1
|
Murovec U, Accetto T. Transcriptomic analysis of polysaccharide utilization loci reveals substrate preferences in ruminal generalists Segatella bryantii TF1-3 and Xylanibacter ruminicola KHP1. BMC Genomics 2024; 25:495. [PMID: 38769483 PMCID: PMC11107044 DOI: 10.1186/s12864-024-10421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteria of the genera Xylanibacter and Segatella are among the most dominant groups in the rumen microbiota. They are characterized by the ability to utilize different hemicelluloses and pectin of plant cell-wall as well as plant energy storage polysaccharides. The degradation is possible with the use of cell envelope bound multiprotein apparatuses coded in polysaccharide utilization loci (PULs), which have been shown to be substrate specific. The knowledge of PUL presence in rumen Xylanibacter and Segatella based on bioinformatic analyses is already established and transcriptomic and genetic approaches confirmed predicted PULs for a limited number of substrates. In this study, we transcriptomically identified additional different PULs in Xylanibacter ruminicola KHP1 and Segatella bryantii TF1-3. We also identified substrate preferences and found that specific growth rate and extent of growth impacted the choice of substrates preferentially used for degradation. These preferred substrates were used by both strains simultaneously as judged by their PUL upregulation. Lastly, β-glucan and xyloglucan were used by these strains in the absence of bioinformatically and transcriptomically identifiable PUL systems.
Collapse
Affiliation(s)
- Urška Murovec
- Department of microbiology, Biotechnical faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Tomaž Accetto
- Department of microbiology, Biotechnical faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia.
| |
Collapse
|
2
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
3
|
Liu Z, Smith SR. Cross-Linked Enzyme Aggregate (CLEA) Preparation from Waste Activated Sludge. Microorganisms 2023; 11:1902. [PMID: 37630462 PMCID: PMC10458447 DOI: 10.3390/microorganisms11081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Enzymes are used extensively as industrial bio-catalysts in various manufacturing and processing sectors. However, commercial enzymes are expensive in part due to the high cost of the nutrient medium for the biomass culture. Activated sludge (AS) is a waste product of biological wastewater treatment and consists of microbial biomass that degrades organic matter by producing substantial quantities of hydrolytic enzymes. Recovering enzymes from AS therefore offers a potential alternative to conventional production techniques. A carrier-free, cross-linked enzyme aggregate (CLEA) was produced from crude AS enzyme extract for the first time. A major advantage of the CLEA is the combined immobilization, purification, and stabilization of the crude enzymes into a single step, thereby avoiding large amounts of inert carriers in the final enzyme product. The AS CLEA contained a variety of hydrolytic enzymes and demonstrated high potential for the bio-conversion of complex organic substrates.
Collapse
Affiliation(s)
| | - Stephen R. Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
4
|
Grant TA, Jayakumar JM, López-Pérez M, Almagro-Moreno S. Vibrio floridensis sp. nov., a novel species closely related to the human pathogen Vibrio vulnificus isolated from a cyanobacterial bloom. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749680 DOI: 10.1099/ijsem.0.005675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A Gram-stain-negative, rod-shaped bacterial strain, designated Vibrio floridensis IRLE0018 (=NRRL B-65642=NCTC 14661), was isolated from a cyanobacterial bloom along the Indian River Lagoon (IRL), a large and highly biodiverse estuary in eastern Florida (USA). The results of phylogenetic, biochemical, and phenotypic analyses indicate that this isolate is distinct from species of the genus Vibrio with validly published names and is the closest relative to the emergent human pathogen, Vibrio vulnificus. Here, we present the complete genome sequence of V. floridensis strain IRLE0018 (4 535 135 bp). On the basis of the established average nucleotide identity (ANI) values for the determination of different species (ANI <95 %), strain IRLE0018, with an ANI of approximately 92 % compared with its closest relative, V. vulnificus, represents a novel species within the genus Vibrio. To our knowledge, this represents the first time this species has been described. The results of genomic analyses of V. floridensis IRLE0018 indicate the presence of antibiotic resistance genes and several known virulence factors, however, its pathogenicity profile (e.g. survival in serum, phagocytosis avoidance) reveals limited virulence potential of this species in contrast to V. vulnificus.
