1
|
Song L, Hasegawa T, Brown N, Bower J, Samulski R, Hirsch M. AAV vector transduction restriction and attenuated toxicity in hESCs via a rationally designed inverted terminal repeat. Nucleic Acids Res 2025; 53:gkaf013. [PMID: 39868534 PMCID: PMC11760972 DOI: 10.1093/nar/gkaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers. Packaged in the AAV2 capsid, wtITR and SynITR vectors demonstrated similar transduction efficiencies of human cells without toxicity. Following AAV2-wtITR vector infection of hESCs, rapid apoptosis was observed as reported. In contrast, infection by AAV2 vectors packaged with SynITRs attenuated the wtITR-induced hESC toxicity. While hESC particle entry and the abundance of double stranded circular episomes was similar for the ITR contexts, reporter expression was inhibited from transduced SynITR genomes. Mechanistically, infection of hESCs induced γH2AX in an ITR-independent manner, however, canonical activation of p53α was uncoupled using AAV-SynITR. Further investigations in hESCs revealed additional novel findings: (i) p53β is uniquely and constitutively active and (ii) AAV vector infection, independent of the ITR sequence, induces activation of p53ψ. The data herein reveal an ITR-dependent AAV vector transduction restriction specific to hESCs and manipulation of the DNA damage response via ITR engineering.
Collapse
Affiliation(s)
- Liujiang Song
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| | - Tomoko Hasegawa
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| | - Nolan J Brown
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| | - Jacquelyn J Bower
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27514, USA
| | - Richard J Samulski
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
- Pharmacology, University of North Carolina, 120 Mason Farm Rd, Chapel Hill, NC 27599, USA
| | - Matthew L Hirsch
- Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA
- Carolina Eye Research Institute, 115 Mason Farm Rd, Chapel Hill, NC 27514, USA
- Gene Therapy Center, University of North Carolina, 104 Manning Dr, Chapel Hill, NC 27514, USA
| |
Collapse
|
2
|
Mullagulova AI, Timechko EE, Solovyeva VV, Yakimov AM, Ibrahim A, Dmitrenko DD, Sufianov AA, Sufianova GZ, Rizvanov AA. Adeno-Associated Viral Vectors in the Treatment of Epilepsy. Int J Mol Sci 2024; 25:12081. [PMID: 39596149 PMCID: PMC11593886 DOI: 10.3390/ijms252212081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review discusses the use of adeno-associated viral (AAV) vectors in gene therapy for epilepsy, emphasizing their advantages, such as high efficiency of neuronal tissue transduction and low immunogenicity/cytotoxicity. AAV vectors provide the possibility of personalized therapy due to the diversity of serotypes and genomic constructs, which allows for increasing the specificity and effectiveness of treatment. Promising orientations include the modulation of the expression of neuropeptides, ion channels, transcription, and neurotrophic factors, as well as the use of antisense oligonucleotides to regulate seizure activity, which can reduce the severity of epileptic disorders. This review summarizes the current advances in the use of AAV vectors for the treatment of epilepsy of various etiologies, demonstrating the significant potential of AAV vectors for the development of personalized and more effective approaches to reducing seizure activity and improving patient prognosis.
Collapse
Affiliation(s)
- Aysilu I. Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Valeriya V. Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Alexey M. Yakimov
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Ahmad Ibrahim
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Diana D. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia;
| | - Albert A. Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, Kazan 420111, Russia
| |
Collapse
|
3
|
Xie M, Wang L, Deng Y, Ma K, Yin H, Zhang X, Xiang X, Tang J. Sustained and Efficient Delivery of Antivascular Endothelial Growth Factor by the Adeno-associated Virus for the Treatment of Corneal Neovascularization: An Outlook for Its Clinical Translation. J Ophthalmol 2024; 2024:5487973. [PMID: 39286553 PMCID: PMC11405113 DOI: 10.1155/2024/5487973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Corneal diseases represent 5.1% of all eye defects and are the fourth leading cause of blindness globally. Corneal neovascularization can arise from all conditions of chronic irritation or hypoxia, which disrupts the immune-privileged state of the healthy cornea, increases the risk of rejection after keratoplasty, and leads to opacity. In the past decades, significant progress has been made for neovascular diseases of the retina and choroid, with plenty of drugs getting commercialized. In addition, to overcome the barriers of the short duration and inadequate penetration of conventional formulations of antivascular endothelial growth factor (VEGF), multiple novel drug delivery systems, including adeno-associated virus (AAV)-mediated transfer have gone through the full process of bench-to-bedside translation. Like retina neovascular diseases, corneal neovascularization also suffers from chronicity and a high risk of recurrence, necessitating sustained and efficient delivery across the epithelial barrier to reach deep layers of the corneal stroma. Among the explored methods, adeno-associated virus-mediated delivery of anti-VEGF to treat corneal neovascularization is the most extensively researched and most promising strategy for clinical translation although currently although, it remains predominantly at the preclinical stage. This review comprehensively examines the necessity, benefits, and risks of applying AAV vectors for anti-VEGF drug delivery in corneal vascularization, including its current progress and challenges in clinical translation.
Collapse
Affiliation(s)
- Mengzhen Xie
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
- Beijing Institute of Ophthalmology Beijing Tongren Eye Center Beijing Tongren Hospital Capital Medical University Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Lixiang Wang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Yingping Deng
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Ke Ma
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Hongbo Yin
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xiaolan Zhang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xingye Xiang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, China
- Georgia State University, Atlanta, GA 30302, USA
| | - Jing Tang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Busskamp V, Roska B, Sahel JA. Optogenetic Vision Restoration. Cold Spring Harb Perspect Med 2024; 14:a041660. [PMID: 37734866 PMCID: PMC11293536 DOI: 10.1101/cshperspect.a041660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Optogenetics has emerged over the past 20 years as a powerful tool to investigate the various circuits underlying numerous functions, especially in neuroscience. The ability to control by light the activity of neurons has enabled the development of therapeutic strategies aimed at restoring some level of vision in blinding retinal conditions. Promising preclinical and initial clinical data support such expectations. Numerous challenges remain to be tackled (e.g., confirmation of safety, cell and circuit specificity, patterns, intensity and mode of stimulation, rehabilitation programs) on the path toward useful vision restoration.
Collapse
Affiliation(s)
- Volker Busskamp
- Degenerative Retinal Diseases, University Hospital Bonn, 53127 Bonn, Germany
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4001 Basel, Switzerland
| | - Jose-Alain Sahel
- Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
- Institut Hospitalo-Universitaire FOReSIGHT, Sorbonne Universite, Inserm, Quinze-Vingts Hopital de la Vision, 75012 Paris, France
| |
Collapse
|
5
|
Altahini S, Arnoux I, Stroh A. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits. Biol Chem 2024; 405:43-54. [PMID: 37650383 DOI: 10.1515/hsz-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.
Collapse
Affiliation(s)
- Saleh Altahini
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Cerebral Physiopathology Laboratory, Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, F-75005 Paris, France
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center Mainz, D-55128 Mainz, Germany
| |
Collapse
|
6
|
Gaudry JP, Aebi A, Valdés P, Schneider BL. Production and Purification of Adeno-Associated Viral Vectors (AAVs) Using Orbitally Shaken HEK293 Cells. Methods Mol Biol 2024; 2810:55-74. [PMID: 38926272 DOI: 10.1007/978-1-0716-3878-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Here, we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium using orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI)-mediated transfection of a three-plasmid system and is specified for production in milliliter-to-liter scales. After PEI and plasmid DNA (pDNA) complex formation, the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 7-day batch process, cell cultures are further processed using a set of methods for cell lysis and vector recovery. Methods for the purification of viral particles are described, including immunoaffinity and anion-exchange chromatography, ultrafiltration, as well as digital PCR to quantify the concentration of vector particles.
