1
|
Contarin R, Drapeau A, François P, Madec JY, Haenni M, Dordet-Frisoni E. The interplay between mobilome and resistome in Staphylococcus aureus. mBio 2024; 15:e0242824. [PMID: 39287446 PMCID: PMC11481524 DOI: 10.1128/mbio.02428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Antibiotic resistance genes (ARGs) in Staphylococcus aureus can disseminate vertically through successful clones, but also horizontally through the transfer of genes conveyed by mobile genetic elements (MGEs). Even though underexplored, MGE/ARG associations in S. aureus favor the emergence of multidrug-resistant clones, which are challenging therapeutic success in both human and animal health. This study investigated the interplay between the mobilome and the resistome of more than 10,000 S. aureus genomes from human and animal origin. The analysis revealed a remarkable diversity of MGEs and ARGs, with plasmids and transposons being the main carriers of ARGs. Numerous MGE/ARG associations were identified, suggesting that MGEs play a critical role in the dissemination of resistance. A high degree of similarity was observed in MGE/ARG associations between human and animal isolates, highlighting the potential for unrestricted spread of ARGs between hosts. Our results showed that in parallel to clonal expansion, MGEs and their associated ARGs can spread across different strain types sequence types (STs), favoring the evolution of these clones and their adaptation in selective environments. The high variability of MGE/ARG associations within individual STs and their spread across several STs highlight the crucial role of MGEs in shaping the S. aureus resistome. Overall, this study provides valuable insights into the complex interplay between MGEs and ARGs in S. aureus, emphasizing the need to elucidate the mechanisms governing the epidemic success of MGEs, particularly those implicated in ARG transfer.IMPORTANCEThe research presented in this article highlights the importance of understanding the interactions between mobile genetic elements (MGEs) and antibiotic resistance genes (ARGs) carried by Staphylococcus aureus, a versatile bacterium that can be both a harmless commensal and a dangerous pathogen for humans and animals. S. aureus has a great capacity to acquire and disseminate ARGs, enabling efficient adaption to various environmental or clinical conditions. By analyzing a large data set of S. aureus genomes, we highlighted the substantial role of MGEs, particularly plasmids and transposons, in disseminating ARGs within and between S. aureus populations, bypassing host barriers. Given that multidrug-resistant S. aureus strains are classified as a high-priority pathogen by global health organizations, this knowledge is crucial for understanding the complex dynamics of transmission of antibiotic resistance in this species.
Collapse
Affiliation(s)
- Rachel Contarin
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Antoine Drapeau
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | |
Collapse
|
2
|
Katahira K, Gotoh Y, Kasama K, Yoshimura D, Itoh T, Shimauchi C, Tajiri A, Hayashi T. Mobile genetic element-driven genomic changes in a community-associated methicillin-resistant Staphylococcus aureus clone during its transmission in a regional community outbreak in Japan. Microb Genom 2024; 10:001272. [PMID: 39017043 PMCID: PMC11316552 DOI: 10.1099/mgen.0.001272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are now a public health concern in both community and healthcare settings worldwide. We previously identified a suspected case of a maternity clinic-centred outbreak of CA-MRSA skin infection in a regional community in Japan by PFGE-based analysis. In this study, we performed genome sequence-based analyses of 151 CA-MRSA isolates, which included not only outbreak-related isolates that we previously defined based on identical or similar PFGE patterns but also other isolates obtained during the same period in the same region. Our analysis accurately defined 133 isolates as outbreak-related isolates, collectively called the TDC clone. They belonged to a CA-MRSA lineage in clonal complex (CC) 30, known as the South West Pacific (SWP) clone. A high-resolution phylogenetic analysis of these isolates combined with their epidemiological data revealed that the TDC clone was already present and circulating in the region before the outbreak was recognized, and only the isolates belonging to two sublineages (named SL4 and SL5) were directly involved in the outbreak. Long persistence in patients/carriers and frequent intrahousehold transmission of the TDC clone were also revealed by this analysis. Moreover, by systematic analyses of the genome changes that occurred in this CA-MRSA clone during transmission in the community, we revealed that most variations were associated with mobile genetic elements (MGEs). Variant PFGE types were generated by alterations of prophages and genomic islands or insertion sequence (IS)-mediated insertion of a plasmid or a sequence of unknown origin. Dynamic changes in plasmid content, which were linked to changes in antimicrobial resistance profiles in specific isolates, were generated by frequent gain and loss of plasmids, most of which were self-transmissible or mobilizable. The introduction of IS256 by a plasmid (named pTDC02) into sublineage SL5 led to SL5-specific amplification of IS256, and amplified IS256 copies were involved in some of the structural changes of chromosomes and plasmids and generated variations in the repertoire of virulence-related genes in limited isolates. These data revealed how CA-MRSA genomes change during transmission in the community and how MGEs are involved in this process.