Collapse
Affiliation(s)
- Trudy-Ann Grant
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| | - Jane M Jayakumar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
5
|
Wu S, Bhat ZF, Gounder RS, Mohamed Ahmed IA, Al-Juhaimi FY, Ding Y, Bekhit AEDA. Effect of Dietary Protein and Processing on Gut Microbiota-A Systematic Review. Nutrients 2022; 14:453. [PMID: 35276812 PMCID: PMC8840478 DOI: 10.3390/nu14030453] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
The effect of diet on the composition of gut microbiota and the consequent impact on disease risk have been of expanding interest. The present review focuses on current insights of changes associated with dietary protein-induced gut microbial populations and examines their potential roles in the metabolism, health, and disease of animals. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was used, and 29 highly relevant articles were obtained, which included 6 mouse studies, 7 pig studies, 15 rat studies, and 1 in vitro study. Analysis of these studies indicated that several factors, such as protein source, protein content, dietary composition (such as carbohydrate content), glycation of protein, processing factors, and protein oxidation, affect the digestibility and bioavailability of dietary proteins. These factors can influence protein fermentation, absorption, and functional properties in the gut and, consequently, impact the composition of gut microbiota and affect human health. While gut microbiota can release metabolites that can affect host physiology either positively or negatively, the selection of quality of protein and suitable food processing conditions are important to have a positive effect of dietary protein on gut microbiota and human health.
Collapse
Affiliation(s)
- Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180009, India;
| | - Rochelle S. Gounder
- Department of Food Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.M.A.); (F.Y.A.-J.)
| | - Fahad Y. Al-Juhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.M.A.); (F.Y.A.-J.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | | |
Collapse
|
6
|
CsrA Regulates Swarming Motility and Carbohydrate and Amino Acid Metabolism in Vibrio alginolyticus. Microorganisms 2021; 9:microorganisms9112383. [PMID: 34835507 PMCID: PMC8624728 DOI: 10.3390/microorganisms9112383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Vibrio alginolyticus, like other vibrio species, is a widely distributed marine bacterium that is able to outcompete other species in variable niches where diverse organic matters are supplied. However, it remains unclear how these cells sense and adjust metabolic flux in response to the changing environment. CsrA is a conserved RNA-binding protein that modulates critical cellular processes such as growth ability, central metabolism, virulence, and the stress response in gamma-proteobacteria. Here, we first characterize the csrA homolog in V. alginolyticus. The results show that CsrA activates swarming but not swimming motility, possibly by enhancing the expression of lateral flagellar associated genes. It is also revealed that CsrA modulates the carbon and nitrogen metabolism of V. alginolyticus, as evidenced by a change in the growth kinetics of various carbon and nitrogen sources when CsrA is altered. Quantitative RT-PCR shows that the transcripts of the genes encoding key enzymes involved in the TCA cycle and amino acid metabolism change significantly, which is probably due to the variation in mRNA stability given by CsrA binding. This may suggest that CsrA plays an important role in sensing and responding to environmental changes.
Collapse
|
7
|
Venkat K, Hoyos M, Haycocks JR, Cassidy L, Engelmann B, Rolle-Kampczyk U, von Bergen M, Tholey A, Grainger DC, Papenfort K. A dual-function RNA balances carbon uptake and central metabolism in Vibrio cholerae. EMBO J 2021; 40:e108542. [PMID: 34612526 PMCID: PMC8672173 DOI: 10.15252/embj.2021108542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are well known to modulate gene expression by base pairing with trans‐encoded transcripts and are typically non‐coding. However, several sRNAs have been reported to also contain an open reading frame and thus are considered dual‐function RNAs. In this study, we discovered a dual‐function RNA from Vibrio cholerae, called VcdRP, harboring a 29 amino acid small protein (VcdP), as well as a base‐pairing sequence. Using a forward genetic screen, we identified VcdRP as a repressor of cholera toxin production and link this phenotype to the inhibition of carbon transport by the base‐pairing segment of the regulator. By contrast, we demonstrate that the VcdP small protein acts downstream of carbon transport by binding to citrate synthase (GltA), the first enzyme of the citric acid cycle. Interaction of VcdP with GltA results in increased enzyme activity and together VcdR and VcdP reroute carbon metabolism. We further show that transcription of vcdRP is repressed by CRP allowing us to provide a model in which VcdRP employs two different molecular mechanisms to synchronize central metabolism in V. cholerae.