Collapse
Affiliation(s)
- Jean-Philippe Gaudry
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Aline Aebi
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pamela Valdés
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- NeuroX Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Shaikh U, Khan A, Kumari P, Ishfaq A, Ekhator C, Yousuf P, Halappa Nagaraj R, Raza H, Ur Rehman U, Zaman MU, Lakshmipriya Vetrivendan G, Nguyen N, Kadel B, Sherpa TN, Ullah A, Bellegarde SB. Novel Therapeutic Targets for Fibrodysplasia Ossificans Progressiva: Emerging Strategies and Future Directions. Cureus 2023; 15:e42614. [PMID: 37521595 PMCID: PMC10378717 DOI: 10.7759/cureus.42614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/01/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP), also known as Stoneman syndrome, is a rare genetic disorder characterized by abnormal bone development caused by activating mutations of the ACVR1 gene. FOP affects both the developmental and postnatal stages, resulting in musculoskeletal abnormalities and heterotopic ossification. Current treatment options for FOP are limited, emphasizing the need for innovative therapeutic approaches. Challenges in the development of management criteria for FOP include difficulties in recruitment due to the rarity of FOP, disease variability, the absence of reliable biomarkers, and ethical considerations regarding placebo-controlled trials. This narrative review provides an overview of the disease and explores emerging strategies for FOP treatment. Gene therapy, particularly the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) system, holds promise in treating FOP by specifically targeting the ACVR1 gene mutation. Another gene therapy approach being investigated is RNA interference, which aims to silence the mutant ACVR1 gene. Small molecule inhibitors targeting glycogen synthase kinase-3β and modulation of the bone morphogenetic protein signaling pathway are also being explored as potential therapies for FOP. Stem cell-based approaches, such as mesenchymal stem cells and induced pluripotent stem cells, show potential in tissue regeneration and inhibiting abnormal bone formation in FOP. Immunotherapy and nanoparticle delivery systems provide alternative avenues for FOP treatment.
Collapse
Affiliation(s)
- Usman Shaikh
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Anoosha Khan
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Priya Kumari
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Paras Yousuf
- Emergency Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Hassan Raza
- Internal Medicine, Lahore Medical and Dental College, Lahore, PAK
| | | | | | | | - Nhan Nguyen
- Medicine, University of Debrecen, Debrecen, HUN
| | - Bijan Kadel
- Internal Medicine, Nepal Medical College and Teaching Hospitals, Kathmandu, NPL
| | - Tenzin N Sherpa
- Internal Medicine, Nepal Medical College and Teaching Hospitals, Kathmandu, NPL
| | | | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, Saint John's, ATG
| |
Collapse
|
8
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
9
|
Thampi P, Samulski RJ, Grieger JC, Phillips JN, McIlwraith CW, Goodrich LR. Gene therapy approaches for equine osteoarthritis. Front Vet Sci 2022; 9:962898. [PMID: 36246316 PMCID: PMC9558289 DOI: 10.3389/fvets.2022.962898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
With an intrinsically low ability for self-repair, articular cartilage injuries often progress to cartilage loss and joint degeneration resulting in osteoarthritis (OA). Osteoarthritis and the associated articular cartilage changes can be debilitating, resulting in lameness and functional disability both in human and equine patients. While articular cartilage damage plays a central role in the pathogenesis of OA, the contribution of other joint tissues to the pathogenesis of OA has increasingly been recognized thus prompting a whole organ approach for therapeutic strategies. Gene therapy methods have generated significant interest in OA therapy in recent years. These utilize viral or non-viral vectors to deliver therapeutic molecules directly into the joint space with the goal of reprogramming the cells' machinery to secrete high levels of the target protein at the site of injection. Several viral vector-based approaches have demonstrated successful gene transfer with persistent therapeutic levels of transgene expression in the equine joint. As an experimental model, horses represent the pathology of human OA more accurately compared to other animal models. The anatomical and biomechanical similarities between equine and human joints also allow for the use of similar imaging and diagnostic methods as used in humans. In addition, horses experience naturally occurring OA and undergo similar therapies as human patients and, therefore, are a clinically relevant patient population. Thus, further studies utilizing this equine model would not only help advance the field of human OA therapy but also benefit the clinical equine patients with naturally occurring joint disease. In this review, we discuss the advancements in gene therapeutic approaches for the treatment of OA with the horse as a relevant patient population as well as an effective and commonly utilized species as a translational model.
Collapse
Affiliation(s)
- Parvathy Thampi
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua C. Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jennifer N. Phillips
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States,*Correspondence: Laurie R. Goodrich
| |
Collapse
|
10
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
11
|
Oh SA, Senger K, Madireddi S, Akhmetzyanova I, Ishizuka IE, Tarighat S, Lo JH, Shaw D, Haley B, Rutz S. High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. J Exp Med 2022; 219:213176. [PMID: 35452075 PMCID: PMC9040063 DOI: 10.1084/jem.20211530] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Genome engineering of T lymphocytes, the main effectors of antitumor adaptive immune responses, has the potential to uncover unique insights into their functions and enable the development of next-generation adoptive T cell therapies. Viral gene delivery into T cells, which is currently used to generate CAR T cells, has limitations in regard to targeting precision, cargo flexibility, and reagent production. Nonviral methods for effective CRISPR/Cas9-mediated gene knock-out in primary human T cells have been developed, but complementary techniques for nonviral gene knock-in can be cumbersome and inefficient. Here, we report a convenient and scalable nonviral method that allows precise gene edits and transgene integration in primary human T cells, using plasmid donor DNA template and Cas9-RNP. This method is highly efficient for single and multiplex gene manipulation, without compromising T cell function, and is thus valuable for use in basic and translational research.
Collapse
Affiliation(s)
- Soyoung A Oh
- Cancer Immunology, Genentech, South San Francisco, CA
| | - Kate Senger
- Molecular Biology, Genentech, South San Francisco, CA
| | | | | | | | - Somayeh Tarighat
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA
| | - Jerry H Lo
- Oncology Bioinformatics, Genentech, South San Francisco, CA
| | - David Shaw
- Cell Therapy Engineering and Development, Genentech, South San Francisco, CA
| | | | - Sascha Rutz
- Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
12
|
Tornabene P, Ferla R, Llado-Santaeularia M, Centrulo M, Dell'Anno M, Esposito F, Marrocco E, Pone E, Minopoli R, Iodice C, Nusco E, Rossi S, Lyubenova H, Manfredi A, Di Filippo L, Iuliano A, Torella A, Piluso G, Musacchia F, Surace EM, Cacchiarelli D, Nigro V, Auricchio A. Therapeutic homology-independent targeted integration in retina and liver. Nat Commun 2022; 13:1963. [PMID: 35414130 PMCID: PMC9005519 DOI: 10.1038/s41467-022-29550-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Challenges to the widespread application of gene therapy with adeno-associated viral (AAV) vectors include dominant conditions due to gain-of-function mutations which require allele-specific knockout, as well as long-term transgene expression from proliferating tissues, which is hampered by AAV DNA episomal status. To overcome these challenges, we used CRISPR/Cas9-mediated homology-independent targeted integration (HITI) in retina and liver as paradigmatic target tissues. We show that AAV-HITI targets photoreceptors of both mouse and pig retina, and this results in significant improvements to retinal morphology and function in mice with autosomal dominant retinitis pigmentosa. In addition, we show that neonatal systemic AAV-HITI delivery achieves stable liver transgene expression and phenotypic improvement in a mouse model of a severe lysosomal storage disease. We also show that HITI applications predominantly result in on-target editing. These results lay the groundwork for the application of AAV-HITI for the treatment of diseases affecting various organs.
