1
|
Saha P, Kumar M, Sharma DK. Potential of Mycobacterium tuberculosis Type II NADH-Dehydrogenase in Antitubercular Drug Discovery. ACS Infect Dis 2025. [PMID: 39812155 DOI: 10.1021/acsinfecdis.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The type II NADH-dehydrogenase enzyme in Mycobacterium tuberculosis plays a critical role in the efficient functioning of the oxidative phosphorylation pathway. It acts as the entry point for electrons in the electron transport chain, which is essential for fulfilling the energy requirements of both replicating and nonreplicating mycobacterial species. Due to the absence of the type II NADH-dehydrogenase enzyme in mammalian mitochondria, targeting the type II NADH-dehydrogenase enzyme for antitubercular drug discovery could be a vigilant approach. Utilizing type II NADH-dehydrogenase inhibitors in antitubercular therapy led to bactericidal response, even in monotherapy. However, the absence of the cryo-EM structure of Mycobacterium tuberculosis type II NADH-dehydrogenase has constrained drug discovery efforts to rely on high-throughput screening methods, limiting the use of structure-based drug discovery. Here, we have delineated the literature-reported Mycobacterium tuberculosis type II NADH-dehydrogenase inhibitors and the rationale behind selecting this specific enzyme for antitubercular drug discovery, along with shedding light on the architecture of the enzyme structure and functionality. The gap in the current research and future research direction for TB treatment have been addressed.
Collapse
Affiliation(s)
- Pallavi Saha
- Department of Pharmaceutical Engg.Tech, IIT-Banaras Hindu University,Varanasi, Uttar Pradesh 221005, India
| | - Mohit Kumar
- Department of Pharmaceutical Engg.Tech, IIT-Banaras Hindu University,Varanasi, Uttar Pradesh 221005, India
| | - Deepak K Sharma
- Department of Pharmaceutical Engg.Tech, IIT-Banaras Hindu University,Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Wang G, Chen L, Lian J, Gong L, Tian F, Wang Y, Lin X, Liu Y. Proteomic Insights into the Regulatory Role of CobQ Deacetylase in Aeromonas hydrophila. J Proteome Res 2025; 24:333-343. [PMID: 39659247 DOI: 10.1021/acs.jproteome.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Post-translational modifications are crucial in regulating biological functions across both prokaryotes and eukaryotes. In Aeromonas hydrophila, CobQ, a recently identified novel deacetylase, plays a significant role in lysine deacetylation, influencing bacterial metabolism and stress responses. The present study utilized quantitative proteomics to investigate the impact of cobQ deletion on the global protein expression profile in A. hydrophila. Through data-independent acquisition mass spectrometry, we identified 233 upregulated and 41 downregulated proteins in the cobQ deletion mutant (ΔahcobQ) strain compared to the wild-type (WT) strain. Key differentially expressed proteins were involved in oxidative phosphorylation, bacterial secretion, and ribosomal function. Additionally, phenotypic assays demonstrated that the ΔahcobQ strain exhibited an increased resistance to oxidative phosphorylation inhibitors, suggesting a pivotal role for AhCobQ in energy metabolism. Outer membrane proteins and efflux pumps also showed altered expression, indicating potential implications for membrane permeability and antibiotic resistance. These results suggested that AhCobQ plays a vital regulatory role in maintaining metabolic homeostasis and responding to environmental stress, highlighting its potential as a target for therapeutic interventions against A. hydrophila infections.