Collapse
Affiliation(s)
- Katsuyuki Katahira
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Respiratory Medicine, NHO Omuta Hospital, Tachibana, Omuta City 837-0911, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kentaro Kasama
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dai Yoshimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Chieko Shimauchi
- Department of Nursing Humanics I, Miyazaki Prefectural Nursing University, Manabino, Miyazaki 880-0929, Japan
| | - Akihiko Tajiri
- Tajiri Dermatology Clinic, Kiyotake, Miyazaki 889-1067, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Harmer CJ, Hall RM. IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers. Microbiol Mol Biol Rev 2024; 88:e0011922. [PMID: 38436262 PMCID: PMC11332343 DOI: 10.1128/mmbr.00119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Ramos B, Cunha MV. The mobilome of Staphylococcus aureus from wild ungulates reveals epidemiological links at the animal-human interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124241. [PMID: 38825220 DOI: 10.1016/j.envpol.2024.124241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
Staphylococcus aureus thrives at animal-human-environment interfaces. A large-scale work from our group indicated that antimicrobial resistance (AMR) in commensal S. aureus strains from wild ungulates is associated with agricultural land cover and livestock farming, raising the hypothesis that AMR genes in wildlife strains may originate from different hosts, namely via exchange of mobile genetic elements (MGE). In this work, we generate the largest available dataset of S. aureus draft genomes from wild ungulates in Portugal and explore their mobilome, which can determine important traits such as AMR, virulence, and host specificity, to understand MGE exchange. Core genome multi-locus sequence typing based on 98 newly generated draft genomes and 101 publicly available genomes from Portugal demonstrated that the genomic relatedness of S. aureus from wild ungulates assigned to livestock-associated sequence types (ST) is greater compared to wild ungulate isolates assigned to human-associated STs. Screening of host specificity determinants disclosed the unexpected presence in wildlife of the immune evasion cluster encoded in φSa3 prophage, described as a human-specific virulence determinant. Additionally, two plasmids, pAVX and pETB, previously associated with avian species and humans, respectively, and the Tn553 transposon were detected. Both pETB and Tn553 encode penicillin resistance through blaZ. Pangenome analysis of wild ungulate isolates shows a core genome fraction of 2133 genes, with isolates assigned to ST72 and ST3224 being distinguished from the remaining by MGEs, although there is no reported role of these in adaptation to wildlife. AMR related gene clusters found in the shell genome are directly linked to resistance against penicillin, macrolides, fosfomycin, and aminoglycosides, and they represent mobile ARGs. Altogether, our findings support epidemiological interactions of human and non-human hosts at interfaces, with MGE exchange, including AMR determinants, associated with putative indirect movements of S. aureus among human and wildlife hosts that might be bridged by livestock.
Collapse
Affiliation(s)
- Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal; Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
5
|
Morgado S, Freitas F, Caldart R, Fonseca E, Vicente AC. In-silico genomic characterization of Staphylococcus haemolyticus on a global scale: lineages, resistome, and virulome. J Infect Public Health 2024; 17:18-24. [PMID: 37992430 DOI: 10.1016/j.jiph.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Staphylococcus haemolyticus belongs to the Coagulase-Negative Staphylococci (CoNS), exhibiting the highest levels of antibiotic resistance within this group of bacteria. This species has been increasingly implicated in nosocomial and animal infections worldwide, with a prevalence of methicillin-resistant Staphylococcus haemolyticus (MRSH). Most information about this organism comes from regional analyzes or with the absence of typing data, thus not revealing the real role of S. haemolyticus strains in world public health. METHODS Here, we performed an enhanced global epidemiological analysis considering all available S. haemolyticus genomes from all continents, including genomes of nosocomial, environmental, and animal origin (n = 310). Furthermore, we added original genomic information from a clinical MRSH from the Brazilian Amazon region. The resistome and virulome of the genomes were associated with their mobilome, being inferred based on the presence of specific genes and databases such as CARD, VFDB, and PlasmidFinder, respectively. RESULTS Phylogenetic analysis revealed three main groups, the main one covering most of the clinical clonal complex 3 (CC3) genomes in the world. The virulome of some genomes in this cluster showed the complete capsule operon (capA-capM). Importantly, this virulome trait could be associated with the mobilome, since the capsule operon, as well as a whole set of genes of the type VII secretion system, were observed in plasmids. In addition, the resistome of the main cluster (CC3) was larger, characterized mainly by the presence of the mecA gene, in addition to a set of other genes (aad, aac-aph, aph, erm), contrasting with the poor resistome of the other two clusters. Several insertion sequences were identified, some of them linked to specific clusters, and resistance genes, such as the rare cfrA (IS257). CONCLUSIONS Therefore, successful lineages of CC3 S. haemolyticus causing human infections are widespread worldwide, raising concern about the impact of this scenario on public health.
Collapse
Affiliation(s)
- Sergio Morgado
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fernanda Freitas
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Caldart
- Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Erica Fonseca
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Allen RA, McCormack CEM, Wuest WM. Deriving Novel Quaternary Ammonium Compound Disinfectant Scaffolds from a Natural Product: Mechanistic Insights of the Quaternization of Ianthelliformisamine C. ChemMedChem 2023; 18:e202300253. [PMID: 37770411 PMCID: PMC10841702 DOI: 10.1002/cmdc.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
In the search for novel quaternary ammonium compound (QAC) disinfectants that can evade bacterial resistance, we turned to natural products as a source of inspiration. Herein we used natural product ianthelliformisamine C as a scaffold to design a small library of QACs. We first synthesized ianthelliformisamine C via an amide coupling that allowed for facile purification without the need for protecting groups. We then alkylated and quaternized the internal amines to yield four novel QACs, but all but one demonstrated no antibacterial activity against the tested strains. Using a combination of membrane depolarization and permeabilization assays, we were able to demonstrate that ianthelliformisamine C and the active QAC analog enact cell death via membrane permeabilization, contrary to prior reports on ianthelliformisamine C's mechanism of action.