Collapse
Affiliation(s)
- Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | | | - Miriam Centrulo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Margherita Dell'Anno
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Federica Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Emanuela Pone
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Renato Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, 80131, Naples, Italy
| | | | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078, Pozzuoli, Italy.,Next Generation Diagnostic Srl, 80078, Pozzuoli, Italy
| | | | - Antonella Iuliano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania L. Vanvitelli, 80138, Naples, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania L. Vanvitelli, 80138, Naples, Italy
| | | | - Enrico Maria Surace
- Medical Genetics, Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078, Pozzuoli, Italy.,Department of Translational Medicine, Federico II University, 80131, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania L. Vanvitelli, 80138, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy. .,Medical Genetics, Department of Advanced Biomedical Sciences, Federico II University, 80131, Naples, Italy.
| |
Collapse
|
13
|
Trivedi PD, Yu C, Chaudhuri P, Johnson EJ, Caton T, Adamson L, Byrne BJ, Paulk NK, Clément N. Comparison of highly pure rAAV9 vector stocks produced in suspension by PEI transfection or HSV infection reveals striking quantitative and qualitative differences. Mol Ther Methods Clin Dev 2022; 24:154-170. [PMID: 35071688 PMCID: PMC8760416 DOI: 10.1016/j.omtm.2021.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Recent clinical successes have propelled recombinant adeno-associated virus vectors (rAAV) to the center stage for human gene therapy applications. However, the exploding demand for high titers of highly pure rAAV vectors for clinical applications and market needs remains hindered by challenges met at the manufacturing stage. The production of rAAV by transfection in suspension cells remains one of the most commonly used production platforms. In this study, we describe our optimized protocol to produce rAAV by polyethyleneimine (PEI)-mediated transfection in suspension HEK293 cells, along with a side-by-side comparison to our high-performing system using the herpes simplex virus (HSV). Further, we detail a new, robust, and highly efficient downstream purification protocol compatible with both transfection and infection-based harvests that generated rAAV9 stocks of high purity. Our in-depth comparison revealed quantitative, qualitative, and biological differences between PEI-mediated transfection and HSV infection. The HSV production system yielded to higher rAAV vector titers, higher specific yields, and a higher percentage of full capsids than transfection. Furthermore, HSV-produced stocks had a significantly lower concentration of residual host cell proteins and helper DNA impurities, but contained detectable levels of HSV DNA. Importantly, the potency of PEI-produced and HSV-produced rAAV stocks were identical. Analyses of AAV Rep and Cap expression levels and replication showed that HSV-mediated production led to a lower expression of Rep and Cap, but increased levels of AAV genome replication. Our methodology enables high-yield, high purity rAAV production and a biological framework to improve transfection quality and yields by mimicking HSV-induced biological outcomes.
Collapse
Affiliation(s)
- Prasad D Trivedi
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Chenghui Yu
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Payel Chaudhuri
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Evan J Johnson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Tina Caton
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Laura Adamson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Nicole K Paulk
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
15
|
Moraru AD, Costin D, Iorga RE, Munteanu M, Moraru RL, Branisteanu DC. Current trends in gene therapy for retinal diseases (Review). Exp Ther Med 2021; 23:26. [PMID: 34815778 PMCID: PMC8593927 DOI: 10.3892/etm.2021.10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
The eye is considered an effective target for genetic therapy, as it has a privileged immune status, it is easily accessed for medication delivery and it is affected by a number of inherited disorders. In particular, the retina is considered for gene therapy due to the fact that it can be visualized with ease, it does not have lymphatic vessels, nor a direct blood network for the outer layers and its cells do not divide after birth, and thus transgene expression is not affected. As gene therapy is currently on a continuously progressive development trend, this emerging field of gene manipulation techniques has yielded promising results. This involves the development of treatments for a number of debilitating and blinding diseases, which were to date considered intractable. However, numerous unanswered questions remain as regards the long-term efficacy and safety profile of these treatments. The present review article discusses the current research status regarding genetic manipulation techniques aimed at addressing visual impairment related to retinal disorders, both inherited and degenerative.
Collapse
Affiliation(s)
- Andreea Dana Moraru
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'N. Oblu' Clinical Hospital, 700309 Iași, Romania
| | - Dănuț Costin
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'N. Oblu' Clinical Hospital, 700309 Iași, Romania
| | - Raluca Eugenia Iorga
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'N. Oblu' Clinical Hospital, 700309 Iași, Romania
| | - Mihnea Munteanu
- Department of Ophthalmology, 'Victor Babeș' University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Radu Lucian Moraru
- Department of Otorhinolaryngology, 'Transmed Expert' Medical Center, 700011 Iași, Romania
| | - Daniel Constantin Branisteanu
- Department of Ophthalmology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iași, Romania.,Department of Ophthalmology, 'Retina Center' Eye Clinic, 700126 Iași, Romania
| |
Collapse
|
16
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
17
|
Zabaleta N, Dai W, Bhatt U, Hérate C, Maisonnasse P, Chichester JA, Sanmiguel J, Estelien R, Michalson KT, Diop C, Maciorowski D, Dereuddre-Bosquet N, Cavarelli M, Gallouët AS, Naninck T, Kahlaoui N, Lemaitre J, Qi W, Hudspeth E, Cucalon A, Dyer CD, Pampena MB, Knox JJ, LaRocque RC, Charles RC, Li D, Kim M, Sheridan A, Storm N, Johnson RI, Feldman J, Hauser BM, Contreras V, Marlin R, Tsong Fang RH, Chapon C, van der Werf S, Zinn E, Ryan A, Kobayashi DT, Chauhan R, McGlynn M, Ryan ET, Schmidt AG, Price B, Honko A, Griffiths A, Yaghmour S, Hodge R, Betts MR, Freeman MW, Wilson JM, Le Grand R, Vandenberghe LH. An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host Microbe 2021; 29:1437-1453.e8. [PMID: 34428428 PMCID: PMC8346325 DOI: 10.1016/j.chom.2021.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.
Collapse
Affiliation(s)
- Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Wenlong Dai
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Urja Bhatt
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cécile Hérate
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Jessica A Chichester
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reynette Estelien
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristofer T Michalson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheikh Diop
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dawid Maciorowski
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nidhal Kahlaoui
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Wenbin Qi
- Novartis Gene Therapies, San Diego, CA, USA
| | | | - Allison Cucalon
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cecilia D Dyer
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Betina Pampena
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dan Li
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Maya Kim
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Abigail Sheridan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nadia Storm
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rebecca I Johnson
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vanessa Contreras
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Raphaël Ho Tsong Fang
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Catherine Chapon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France; National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aisling Ryan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Dione T Kobayashi
- Translational Innovation Fund, Mass General Brigham Innovation, Cambridge, MA, USA
| | - Ruchi Chauhan
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Marion McGlynn
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | - Anna Honko
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | - Michael R Betts
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mason W Freeman
- Center for Computational & Integrative Biology, Department of Medicine, and Translational Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
18
|
Borch Jensen M, Marblestone A. In vivo Pooled Screening: A Scalable Tool to Study the Complexity of Aging and Age-Related Disease. FRONTIERS IN AGING 2021; 2:714926. [PMID: 35822038 PMCID: PMC9261400 DOI: 10.3389/fragi.2021.714926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Biological aging, and the diseases of aging, occur in a complex in vivo environment, driven by multiple interacting processes. A convergence of recently developed technologies has enabled in vivo pooled screening: direct administration of a library of different perturbations to a living animal, with a subsequent readout that distinguishes the identity of each perturbation and its effect on individual cells within the animal. Such screens hold promise for efficiently applying functional genomics to aging processes in the full richness of the in vivo setting. In this review, we describe the technologies behind in vivo pooled screening, including a range of options for delivery, perturbation and readout methods, and outline their potential application to aging and age-related disease. We then suggest how in vivo pooled screening, together with emerging innovations in each of its technological underpinnings, could be extended to shed light on key open questions in aging biology, including the mechanisms and limits of epigenetic reprogramming and identifying cellular mediators of systemic signals in aging.
Collapse
Affiliation(s)
| | - Adam Marblestone
- Astera Institute, San Francisco, CA, United States
- Federation of American Scientists, Washington D.C., CA, United States
| |
Collapse
|
19
|
Adeno-Associated Viral Vectors as Versatile Tools for Parkinson's Research, Both for Disease Modeling Purposes and for Therapeutic Uses. Int J Mol Sci 2021; 22:ijms22126389. [PMID: 34203739 PMCID: PMC8232322 DOI: 10.3390/ijms22126389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
It is without any doubt that precision medicine therapeutic strategies targeting neurodegenerative disorders are currently witnessing the spectacular rise of newly designed approaches based on the use of viral vectors as Trojan horses for the controlled release of a given genetic payload. Among the different types of viral vectors, adeno-associated viruses (AAVs) rank as the ones most commonly used for the purposes of either disease modeling or for therapeutic strategies. Here, we reviewed the current literature dealing with the use of AAVs within the field of Parkinson’s disease with the aim to provide neuroscientists with the advice and background required when facing a choice on which AAV might be best suited for addressing a given experimental challenge. Accordingly, here we will be summarizing some insights on different AAV serotypes, and which would be the most appropriate AAV delivery route. Next, the use of AAVs for modeling synucleinopathies is highlighted, providing potential readers with a landscape view of ongoing pre-clinical and clinical initiatives pushing forward AAV-based therapeutic approaches for Parkinson’s disease and related synucleinopathies.