Collapse
Affiliation(s)
- Kavyaa Venkat
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mona Hoyos
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - James Rj Haycocks
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, University of Kiel, Kiel, Germany
| | | | | | | | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, University of Kiel, Kiel, Germany
| | - David C Grainger
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
9
|
The LysR-Type Transcriptional Regulator BsrA (PA2121) Controls Vital Metabolic Pathways in Pseudomonas aeruginosa. mSystems 2021; 6:e0001521. [PMID: 34254827 PMCID: PMC8407307 DOI: 10.1128/msystems.00015-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa, a facultative human pathogen causing nosocomial infections, has complex regulatory systems involving many transcriptional regulators. LTTR (LysR-Type Transcriptional Regulator) family proteins are involved in the regulation of various processes, including stress responses, motility, virulence, and amino acid metabolism. The aim of this study was to characterize the LysR-type protein BsrA (PA2121), previously described as a negative regulator of biofilm formation in P. aeruginosa. Genome wide identification of BsrA binding sites using chromatin immunoprecipitation and sequencing analysis revealed 765 BsrA-bound regions in the P. aeruginosa PAO1161 genome, including 367 sites in intergenic regions. The motif T-N11-A was identified within sequences bound by BsrA. Transcriptomic analysis showed altered expression of 157 genes in response to BsrA excess; of these, 35 had a BsrA binding site within their promoter regions, suggesting a direct influence of BsrA on the transcription of these genes. BsrA-repressed loci included genes encoding proteins engaged in key metabolic pathways such as the tricarboxylic acid cycle. The panel of loci possibly directly activated by BsrA included genes involved in pilus/fimbria assembly, as well as secretion and transport systems. In addition, DNA pull-down and regulatory analyses showed the involvement of PA2551, PA3398, and PA5189 in regulation of bsrA expression, indicating that this gene is part of an intricate regulatory network. Taken together, these findings reveal the existence of a BsrA regulon, which performs important functions in P. aeruginosa. IMPORTANCE This study shows that BsrA, a LysR-type transcriptional regulator from Pseudomonas aeruginosa, previously identified as a repressor of biofilm synthesis, is part of an intricate global regulatory network. BsrA acts directly and/or indirectly as the repressor and/or activator of genes from vital metabolic pathways (e.g., pyruvate, acetate, and tricarboxylic acid cycle) and is involved in control of transport functions and the formation of surface appendages. Expression of the bsrA gene is increased in the presence of antibiotics, which suggests its induction in response to stress, possibly reflecting the need to redirect metabolism under stressful conditions. This is particularly relevant for the treatment of infections caused by P. aeruginosa. In summary, the findings of this study demonstrate that the BsrA regulator performs important roles in carbon metabolism, biofilm formation, and antibiotic resistance in P. aeruginosa.