Collapse
Affiliation(s)
- Ryan A Allen
- Department of Chemistry, Emory University, 30322, Atlanta, GA, USA
| | | | - William M Wuest
- Department of Chemistry, Emory University, 30322, Atlanta, GA, USA
| |
Collapse
|
7
|
Houtak G, Bouras G, Nepal R, Shaghayegh G, Cooksley C, Psaltis AJ, Wormald PJ, Vreugde S. The intra-host evolutionary landscape and pathoadaptation of persistent Staphylococcus aureus in chronic rhinosinusitis. Microb Genom 2023; 9:001128. [PMID: 38010322 PMCID: PMC10711304 DOI: 10.1099/mgen.0.001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a common chronic sinonasal mucosal inflammation associated with Staphylococcus aureus biofilm and relapsing infections. This study aimed to determine rates of S. aureus persistence and pathoadaptation in CRS patients by investigating the genomic relatedness and antibiotic resistance/tolerance in longitudinally collected S. aureus clinical isolates. A total of 68 S. aureus paired isolates (34 pairs) were sourced from 34 CRS patients at least 6 months apart. Isolates were grown into 48 h biofilms and tested for tolerance to antibiotics. A hybrid sequencing strategy was used to obtain high-quality reference-grade assemblies of all isolates. Single nucleotide variants (SNV) divergence in the core genome and sequence type clustering were used to analyse the relatedness of the isolate pairs. Single nucleotide and structural genome variations, plasmid similarity, and plasmid copy numbers between pairs were examined. Our analysis revealed that 41 % (14/34 pairs) of S. aureus isolates were persistent, while 59 % (20/34 pairs) were non-persistent. Persistent isolates showed episode-specific mutational changes over time with a bias towards events in genes involved in adhesion to the host and mobile genetic elements such as plasmids, prophages, and insertion sequences. Furthermore, a significant increase in the copy number of conserved plasmids of persistent strains was observed. This was accompanied by a significant increase in biofilm tolerance against all tested antibiotics, which was linked to a significant increase in biofilm biomass over time, indicating a potential biofilm pathoadaptive process in persistent isolates. In conclusion, our study provides important insights into the mutational changes during S. aureus persistence in CRS patients highlighting potential pathoadaptive mechanisms in S. aureus persistent isolates culminating in increased biofilm biomass.
Collapse
Affiliation(s)
- Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
8
|
Zhu Z, Wu S, Chen X, Tan W, Zou G, Huang Q, Meng X, Hu DL, Li S. Heterogeneity and transmission of food safety-related enterotoxigenic Staphylococcus aureus in pig abattoirs in Hubei, China. Microbiol Spectr 2023; 11:e0191323. [PMID: 37772855 PMCID: PMC10581196 DOI: 10.1128/spectrum.01913-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The dissemination of Staphylococcus aureus in the pork production chain is a major food safety concern. Abattoirs can serve both as disruptor and transmitter for S. aureus. In this study, we conducted a systematic genomic epidemiology research on the prevalence, heterogeneity, and transmission of S. aureus in 3,638 samples collected from four pig abattoirs in Hubei province, China. Our findings revealed substantial heterogeneity between S. aureus recovered from samples collected at upstream (from stunning step to head-removal step) and downstream (from splitting step to chilling step) locations within the slaughter process. Overall, 966 (26.6%) samples were positive for S. aureus, with significantly higher overall prevalence for upstream samples (29.0%, 488/1,681) compared to downstream samples (24.4%, 478/1,957). Antimicrobial susceptibility testing demonstrated that the isolates from the upstream exhibited significantly higher resistance proportions to different antimicrobials than those from the downstream. Whole-genome sequencing of 126 isolates revealed that ST398 (32.9%, 23/70) and ST9 (22.9%, 16/70) were more common among upstream isolates, while ST7 (35.7%, 20/56) and ST97 (28.6%, 16/56) were most frequently observed among downstream isolates. Additionally, molecular characterization analysis demonstrated that upstream isolates possessed significantly higher enterotoxigenic potential, more antimicrobial resistance genes, and S. aureus pathogenicity islands than downstream isolates. Notably, we discovered that enterotoxigenic S. aureus could be transmitted across different slaughter stages, with knives, water, and air serving as vectors. Although slaughtering processes had a substantial effect on reducing the food safety risk posed by enterotoxigenic S. aureus, the possibility of its widespread transmission should not be disregarded. IMPORTANCE Staphylococcus aureus (S. aureus) is one of the most important foodborne pathogens, and can cause foodborne poisoning by producing enterotoxins. Pork is a preferable reservoir and its contamination often occurs during the slaughter process. Our findings revealed significant differences in the prevalence, antimicrobial resistance, and enterotoxigenic potential between the upstream and downstream isolates within the slaughter process. Also, it is imperative not to overlook enterotoxigenic S. aureus transmitted across all stages of the slaughter process, with notable vectors being knives, water, and air. These findings hold significant implications for policy-makers to reassess their surveillance projects, and underscore the importance of implementing effective control measures to minimize the risk of S. aureus contamination in pork production. Moreover, we provide a more compelling method of characterizing pathogen transmission based on core-SNPs of bacterial genomes.
Collapse
Affiliation(s)
- Zhihao Zhu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Simin Wu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xingyu Chen
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Tan
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Geng Zou
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xianrong Meng
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Shaowen Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 2023; 11:e0134223. [PMID: 37712674 PMCID: PMC10581047 DOI: 10.1128/spectrum.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.
