1
|
Thawani A, Rodríguez-Vargas A, Van Treeck B, Hassan NT, Adelson DL, Nogales E, Collins K. Structures of vertebrate R2 retrotransposon complexes during target-primed reverse transcription and after second strand nicking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623112. [PMID: 39605677 PMCID: PMC11601368 DOI: 10.1101/2024.11.11.623112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
R2 retrotransposons are model site-specific eukaryotic non-LTR retrotransposons that copy-and-paste into gene loci encoding ribosomal RNAs. Recently we demonstrated that avian A-clade R2 proteins achieve efficient and precise insertion of transgenes into their native safe-harbor loci in human cells. The features of A-clade R2 proteins that support gene insertion are not characterized. Here, we report high resolution cryo-electron microscopy structures of two vertebrate A-clade R2 proteins, avian and testudine, at the initiation of target-primed reverse transcription and one structure after cDNA synthesis and second strand nicking. Using biochemical and cellular assays we discover the basis for high selectivity of template use and unique roles for each of the expanded A-clade zinc-finger domains in nucleic acid recognition. Reverse transcriptase active site architecture is reinforced by an unanticipated insertion motif in vertebrate A-clade R2 proteins. Our work brings first insights to A-clade R2 protein structure during gene insertion and enables further improvement and adaptation of R2-based systems for precise transgene insertion.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Nozhat T Hassan
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kathleen Collins
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Chen Y, Luo S, Hu Y, Mao B, Wang X, Lu Z, Shan Q, Zhang J, Wang S, Feng G, Wang C, Liang C, Tang N, Niu R, Wang J, Han J, Yang N, Wang H, Zhou Q, Li W. All-RNA-mediated targeted gene integration in mammalian cells with rationally engineered R2 retrotransposons. Cell 2024; 187:4674-4689.e18. [PMID: 38981481 DOI: 10.1016/j.cell.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.
Collapse
Affiliation(s)
- Yangcan Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shengqiu Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bangwei Mao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinge Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongbao Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtong Shan
- Northeast Agricultural University, Harbin 150030, China
| | - Jin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guihai Feng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chen Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Rui Niu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqiang Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Jiabao Han
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
3
|
Rodríguez-Vargas A, Collins K. Distinct and overlapping RNA determinants for binding and target-primed reverse transcription by Bombyx mori R2 retrotransposon protein. Nucleic Acids Res 2024; 52:6571-6585. [PMID: 38499488 PMCID: PMC11194090 DOI: 10.1093/nar/gkae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
Eukaryotic retrotransposons encode a reverse transcriptase that binds RNA to template DNA synthesis. The ancestral non-long terminal repeat (non-LTR) retrotransposons encode a protein that performs target-primed reverse transcription (TPRT), in which the nicked genomic target site initiates complementary DNA (cDNA) synthesis directly into the genome. The best understood model system for biochemical studies of TPRT is the R2 protein from the silk moth Bombyx mori. The R2 protein selectively binds the 3' untranslated region of its encoding RNA as template for DNA insertion to its target site in 28S ribosomal DNA. Here, binding and TPRT assays define RNA contributions to RNA-protein interaction, template use for TPRT and the fidelity of template positioning for TPRT cDNA synthesis. We quantify both sequence and structure contributions to protein-RNA interaction. RNA determinants of binding affinity overlap but are not equivalent to RNA features required for TPRT and its fidelity of template positioning for full-length TPRT cDNA synthesis. Additionally, we show that a previously implicated RNA-binding protein surface of R2 protein makes RNA binding affinity dependent on the presence of two stem-loops. Our findings inform evolutionary relationships across R2 retrotransposon RNAs and are a step toward understanding the mechanism and template specificity of non-LTR retrotransposon mobility.