Collapse
|
10
|
Mike LA, Stark AJ, Forsyth VS, Vornhagen J, Smith SN, Bachman MA, Mobley HLT. A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog 2021; 17:e1009376. [PMID: 33720976 PMCID: PMC7993769 DOI: 10.1371/journal.ppat.1009376] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKp) is a distinct pathotype that causes invasive community-acquired infections in healthy individuals. Hypermucoviscosity (hmv) is a major phenotype associated with hvKp characterized by copious capsule production and poor sedimentation. Dissecting the individual functions of CPS production and hmv in hvKp has been hindered by the conflation of these two properties. Although hmv requires capsular polysaccharide (CPS) biosynthesis, other cellular factors may also be required and some fitness phenotypes ascribed to CPS may be distinctly attributed to hmv. To address this challenge, we systematically identified genes that impact capsule and hmv. We generated a condensed, ordered transposon library in hypervirulent strain KPPR1, then evaluated the CPS production and hmv phenotypes of the 3,733 transposon mutants, representing 72% of all open reading frames in the genome. We employed forward and reverse genetic screens to evaluate effects of novel and known genes on CPS biosynthesis and hmv. These screens expand our understanding of core genes that coordinate CPS biosynthesis and hmv, as well as identify central metabolism genes that distinctly impact CPS biosynthesis or hmv, specifically those related to purine metabolism, pyruvate metabolism and the TCA cycle. Six representative mutants, with varying effect on CPS biosynthesis and hmv, were evaluated for their impact on CPS thickness, serum resistance, host cell association, and fitness in a murine model of disseminating pneumonia. Altogether, these data demonstrate that hmv requires both CPS biosynthesis and other cellular factors, and that hmv and CPS may serve distinct functions during pathogenesis. The integration of hmv and CPS to the metabolic status of the cell suggests that hvKp may require certain nutrients to specifically cause deep tissue infections.
Collapse
Affiliation(s)
- Laura A. Mike
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew J. Stark
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Valerie S. Forsyth
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jay Vornhagen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara N. Smith
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael A. Bachman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
11
|
Sun Y, Xu B, Zhuge X, Tang F, Wang X, Gong Q, Chen R, Xue F, Dai J. Factor H Is Bound by Outer Membrane-Displayed Carbohydrate Metabolism Enzymes of Extraintestinal Pathogenic Escherichia coli and Contributes to Opsonophagocytosis Resistance in Bacteria. Front Cell Infect Microbiol 2021; 10:592906. [PMID: 33569353 PMCID: PMC7868385 DOI: 10.3389/fcimb.2020.592906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/11/2020] [Indexed: 01/15/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) causes bloodstream infections in humans and animals. Complement escape is a prerequisite for bacteria to survive in the bloodstream. Factor H (FH) is an important regulatory protein of the complement system. In this study, ExPEC was found to bind FH from serum. However, the mechanisms of ExPEC binding to FH and then resistance to complement-mediated attacks remain unclear. Here, a method that combined desthiobiotin pull-down and liquid chromatography-tandem mass spectrometry was used to identify the FH-binding membrane proteins of ExPEC. Seven identified proteins, which all were carbohydrate metabolic enzymes (CMEs), including acetate kinase, fructose-bisphosphate aldolase, fumarate reductase flavoprotein subunit, L-lactate dehydrogenase, dihydrolipoamide dehydrogenase, phosphoenolpyruvate synthase, and pyruvate dehydrogenase, were verified to recruit FH from serum using GST pull-down and ELISA plate binding assay. The ELISA plate binding assay determined that these seven proteins bind to FH in a dose-dependent manner. Magnetic beads coupled with any one of seven proteins significantly reduced the FH recruitment of ExPEC (p < 0.05) Subsequently, immunofluorescence, colony blotting, and Western blotting targeting outer membrane proteins determined that these seven CMEs were located on the outer membrane of ExPEC. Furthermore, the FH recruitment levels and C3b deposition levels on bacteria were significantly increased and decreased in an FH-concentration-dependent manner, respectively (p < 0.05). The FH recruitment significantly enhanced the ability of ExPEC to resist the opsonophagocytosis of human macrophage THP-1 in an FH-concentration-dependent manner (p < 0.05), which revealed a new mechanism for ExPEC to escape complement-mediated killing. The identification of novel outer membrane-displayed CMEs which played a role in the FH recruitment contributes to the elucidation of the molecular mechanism of ExPEC pathogenicity.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,National Research Center of Veterinary Biologicals Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qianwen Gong
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Rui Chen
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Diverse Horizontally-Acquired Gene Clusters Confer Sucrose Utilization to Different Lineages of the Marine Pathogen Photobacterium damselae subsp. damselae. Genes (Basel) 2020; 11:genes11111244. [PMID: 33105683 PMCID: PMC7690375 DOI: 10.3390/genes11111244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr−). Previous studies have reported sucrose-utilizing isolates (Scr+), but the genetic basis of this variable phenotype remains uncharacterized. Here, we carried out the genome sequencing of five Scr+ and two Scr−Pdd isolates and conducted a comparative genomics analysis with sixteen additional Pdd genomes sequenced in previous studies. We identified two different versions of a four-gene cluster (scr cluster) exclusive of Scr+ isolates encoding a PTS system sucrose-specific IIBC component (scrA), a fructokinase (scrK), a sucrose-6-phosphate hydrolase (scrB), and a sucrose operon repressor (scrR). A scrA deletion mutant did not ferment sucrose and was impaired for growth with sucrose as carbon source. Comparative genomics analyses suggested that scr clusters were acquired by horizontal transfer by different lineages of Pdd and were inserted into a recombination hot-spot in the Pdd genome. The incongruence of phylogenies based on housekeeping genes and on scr genes revealed that phylogenetically diverse gene clusters for sucrose utilization have undergone extensive horizontal transfer among species of Vibrio and Photobacterium.