Collapse
Affiliation(s)
- Vojtěch Kovařovic
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Finstrlová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Praha, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Sarosh A, Kwong SM, Jensen SO, Northern F, Walton WG, Eakes TC, Redinbo MR, Firth N, McLaughlin KJ. pSK41/pGO1-family conjugative plasmids of Staphylococcus aureus encode a cryptic repressor of replication. Plasmid 2023; 128:102708. [PMID: 37967733 DOI: 10.1016/j.plasmid.2023.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
The majority of large multiresistance plasmids of Staphylococcus aureus utilise a RepA_N-type replication initiation protein, the expression of which is regulated by a small antisense RNA (RNAI) that overlaps the rep mRNA leader. The pSK41/pGO1-family of conjugative plasmids additionally possess a small (86 codon) divergently transcribed ORF (orf86) located upstream of the rep locus. The product of pSK41 orf86 was predicted to have a helix-turn-helix motif suggestive of a likely function in transcriptional repression. In this study, we investigated the effect of Orf86 on transcription of thirteen pSK41 backbone promoters. We found that Orf86 only repressed transcription from the rep promoter, and hence now redesignate the product as Cop. Over-expression of Cop in trans reduced the copy number of pSK41 mini-replicons, both in the presence and absence of rnaI. in vitro protein-DNA binding experiments with purified 6 × His-Cop demonstrated specific DNA binding, adjacent to, and partially overlapping the -35 hexamer of the rep promoter. The crystal structure of Cop revealed a dimeric structure similar to other known transcriptional regulators. Cop mRNA was found to result from "read-through" transcription from the strong RNAI promoter that escapes the rnaI terminator. Thus, PrnaI is responsible for transcription of two distinct negative regulators of plasmid copy number; the antisense RNAI that primarily represses Rep translation, and Cop protein that can repress rep transcription. Deletion of cop in a native plasmid did not appear to impact copy number, indicating a cryptic auxiliary role.
Collapse
Affiliation(s)
- Alvina Sarosh
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales 2751, Australia; Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Faith Northern
- Chemistry Department, Vassar College, Poughkeepsie, NY 12604, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas C Eakes
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
11
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
12
|
Haas W, Singh N, Lainhart W, Mingle L, Nazarian E, Mitchell K, Nattanmai G, Kohlerschmidt D, Dickinson MC, Kacica M, Dumas N, Musser KA. Genomic Analysis of Vancomycin-Resistant Staphylococcus aureus Isolates from the 3rd Case Identified in the United States Reveals Chromosomal Integration of the vanA Locus. Microbiol Spectr 2023; 11:e0431722. [PMID: 36975781 PMCID: PMC10100801 DOI: 10.1128/spectrum.04317-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Vancomycin-resistant Staphylococcus aureus (VRSA) is a human pathogen of significant public health concern. Although the genome sequences of individual VRSA isolates have been published over the years, very little is known about the genetic changes of VRSA within a patient over time. A total of 11 VRSA, 3 vancomycin-resistant enterococci (VRE), and 4 methicillin-resistant S. aureus (MRSA) isolates, collected over a period of 4.5 months in 2004 from a patient in a long-term-care facility in New York State, were sequenced. A combination of long- and short-read sequencing technologies was used to obtain closed assemblies for chromosomes and plasmids. Our results indicate that a VRSA isolate emerged as the result of the transfer of a multidrug resistance plasmid from a coinfecting VRE to an MRSA isolate. The plasmid then integrated into the chromosome via homologous recombination mediated between two regions derived from remnants of transposon Tn5405. Once integrated, the plasmid underwent further reorganization in one isolate, while two others lost the staphylococcal cassette chromosome mec element (SCCmec) determinant that confers methicillin-resistance. The results presented here explain how a few recombination events can lead to multiple pulsed-field gel electrophoresis (PFGE) patterns that could be mistaken for vastly different strains. A vanA gene cluster that is located on a multidrug resistance plasmid that is integrated into the chromosome could result in the continuous propagation of resistance, even in the absence of selective pressure from antibiotics. The genome comparison presented here sheds light on the emergence and evolution of VRSA within a single patient that will enhance our understanding VRSA genetics. IMPORTANCE High-level vancomycin-resistant Staphylococcus aureus (VRSA) began to emerge in the United States in 2002 and has since then been reported worldwide. Our study reports the closed genome sequences of multiple VRSA isolates obtained in 2004 from a single patient in New York State. Our results show that the vanA resistance locus is located on a mosaic plasmid that confers resistance to multiple antibiotics. In some isolates, this plasmid integrated into the chromosome via homologous recombination between two ant(6)-sat4-aph(3') antibiotic resistance loci. This is, to our knowledge, the first report of a chromosomal vanA locus in VRSA; the effect of this integration event on MIC values and plasmid stability in the absence of antibiotic selection remains poorly understood. These findings highlight the need for a better understanding of the genetics of the vanA locus and plasmid maintenance in S. aureus to address the increase of vancomycin resistance in the health care setting.