Collapse
Affiliation(s)
- Anthony Rodríguez-Vargas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
5
|
Zhang X, Van Treeck B, Horton CA, McIntyre JJR, Palm SM, Shumate JL, Collins K. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci. Nat Biotechnol 2024:10.1038/s41587-024-02137-y. [PMID: 38379101 PMCID: PMC11371274 DOI: 10.1038/s41587-024-02137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Current approaches for inserting autonomous transgenes into the genome, such as CRISPR-Cas9 or virus-based strategies, have limitations including low efficiency and high risk of untargeted genome mutagenesis. Here, we describe precise RNA-mediated insertion of transgenes (PRINT), an approach for site-specifically primed reverse transcription that directs transgene synthesis directly into the genome at a multicopy safe-harbor locus. PRINT uses delivery of two in vitro transcribed RNAs: messenger RNA encoding avian R2 retroelement-protein and template RNA encoding a transgene of length validated up to 4 kb. The R2 protein coordinately recognizes the target site, nicks one strand at a precise location and primes complementary DNA synthesis for stable transgene insertion. With a cultured human primary cell line, over 50% of cells can gain several 2 kb transgenes, of which more than 50% are full-length. PRINT advantages include no extragenomic DNA, limiting risk of deleterious mutagenesis and innate immune responses, and the relatively low cost, rapid production and scalability of RNA-only delivery.
Collapse
Affiliation(s)
- Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy J R McIntyre
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Justin L Shumate
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Tou CJ, Kleinstiver BP. Recent Advances in Double-Strand Break-Free Kilobase-Scale Genome Editing Technologies. Biochemistry 2023; 62:3493-3499. [PMID: 36049184 PMCID: PMC10239562 DOI: 10.1021/acs.biochem.2c00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genome editing approaches have transformed the ability to make user-defined changes to genomes in both ex vivo and in vivo contexts. Despite the abundant development of technologies that permit the installation of nucleotide-level changes, until recently, larger-scale sequence edits via technologies independent of DNA double-strand breaks (DSBs) had remained less explored. Here, we review recent advances toward DSB-free technologies that enable kilobase-scale modifications including insertions, deletions, inversions, replacements, and others. These technologies provide new capabilities for users, while offering hope for the simplification of putative therapeutic strategies by moving away from small mutation-specific edits and toward more generalizable kilobase-scale approaches.
Collapse
Affiliation(s)
- Connor J. Tou
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Deng P, Tan SQ, Yang QY, Fu L, Wu Y, Zhu HZ, Sun L, Bao Z, Lin Y, Zhang QC, Wang H, Wang J, Liu JJG. Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon. Cell 2023; 186:2865-2879.e20. [PMID: 37301196 DOI: 10.1016/j.cell.2023.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.
Collapse
Affiliation(s)
- Pujuan Deng
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shun-Qing Tan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi-Yu Yang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liangzheng Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Zhou Zhu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhangbin Bao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yi Lin
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jun-Jie Gogo Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Wilkinson ME, Frangieh CJ, Macrae RK, Zhang F. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science 2023; 380:301-308. [PMID: 37023171 PMCID: PMC10499050 DOI: 10.1126/science.adg7883] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Non-long terminal repeat (non-LTR) retrotransposons, or long interspersed nuclear elements (LINEs), are an abundant class of eukaryotic transposons that insert into genomes by target-primed reverse transcription (TPRT). During TPRT, a target DNA sequence is nicked and primes reverse transcription of the retrotransposon RNA. Here, we report the cryo-electron microscopy structure of the Bombyx mori R2 non-LTR retrotransposon initiating TPRT at its ribosomal DNA target. The target DNA sequence is unwound at the insertion site and recognized by an upstream motif. An extension of the reverse transcriptase (RT) domain recognizes the retrotransposon RNA and guides the 3' end into the RT active site to template reverse transcription. We used Cas9 to retarget R2 in vitro to non-native sequences, suggesting future use as a reprogrammable RNA-based gene-insertion tool.