Collapse
Affiliation(s)
- Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linxin Chen
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanqi Lian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanqing Gong
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Tian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
El Fels L, Naylo A, Jemo M, Zrikam N, Boularbah A, Ouhdouch Y, Hafidi M. Microbial enzymatic indices for predicting composting quality of recalcitrant lignocellulosic substrates. Front Microbiol 2024; 15:1423728. [PMID: 39588100 PMCID: PMC11586200 DOI: 10.3389/fmicb.2024.1423728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/23/2024] [Indexed: 11/27/2024] Open
Abstract
Three different enzymes alkaline phosphatase, Urease and Dehydrogenase were measured during this study to monitor the organic matter dynamics during semi-industrial composting of mixture A with 1/3 sludge+2/3 palm waste and mixture B with ½ sludge+1/2 palm waste. The phosphatase activity was higher for Mix-A (398.7 µg PNP g-1 h-1) than Mix-B (265.3 µg PNP g-1 h-1), while Mix-B (103.3 µg TPF g-1d-1) exhibited greater dehydrogenase content than Mix-A (72.3 µg TPF g-1 d-1). That could contribute to the dynamic change of microbial activity together with high amounts of carbonaceous substrates incorporated with the lignocellulosic. The gradual increase in the dehydrogenase from the compost Mix-A implies that high lignocellulosic substrate requires gradual buildup of dehydrogenase activity to turn the waste into mature compost. A higher pick of urease with a maximum activity of 151.5 and 122.4 µg NH4-N g-1 h-1 were reported, respectively for Mix-A and B. Temperature and pH could also influence the expression of enzyme activity during composting. The machine learning well predicted the compost quality based on NH3/NO3, C/N ratio, decomposition rate and, humification index (HI). The root mean square error (RMSE) values were 1.98, 1.95, 4.61%, and 4.1 for NH+ 3/NO- 3, C/N ratio, decomposition rate, and HI, respectively. The coefficient of determination between observed and predicted values were 0.87, 0.93, 0.89, and 0.94, for the r NH3/NO3, C/N ratio, decomposition rate, and HI. Urease activity significantly predicted the C/N ratio and HI only. The profile of enzymatic activity is tightly linked to the physico-chemical properties, proportion of lignocellulosic-composted substrates. Enzymatic activity assessment provides a simple and rapid measurement of the biological activity adding understunding of organic matter transformation during sludge-lignocellulosic composting.
Collapse
Affiliation(s)
- Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco
| | - Ahmed Naylo
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Martin Jemo
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Nidal Zrikam
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco
| | - Ali Boularbah
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
- Center of Excellence for Soil and Fertilizer Research in Africa, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Yedir Ouhdouch
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laayoune, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laayoune, Morocco
| |
Collapse
|
4
|
Saha P, Sau S, Kalia NP, Sharma DK. 2-Aryl-Benzoimidazoles as Type II NADH Dehydrogenase Inhibitors of Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:3699-3711. [PMID: 39360674 DOI: 10.1021/acsinfecdis.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The nonproton pumping type II NADH dehydrogenase in Mycobacterium tuberculosis is essential for meeting the energy needs in terms of ATP under normal aerobic and stressful hypoxic environmental states. Type II NADH dehydrogenase conduits electrons into the electron transport chain in Mycobacterium tuberculosis, which results in ATP synthesis. Therefore, the inhibition of NDH-2 ensures the abolishment of the entire ATP synthesis machinery. Also, type II NADH dehydrogenase is absent in the mammalian genome, thus making it a potential target for antituberculosis drug discovery. Herein, we have screened a commercially available library of drug-like molecules and have identified a hit having a benzimidazole core moiety (6, H37Rv mc26230; minimum inhibitory concentration (MIC) = 16 μg/mL and ATP IC50 = 0.23 μg/mL) interfering with the oxidative phosphorylation pathway. Extensive medicinal chemistry optimization resulted in analogue 8, with MIC = 4 μg/mL and ATP IC50 = 0.05 μg/mL against the H37Rv mc26230 strain of Mycobacterium tuberculosis. Compounds 6 and 8 were found to be active against mono- and multidrug-resistant mycobacterium strains and demonstrated a bactericidal response. The Peredox-mCherry experiment and identification of single-nucleotide polymorphisms in mutants of CBR-5992 (a known type II NADH dehydrogenase inhibitor) were used to confirm the molecules as inhibitors of the type II NADH dehydrogenase enzyme. The safety index >10 for the test active molecules revealed the safety of test molecules.