Collapse
Affiliation(s)
- Wolfgang Haas
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Navjot Singh
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - William Lainhart
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Lisa Mingle
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Elizabeth Nazarian
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kara Mitchell
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Geetha Nattanmai
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Donna Kohlerschmidt
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | | | - Marilyn Kacica
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nellie Dumas
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kimberlee A. Musser
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
13
|
Al-Trad EI, Che Hamzah AM, Puah SM, Chua KH, Hanifah MZ, Ayub Q, Palittapongarnpim P, Kwong SM, Chew CH, Yeo CC. Complete Genome Sequence and Analysis of a ST573 Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus SauR3 Clinical Isolate from Terengganu, Malaysia. Pathogens 2023; 12:pathogens12030502. [PMID: 36986424 PMCID: PMC10053073 DOI: 10.3390/pathogens12030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization-listed priority pathogen. Scarce genomic data are available for MRSA isolates from Malaysia. Here, we present the complete genome sequence of a multidrug-resistant MRSA strain SauR3, isolated from the blood of a 6-year-old patient hospitalized in Terengganu, Malaysia, in 2016. S. aureus SauR3 was resistant to five antimicrobial classes comprising nine antibiotics. The genome was sequenced on the Illumina and Oxford Nanopore platforms and hybrid assembly was performed to obtain its complete genome sequence. The SauR3 genome consists of a circular chromosome of 2,800,017 bp and three plasmids designated pSauR3-1 (42,928 bp), pSauR3-2 (3011 bp), and pSauR3-3 (2473 bp). SauR3 belongs to sequence type 573 (ST573), a rarely reported sequence type of the staphylococcal clonal complex 1 (CC1) lineage, and harbors a variant of the staphylococcal cassette chromosome mec (SCCmec) type V (5C2&5) element which also contains the aac(6')-aph(2″) aminoglycoside-resistance genes. pSauR3-1 harbors several antibiotic resistance genes in a 14,095 bp genomic island (GI), previously reported in the chromosome of other staphylococci. pSauR3-2 is cryptic, whereas pSauR3-3 encodes the ermC gene that mediates inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB). The SauR3 genome can potentially be used as a reference genome for other ST573 isolates.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | | | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhamad Zarul Hanifah
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Qasim Ayub
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Mahidol University, Bangkok 10400, Thailand
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
14
|
Rice PA. Mobile genetic element-encoded putative DNA primases composed of A-family polymerase-SSB pairs. Front Mol Biosci 2023; 10:1113960. [PMID: 37006622 PMCID: PMC10061031 DOI: 10.3389/fmolb.2023.1113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Mobile genetic elements can encode a wide variety of genes that support their own stability and mobility as well as genes that provide accessory functions to their hosts. Such genes can be adopted from host chromosomes and can be exchanged with other mobile elements. Due to their accessory nature, the evolutionary trajectories of these genes can differ from those of essential host genes. The mobilome therefore provides a rich source of genetic innovation. We previously described a new type of primase encoded by S. aureus SCCmec elements that is composed of an A-family polymerase catalytic domain in complex with a small second protein that confers single-stranded DNA binding. Here we use new structure prediction methods in conjunction with sequence database searches to show that related primases are widespread among putative mobile genetic elements in the Bacillota. Structure predictions show that the second protein adopts an OB fold (common among single-stranded DNA binding (SSB) proteins) and these predictions were far more powerful than simple sequence comparisons in identifying its homologs. The protein-protein interaction surface varies among these polymerase-SSB complexes appear to have arisen repeatedly by exploiting partial truncations of the polymerase's N-terminal accessory domains.
Collapse
Affiliation(s)
- Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Phumthanakorn N, Wongsurawat T, Jenjaroenpun P, Kurilung A, Prapasarakul N. Novel Organization of the Staphylococcal Cassette Chromosome mec Composite Island in Clinical Staphylococcus haemolyticus and Staphylococcus hominis Subspecies hominis Isolates from Dogs. Microbiol Spectr 2022; 10:e0099722. [PMID: 35862947 PMCID: PMC9430635 DOI: 10.1128/spectrum.00997-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus haemolyticus and Staphylococcus hominis subsp. hominis are common coagulase-negative staphylococcus opportunistic pathogens. In Thailand, the clinical strains S. haemolyticus 1864 and 48 and S. hominis subsp. hominis 384 and 371 have been recovered from sick dogs. These strains were methicillin resistant with the nontypeable staphylococcal cassette chromosome mec (NT-SCCmec). The SCCmec element distribution in the clinical isolates from dogs was analyzed using whole-genome sequencing, which revealed the presence of different SCCmec composite islands (CIs) and gene structure. The SCCmec-CIs of ψSCCmec1864 (13 kb) and ψSCC1864 (11 kb) with a class C1 mec complex but no ccr gene were discovered in S. haemolyticus 1864. The CIs of ψSCCmec48 with a C1 mec complex (28 kb), SCC48 with ccrA4B4 (23 kb), and ψSCC48 (2.6 kb) were discovered in S. haemolyticus 48. In SCC48, insertion sequence IS256 contained an aminoglycoside-resistant gene [aph(2″)-Ia]. Two copies of IS431 containing the tetracycline-resistant gene tet(K) were found downstream of ψSCC48. In S. hominis subsp. hominis, the SCCmec-CI in strain 384 had two separate sections: ψSCCmec384 (20 kb) and SCCars (23 kb). ψSCCmec384 lacked the ccr gene complex but carried the class A mec complex. Trimethoprim-resistant dihydrofolate reductase (dfrC) was discovered on ψSCCmec384 between two copies of IS257. In strain 371, SCCmec VIII (4A) (37 kb) lacking a direct repeat at the chromosomal end was identified. This study found SCCmec elements in clinical isolates from dogs that were structurally complex and varied in their genetic content, with novel organization. IMPORTANCE In Thailand, the staphylococcal cassette chromosome mec (SCCmec) element, which causes methicillin resistance through acquisition of the mec gene, has been studied in clinical coagulase-negative Staphylococcus isolates from various companion animals, and Staphylococcus haemolyticus and Staphylococcus hominis subsp. hominis were found to have the most nontypeable (NT)-SCCmec elements. These species are more prone to causing illness and more resistant to a variety of antimicrobials than other coagulase-negative staphylococci. However, full characterization of NT-SCCmec in clinical S. haemolyticus and S. hominis subsp. hominis isolates from such animals has been limited. Our findings support the use of full nucleotide sequencing rather than PCR designed for Staphylococcus aureus in further research of novel SCCmec elements. Moreover, several antimicrobial resistance and heavy metal resistance genes were identified on the SCCmec elements; these are important as they could limit the therapeutic options available in veterinary medicine.
