 is a brain- and pancreatic-islet-specific bHLH transcription factor and is largely responsible for the tissue-specific expression of the insulin gene. BETA3 was found to be tissue restricted, with the highest levels of expression in HIT, lung, kidney, and brain cells. Surprisingly, despite the homology between BETA2 and BETA3 and its intact basic region, BETA3 is unable to bind the insulin E box in bandshift analysis as a homodimer or as a heterodimer with the class A bHLH factors E12, E47, or BETA1. Instead, BETA3 inhibited both the E47 homodimer and the E47/BETA2 heterodimer binding to the insulin E box. In addition, BETA3 greatly repressed the BETA2/E47 induction of the insulin enhancer in HIT cells as well as the MyoD/E47 induction of a muscle-specific E box in the myoblast cell line C2C12. In contrast, expression of BETA3 had no significant effect on the GAL4-VP16 transcriptional activity. Immunoprecipitation analysis demonstrates that the mechanism of repression is via direct protein-protein interaction, presumably by heterodimerization between BETA3 and class A bHLH factors.
Collapse
Affiliation(s)
- M Peyton
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
45
|
Engert JC, Servaes S, Sutrave P, Hughes SH, Rosenthal N. Activation of a muscle-specific enhancer by the Ski proto-oncogene. Nucleic Acids Res 1995; 23:2988-94. [PMID: 7659522 PMCID: PMC307140 DOI: 10.1093/nar/23.15.2988] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In transgenic mice, muscle-specific expression of the c-ski oncogene induces hypertrophy exclusively in a subset of fast muscle fibers. Here we report that regulatory elements from two genes expressed in fast fibers, myosin light chain 1/3 (MLC) and muscle creatine kinase (MCK), were activated when co-transfected with c-ski expression vectors in myoblasts. The expression from the MLC enhancer was reduced when the c-ski oncogene was cotransfected with MyoD into NIH3T3 fibroblasts. Activation of the MLC enhancer by Ski also occurred in vivo, since bigenic progeny generated by mating MLC-CAT and MSV-skitransgenic mice displayed higher CAT activity in their muscles than did the MLC-CAT parental line. Identification of gene targets for the fiber-specific action of the c-ski gene product provides a molecular model that could be used for the further dissection of Ski-induced hypertrophy, both in tissue culture and in vivo.
Collapse
Affiliation(s)
- J C Engert
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
46
|
Shin EK, Shin A, Paulding C, Schaffhausen B, Yee AS. Multiple change in E2F function and regulation occur upon muscle differentiation. Mol Cell Biol 1995; 15:2252-62. [PMID: 7891719 PMCID: PMC230453 DOI: 10.1128/mcb.15.4.2252] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined regulation of the E2F transcription factor during differentiation of muscle cells. E2F regulates many genes involved in growth control and is also the target of regulation by diverse cellular signals, including the RB family of growth suppressors (e.g., the retinoblastoma protein [RB], p107, and p130). The following aspects of E2F function and regulation during muscle differentiation were investigated: (i) protein-protein interactions, (ii) protein levels, (iii) phosphorylation of the E2F protein, and (iv) transcriptional activity. A distinct E2F complex was present in differentiated cells but not in undifferentiated cells. The p130 protein was a prominent component of the E2F complex associated with differentiation. In contrast, in undifferentiated cells, the p107 protein was the prominent component in one of three E2F complexes. In addition, use of a differentiation-defective muscle line provided genetic and biochemical evidence that quiescence and differentiation are separable events. Exclusive formation of the E2F-p130 complex did not occur in this differentiation-defective line; however, E2F complexes diagnostic of quiescence were readily apparent. Thus, sole formation of the E2F-p130 complex is a necessary event in terminal differentiation. Other changes in E2F function and regulation upon differentiation include decreased phosphorylation and increased repression by E2F. These observations suggest that the regulation of E2F function during terminal differentiation may proceed through differential interaction within the RB family and/or phosphorylation.
Collapse
Affiliation(s)
- E K Shin
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
47
|
The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light-chain 2 gene via independent cis regulatory elements. Mol Cell Biol 1994. [PMID: 7935447 DOI: 10.1128/mcb.14.11.7331] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have documented that 250 bp of the rat cardiac ventricular myosin light-chain 2 (MLC-2v) promoter is sufficient to confer cardiac muscle-specific expression on a luciferase reporter gene in both transgenic mice and primary cultured neonatal rat myocardial cells. Utilizing ligation-mediated PCR to perform in vivo dimethyl sulfate footprinting, the present study has identified protein-DNA interaction within the position from -176 to -165. This region, identified as MLE1, contains a core sequence, CACGTG, which conforms to the consensus E-box site and is identical to the upstream stimulating factor (USF)-binding site of the adenovirus major late promoter. Transient assays of luciferase reporter genes containing point mutations of the site demonstrate the importance of this cis regulatory element in the transcriptional activation of this cardiac muscle gene in ventricular muscle cells. The protein complex that occupies this site is capable of binding to HF-1a and PRE B sites which are known to be required for cardiac muscle-specific expression of rat MLC-2v and alpha-myosin heavy-chain genes, respectively. This study provides direct evidence that USF, a member of the basic helix-loop-helix leucine zipper family, binds to MLE1, HF-1a, and PRE B sites and suggests that it is a component of protein complexes that may coordinately control the expression of MLC-2v and alpha-myosin heavy-chain genes. The current study also provides evidence that USF can positively and negatively regulate the MLC-2v gene via independent cis regulatory elements.