Collapse
|
13
|
A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat Commun 2020; 11:3557. [PMID: 32678091 PMCID: PMC7366714 DOI: 10.1038/s41467-020-17348-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called ‘Theta-Base’ (www.helmholtz-hiri.de/en/datasets/bacteroides), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes. Bacteroides thetaiotaomicron is a human gut microbe and an emergent model organism. Here, Ryan et al. generate single-nucleotide resolution RNA-seq data for this bacterium and map transcription start sites and noncoding RNAs, one of which modulates expression of metabolic enzymes.
Collapse
|
14
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
15
|
Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 2020; 77:395-413. [PMID: 31768608 PMCID: PMC7015805 DOI: 10.1007/s00018-019-03377-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed 'reverse CCR' (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
Collapse
Affiliation(s)
- Heejoon Park
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - S Lee McGill
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Adrienne D Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
16
|
Engel F, Ossipova E, Jakobsson PJ, Vockenhuber MP, Suess B. sRNA scr5239 Involved in Feedback Loop Regulation of Streptomyces coelicolor Central Metabolism. Front Microbiol 2020; 10:3121. [PMID: 32117084 PMCID: PMC7025569 DOI: 10.3389/fmicb.2019.03121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to transcriptional regulation, post-transcriptional regulation and the role of small non-coding RNAs (sRNAs) in streptomycetes are not well studied. Here, we focus on the highly conserved sRNA scr5239 in Streptomyces coelicolor. A proteomics approach revealed that the sRNA regulates several metabolic enzymes, among them phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the central carbon metabolism. The sRNA scr5239 represses pepck at the post-transcriptional level and thus modulates the intracellular level of phosphoenolpyruvate (PEP). The expression of scr5239 in turn is dependent on the global transcriptional regulator DasR, thus creating a feedback loop regulation of the central carbon metabolism. By post-transcriptional regulation of PEPCK and in all likelihood other targets, scr5239 adds an additional layer to the DasR regulatory network and provides a tool to control the metabolism dependent on the available carbon source.