Collapse
Affiliation(s)
- Max E. Wilkinson
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Chris J. Frangieh
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Jedlička P, Tokan V, Kejnovská I, Hobza R, Kejnovský E. Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species. Mob DNA 2023; 14:3. [PMID: 37038191 PMCID: PMC10088271 DOI: 10.1186/s13100-023-00291-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Canonical telomeres (telomerase-synthetised) are readily forming G-quadruplexes (G4) on the G-rich strand. However, there are examples of non-canonical telomeres among eukaryotes where telomeric tandem repeats are invaded by specific retrotransposons. Drosophila melanogaster represents an extreme example with telomeres composed solely by three retrotransposons-Het-A, TAHRE and TART (HTT). Even though non-canonical telomeres often show strand biased G-distribution, the evidence for the G4-forming potential is limited. RESULTS Using circular dichroism spectroscopy and UV absorption melting assay we have verified in vitro G4-formation in the HTT elements of D. melanogaster. Namely 3 in Het-A, 8 in TART and 2 in TAHRE. All the G4s are asymmetrically distributed as in canonical telomeres. Bioinformatic analysis showed that asymmetric distribution of potential quadruplex sequences (PQS) is common in telomeric retrotransposons in other Drosophila species. Most of the PQS are located in the gag gene where PQS density correlates with higher DNA sequence conservation and codon selection favoring G4-forming potential. The importance of G4s in non-canonical telomeres is further supported by analysis of telomere-associated retrotransposons from various eukaryotic species including green algae, Diplomonadida, fungi, insects and vertebrates. Virtually all analyzed telomere-associated retrotransposons contained PQS, frequently with asymmetric strand distribution. Comparison with non-telomeric elements showed independent selection of PQS-rich elements from four distinct LINE clades. CONCLUSION Our findings of strand-biased G4-forming motifs in telomere-associated retrotransposons from various eukaryotic species support the G4-formation as one of the prerequisites for the recruitment of specific retrotransposons to chromosome ends and call for further experimental studies.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Viktor Tokan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| |
Collapse
|
10
|
Pimentel SC, Upton HE, Collins K. Separable structural requirements for cDNA synthesis, nontemplated extension, and template jumping by a non-LTR retroelement reverse transcriptase. J Biol Chem 2022; 298:101624. [PMID: 35065960 PMCID: PMC8857657 DOI: 10.1016/j.jbc.2022.101624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Broad evolutionary expansion of polymerase families has enabled specialization of their activities for distinct cellular roles. In addition to template-complementary synthesis, many polymerases extend their duplex products by nontemplated nucleotide addition (NTA). This activity is exploited for laboratory strategies of cloning and sequencing nucleic acids and could have important biological function, although the latter has been challenging to test without separation-of-function mutations. Several retroelement and retroviral reverse transcriptases (RTs) support NTA and also template jumping, by which the RT performs continuous complementary DNA (cDNA) synthesis using physically separate templates. Previous studies that aimed to dissect the relationship between NTA and template jumping leave open questions about structural requirements for each activity and their interdependence. Here, we characterize the structural requirements for cDNA synthesis, NTA, template jumping, and the unique terminal transferase activity of Bombyx mori R2 non-long terminal repeat retroelement RT. With sequence alignments and structure modeling to guide mutagenesis, we generated enzyme variants across motifs generally conserved or specific to RT subgroups. Enzyme variants had diverse NTA profiles not correlated with other changes in cDNA synthesis activity or template jumping. Using these enzyme variants and panels of activity assay conditions, we show that template jumping requires NTA. However, template jumping by NTA-deficient enzymes can be rescued using primer duplex with a specific length of 3′ overhang. Our findings clarify the relationship between NTA and template jumping as well as additional activities of non-long terminal repeat RTs, with implications for the specialization of RT biological functions and laboratory applications.