Collapse
Affiliation(s)
- Nathita Phumthanakorn
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Center of Excellence in Diagnostic and Monitoring of Animal Pathogens, Chulalongkorn University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alongkorn Kurilung
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnostic and Monitoring of Animal Pathogens, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
The Resistome and Mobilome of Multidrug-Resistant Staphylococcus sciuri C2865 Unveil a Transferable Trimethoprim Resistance Gene, Designated dfrE, Spread Unnoticed. mSystems 2021; 6:e0051121. [PMID: 34374564 PMCID: PMC8407400 DOI: 10.1128/msystems.00511-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus sciuri (MRSS) strain C2865 from a stranded dog in Nigeria was trimethoprim (TMP) resistant but lacked formerly described staphylococcal TMP-resistant dihydrofolate reductase genes (dfr). Whole-genome sequencing, comparative genomics, and pan-genome analyses were pursued to unveil the molecular bases for TMP resistance via resistome and mobilome profiling. MRSS C2865 comprised a species subcluster and positioned just above the intraspecies boundary. Lack of species host tropism was observed. S. sciuri exhibited an open pan-genome, while MRSS C2865 harbored the highest number of unique genes (75% associated with mobilome). Within this fraction, we discovered a transferable TMP resistance gene, named dfrE, which confers high-level TMP resistance in Staphylococcus aureus and Escherichia coli. dfrE was located in a novel multidrug resistance mosaic plasmid (pUR2865-34) encompassing adaptive, mobilization, and segregational stability traits. dfrE was formerly denoted as dfr_like in Exiguobacterium spp. from fish farm sediment in China but escaped identification in one macrococcal and diverse staphylococcal genomes in different Asian countries. dfrE shares the highest identity with dfr of soil-related Paenibacillus anaericanus (68%). Data analysis discloses that dfrE has emerged from a single ancestor and places S. sciuri as a plausible donor. C2865 unique fraction additionally enclosed novel chromosomal mobile islands, including a multidrug-resistant pseudo-SCCmec cassette, three apparently functional prophages (Siphoviridae), and an SaPI4-related staphylococcal pathogenicity island. Since dfrE seems not yet common in staphylococcal clinical specimens, our data promote early surveillance and enable molecular diagnosis. We evidence the genome plasticity of S. sciuri and highlight its role as a resourceful reservoir for adaptive traits. IMPORTANCE The discovery and surveillance of antimicrobial resistance genes (AMRG) and their mobilization platforms are critical to understand the evolution of bacterial resistance and to restrain further expansion. Limited genomic data are available on Staphylococcus sciuri; regardless, it is considered a reservoir for critical AMRG and mobile elements. We uncover a transferable staphylococcal TMP resistance gene, named dfrE, in a novel mosaic plasmid harboring additional resistance, adaptive, and self-stabilization features. dfrE is present but evaded detection in diverse species from varied sources geographically distant. Our analyses evidence that the dfrE-carrying element has emerged from a single ancestor and position S. sciuri as the donor species for dfrE spread. We also identify novel mobilizable chromosomal islands encompassing AMRG and three unrelated prophages. We prove high intraspecies heterogenicity and genome plasticity for S. sciuri. This work highlights the importance of genome-wide ecological studies to facilitate identification, characterization, and evolution routes of bacteria adaptive features.
Collapse
|
17
|
Yui Eto K, Kwong SM, LaBreck PT, Crow JE, Traore DAK, Parahitiyawa N, Fairhurst HM, Merrell DS, Firth N, Bond CS, Ramsay JP. Evolving origin-of-transfer sequences on staphylococcal conjugative and mobilizable plasmids-who's mimicking whom? Nucleic Acids Res 2021; 49:5177-5188. [PMID: 33939800 PMCID: PMC8136818 DOI: 10.1093/nar/gkab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022] Open
Abstract
In Staphylococcus aureus, most multiresistance plasmids lack conjugation or mobilization genes for horizontal transfer. However, most are mobilizable due to carriage of origin-of-transfer (oriT) sequences mimicking those of conjugative plasmids related to pWBG749. pWBG749-family plasmids have diverged to carry five distinct oriT subtypes and non-conjugative plasmids have been identified that contain mimics of each. The relaxasome accessory factor SmpO, encoded by each conjugative plasmid, determines specificity for its cognate oriT. Here we characterized the binding of SmpO proteins to each oriT. SmpO proteins predominantly formed tetramers in solution and bound 5′-GNNNNC-3′ sites within each oriT. Four of the five SmpO proteins specifically bound their cognate oriT. An F7K substitution in pWBG749 SmpO switched oriT-binding specificity in vitro. In vivo, the F7K substitution reduced but did not abolish self-transfer of pWBG749. Notably, the substitution broadened the oriT subtypes that were mobilized. Thus, this substitution represents a potential evolutionary intermediate with promiscuous DNA-binding specificity that could facilitate a switch between oriT specificities. Phylogenetic analysis suggests pWBG749-family plasmids have switched oriT specificity more than once during evolution. We hypothesize the convergent evolution of oriT specificity in distinct branches of the pWBG749-family phylogeny reflects indirect selection pressure to mobilize plasmids carrying non-cognate oriT-mimics.