Collapse
|
20
|
Xu M, Zhang K, Song J. Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Front Pharmacol 2021; 12:623674. [PMID: 33935716 PMCID: PMC8085499 DOI: 10.3389/fphar.2021.623674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy refers to exploiting the specific therapeutic drugs against the pathogenic molecules (a protein or a gene) or cells. The drug specifically binds to disease-causing molecules or cells without affecting normal tissue, thus enabling personalized and precision treatment. Initially, therapeutic drugs included antibodies and small molecules, (e.g. nucleic acid drugs). With the advancement of the biology technology and immunotherapy, the gene editing and cell editing techniques are utilized for the disease treatment. Currently, targeted therapies applied to treat cardiovascular diseases (CVDs) mainly include protein drugs, gene editing technologies, nucleic acid drugs and cell therapy. Although targeted therapy has demonstrated excellent efficacy in pre-clinical and clinical trials, several limitations need to be recognized and overcome in clinical application, (e.g. off-target events, gene mutations, etc.). This review introduces the mechanisms of different targeted therapies, and mainly describes the targeted therapy applied in the CVDs. Furthermore, we made comparative analysis to clarify the advantages and disadvantages of different targeted therapies. This overview is expected to provide a new concept to the treatment of the CVDs.
Collapse
Affiliation(s)
- Mengda Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailun Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| |
Collapse
|
21
|
CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther 2021; 28:560-571. [PMID: 33846552 PMCID: PMC8455317 DOI: 10.1038/s41434-021-00254-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Clinical development of chimeric antigen receptor (CAR)-T-cell therapy has been enabled by advances in synthetic biology, genetic engineering, clinical-grade manufacturing, and complex logistics to distribute the drug product to treatment sites. A key ambition of the CARAMBA project is to provide clinical proof-of-concept for virus-free CAR gene transfer using advanced Sleeping Beauty (SB) transposon technology. SB transposition in CAR-T engineering is attractive due to the high rate of stable CAR gene transfer enabled by optimized hyperactive SB100X transposase and transposon combinations, encoded by mRNA and minicircle DNA, respectively, as preferred vector embodiments. This approach bears the potential to facilitate and expedite vector procurement, CAR-T manufacturing and distribution, and the promise to provide a safe, effective, and economically sustainable treatment. As an exemplary and novel target for SB-based CAR-T cells, the CARAMBA consortium has selected the SLAMF7 antigen in multiple myeloma. SLAMF7 CAR-T cells confer potent and consistent anti-myeloma activity in preclinical assays in vitro and in vivo. The CARAMBA clinical trial (Phase-I/IIA; EudraCT: 2019-001264-30) investigates the feasibility, safety, and anti-myeloma efficacy of autologous SLAMF7 CAR-T cells. CARAMBA is the first clinical trial with virus-free CAR-T cells in Europe, and the first clinical trial that uses advanced SB technology worldwide.
Collapse
|
22
|
Yu C, Trivedi PD, Chaudhuri P, Bhake R, Johnson EJ, Caton T, Potter M, Byrne BJ, Clément N. NaCl and KCl mediate log increase in AAV vector particles and infectious titers in a specific/timely manner with the HSV platform. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:1-13. [PMID: 33768125 PMCID: PMC7960503 DOI: 10.1016/j.omtm.2021.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
The increasing demand for adeno-associated virus (AAV) vectors, a result from the surging interest for their potential to cure human genetic diseases by gene transfer, tumbled on low-performing production systems. Innovative improvements to increase both yield and quality of the vector produced have become a priority undertaking in the field. In a previous study, we showed that adding a specific concentration of sodium chloride (NaCl) to the production medium resulted in a dramatic increase of AAV vector particle and infectious titers when using the herpes simplex virus (HSV) production system, both in adherent or suspension platforms. In this work, we studied additional salts and their impact on AAV vector production. We found that potassium chloride (KCl), or a combination of KCl and NaCl, resulted in the highest increase in AAV vector production. We determined that the salt-mediated effect was the most impactful when the salt was present between 8 and approximately 16 h post-infection, with the highest rate increase occurring within the first 24 h of the production cycle. We showed that the AAV vector yield increase did not result from an increase in cell growth, size, or viability. Furthermore, we demonstrated that the impact on AAV vector production was specifically mediated by NaCl and KCl independently of their impact on the osmolality of the production media. Our findings convincingly showed that NaCl and KCl were uniquely efficacious to promote up to a 10-fold increase in the production of highly infectious AAV vectors when produced in the presence of HSV. We think that this study will provide unique and important new insights in AAV biology toward the establishment of more successful production protocols.
Collapse
Affiliation(s)
- Chenghui Yu
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Prasad D Trivedi
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Payel Chaudhuri
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Radhika Bhake
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Evan J Johnson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Tina Caton
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Mark Potter
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| |
Collapse
|
23
|
Liu Y, Zhang H, Chen R, Wu Y, Yang X, Liu X, Zeng S, Guo W. UnaG as a reporter in adeno-associated virus-mediated gene transfer for biomedical imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000182. [PMID: 32894647 DOI: 10.1002/jbio.202000182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Adeno-associated virus (AAV) is one of the most common gene transfer vectors, but it has a limited capacity. A smaller fluorescent protein is urgently needed since it is more suitable to act as a reporter in AAV. In this study, a bilirubin-dependent reporter smaller than EGFP, termed UnaG, was found to have the ability to label the neurons of a mouse brain as clearly as EGFP without the addition of exogenous bilirubin. We also found that UnaG's pH tolerance is better than that of EGFP; however, its fluorescence recovery after protonated quenching is not as good as that of EGFP. In addition, UnaG preserved its fluorescence better than EGFP in SeeDB clearing. Taken together, this study demonstrates that UnaG can act as a small intrinsically fluorescent reporter in the mouse brain without an additional ligand, thus providing an alternative over EGFP for AAV-mediated neuron labeling in mammals.
Collapse
Affiliation(s)
- Yurong Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Huimin Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyan Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral Vector Systems for Gene Therapy: A Comprehensive Literature Review of Progress and Biosafety Challenges. APPLIED BIOSAFETY 2020; 25:7-18. [PMID: 36033383 PMCID: PMC9134621 DOI: 10.1177/1535676019899502] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Introduction National Institutes of Health (NIH) defines gene therapy as an experimental technique that uses genes to treat or prevent disease. Although gene therapy is a promising treatment option for a number of diseases (including inherited disorders, some types of cancer, and certain viral infections), the technique remains risky and is still under study to make sure that it will be effective and safe. Methods Applications of viral vectors and nonviral gene delivery systems have found an encouraging new beginning in gene therapy in recent years. Although several viral vectors and nonviral gene delivery systems have been developed in the past 3 decades, no one delivery system can be applied in gene therapy to all cell types in vitro and in vivo. Furthermore, the use of viral vector systems (both in vitro and in vivo) present unique occupational health and safety challenges. In this review article, we discuss the biosafety challenges and the current framework of risk assessment for working with the viral vector systems. Discussion The recent advances in the field of gene therapy is exciting, but it is important for scientists, institutional biosafety committees, and biosafety officers to safeguard public trust in the use of this technology in clinical trials and make conscious efforts to engage the public through ongoing forums and discussions.