Collapse
Affiliation(s)
- Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
11
|
Low-bias ncRNA libraries using ordered two-template relay: Serial template jumping by a modified retroelement reverse transcriptase. Proc Natl Acad Sci U S A 2021; 118:2107900118. [PMID: 34649994 PMCID: PMC8594491 DOI: 10.1073/pnas.2107900118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Retrotransposons are noninfectious, mobile genetic elements that proliferate in host genomes via an RNA intermediate that is copied into DNA by a reverse transcriptase (RT) enzyme. RTs are important for biotechnological applications involving information capture from RNA since RNA is first converted into complementary DNA for detection or sequencing. Here, we biochemically characterized RTs from two retroelements and uncovered several activities that allowed us to design a streamlined, efficient workflow for determining the inventory of RNA sequences in processed RNA pools. The unique properties of nonretroviral RT activities obviate many technical issues associated with current methods of RNA sequence analysis, with wide applications in research, biotechnology, and diagnostics. Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale. Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3′ ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.
Collapse
|
12
|
Mustafin RN, Kazantseva AV, Enikeeva RF, Malykh SB, Khusnutdinova EK. Longitudinal genetic studies of cognitive characteristics. Vavilovskii Zhurnal Genet Selektsii 2021; 24:87-95. [PMID: 33659785 PMCID: PMC7716536 DOI: 10.18699/vj20.599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present review describes longitudinal studies of cognitive traits and functions determining the causes of their variations and their possible correction to prevent cognitive impairment. The present study reviews the involvement of such environmental factors as nutrition, prenatal maternal stress, social isolation and others in cognitive functioning. The role of epigenetic factors in the implementation of environmental effects in cognitive characteristics is revealed. Considering the epigenome significance, several studies were focused on the design of substances affecting methylation and histone modification, which can be used for the treatment of cognitive disorders. The appropriate correction of epigenetic factors related to environmental differences in cognitive abilities requires to determine the mechanisms of chromatin modifications and variations in DNA methylation. Transposons representing stress-sensitive DNA elements appeared to mediate the environmental influence on epigenetic modifications. They can explain the mechanism of transgenerational transfer of information on cognitive abilities. Recently, large-scale meta-analyses based on the results of studies, which identified genetic associations with various cognitive traits, were carried out. As a result, the role of genes actively expressed in the brain, such as BDNF, COMT, CADM2, CYP2D6, APBA1, CHRNA7, PDE1C, PDE4B, and PDE4D in cognitive abilities was revealed. The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders (MEF2C, CYP2D6, FAM109B, SEPT3, NAGA, TCF20, NDUFA6 genes), was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment. An important role in both processes belongs to common epigenetic factors. The genes involved in DNA methylation (DNMT1, DNMT3B, and FTO), histone modifications (CREBBP, CUL4B, EHMT1, EP300, EZH2, HLCS, HUWE1, KAT6B, KMT2A, KMT2D, KMT2C, NSD1, WHSC1, and UBE2A) and chromatin remodeling (ACTB, ARID1A, ARID1B, ATRX, CHD2, CHD7, CHD8, SMARCA2, SMARCA4, SMARCB1, SMARCE1, SRCAP, and SS18L1) are associated with increased risk of psychiatric diseases with cognitive deficiency together with normal cognitive functioning. The data on the correlation between transgenerational epigenetic inheritance of cognitive abilities and the insert of transposable elements in intergenic regions is discussed. Transposons regulate genes functioning in the brain due to the processing of their transcripts into non-coding RNAs. The content, quantity and arrangement of transposable elements in human genome, which do not affect changes in nucleotide sequences of protein encoding genes, but affect their expression, can be transmitted to the next generation.