Collapse
Affiliation(s)
- Pallavi Saha
- Department of Pharmaceutical Engg. and Tech., IIT-Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shashikanta Sau
- Department of Pharmacology and Toxicology, NIPER-Hyderabad, Hyderabad, 500037, India
| | - Nitin Pal Kalia
- Department of Pharmacology and Toxicology, NIPER-Hyderabad, Hyderabad, 500037, India
| | - Deepak K Sharma
- Department of Pharmaceutical Engg. and Tech., IIT-Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
5
|
Li Y, Li Y, Liu Y, Kong X, Tao N, Hou Y, Wang T, Han Q, Zhang Y, Long F, Li H. Association of mutations in Mycobacterium tuberculosis complex (MTBC) respiration chain genes with hyper-transmission. BMC Genomics 2024; 25:810. [PMID: 39198760 PMCID: PMC11350932 DOI: 10.1186/s12864-024-10726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The respiratory chain plays a key role in the growth of Mycobacterium tuberculosis complex (MTBC). However, the exact regulatory mechanisms of this system still need to be elucidated, and only a few studies have investigated the impact of genetic mutations within the respiratory chain on MTBC transmission. This study aims to explore the impact of respiratory chain gene mutations on the global spread of MTBC. RESULTS A total of 13,402 isolates of MTBC were included in this study. The majority of the isolates (n = 6,382, 47.62%) belonged to lineage 4, followed by lineage 2 (n = 5,123, 38.23%). Our findings revealed significant associations between Single Nucleotide Polymorphisms (SNPs) of specific genes and transmission clusters. These SNPs include Rv0087 (hycE, G178T), Rv1307 (atpH, C650T), Rv2195 (qcrA, G181C), Rv2196 (qcrB, G1250T), Rv3145 (nuoA, C35T), Rv3149 (nuoE, G121C), Rv3150 (nuoF, G700A), Rv3151 (nuoG, A1810G), Rv3152 (nuoH, G493A), and Rv3157 (nuoM, A1243G). Furthermore, our results showed that the SNPs of atpH C73G, atpA G271C, qcrA G181C, nuoJ G115A, nuoM G772A, and nuoN G1084T were positively correlated with cross-country transmission clades and cross-regional transmission clades. CONCLUSIONS Our study uncovered an association between mutations in respiratory chain genes and the transmission of MTBC. This important finding provides new insights for future research and will help to further explore new mechanisms of MTBC pathogenicity. By uncovering this association, we gain a more complete understanding of the processes by which MTBC increases virulence and spread, providing potential targets and strategies for preventing and treating tuberculosis.
Collapse
Affiliation(s)
- Yameng Li
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Clinical Department of Integrated Traditional Chinese and Western Medicine , The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Yifan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, 250031, China
| | - Yao Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xianglong Kong
- Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250011, China
| | - Ningning Tao
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yawei Hou
- Institute of Chinese Medical Literature and Culture of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Tingting Wang
- Clinical Department of Integrated Traditional Chinese and Western Medicine , The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Qilin Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuzhen Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Fei Long
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, 250031, China.
| | - Huaichen Li
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Clinical Department of Integrated Traditional Chinese and Western Medicine , The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| |
Collapse
|
6
|
Saha P, Sau S, Kalia NP, Sharma DK. Antitubercular activity of 2-mercaptobenzothiazole derivatives targeting Mycobacterium tuberculosis type II NADH dehydrogenase. RSC Med Chem 2024; 15:1664-1674. [PMID: 38784457 PMCID: PMC11110738 DOI: 10.1039/d4md00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) type II NADH dehydrogenase (NDH-2) transports electrons into the mycobacterial respiratory pathway at the cost of reduction of NADH to NAD+ and is an attractive drug target. Herein, we have synthesised a series of 2-mercaptobenzothiazoles (C1-C14) and evaluated their anti-tubercular potential as Mtb NDH-2 inhibitors. The synthesised compounds C1-C14 were evaluated for MIC90 and ATP depletion against Mtb H37Ra, M. bovis, and Mtb H37Rv mc2 6230. Compounds C3, C4, and C11 were found to be the active molecules in the series and were further evaluated for their MIC90 against Mtb-resistant strains and for their bactericidal potential against Mtb H37Rv mc26230. The Peredox-mCherry-expressing Mtb strain was used to examine whether C3, C4, and C11 possess NDH-2 inhibitory potential. Furthermore, cytotoxicity analysis against HepG2 displayed a safety index (SI) of >10 for C3 and C4. To get an insight into the mode of interaction at NDH-2, we have performed computational analysis of our active compounds.