Collapse
Affiliation(s)
- Sumit Ghosh
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Alex M. Brown
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chris Jenkins
- Clinical Biosafety Services, A Division of Sabai Global, Wildwood, MO, USA
| | - Katie Campbell
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
25
|
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020; 68:1692-1728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lynette C Foo
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emilie Hangen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Linck
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Sara Regio
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sybille Rion
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
26
|
Su P, Ying M, Han Z, Xia J, Jin S, Li Y, Wang H, Xu F. High-brightness anterograde transneuronal HSV1 H129 tracer modified using a Trojan horse-like strategy. Mol Brain 2020; 13:5. [PMID: 31931837 PMCID: PMC6958791 DOI: 10.1186/s13041-020-0544-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/05/2020] [Indexed: 08/24/2023] Open
Abstract
Neurotropic viral transsynaptic tracing is an increasingly powerful technique for dissecting the structure and function of neural circuits. Herpes simplex virus type 1 strain H129 has been widely used as an anterograde tracer. However, HSV tracers still have several shortcomings, including high toxicity, low sensitivity and non-specific retrograde labeling. Here, we aimed to construct high-brightness HSV anterograde tracers by increasing the expression of exogenous genes carried by H129 viruses. Using a Trojan horse-like strategy, a HSV/AAV (adeno-associated virus) chimaera termed H8 was generated to enhance the expression of a fluorescent marker. In vitro and in vivo assays showed that the exogenous gene was efficiently replicated and amplified by the synergism of the HSV vector and introduced AAV replication system. H8 reporting fluorescence was brighter than that of currently available H129 tracers, and H8 could be used for fast and effective anterograde tracing without additional immunostaining. These results indicated that foreign gene expression in HSV tracers could be enhanced by integrating HSV with AAV replication system. This approach may be useful as a general enhanced expression strategy for HSV-based tracing tools or gene delivery vectors.
Collapse
Affiliation(s)
- Peng Su
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Ying
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengpeng Han
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sen Jin
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215125, China
| | - Yingli Li
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
27
|
Crabtree E, Song L, Llanga T, Bower JJ, Cullen M, Salmon JH, Hirsch ML, Gilger BC. AAV-mediated expression of HLA-G1/5 reduces severity of experimental autoimmune uveitis. Sci Rep 2019; 9:19864. [PMID: 31882729 PMCID: PMC6934797 DOI: 10.1038/s41598-019-56462-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Non-infectious uveitis (NIU) is an intractable, recurrent, and painful disease that is a common cause of vision loss. Available treatments of NIU, such as the use of topical corticosteroids, are non-specific and have serious side effects which limits them to short-term use; however, NIU requires long-term treatment to prevent vision loss. Therefore, a single dose therapeutic that mediates long-term immunosuppression with minimal side effects is desirable. In order to develop an effective long-term therapy for NIU, an adeno-associated virus (AAV) gene therapy approach was used to exploit a natural immune tolerance mechanism induced by the human leukocyte antigen G (HLA-G). To mimic the prevention of NIU, naïve Lewis rats received a single intravitreal injection of AAV particles harboring codon-optimized cDNAs encoding HLA-G1 and HLA-G5 isoforms one week prior to the induction of experimental autoimmune uveitis (EAU). AAV-mediated expression of the HLA-G-1 and -5 transgenes in the targeted ocular tissues following a single intravitreal injection of AAV-HLA-G1/5 significantly decreased clinical and histopathological inflammation scores compared to untreated EAU eyes (p < 0.04). Thus, localized ocular gene delivery of AAV-HLA-G1/5 may reduce the off-target risks and establish a long-term immunosuppressive effect that would serve as an effective and novel therapeutic strategy for NIU, with the potential for applications to additional ocular immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth Crabtree
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Liujiang Song
- Department of Pediatrics, Hunan Normal University Medical College, Changsha, Hunan, China
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Telmo Llanga
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jacquelyn J Bower
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Megan Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jacklyn H Salmon
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Matthew L Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Brian C Gilger
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
28
|
Handumrongkul C, Ye AL, Chmura SA, Soroceanu L, Mack M, Ice RJ, Thistle R, Myers M, Ursu SJ, Liu Y, Kashani-Sabet M, Heath TD, Liggitt D, Lewis DB, Debs R. Durable multitransgene expression in vivo using systemic, nonviral DNA delivery. SCIENCE ADVANCES 2019; 5:eaax0217. [PMID: 31807699 PMCID: PMC6881169 DOI: 10.1126/sciadv.aax0217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 10/02/2019] [Indexed: 05/05/2023]
Abstract
Recombinant adeno-associated virus (AAV) vectors are transforming therapies for rare human monogenic deficiency diseases. However, adaptive immune responses to AAV and its limited DNA insert capacity, restrict their therapeutic potential. HEDGES (high-level extended duration gene expression system), a nonviral DNA- and liposome-based gene delivery platform, overcomes these limitations in immunocompetent mice. Specifically, one systemic HEDGES injection durably produces therapeutic levels of transgene-encoded human proteins, including FDA-approved cytokines and monoclonal antibodies, without detectable integration into genomic DNA. HEDGES also controls protein production duration from <3 weeks to >1.5 years, does not induce anti-vector immune responses, is reexpressed for prolonged periods following reinjection, and produces only transient minimal toxicity. HEDGES can produce extended therapeutic levels of multiple transgene-encoded therapeutic human proteins from DNA inserts >1.5-fold larger than AAV-based therapeutics, thus creating combinatorial interventions to effectively treat common polygenic diseases driven by multigenic abnormalities.
Collapse
Affiliation(s)
| | | | | | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | - Ryan J. Ice
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Robert Thistle
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | - Sarah J. Ursu
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Yong Liu
- DNARx LLC, San Francisco, CA, USA
| | | | | | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - David B. Lewis
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Debs
- DNARx LLC, San Francisco, CA, USA
- Corresponding author.
| |
Collapse
|
29
|
Zheng Q, Zhang X, Yang H, Xie J, Xie Y, Chen J, Yu C, Zhong C. Internal Ribosome Entry Site Dramatically Reduces Transgene Expression in Hematopoietic Cells in a Position-Dependent Manner. Viruses 2019; 11:v11100920. [PMID: 31597367 PMCID: PMC6833044 DOI: 10.3390/v11100920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bicistronic transgene expression mediated by internal ribosome entry site (IRES) elements has been widely used. It co-expresses heterologous transgene products from a message RNA driven by a single promoter. Hematologic gene delivery is a promising treatment for both inherited and acquired diseases. A combined strategy was recently documented for potential genome editing in hematopoietic cells. A transduction efficiency exceeding ~90% can be achieved by capsid-optimized recombinant adeno-associated virus serotype 6 (rAAV6) vectors. In this study, to deliver an encephalomyocarditis virus (EMCV) IRES-containing rAAV6 genome into hematopoietic cells, we observed that EMCV IRES almost completely shut down the transgene expression during the process of mRNA–protein transition. In addition, position-dependent behavior was observed, in which only the EMCV IRES element located between a promoter and the transgenes had an inhibitory effect. Although further studies are warranted to evaluate the involvement of cellular translation machinery, our results propose the use of specific IRES elements or an alternative strategy, such as the 2A system, to achieve bicistronic transgene expression in hematopoietic cells.
Collapse
Affiliation(s)
- Qingyun Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xueyan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Hua Yang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
- Department of Radiology, Central South University, Changsha, Hunan 410013, China.
| | - Jinyan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yilin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang 318000, China.
| | - Chenghui Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
- Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang 318000, China.
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
30
|
Song L, Song Z, Fry NJ, Conatser L, Llanga T, Mei H, Kafri T, Hirsch ML. Gene Delivery to Human Limbal Stem Cells Using Viral Vectors. Hum Gene Ther 2019; 30:1336-1348. [PMID: 31392914 DOI: 10.1089/hum.2019.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Limbal stem cell (LSC) transplantation is a promising treatment for ocular surface diseases especially LSC deficiency. Genetic engineering represents an attractive strategy to increase the potential for success in LSC transplantations either by correcting autologous diseased LSCs or by decreasing the immunogenicity of allogeneic LSCs. Therefore, two popular viral vectors, adeno-associated viral (AAV) vector and lentiviral (LV) vector, were compared for gene delivery in human LSCs. Transduction efficiency was evaluated by flow cytometry, quantitation of viral genomes, and fluorescence microscopy after introducing eight self-complementary AAV serotypes or LV carrying a green fluorescent protein (GFP) cassette to fresh limbal epithelial cells, cultivated LSC colonies, or after corneal intrastromal injection into human explant tissue. For fresh limbal epithelial cells, AAV6 showed the highest transduction efficiency, followed by LV and AAV4 at 24 h after vector incubation, which did not directly correlate with internalized genome copy number. The colony formation efficiency, as well as colony size over time, showed no significant differences among AAV serotypes, LV, and nontreated controls. The percentage of GFP+ colonies at 14 days post-seeding was significantly higher in the LV group, which plateaued at 50% GFP+ upon serial passages. Interestingly, AAV6-treated colonies initially showed a variegated transduction phenotype with no GFP+ colonies in serial passages. Quantitative polymerase chain reaction and AAV6 capsid staining revealed that transduction was restricted to differentiated cells of LSC colonies at a post-entry step. Following central intrastromal injection of human corneas, both LV and AAV6 transduced the stroma and endothelial cells, and AAV6 also transduced cells of the epithelia. However, no transduction was observed in derived LSC colonies. The collective results demonstrate the effectiveness of LV for stable human LSC genetic engineering and an unreported phenomenon of AAV6 transduction restriction in multipotent cells derived from the human limbus.