Collapse
Affiliation(s)
| | - A V Kazantseva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - R F Enikeeva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - S B Malykh
- Psychological Institute of the Russian Academy of Education, Moscow, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| |
Collapse
|
13
|
Markova DN, Christensen SM, Betrán E. Telomere-Specialized Retroelements in Drosophila: Adaptive Symbionts of the Genome, Neutral, or in Conflict? Bioessays 2019; 42:e1900154. [PMID: 31815300 DOI: 10.1002/bies.201900154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
14
|
Khadgi BB, Govindaraju A, Christensen SM. Completion of LINE integration involves an open '4-way' branched DNA intermediate. Nucleic Acids Res 2019; 47:8708-8719. [PMID: 31392993 PMCID: PMC6895275 DOI: 10.1093/nar/gkz673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Long Interspersed Elements (LINEs), also known as non-LTR retrotransposons, encode a multifunctional protein that reverse transcribes its mRNA into DNA at the site of insertion by target primed reverse transcription. The second half of the integration reaction remains very poorly understood. Second-strand DNA cleavage and second-strand DNA synthesis were investigated in vitro using purified components from a site-specific restriction-like endonuclease (RLE) bearing LINE. DNA structure was shown to be a critical component of second-strand DNA cleavage. A hitherto unknown and unexplored integration intermediate, an open ‘4-way’ DNA junction, was recognized by the element protein and cleaved in a Holliday junction resolvase-like reaction. Cleavage of the 4-way junction resulted in a natural primer-template pairing used for second-strand DNA synthesis. A new model for RLE LINE integration is presented.
Collapse
Affiliation(s)
- Brijesh B Khadgi
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aruna Govindaraju
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
15
|
Su Y, Nichuguti N, Kuroki-Kami A, Fujiwara H. Sequence-specific retrotransposition of 28S rDNA-specific LINE R2Ol in human cells. RNA (NEW YORK, N.Y.) 2019; 25:1432-1438. [PMID: 31434792 PMCID: PMC6795142 DOI: 10.1261/rna.072512.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
R2 is a long interspersed element (LINE) found in a specific sequence of the 28S rDNA among a wide variety of animals. Recently, we observed that R2Ol isolated from medaka fish, Oryzias latipes, retrotransposes sequence specifically into the target sequence of zebrafish. Because the 28S target and flanking regions are widely conserved among vertebrates, we examined whether R2Ol can also integrate in a sequence-specific manner in human cells. Using adenovirus-mediated expression of R2Ol constructs, we confirmed an accurate insertion of R2Ol into the 28S target of human 293T cells. However, the R2Ol mutant devoid of endonuclease (EN) activity showed no retrotransposition ability, suggesting that the sequence-specific integration of R2Ol into 28S rDNA occurs via the cleavage activity of EN. By introducing both R2Ol helper virus and donor plasmid in human cells, we succeeded in retrotransposing an exogenous EGFP gene into the 28S target site by the trans-complementation system, which enabled simplification of specific gene knock-in in a time-efficient manner. We believe that R2Ol may provide an alternative targeted gene knock-in method for practical applications such as gene therapy in future.
Collapse
Affiliation(s)
- Yuting Su
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Narisu Nichuguti
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Azusa Kuroki-Kami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
16
|
Mustafin RN, Kazantseva AV, Enikeeva RF, Davydova YD, Karunas AS, Malykh SB, Khusnutdinova EK. Epigenetics of Aggressive Behavior. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419090096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Kuroki-Kami A, Nichuguti N, Yatabe H, Mizuno S, Kawamura S, Fujiwara H. Targeted gene knockin in zebrafish using the 28S rDNA-specific non-LTR-retrotransposon R2Ol. Mob DNA 2019; 10:23. [PMID: 31139267 PMCID: PMC6530143 DOI: 10.1186/s13100-019-0167-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Although most of long interspersed elements (LINEs), one class of non-LTR-retrotransposons, are integrated into the host genome randomely, some elements are retrotransposed into the specific sequences of the genomic regions, such as rRNA gene (rDNA) clusters, telomeric repeats and other repetitive sequenes. Most of the sequence-specific LINEs have been reported mainly among invertebrate species and shown to retrotranspose into the specific sequences in vivo and in vitro systems. Recenlty, 28S rDNA-specific LINE R2 elements are shown to be distributed among widespread vertebrate species, but the sequence-specific retrotransposition of R2 has never been demonstrated in vertebrates. Results Here we cloned a full length unit of R2 from medaka fish Oryzias latipes, named R2Ol, and engineered it to a targeted gene integration tool in zebrafish. By injecting R2Ol-encoding mRNA into zebrafish embryos, R2Ol retrotransposed precisely into the target site at high efficiency (98%) and was transmitted to the next generation at high frequency (50%). We also generated transgenic zebrafish carrying the enhanced green fluorescent protein (EGFP) reporter gene in 28S rDNA target by the R2Ol retrotransposition system. Conclusions Sequence-specific LINE retrotransposes into the precise sequence using target primed reverse transcription (TPRT), possibly providing an alternative and effective targeted gene knockin method in vertebrates. Electronic supplementary material The online version of this article (10.1186/s13100-019-0167-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Azusa Kuroki-Kami
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg., Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8562 Japan
| | - Narisu Nichuguti
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg., Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8562 Japan
| | - Haruka Yatabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg., Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8562 Japan
| | - Sayaka Mizuno
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg., Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8562 Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg., Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8562 Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg., Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8562 Japan
| |
Collapse
|
18
|
Mustafin RN, Khusnutdinova EK. Prospects in the Search for Peptides for Specific Regulation of Aging. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Nishiyama E, Ohshima K. Cross-Kingdom Commonality of a Novel Insertion Signature of RTE-Related Short Retroposons. Genome Biol Evol 2018; 10:1471-1483. [PMID: 29850801 PMCID: PMC6007223 DOI: 10.1093/gbe/evy098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In multicellular organisms, such as vertebrates and flowering plants, horizontal transfer (HT) of genetic information is thought to be a rare event. However, recent findings unveiled unexpectedly frequent HT of RTE-clade LINEs. To elucidate the molecular footprints of the genomic integration machinery of RTE-related retroposons, the sequence patterns surrounding the insertion sites of plant Au-like SINE families were analyzed in the genomes of a wide variety of flowering plants. A novel and remarkable finding regarding target site duplications (TSDs) for SINEs was they start with thymine approximately one helical pitch (ten nucleotides) downstream of a thymine stretch. This TSD pattern was found in RTE-clade LINEs, which share the 3'-end sequence of these SINEs, in the genome of leguminous plants. These results demonstrably show that Au-like SINEs were mobilized by the enzymatic machinery of RTE-clade LINEs. Further, we discovered the same TSD pattern in animal SINEs from lizard and mammals, in which the RTE-clade LINEs sharing the 3'-end sequence with these animal SINEs showed a distinct TSD pattern. Moreover, a significant correlation was observed between the first nucleotide of TSDs and microsatellite-like sequences found at the 3'-ends of SINEs and LINEs. We propose that RTE-encoded protein could preferentially bind to a DNA region that contains a thymine stretch to cleave a phosphodiester bond downstream of the stretch. Further, determination of cleavage sites and/or efficiency of primer sites for reverse transcription may depend on microsatellite-like repeats in the RNA template. Such a unique mechanism may have enabled retroposons to successfully expand in frontier genomes after HT.