Collapse
Affiliation(s)
- Franziska Engel
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
| | - Elena Ossipova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Michael-Paul Vockenhuber
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- *Correspondence: Michael-Paul Vockenhuber,
| | - Beatrix Suess
- Synthetic Genetic Circuits, Department of Biology, Darmstadt University Technology, Darmstadt, Germany
- Beatrix Suess,
| |
Collapse
|
17
|
Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. mSphere 2019; 4:4/6/e00796-19. [PMID: 31826974 PMCID: PMC6908425 DOI: 10.1128/msphere.00796-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed perturbation analyses of the tricarboxylic acid cycle of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. The defect of fumarase activity led to accumulation of fumarate but also resulted in a global alteration of carbon fluxes, leading to increased storage of glycogen. Gross alterations were observed in proteome and metabolome compositions of fumarase-deficient Salmonella. In turn, these changes were linked to aberrant motility patterns of the mutant strain and resulted in highly increased phagocytic uptake by macrophages. Our findings indicate that basic cellular functions and specific virulence functions in Salmonella critically depend on the proper function of the primary metabolism. The tricarboxylic acid (TCA) cycle is a central metabolic hub in most cells. Virulence functions of bacterial pathogens such as facultative intracellular Salmonella enterica serovar Typhimurium (S. Typhimurium) are closely connected to cellular metabolism. During systematic analyses of mutant strains with defects in the TCA cycle, a strain deficient in all fumarase isoforms (ΔfumABC) elicited a unique metabolic profile. Alongside fumarate, S. Typhimurium ΔfumABC accumulates intermediates of the glycolysis and pentose phosphate pathway. Analyses by metabolomics and proteomics revealed that fumarate accumulation redirects carbon fluxes toward glycogen synthesis due to high (p)ppGpp levels. In addition, we observed reduced abundance of CheY, leading to altered motility and increased phagocytosis of S. Typhimurium by macrophages. Deletion of glycogen synthase restored normal carbon fluxes and phagocytosis and partially restored levels of CheY. We propose that utilization of accumulated fumarate as carbon source induces a status similar to exponential- to stationary-growth-phase transition by switching from preferred carbon sources to fumarate, which increases (p)ppGpp levels and thereby glycogen synthesis. Thus, we observed a new form of interplay between metabolism of S. Typhimurium and cellular functions and virulence. IMPORTANCE We performed perturbation analyses of the tricarboxylic acid cycle of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. The defect of fumarase activity led to accumulation of fumarate but also resulted in a global alteration of carbon fluxes, leading to increased storage of glycogen. Gross alterations were observed in proteome and metabolome compositions of fumarase-deficient Salmonella. In turn, these changes were linked to aberrant motility patterns of the mutant strain and resulted in highly increased phagocytic uptake by macrophages. Our findings indicate that basic cellular functions and specific virulence functions in Salmonella critically depend on the proper function of the primary metabolism.
Collapse
|
18
|
Magnowska Z, Jana B, Brochmann RP, Hesketh A, Lametsch R, De Gobba C, Guardabassi L. Carprofen-induced depletion of proton motive force reverses TetK-mediated doxycycline resistance in methicillin-resistant Staphylococcus pseudintermedius. Sci Rep 2019; 9:17834. [PMID: 31780689 PMCID: PMC6882848 DOI: 10.1038/s41598-019-54091-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/31/2019] [Indexed: 11/09/2022] Open
Abstract
We previously showed that doxycycline (DOX) and carprofen (CPF), a veterinary non-steroidal anti-inflammatory drug, have synergistic antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius (MRSP) carrying the tetracycline resistance determinant TetK. To elucidate the molecular mechanism of this synergy, we investigated the effects of the two drugs, individually and in combination, using a comprehensive approach including RNA sequencing, two-dimensional differential in-gel electrophoresis, macromolecule biosynthesis assays and fluorescence spectroscopy. Exposure of TetK-positive MRSP to CPF alone resulted in upregulation of pathways that generate ATP and NADH, and promote the proton gradient. We showed that CPF is a proton carrier that dissipates the electrochemical potential of the membrane. In the presence of both CPF and DOX, the energy compensation strategy was attenuated by downregulation of all the processes involved, such as citric acid cycle, oxidative phosphorylation and ATP-providing arginine deiminase pathway. Furthermore, protein biosynthesis inhibition increased from 20% under DOX exposure alone to 75% upon simultaneous exposure to CPF. We conclude that synergistic interaction of the drugs restores DOX susceptibility in MRSP by compromising proton-motive-force-dependent TetK-mediated efflux of the antibiotic. MRSP is unable to counterbalance CPF-mediated PMF depletion by cellular metabolic adaptations, resulting in intracellular accumulation of DOX and inhibition of protein biosynthesis.