Collapse
Affiliation(s)
- Karina Yui Eto
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick T LaBreck
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Jade E Crow
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Daouda A K Traore
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK.,Life Sciences Group, Institut Laue Langevin, Grenoble 38000, France.,Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako BP E423, Mali
| | | | | | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Charles S Bond
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Joshua P Ramsay
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
18
|
Guimarães VA, Le Scornet A, Khemici V, Hausmann S, Armitano J, Prados J, Jousselin A, Manzano C, Linder P, Redder P. RNase J1 and J2 Are Host-Encoded Factors for Plasmid Replication. Front Microbiol 2021; 12:586886. [PMID: 34017314 PMCID: PMC8129170 DOI: 10.3389/fmicb.2021.586886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmids need to ensure their transmission to both daughter-cells when their host divides, but should at the same time avoid overtaxing their hosts by directing excessive host-resources toward production of plasmid factors. Naturally occurring plasmids have therefore evolved regulatory mechanisms to restrict their copy-number in response to the volume of the cytoplasm. In many plasmid families, copy-number control is mediated by a small plasmid-specified RNA, which is continuously produced and rapidly degraded, to ensure that its concentration is proportional to the current plasmid copy-number. We show here that pSA564 from the RepA_N-family is regulated by a small antisense RNA (RNA1), which, when over-expressed in trans, blocks plasmid replication and cures the bacterial host. The 5' untranslated region (5'UTR) of the plasmid replication initiation gene (repA) potentially forms two mutually exclusive secondary structures, ON and OFF, where the latter both sequesters the repA ribosome binding site and acts as a rho-independent transcriptional terminator. Duplex formation between RNA1 and the 5'UTR shifts the equilibrium to favor the putative OFF-structure, enabling a single small RNA to down-regulate repA expression at both transcriptional and translational levels. We further examine which sequence elements on the antisense RNA and on its 5'UTR target are needed for this regulation. Finally, we identify the host-encoded exoribonucleases RNase J1 and J2 as the enzymes responsible for rapidly degrading the replication-inhibiting section of RNA1. This region accumulates and blocks RepA expression in the absence of either RNase J1 or J2, which are therefore essential host factors for pSA564 replication in Staphylococcus aureus.
Collapse
Affiliation(s)
- Vanessa Andrade Guimarães
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Le Scornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Armitano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ambre Jousselin
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Caroline Manzano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Redder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| |
Collapse
|
19
|
Marincola G, Jaschkowitz G, Kieninger AK, Wencker FDR, Feßler AT, Schwarz S, Ziebuhr W. Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation. Front Cell Infect Microbiol 2021; 11:660702. [PMID: 33829001 PMCID: PMC8019970 DOI: 10.3389/fcimb.2021.660702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Greta Jaschkowitz
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ann-Katrin Kieninger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Andrea T Feßler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Xu J, Zhang N, Luo M, Wang M, Wang L, Li J, Li Z, Zhao H, Li Z, Kan B, Lu X. Rapid Identification of Plasmid Replicon Type and Coexisting Plasmid-Borne Antimicrobial Resistance Genes by S1-Pulsed-Field Gel Electrophoresis-Droplet Digital Polymerase Chain Reaction. Foodborne Pathog Dis 2021; 18:298-305. [PMID: 33661029 DOI: 10.1089/fpd.2020.2865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial drug resistance is a significant food safety problem and public health threat. Plasmids carrying drug resistance genes may result in the rapid spread of resistance among different bacteria, hosts, and environments; therefore, antibiotic resistance monitoring and continuing research into the mechanisms of drug resistance are urgently needed. Southern blotting with probes for antibiotic resistance genes and even next-generation sequencing have been used previously to detect plasmid-borne resistance genes, but these approaches are complex and time-consuming. The next-generation sequencing requires strict laboratory conditions and bioinformatics analysis ability. In this study, we developed a simplified and sensitive method to detect plasmid-borne antimicrobial resistance genes and plasmid replicon types. Salmonella strains carrying plasmids of three different replicon types that contained mcr-1 and two ESBL-producing genes were used to verify the new method. The plasmids harbored by the Salmonella strains were separated by S1 nuclease treatment and pulsed-field gel electrophoresis (PFGE), then recovered and used as the templates for droplet digital polymerase chain reaction (ddPCR) to identify target genes. The target genes were present in significantly higher copy numbers on the plasmids than the background noise. These results were consistent with the plasmid sequencing results. This S1-PFGE-ddPCR method was less time-consuming to perform than Southern blot and complete plasmid sequencing. Therefore, this method represents a time-saving alternative for detecting plasmid-borne genes, and is likely to be a valuable tool for detecting coexisting plasmid-borne drug resistance genes.
Collapse
Affiliation(s)
- Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Luo
- Laboratory Medicine, Yulin Center for Disease Control and Prevention, Guangxi, China
| | - Mengyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health, Nanchang University, Jiangxi, China
| | - Ling Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaqi Li
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhe Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
21
|
Smith JT, Amador S, McGonagle CJ, Needle D, Gibson R, Andam CP. Population genomics of Staphylococcus pseudintermedius in companion animals in the United States. Commun Biol 2020; 3:282. [PMID: 32503984 PMCID: PMC7275049 DOI: 10.1038/s42003-020-1009-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus pseudintermedius is a commensal bacterium and a major opportunistic pathogen of dogs. The emergence of methicillin-resistant S. pseudintermedius (MRSP) is also becoming a serious concern. We carried out a population genomics study of 130 clinical S. pseudintermedius isolates from dogs and cats in the New England region of the United States. Results revealed the co-circulation of phylogenetically diverse lineages that have access to a large pool of accessory genes. Many MRSP and multidrug-resistant clones have emerged through multiple independent, horizontal acquisition of resistance determinants and frequent genetic exchange that disseminate DNA to the broader population. When compared to a Texas population, we found evidence of clonal expansion of MRSP lineages that have disseminated over large distances. These findings provide unprecedented insight into the diversification of a common cutaneous colonizer of man's oldest companion animal and the widespread circulation of multiple high-risk resistant clones.