Collapse
Affiliation(s)
- Eri Nishiyama
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Kazuhiko Ohshima
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
20
|
Mahbub MM, Chowdhury SM, Christensen SM. Globular domain structure and function of restriction-like-endonuclease LINEs: similarities to eukaryotic splicing factor Prp8. Mob DNA 2017; 8:16. [PMID: 29151899 PMCID: PMC5678591 DOI: 10.1186/s13100-017-0097-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background R2 elements are a clade of early branching Long Interspersed Elements (LINEs). LINEs are retrotransposable elements whose replication can have profound effects on the genomes in which they reside. No crystal or EM structures exist for the reverse transcriptase (RT) and linker regions of LINEs. Results Using limited proteolysis as a probe for globular domain structure, we show that the protein encoded by the Bombyx mori R2 element has two major globular domains: (1) a small globular domain consisting of the N-terminal zinc finger and Myb motifs, and (2) a large globular domain consisting of the RT, linker, and type II restriction-like endonuclease (RLE). Further digestion of the large globular domain occurred within the RT. Mapping these RT cleavages onto an updated model of the R2Bm RT indicated that the thumb of the RT was largely protected from proteolytic cleavage. The crystal structure of the large globular domain of Prp8, a eukaryotic splicing factor, was a major template used in building the R2Bm RT model, particularly the thumb region. The large fragment of Prp8 consists not only of a RT similar to R2Bm, but also an RLE and a linker connecting the two regions. The linker sequences adjacent to the RLE in LINEs and Prp8 share a set of two important α-helices and a (presumptive) knuckle/ββα structural motif that are closely associated with the thumb. The RLEs of LINEs and Prp8 share a unique catalytic core residue spacing as well as other key residues. Conclusions The protein encoded by RLE LINEs consists of two major globular domains. The larger of the two globular domain contains the RT, linker, and RLE and is similar to the large fragment of the spliceosomal protein Prp8. The similarities are suggestive of possible common ancestry. Electronic supplementary material The online version of this article (10.1186/s13100-017-0097-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Murshida Mahbub
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Room 337, Arlington, TX 76010 USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Room 130, Arlington, TX 76010 USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Room 337, Arlington, TX 76010 USA
| |
Collapse
|
21
|
Ade CM, Derbes RS, Wagstaff BJ, Linker SB, White TB, Deharo D, Belancio VP, Ivics Z, Roy-Engel AM. Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells. Gene 2017; 642:188-198. [PMID: 29154869 DOI: 10.1016/j.gene.2017.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 12/28/2022]
Abstract
DNA binding domains (DBDs) have been used with great success to impart targeting capabilities to a variety of proteins creating highly useful genomic tools. We evaluated the ability of five types of DBDs and strategies (AAV Rep proteins, Cre, TAL effectors, zinc finger proteins, and Cas9/gRNA system) to target the L1 ORF2 protein to drive retrotransposition of Alu inserts to specific sequences in the human genome. First, we find that the L1 ORF2 protein tolerates the addition of protein domains both at the amino- and carboxy-terminus. Although in some instances retrotransposition efficiencies slightly diminished, all fusion proteins containing an intact ORF2 were capable of driving retrotransposition. Second, the stability of individual ORF2 fusion proteins varies and difficult to predict. Third, DBDs that require the formation of multimers for target recognition are unlikely to modify targeting of ORF2p-driven insertions. Fourth, the more components needed to assemble into a complex to drive targeted retrotransposition, the less likely the strategy will increase targeted insertions. Fifth, abundance of target sequences present in the genome will likely dictate the effectiveness and efficiency of targeted insertions. Lastly, the cleavage capabilities of Cas9 (or a Cas9 nickase variant) are unable to substitute for the L1 ORF2 endonuclease domain functions, suggestive that the endonuclease domain has alternate functions needed for retrotransposition. From these studies, we conclude that the most critical component for the modification of the human L1 ORF2 protein to drive targeted insertions is the selection of the DBD due to the varying functional requirements and impacts on protein stability.
Collapse
Affiliation(s)
- Catherine M Ade
- Department of Cellular and Molecular Biology, Tulane University, USA
| | - Rebecca S Derbes
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center and LCRC, 1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Bradley J Wagstaff
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center and LCRC, 1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Travis B White
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Astrid M Roy-Engel
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center and LCRC, 1700 Tulane Ave., New Orleans, LA 70112, USA.
| |
Collapse
|
22
|
Drosophila: Retrotransposons Making up Telomeres. Viruses 2017; 9:v9070192. [PMID: 28753967 PMCID: PMC5537684 DOI: 10.3390/v9070192] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022] Open
Abstract
Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.