Collapse
Affiliation(s)
- Liujiang Song
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina
| | - Zhenwei Song
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - Nathaniel J Fry
- Department of Microbiology, University of North Carolina, Chapel Hill, North Carolina
| | - Laura Conatser
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina
| | - Telmo Llanga
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hua Mei
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Abstract
A resurgence in the development of newer gene therapy systems has led to recent successes in the treatment of B cell cancers, retinal degeneration and neuromuscular atrophy. Gene therapy offers the ability to treat the patient at the root cause of their malady by restoring normal gene function and arresting the pathological progression of their genetic disease. The current standard of care for most genetic diseases is based upon the symptomatic treatment with polypharmacy while minimizing any potential adverse effects attributed to the off-target and drug-drug interactions on the target or other organs. In the kidney, however, the development of gene therapy modifications to specific renal cells has lagged far behind those in other organ systems. Some positive strides in the past few years provide continued enthusiasm to invest the time and effort in the development of new gene therapy vectors for medical intervention to treat kidney diseases. This mini-review will systematically describe the pros and cons of the most commonly tested gene therapy vector systems derived from adenovirus, retrovirus, and adeno-associated virus and provide insight about their potential utility as a therapy for various types of genetic diseases in the kidney.
Collapse
Affiliation(s)
- Lori Davis
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
32
|
Lang JF, Toulmin SA, Brida KL, Eisenlohr LC, Davidson BL. Standard screening methods underreport AAV-mediated transduction and gene editing. Nat Commun 2019; 10:3415. [PMID: 31363095 PMCID: PMC6667494 DOI: 10.1038/s41467-019-11321-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022] Open
Abstract
Conventional methods to discern adeno-associated virus (AAV) vector transduction patterns are based on high, stable expression of a reporter gene. As a consequence, conventionally described tropisms omit cell types that undergo transient transduction, or have low but undetectable levels of reporter expression. This creates a blind spot for AAV-based genome editing applications because only minimal transgene expression is required for activity. Here, we use editing-reporter mice to fill this void. Our approach sensitively captures both high and low transgene expression from AAV vectors. Using AAV8 and other serotypes, we demonstrate the superiority of the approach in a side-by-side comparison with traditional methods, demonstrate numerous, previously unknown sites of AAV targeting, and better predict the gene editing footprint after AAV-CRISPR delivery. We anticipate that this system, which captures the full spectrum of transduction patterns from AAV vectors in vivo, will be foundational to current and emerging AAV technologies. Conventional methods to detect AAV vector transduction can miss transient or low levels of reporter expression. Here the authors use editing-reporter mice and discover numerous sites of AAV targeting along with better prediction of the gene editing footprint.
Collapse
Affiliation(s)
- Jonathan F Lang
- The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sushila A Toulmin
- The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kasey L Brida
- The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Laurence C Eisenlohr
- The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly L Davidson
- The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques. Mol Diagn Ther 2019; 23:113-120. [PMID: 30569401 DOI: 10.1007/s40291-018-0377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inherited retinal dystrophies cause progressive vision loss and are major contributors to blindness worldwide. Advances in gene therapy have brought molecular approaches into the realm of clinical trials for these incurable illnesses. Select phase I, II and III trials are complete and provide some promise in terms of functional outcomes and safety, although questions do remain over the durability of their effects and the prevalence of inflammatory reactions. This article reviews gene therapy as it can be applied to inherited retinal dystrophies, provides an update of results from recent clinical trials, and discusses the future prospects of gene therapy and genome surgery.
Collapse
|
34
|
Fernandez-Sendin M, Tenesaca S, Vasquez M, Aranda F, Berraondo P. Production and use of adeno-associated virus vectors as tools for cancer immunotherapy. Methods Enzymol 2019; 635:185-203. [PMID: 32122545 DOI: 10.1016/bs.mie.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are attractive tools for research in cancer immunotherapy. A single administration of an AAV vector in tumor mouse models induces a progressive increase in transgene expression which reaches a plateau 1 or 2 weeks after administration. The rAAV is then able to maintain the expression of the immunostimulatory transgene. Thus, the use of these vectors obviates the need for frequent administrations of the therapeutic protein to achieve the antitumor effect. The long-term expression of AAV vectors can be exploited for the evaluation of the antitumor activity of immune-enhancing proteins. Most preclinical studies have focused on the expression of cytokines and on the induction of immune responses elicited by tumor-associated antigens expressed by rAAVs. Notwithstanding, rAAVs may not be suitable for immunostimulatory proteins that require high and/or immediate expression. In this chapter, we review a feasible, reliable and detailed protocol to produce and purify AAV vectors as a tool for cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Shirley Tenesaca
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
35
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol 2019; 42:261-285. [PMID: 31132295 PMCID: PMC6687348 DOI: 10.1590/1678-4685-gmb-2018-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited conditions caused by impaired lysosomal function and consequent substrate storage, leading to a range of clinical manifestations, including cardiovascular disease. This may lead to significant symptoms and even cardiac failure, which is an important cause of death among patients. Currently available treatments do not completely correct cardiac involvement in the LSDs. Gene therapy has been tested as a therapeutic alternative with promising results for the heart disease. In this review, we present the results of different approaches of gene therapy for LSDs, mainly in animal models, and its effects in the heart, focusing on protocols with cardiac functional analysis.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
36
|
Trapani I. Adeno-Associated Viral Vectors as a Tool for Large Gene Delivery to the Retina. Genes (Basel) 2019; 10:genes10040287. [PMID: 30970639 PMCID: PMC6523333 DOI: 10.3390/genes10040287] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Gene therapy using adeno-associated viral (AAV) vectors currently represents the most promising approach for the treatment of many inherited retinal diseases (IRDs), given AAV's ability to efficiently deliver therapeutic genes to both photoreceptors and retinal pigment epithelium, and their excellent safety and efficacy profiles in humans. However, one of the main obstacles to widespread AAV application is their limited packaging capacity, which precludes their use from the treatment of IRDs which are caused by mutations in genes whose coding sequence exceeds 5 kb. Therefore, in recent years, considerable effort has been made to identify strategies to increase the transfer capacity of AAV vectors. This review will discuss these new developed strategies, highlighting the advancements as well as the limitations that the field has still to overcome to finally expand the applicability of AAV vectors to IRDs due to mutations in large genes.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy.
- Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy.
| |
Collapse
|
37
|
Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, Odenthal M, Adriouch S, Salvetti A, Büning H. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep 2019; 9:3631. [PMID: 30842485 PMCID: PMC6403382 DOI: 10.1038/s41598-019-40071-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
AAV vectors poorly transduce Dendritic cells (DC), a feature invoked to explain AAV's low immunogenicity. However, the reason for this non-permissiveness remained elusive. Here, we performed an in-depth analysis using human monocyte-derived immature DC (iDC) as model. iDC internalized AAV vectors of various serotypes, but even the most efficient serotype failed to transduce iDC above background. Since AAV vectors reached the cell nucleus, we hypothesized that AAV's intracellular processing occurs suboptimal. On this basis, we screened an AAV peptide display library for capsid variants more suitable for DC transduction and identified the I/VSS family which transduced DC with efficiencies of up to 38%. This property correlated with an improved vector uncoating. To determine the consequence of this novel feature for AAV's in vivo performance, we engineered one of the lead candidates to express a cytoplasmic form of ovalbumin, a highly immunogenic model antigen, and assayed transduction efficiency as well as immunogenicity. The capsid variant clearly outperformed the parental serotype in muscle transduction and in inducing antigen-specific humoral and T cell responses as well as anti-capsid CD8+ T cells. Hence, vector uncoating represents a major barrier hampering AAV vector-mediated transduction of DC and impacts on its use as vaccine platform.