Collapse
Affiliation(s)
- Zofia Magnowska
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rikke Prejh Brochmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew Hesketh
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Rene Lametsch
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Cristian De Gobba
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark. .,Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom.
| |
Collapse
|
19
|
Characterization of the transcriptome of Haloferax volcanii, grown under four different conditions, with mixed RNA-Seq. PLoS One 2019; 14:e0215986. [PMID: 31039177 PMCID: PMC6490895 DOI: 10.1371/journal.pone.0215986] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Haloferax volcanii is a well-established model species for haloarchaea. Small scale RNomics and bioinformatics predictions were used to identify small non-coding RNAs (sRNAs), and deletion mutants revealed that sRNAs have important regulatory functions. A recent dRNA-Seq study was used to characterize the primary transcriptome. Unexpectedly, it was revealed that, under optimal conditions, H. volcanii contains more non-coding sRNAs than protein-encoding mRNAs. However, the dRNA-Seq approach did not contain any length information. Therefore, a mixed RNA-Seq approach was used to determine transcript length and to identify additional transcripts, which are not present under optimal conditions. In total, 50 million paired end reads of 150 nt length were obtained. 1861 protein-coding RNAs (cdRNAs) were detected, which encoded 3092 proteins. This nearly doubled the coverage of cdRNAs, compared to the previous dRNA-Seq study. About 2/3 of the cdRNAs were monocistronic, and 1/3 covered more than one gene. In addition, 1635 non-coding sRNAs were identified. The highest fraction of non-coding RNAs were cis antisense RNAs (asRNAs). Analysis of the length distribution revealed that sRNAs have a median length of about 150 nt. Based on the RNA-Seq and dRNA-Seq results, genes were chosen to exemplify characteristics of the H. volcanii transcriptome by Northern blot analyses, e.g. 1) the transcript patterns of gene clusters can be straightforward, but also very complex, 2) many transcripts differ in expression level under the four analyzed conditions, 3) some genes are transcribed into RNA isoforms of different length, which can be differentially regulated, 4) transcripts with very long 5'-UTRs and with very long 3'-UTRs exist, and 5) about 30% of all cdRNAs have overlapping 3'-ends, which indicates, together with the asRNAs, that H. volcanii makes ample use of sense-antisense interactions. Taken together, this RNA-Seq study, together with a previous dRNA-Seq study, enabled an unprecedented view on the H. volcanii transcriptome.
Collapse
|
20
|
Phosphosugar Stress in Bacillus subtilis: Intracellular Accumulation of Mannose 6-Phosphate Derepressed the glcR-phoC Operon from Repression by GlcR. J Bacteriol 2019; 201:JB.00732-18. [PMID: 30782637 DOI: 10.1128/jb.00732-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
Bacillus subtilis phosphorylates sugars during or after their transport into the cell. Perturbation in the conversion of intracellular phosphosugars to the central carbon metabolites and accumulation of phosphosugars can impose stress on the cells. In this study, we investigated the effect of phosphosugar stress on B. subtilis Preliminary experiments indicated that the nonmetabolizable analogs of glucose were unable to impose stress on B. subtilis In contrast, deletion of manA encoding mannose 6-phosphate isomerase (responsible for conversion of mannose 6-phosphate to fructose 6-phosphate) resulted in growth arrest and bulged cell shape in the medium containing mannose. Besides, an operon encoding a repressor (GlcR) and a haloic acid dehalogenase (HAD)-like phosphatase (PhoC; previously YwpJ) were upregulated. Integration of the P glcR-lacZ cassette into different mutational backgrounds indicated that P glcR is induced when (i) a manA-deficient strain is cultured with mannose or (ii) when glcR is deleted. GlcR repressed the transcription of glcR-phoC by binding to the σA-type core elements of P glcR An electrophoretic mobility shift assay showed no interaction between mannose 6-phosphate (or other phosphosugars) and the GlcR-P glcR DNA complex. PhoC was an acid phosphatase mainly able to dephosphorylate glycerol 3-phosphate and ribose 5-phosphate. Mannose 6-phosphate was only weakly dephosphorylated by PhoC. Since deletion of glcR and phoC alone or in combination had no effect on the cells during phosphosugar stress, it is assumed that the derepression of glcR-phoC is a side effect of phosphosugar stress in B. subtilis IMPORTANCE Bacillus subtilis has different stress response systems to cope with external and internal stressors. Here, we investigated how B. subtilis deals with the high intracellular concentration of phosphosugars as an internal stressor. The results indicated the derepression of an operon consisting of a repressor (GlcR) and a phosphatase (PhoC). Further analysis revealed that this operon is not a phosphosugar stress response system. The substrate specificity of PhoC may indicate a connection between the glcR-phoC operon and pathways in which glycerol 3-phosphate and ribose 5-phosphate are utilized, such as membrane biosynthesis and teichoic acid elongation.