Collapse
|
23
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
24
|
Scavariello C, Luchetti A, Martoni F, Bonandin L, Mantovani B. Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida). Sci Rep 2017; 7:41946. [PMID: 28165062 PMCID: PMC5292737 DOI: 10.1038/srep41946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/04/2017] [Indexed: 01/16/2023] Open
Abstract
Horizontal transfer (HT) is an event in which the genetic material is transferred from one species to another, even if distantly related, and it has been demonstrated as a possible essential part of the lifecycle of transposable elements (TEs). However, previous studies on the non-LTR R2 retrotransposon, a metazoan-wide distributed element, indicated its vertical transmission since the Radiata-Bilateria split. Here we present the first possible instances of R2 HT in stick insects of the genus Bacillus (Phasmida). Six R2 elements were characterized in the strictly bisexual subspecies B. grandii grandii, B. grandii benazzii and B. grandii maretimi and in the obligatory parthenogenetic taxon B. atticus. These elements were compared with those previously retrieved in the facultative parthenogenetic species B. rossius. Phylogenetic inconsistencies between element and host taxa, and age versus divergence analyses agree and support at least two HT events. These HT events can be explained by taking into consideration the complex Bacillus reproductive biology, which includes also hybridogenesis, gynogenesis and androgenesis. Through these non-canonical reproductive modes, R2 elements may have been transferred between Bacillus genomes. Our data suggest, therefore, a possible role of hybridization for TEs survival and the consequent reshaping of involved genomes.
Collapse
Affiliation(s)
- Claudia Scavariello
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Francesco Martoni
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
| | - Livia Bonandin
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| |
Collapse
|
25
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2016; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag. Mol Cell Biol 2016; 36:1494-508. [PMID: 26976636 DOI: 10.1128/mcb.00970-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
Ribosomal elements (R elements) are site-specific non-long terminal repeat (LTR) retrotransposons that target ribosomal DNA (rDNA). To elucidate how R elements specifically access their target sites, we isolated and characterized the 18S rDNA-specific R element R7Ag from Anopheles gambiae Using an in vivo and ex vivo recombinant baculovirus retrotransposition system, we found that the exact host 18S rDNA sequence at the target site is essential for the precise insertion of R7Ag. In addition, a long poly(A) tail is necessary for the accurate initiation of R7Ag reverse transcription, a novel mechanism found in non-LTR elements. We further compared the subcellular localizations of proteins in R7Ag as well as R1Bm, another R element that targets 28S rDNA. Although the open reading frame 1 proteins (ORF1ps) of both R7Ag and R1Bm localized predominantly in the cytoplasm, ORF2 proteins (ORF2ps) colocalized in the nucleus with the nucleolar marker fibrillarin. The ORF1ps and ORF2ps of both R elements colocalized largely in the nuclear periphery and to a lesser extent within the nucleus. These results suggest that R7Ag and R1Bm proteins may access nucleolar rDNA targets in an ORF2p-dependent manner.
Collapse
|
27
|
Servant G, Deininger PL. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front Genet 2016; 6:358. [PMID: 26779254 PMCID: PMC4700185 DOI: 10.3389/fgene.2015.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
The telomerase complex is a specialized reverse transcriptase (RT) that inserts tandem DNA arrays at the linear chromosome ends and contributes to the protection of the genetic information in eukaryotic genomes. Telomerases are phylogenetically related to retrotransposons, encoding also the RT activity required for the amplification of their sequences throughout the genome. Intriguingly the telomerase gene is lost from the Drosophila genome and tandem retrotransposons replace telomeric sequences at the chromosome extremities. This observation suggests the versatility of RT activity in counteracting the chromosome shortening associated with genome replication and that retrotransposons can provide this activity in case of a dysfunctional telomerase. In this review paper, we describe the major classes of retroelements present in eukaryotic genomes in order to point out the differences and similarities with the telomerase complex. In a second part, we discuss the insertion of retroelements at the ends of chromosomes as an adaptive response for dysfunctional telomeres.
Collapse
Affiliation(s)
| | - Prescott L. Deininger
- Tulane Cancer Center, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LAUSA
| |
Collapse
|