Collapse
Affiliation(s)
- Axel Rossi
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Léa Dupaty
- Normandie Univ, UNIROUEN, INSERM, U1234, Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes (PANTHER), 76000, Rouen, France
| | - Ludovic Aillot
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5206, Lyon, France
| | - Liang Zhang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Célia Gallien
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France
| | - Michael Hallek
- Clinic I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | | | - Sahil Adriouch
- Normandie Univ, UNIROUEN, INSERM, U1234, Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes (PANTHER), 76000, Rouen, France.
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111 - Université claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieur de Lyon, Université de Lyon, Lyon, France.
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5206, Lyon, France.
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
38
|
Sun X, Guo Q, Wei W, Robertson S, Yuan Y, Luo X. Current Progress on MicroRNA-Based Gene Delivery in the Treatment of Osteoporosis and Osteoporotic Fracture. Int J Endocrinol 2019; 2019:6782653. [PMID: 30962808 PMCID: PMC6431398 DOI: 10.1155/2019/6782653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/28/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence demonstrates that microRNAs, as important endogenous posttranscriptional regulators, are essential for bone remodeling and regeneration. Undoubtedly, microRNA-based gene therapies show great potential to become novel approaches against bone-related diseases, including osteoporosis and associated fractures. The major obstacles for continued advancement of microRNA-based therapies in clinical application include their poor in vivo stability, nonspecific biodistribution, and unwanted side effects. Appropriate chemical modifications and delivery vectors, which improve the biological performance and potency of microRNA-based drugs, hold the key to translating miRNA technologies into clinical practice. Thus, this review summarizes the current attempts and existing deficiencies of chemical modifications and delivery systems applied in microRNA-based therapies for osteoporosis and osteoporotic fractures to inform further explorations.
Collapse
Affiliation(s)
- Xi Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, 138# Tongzipo Road, Changsha, Hunan 410007, China
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Wenhua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Stephen Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Ying Yuan
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
39
|
Sarno E, Robison AJ. Emerging role of viral vectors for circuit-specific gene interrogation and manipulation in rodent brain. Pharmacol Biochem Behav 2018; 174:2-8. [PMID: 29709585 PMCID: PMC6369584 DOI: 10.1016/j.pbb.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 01/11/2023]
Abstract
Over the past half century, novel tools have allowed the characterization of myriad molecular underpinnings of neural phenomena including synaptic function, neurogenesis and neurodegeneration, membrane excitability, and neurogenetics/epigenetics. More recently, transgenic mice have made possible cell type-specific explorations of these phenomena and have provided critical models of many neurological and psychiatric diseases. However, it has become clear that many critical areas of study require tools allowing the study and manipulation of individual neural circuits within the brain, and viral vectors have come to the forefront in driving these circuit-specific studies. Here, we present a surface-level review of the general classes of viral vectors used for study of the brain, along with their suitability for circuit-specific studies. We then cover in detail a new long-lasting, retrograde expressing form of herpes simplex virus termed LT-HSV that has become highly useful in circuit-based studies. We detail some of its current uses and propose a variety of future uses for this critical new tool, including circuit-based transgene overexpression, gene editing, and gene expression profiling.
Collapse
Affiliation(s)
- Erika Sarno
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
40
|
Ebrahimi S, Teimoori A, Khanbabaei H, Tabasi M. Harnessing CRISPR/Cas 9 System for manipulation of DNA virus genome. Rev Med Virol 2018; 29:e2009. [PMID: 30260068 DOI: 10.1002/rmv.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
The recent development of the Clustered Regularly Interspaced Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, a genome editing system, has many potential applications in virology. The possibility of introducing site specific breaks has provided new possibilities to precisely manipulate viral genomics. Here, we provide diagrams to summarize the steps involved in the process. We also systematically review recent applications of the CRISPR/Cas9 system for manipulation of DNA virus genomics and discuss the therapeutic potential of the system to treat viral diseases.
Collapse
Affiliation(s)
- Saeedeh Ebrahimi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tabasi
- Department of Virology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Abstract
Here we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium in orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI) mediated transfection of a 2-plasmid system and is specified for production in milliliter to liter scales. After PEI and plasmid DNA (pDNA) complex formation the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 3-day batch process, cell cultures are further processed using different methods for lysis and recovery. Methods for the purification of viral particles are described, including iodixanol gradient purification, immunoaffinity chromatography, and ultrafiltration, as well as quantitative PCR to quantify vector titer.
Collapse
|
42
|
Song L, Llanga T, Conatser LM, Zaric V, Gilger BC, Hirsch ML. Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther 2018; 25:402-414. [PMID: 30072815 PMCID: PMC11610513 DOI: 10.1038/s41434-018-0035-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
AAV gene therapy approaches in the posterior eye resulted in the first FDA-approved gene therapy-based drug. However, application of AAV vectorology to the anterior eye has yet to enter even a Phase I trial. Furthermore, the simple and safe subconjunctival injection has been relatively unexplored in regard to AAV vector transduction. To determine the utility of this route for the treatment of various ocular disorders, a survey of gene delivery via natural AAV serotypes was performed and correlated to reported cellular attachment factors. AAV serotypes packaged with a self-complementary reporter were administered via subconjunctival injection to WT mice. Subconjunctival injection of AAV vectors was without incidence; however, vector shedding in tears was noted weeks following administration. AAV transduction was serotype dependent in anterior segment tissues including the eye lid, conjunctiva, and cornea, as well as the periocular tissues including muscle. Transgene product in the cornea was highest for AAV6 and AAV8, however, their corneal restriction was remarkably different; AAV6 appeared restricted to the endothelium layer while AAV8 efficiently transduced the stromal layer. Reported AAV cellular receptors were not well correlated to vector transduction; although, in some cases they were conserved among mouse and human ocular tissues. Subconjunctival administration of particular AAV serotypes may be a simple and safe targeted gene delivery route for ocular surface, muscular, corneal, and optic nerve diseases.
Collapse
Affiliation(s)
- Liujiang Song
- School of Medicine, Hunan Normal University, Changsha, 422800, Hunan, China
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Telmo Llanga
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Laura M Conatser
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Violeta Zaric
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian C Gilger
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Ophthalmology, University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
43
|
Ezra-Elia R, Obolensky A, Ejzenberg A, Ross M, Mintz D, Banin E, Ofri R. Can an in vivo imaging system be used to determine localization and biodistribution of AAV5-mediated gene expression following subretinal and intravitreal delivery in mice? Exp Eye Res 2018; 176:227-234. [PMID: 30171858 DOI: 10.1016/j.exer.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Recombinant adeno associated viruses (AAV) are the most commonly used vectors in animal model studies of gene therapy for retinal diseases. The ability of a vector to localize and remain in the target tissue, and in this manner to avoid off-target effects beyond the site of delivery, is critical to the efficacy and safety of the treatment. The in vivo imaging system (IVIS) is a non-invasive imaging tool used for detection and quantification of bioluminescence activity in rodents. Our aim was to investigate whether IVIS can detect localization and biodistribution of AAV5 vector in mice following subretinal (SR) and intravitreal (IVT) injections. AAV5 carrying firefly luciferase DNA under control of the ubiquitous cytomegalovirus (CMV) promoter was injected unilaterally IVT or SR (in the central or peripheral retina) of forty-one mice. Luciferase activity was tracked for up to 60 weeks in the longest surviving animals, using repeated (up to 12 times) IVIS bioluminescence imaging. Luciferase presence was also confirmed immunohistochemically (IHC) and by PCR in representative animals. In the SR group, IVIS readings demonstrated luciferase activity in all (32/32) eyes, and luciferase presence was confirmed by IHC (4/4 eyes) and PCR (12/12 eyes). In the IVT group, IVIS readings demonstrated luciferase activity in 7/9 eyes, and luciferase presence was confirmed by PCR in 5/5 eyes and by IHC (2/2 eyes). In two SR-injected animals (one each from the central and peripheral injection sites), PCR detected luciferase presence in the ipsilateral optic nerves, a finding that was not detected by IVIS or IHC. Our results show that when evaluating SR delivery, IVIS has a sensitivity and specificity of 100% compared with the gold standard PCR. When evaluating IVT delivery, IVIS has a sensitivity of 78% and specificity of 100%. These finding confirm the ability of IVIS to detect in-vivo localized expression of AAV following SR delivery in the retina up to 60 weeks post-treatment, using repeated imaging for longitudinal evaluation, without fading of the biological signal, thereby replacing the need for post mortem processing in order to confirm vector expression. However, IVIS is probably not sensitive enough, compared with genome detection, to demonstrate biodistribution to the optic nerve, as it could not detect luciferase activity in ipsilateral optic nerves following SR delivery in mice.