Collapse
|
48
|
Navankasattusas S, Sawadogo M, van Bilsen M, Dang CV, Chien KR. The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light-chain 2 gene via independent cis regulatory elements. Mol Cell Biol 1994; 14:7331-9. [PMID: 7935447 PMCID: PMC359268 DOI: 10.1128/mcb.14.11.7331-7339.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have documented that 250 bp of the rat cardiac ventricular myosin light-chain 2 (MLC-2v) promoter is sufficient to confer cardiac muscle-specific expression on a luciferase reporter gene in both transgenic mice and primary cultured neonatal rat myocardial cells. Utilizing ligation-mediated PCR to perform in vivo dimethyl sulfate footprinting, the present study has identified protein-DNA interaction within the position from -176 to -165. This region, identified as MLE1, contains a core sequence, CACGTG, which conforms to the consensus E-box site and is identical to the upstream stimulating factor (USF)-binding site of the adenovirus major late promoter. Transient assays of luciferase reporter genes containing point mutations of the site demonstrate the importance of this cis regulatory element in the transcriptional activation of this cardiac muscle gene in ventricular muscle cells. The protein complex that occupies this site is capable of binding to HF-1a and PRE B sites which are known to be required for cardiac muscle-specific expression of rat MLC-2v and alpha-myosin heavy-chain genes, respectively. This study provides direct evidence that USF, a member of the basic helix-loop-helix leucine zipper family, binds to MLE1, HF-1a, and PRE B sites and suggests that it is a component of protein complexes that may coordinately control the expression of MLC-2v and alpha-myosin heavy-chain genes. The current study also provides evidence that USF can positively and negatively regulate the MLC-2v gene via independent cis regulatory elements.
Collapse
Affiliation(s)
- S Navankasattusas
- Biomedical Science Program, University of California-San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
49
|
Hurwitz DR, Nathan M, Barash I, Ilan N, Shani M. Specific combinations of human serum albumin introns direct high level expression of albumin in transfected COS cells and in the milk of transgenic mice. Transgenic Res 1994; 3:365-75. [PMID: 8000433 DOI: 10.1007/bf01976768] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new series of expression vectors, each comprised of the beta-lactoglobulin (BLG) promoter driving one of a variety of human serum albumin (HSA) minigenes or the entire gene, were evaluated for their ability to direct expression of HSA in vitro in COS tissue culture cells and into the milk of transgenic mice. Vectors directed a hierarchy of expression levels in vitro, dependent upon the specific complement of HSA introns included. HSA introns acted in a synergistic manner. In addition, minigenes comprised of specific subsets of introns were more efficacious than the entire HSA gene with all of its introns. Transgenic mice expressed as much as 10 mg ml-1 of HSA in their milk. Vectors comprised of specific intron subsets directed levels at 1 mg ml-1 or greater in the milk of 20% of generated transgenics. A statistical correlation between the expression level trend in vitro with the trend of expression in vivo (% which express) at detectable levels (p = 0.0015) and at the level of greater than 0.1 mg ml-1 (p = 0.0156) was demonstrated. A weak correlation existed (p = 0.0526) at in vivo levels of 1 mg ml-1 or greater. These new vectors are expected to direct the production of high levels of HSA in the milk of a large percentage of generated transgenic dairy animals.
Collapse
Affiliation(s)
- D R Hurwitz
- Rhône-Poulenc Rorer Central Research, Collegeville, PA 19426
| | | | | | | | | |
Collapse
|
50
|
Dimerization through the helix-loop-helix motif enhances phosphorylation of the transcription activation domains of myogenin. Mol Cell Biol 1994. [PMID: 8065355 DOI: 10.1128/mcb.14.9.6232] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The muscle-specific basic helix-loop-helix (bHLH) protein myogenin activates muscle transcription by binding to target sequences in muscle-specific promoters and enhancers as a heterodimer with ubiquitous bHLH proteins, such as the E2A gene products E12 and E47. We show that dimerization with E2A products potentiates phosphorylation of myogenin at sites within its amino- and carboxyl-terminal transcription activation domains. Phosphorylation of myogenin at these sites was mediated by the bHLH region of E2A products and was dependent on dimerization but not on DNA binding. Mutations of the dimerization-dependent phosphorylation sites resulted in enhanced transcriptional activity of myogenin, suggesting that their phosphorylation diminishes myogenin's transcriptional activity. The ability of E2A products to potentiate myogenin phosphorylation suggests that dimerization induces a conformational change in myogenin that unmasks otherwise cryptic phosphorylation sites or that E2A proteins recruit a kinase for which myogenin is a substrate. That phosphorylation of these dimerization-dependent sites diminished myogenin's transcriptional activity suggests that these sites are targets for a kinase that interferes with muscle-specific gene expression.
Collapse
|