Collapse
|
21
|
Kröger C, Rothhardt JE, Brokatzky D, Felsl A, Kary SC, Heermann R, Fuchs TM. The small RNA RssR regulates myo-inositol degradation by Salmonella enterica. Sci Rep 2018; 8:17739. [PMID: 30531898 PMCID: PMC6288124 DOI: 10.1038/s41598-018-35784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Small noncoding RNAs (sRNAs) with putative regulatory functions in gene expression have been identified in the enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Two sRNAs are encoded by the genomic island GEI4417/4436 responsible for myo-inositol (MI) degradation, suggesting a role in the regulation of this metabolic pathway. We show that a lack of the sRNA STnc2160, termed RssR, results in a severe growth defect in minimal medium (MM) with MI. In contrast, the second sRNA STnc1740 was induced in the presence of glucose, and its overexpression slightly attenuated growth in the presence of MI. Constitutive expression of RssR led to an increased stability of the reiD mRNA, which encodes an activator of iol genes involved in MI utilization, via interaction with its 5′-UTR. SsrB, a response regulator contributing to the virulence properties of salmonellae, activated rssR transcription by binding the sRNA promoter. In addition, the absence of the RNA chaperone Hfq resulted in strongly decreased levels of RssR, attenuated S. Typhimurium growth with MI, and reduced expression of several iol genes required for MI degradation. Considered together, the extrinsic RssR allows fine regulation of cellular ReiD levels and thus of MI degradation by acting on the reiD mRNA stability.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Johannes E Rothhardt
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Dominik Brokatzky
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried/München, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, ZIEL - Institute for Food & Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Friedrich-Loeffler-Institut, Institut für molekulare Pathogenese, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
22
|
Rochat T, Bohn C, Morvan C, Le Lam T, Razvi F, Pain A, Toffano-Nioche C, Ponien P, Jacq A, Jacquet E, Fey PD, Gautheret D, Bouloc P. The conserved regulatory RNA RsaE down-regulates the arginine degradation pathway in Staphylococcus aureus. Nucleic Acids Res 2018; 46:8803-8816. [PMID: 29986060 PMCID: PMC6158497 DOI: 10.1093/nar/gky584] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 01/31/2023] Open
Abstract
RsaE is a regulatory RNA highly conserved amongst Firmicutes that lowers the amount of mRNAs associated with the TCA cycle and folate metabolism. A search for new RsaE targets in Staphylococcus aureus revealed that in addition to previously described substrates, RsaE down-regulates several genes associated with arginine catabolism. In particular, RsaE targets the arginase rocF mRNA via direct interactions involving G-rich motifs. Two duplicated C-rich motifs of RsaE can independently downregulate rocF expression. The faster growth rate of ΔrsaE compared to its parental strain in media containing amino acids as sole carbon source points to an underlying role for RsaE in amino acid catabolism. Collectively, the data support a model in which RsaE acts as a global regulator of functions associated with metabolic adaptation.
Collapse
Affiliation(s)
- Tatiana Rochat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
- VIM, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Chantal Bohn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Claire Morvan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Thao Nguyen Le Lam
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Fareha Razvi
- University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, NE, USA
| | - Adrien Pain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Claire Toffano-Nioche
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Annick Jacq
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Paul D Fey
- University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, NE, USA
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Bouloc
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| |
Collapse
|