Collapse
Affiliation(s)
- Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayala Ejzenberg
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maya Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dvir Mintz
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Eyal Banin
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
44
|
Trapani I, Auricchio A. Seeing the Light after 25 Years of Retinal Gene Therapy. Trends Mol Med 2018; 24:669-681. [PMID: 29983335 DOI: 10.1016/j.molmed.2018.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
The retina has been at the forefront of translational gene therapy. Proof-of-concept that gene therapy could restore vision in a large animal led to the initiation of the first successful clinical trials and, in turn, to the recent approval of the first gene therapy product for an ocular disease. As dozens of clinical trials of retinal gene therapy have begun, new challenges are identified, which include delivery of large genes, counteracting gain-of-function mutations, and safe and effective gene transfer to diseased retinas. Advancements in vector design, improvements of delivery routes, and selection of optimal timing for intervention will contribute to extend the initial success of retinal gene therapy to an increasing number of inherited blinding conditions.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Advanced Biomedicine, Federico II University, Naples, Italy.
| |
Collapse
|
45
|
Abdallah K, Nadeau F, Bergeron F, Blouin S, Blais V, Bradbury KM, Lavoie CL, Parent JL, Gendron L. Adeno-associated virus 2/9 delivery of Cre recombinase in mouse primary afferents. Sci Rep 2018; 8:7321. [PMID: 29743652 PMCID: PMC5943452 DOI: 10.1038/s41598-018-25626-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Genetically-modified animal models have significantly increased our understanding of the complex central nervous system circuits. Among these models, inducible transgenic mice whose specific gene expression can be modulated through a Cre recombinase/LoxP system are useful to study the role of specific peptides and proteins in a given population of cells. In the present study, we describe an efficient approach to selectively deliver a Cre-GFP to dorsal root ganglia (DRG) neurons. First, mice of different ages were injected in both hindpaws with a recombinant adeno-associated virus (rAAV2/9-CBA-Cre-GFP). Using this route of injection in mice at 5 days of age, we report that approximately 20% of all DRG neurons express GFP, 6 to 8 weeks after the infection. The level of infection was reduced by 50% when the virus was administered at 2 weeks of age. Additionally, the virus-mediated delivery of the Cre-GFP was also investigated via the intrathecal route. When injected intrathecally, the rAAV2/9-CBA-Cre-GFP virus infected a much higher proportion of DRG neurons than the intraplantar injection, with up to 51.6% of infected lumbar DRG neurons. Noteworthy, both routes of injection predominantly transduced DRG neurons over spinal and brain neurons.
Collapse
Affiliation(s)
- Khaled Abdallah
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Francis Nadeau
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Francis Bergeron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Sylvie Blouin
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Véronique Blais
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Kelly M Bradbury
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Bishop's University, Sherbrooke, Québec, Canada
| | - Christine L Lavoie
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Jean-Luc Parent
- Département de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.,Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Louis Gendron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Département d'anesthésiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada. .,Centre de recherche du CHUS, Sherbrooke, Québec, Canada. .,Quebec Pain Research Network, Sherbrooke, Québec, Canada.
| |
Collapse
|
46
|
Robinson JE, Gradinaru V. Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Curr Opin Neurobiol 2018; 48:17-29. [PMID: 28850815 PMCID: PMC5825239 DOI: 10.1016/j.conb.2017.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
Neurodevelopmental disorders (NDDs) represent a diverse group of syndromes characterized by abnormal development of the central nervous system and whose symptomatology includes cognitive, emotional, sensory, and motor impairments. The identification of causative genetic defects has allowed for creation of transgenic NDD mouse models that have revealed pathophysiological mechanisms of disease phenotypes in a neural circuit- and cell type-specific manner. Mouse models of several syndromes, including Rett syndrome, Fragile X syndrome, Angelman syndrome, Neurofibromatosis type 1, etc., exhibit abnormalities in the structure and function of dopaminergic circuitry, which regulates motivation, motor behavior, sociability, attention, and executive function. Recent advances in technologies for functional circuit mapping, including tissue clearing, viral vector-based tracing methods, and optical readouts of neural activity, have refined our knowledge of dopaminergic circuits in unperturbed states, yet these tools have not been widely applied to NDD research. Here, we will review recent findings exploring dopaminergic function in NDD models and discuss the promise of new tools to probe NDD pathophysiology in these circuits.
Collapse
Affiliation(s)
- J Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
47
|
Hirsch ML, Conatser LM, Smith SM, Salmon JH, Wu J, Buglak NE, Davis R, Gilger BC. AAV vector-meditated expression of HLA-G reduces injury-induced corneal vascularization, immune cell infiltration, and fibrosis. Sci Rep 2017; 7:17840. [PMID: 29259248 PMCID: PMC5736662 DOI: 10.1038/s41598-017-18002-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/05/2017] [Indexed: 01/11/2023] Open
Abstract
Over 1.5 million individuals suffer from cornea vascularization due to genetic and/or environmental factors, compromising visual acuity and often resulting in blindness. Current treatments of corneal vascularization are limited in efficacy and elicit undesirable effects including, ironically, vision loss. To develop a safe and effective therapy for corneal vascularization, adeno-associated virus (AAV) gene therapy, exploiting a natural immune tolerance mechanism induced by human leukocyte antigen G (HLA-G), was investigated. Self-complementary AAV cassettes containing codon optimized HLA-G1 (transmembrane) or HLA-G5 (soluble) isoforms were validated in vitro. Then, following a corneal intrastromal injection, AAV vector transduction kinetics, using a chimeric AAV capsid, were determined in rabbits. One week following corneal trauma, a single intrastromal injection of scAAV8G9-optHLA-G1 + G5 prevented corneal vascularization, inhibited trauma-induced T-lymphocyte infiltration (some of which were CD8+), and dramatically reduced myofibroblast formation compared to control treated eyes. Biodistribution analyses suggested AAV vectors persisted only in the trauma-induced corneas; however, a neutralizing antibody response to the vector capsid was observed inconsistently. The collective data demonstrate the clinical potential of scAAV8G9-optHLA-G to safely and effectively treat corneal vascularization and inhibit fibrosis while alluding to broader roles in ocular surface immunity and allogenic organ transplantation.
Collapse
Affiliation(s)
- Matthew L Hirsch
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Laura M Conatser
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sara M Smith
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jacklyn H Salmon
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jerry Wu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nicholas E Buglak
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rich Davis
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brian C Gilger
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
48
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
49
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
50
|
Galli A, Della Latta V, Bologna C, Pucciarelli D, Cipriani F, Backovic A, Cervelli T. Strategies to optimize capsid protein expression and single-stranded DNA formation of adeno-associated virus in Saccharomyces cerevisiae. J Appl Microbiol 2017; 123:414-428. [PMID: 28609559 DOI: 10.1111/jam.13511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
AIMS Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. METHODS AND RESULTS Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. CONCLUSIONS This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. SIGNIFICANCE AND IMPACT OF THE STUDY New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production.
Collapse
Affiliation(s)
- A Galli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - V Della Latta
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - C Bologna
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - D Pucciarelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - F Cipriani
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - A Backovic
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - T Cervelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|