Collapse
Affiliation(s)
- Joshua T Smith
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Sharlene Amador
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Colin J McGonagle
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, 03824, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, 03824, USA
| | - Cheryl P Andam
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA.
| |
Collapse
|
22
|
Giulieri SG, Tong SYC, Williamson DA. Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections. Microb Genom 2020; 6:e000324. [PMID: 31913111 PMCID: PMC7067033 DOI: 10.1099/mgen.0.000324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Resistance to meticillin and vancomycin in Staphylococcus aureus significantly complicates the management of severe infections like bacteraemia, endocarditis or osteomyelitis. Here, we review the molecular mechanisms and genomic epidemiology of resistance to these agents, with a focus on how genomics has provided insights into the emergence and evolution of major meticillin-resistant S. aureus clones. We also provide insights on the use of bacterial whole-genome sequencing to inform management of S. aureus infections and for control of transmission at the hospital and in the community.
Collapse
Affiliation(s)
- Stefano G. Giulieri
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Infectious Disease Department, Austin Health, Melbourne, Australia
| | - Steven Y. C. Tong
- Victorian Infectious Disease Service, Royal Melbourne Hospital, and Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Menzies School of Health Research, Darwin, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
- Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
23
|
Evolution of a 72-Kilobase Cointegrant, Conjugative Multiresistance Plasmid in Community-Associated Methicillin-Resistant Staphylococcus aureus Isolates from the Early 1990s. Antimicrob Agents Chemother 2019; 63:AAC.01560-19. [PMID: 31501140 DOI: 10.1128/aac.01560-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Horizontal transfer of plasmids encoding antimicrobial resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s, the first CA-MRSA strain isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline, and penicillin resistance genes on plasmid pWBG753 (∼30 kb). WA-5 and pWBG753 appeared only briefly in WA; however, fusidic acid resistance plasmids related to pWBG753 were also present in the first European CA-MRSA isolates at the time. Here, we characterize a 72-kb conjugative plasmid, pWBG731, present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749 family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium, and penicillin resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs), and the BinL resolution system of the β-lactamase transposon Tn552 An evolutionarily intermediate ∼42-kb nonconjugative plasmid, pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline resistance plasmid pT181. IS257 likely facilitated the replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized nonconjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous community-associated methicillin-sensitive S. aureus (CA-MSSA) isolates. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.
Collapse
|
24
|
Huang TM, Chou CC. Methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains and their toxin genes in the nostrils of dogs and workers at an animal shelter. J Appl Microbiol 2019; 126:1899-1909. [PMID: 30924987 DOI: 10.1111/jam.14266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/16/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Abstract
AIMS Methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA, respectively) in the nostrils of dogs and workers at an animal shelter were cultured. Staphylococcal toxin genes were analysed to identify potential health concerns. METHODS AND RESULTS Samples were obtained from 441 dogs and 9 workers. The respective isolation rates of S. aureus and MRSA were 49·0% (216/441) and 1·6% (7/441) for shelter dogs and 44·4% (4/9) and 33·3% (3/9) for workers, respectively. Isolation of S. aureus in summer (61·9%) and in adult dogs (59·2%) were significantly higher than those in winter (35·8%) and in juvenile dogs (33·3%) (P < 0·001), respectively. The predominant enterotoxin genotypes and combination profiles of S. aureus were (sea, seb, seg, sei, sem, sen, seo, seu) and (sea, sea-seb, and seg-sei-sem-sen-seo-seu), respectively, and 20% of isolates carried food poisoning-associated enterotoxins. The se profiles in shelter dogs were different from those in general pet dogs and their owners. MRSA isolates were identified as SCCmec IV and VII, and they shared se combination profiles of (sec-seg-sei-sel-sem-sen-seo-seu) and (seb-sek-seq). MRSA in this shelter had similar microbiological characteristics as those reported in CA-MRSA ST59 in humans. CONCLUSIONS Human health-associated bacteria and food poisoning-related toxin genes were identified. Further evaluations of health concerns in animal shelters are necessary. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to focus on se prevalence and MRSA characteristics in an animal shelter in Taiwan. The MRSA characteristics determined in this study were similar to those of CA-MRSA strains isolated from communities in the past, indicating potential health risks in cities.
Collapse
Affiliation(s)
- T-M Huang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - C-C Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
CRISPR tracking reveals global spreading of antimicrobial resistance genes by Staphylococcus of canine origin. Vet Microbiol 2019; 232:65-69. [PMID: 31030846 DOI: 10.1016/j.vetmic.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
Abstract
The close contact between pets and their owners is a potential source for microorganisms and genetic material exchange. Staphylococcus species considered as harmless inhabitants of animals' and humans' microbiota can act as reservoirs of antimicrobial resistance genes to more virulent species, thereby increasing their potential to resist drug therapy. This process could be inhibited by the antiplasmid immunity conferred by CRISPR systems. On the other hand, CRISPR spacer sequences can be explored as molecular clocks to track the history of genetic invasion suffered by a bacterial strain. To understand better the role of domestic dogs in human health as an antimicrobial resistance genes source, we analyzed 129 genomes of Staphylococcus strains of canine origin for the presence of CRISPR systems. Only 8% of the strains were positive for CRISPR, which is consistent with Staphylococcus role as gene reservoirs. The plasmidial origin or some spacers confirms the unsuccessful attempt of plasmid exchange in strains carrying CRISPRs. Some of these systems are within a staphylococcal cassette chromosome mec (SCCmec), sharing 98% of identity between their harboring strains. These CRISPRs' spacers reveal that this SCCmec was transferred between canine S. pseudintermedius strains, then to S. schleiferi and to Staphylococcus strains isolated from human beings. Our findings shows genetic evidence for the global spreading of pathogenic bacteria and the antimicrobial resistance genes carried by them and reinforce that, in the age of antimicrobial resistance, it is imperative that drug therapies consider the integrated nature of the relationship between pets and humans.
Collapse
|