Collapse
Affiliation(s)
- Pallavi Saha
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| | - Shashikanta Sau
- Department of Pharmacology and Toxicology, NIPER-Hyderabad Hyderabad 500037 India
| | - Nitin Pal Kalia
- Department of Pharmacology and Toxicology, NIPER-Hyderabad Hyderabad 500037 India
| | - Deepak K Sharma
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| |
Collapse
|
7
|
Adolph C, Cheung CY, McNeil MB, Jowsey WJ, Williams ZC, Hards K, Harold LK, Aboelela A, Bujaroski RS, Buckley BJ, Tyndall JDA, Li Z, Langer JD, Preiss L, Meier T, Steyn AJC, Rhee KY, Berney M, Kelso MJ, Cook GM. A dual-targeting succinate dehydrogenase and F 1F o-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31:683-698.e7. [PMID: 38151019 DOI: 10.1016/j.chembiol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Richard S Bujaroski
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban, KwaZulu, Natal, South Africa; Department of Microbiology, Centers for AIDs Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
8
|
Saha P, Das S, Indurthi HK, Kumar R, Roy A, Kalia NP, Sharma DK. Cytochrome bd oxidase: an emerging anti-tubercular drug target. RSC Med Chem 2024; 15:769-787. [PMID: 38516593 PMCID: PMC10953478 DOI: 10.1039/d3md00587a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/25/2024] [Indexed: 03/23/2024] Open
Abstract
Cytochrome bd (cyt-bd) oxidase, one of the two terminal oxidases in the Mycobacterium tuberculosis (Mtb) oxidative phosphorylation pathway, plays an indispensable role in maintaining the functionality of the metabolic pathway under stressful conditions. However, the absence of this oxidase in eukaryotic cells allows researchers to select it as a potential drug target for the synthesis of anti-tubercular (anti-TB) molecules. Cyt-bd inhibitors have often been combined with cytochrome bcc/aa3 super-complex inhibitors in anti-TB drug regimens to achieve a desired bactericidal response. The functional redundancy between both the terminal oxidases is responsible for this. The cryo-EM structure of cyt-bd oxidase from Mtb (PDB ID: 7NKZ) further accelerated the research to identify its inhibitor. Herein, we have summarized the reported anti-TB cyt-bd inhibitors, insight into the rationale behind targeting cyt-bd oxidase, and an outline of the architecture of Mtb cyt-bd oxidase.
Collapse
Affiliation(s)
- Pallavi Saha
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| | - Samarpita Das
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| | - Harish K Indurthi
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| | - Rohit Kumar
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| | - Arnab Roy
- Department of Pharmacology and Toxicology, NIPER-Hyderabad Hyderabad 500037 India
| | - Nitin Pal Kalia
- Department of Pharmacology and Toxicology, NIPER-Hyderabad Hyderabad 500037 India
| | - Deepak K Sharma
- Department of Pharmaceutical Engg. and Tech, IIT-Banaras Hindu University Varanasi UP 221005 India
| |
Collapse
|
9
|
Narayan A, Patel S, Baile SB, Jain S, Sharma S. Imidazo[1,2-A]Pyridine: Potent Biological Activity, SAR and Docking Investigations (2017-2022). Infect Disord Drug Targets 2024; 24:e200324228067. [PMID: 38509674 DOI: 10.2174/0118715265274067240223040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND Regarding scientific research, Imidazo[1,2-a] pyridine derivatives are constantly being developed due to the scaffold's intriguing chemical structure and varied biological activity. They are distinctive organic nitrogen-bridged heterocyclic compounds that have several uses in medicines, organometallics and natural products. It has become a vital tool for medicinal chemists. METHODS In order to gather scientific information on Imidazo[1,2-a] pyridines derivative, Google, PubMed, Scopus, Google Scholar, and other databases were searched. In the current study, the medicinal value and therapeutic effect of Imidazo[1,2-a] pyridines were investigated using above mentioned databases. The current study analyzed the detailed pharmacological activities of Imidazo[1,2-a] pyridine analogs through literature from diverse scientific research works. RESULTS Due to its wide range of biological activities, including antiulcer, anticonvulsant, antiprotozoal, anthelmintic, antiepileptic, antifungal, antibacterial, analgesic, antiviral, anticancer, anti-inflammatory, antituberculosis, and antitumor properties, imidazopyridine is one of the most significant structural skeletons in the field of natural and pharmaceutical products. An imidazopyridine scaffold serves as the basis for a number of therapeutically utilized medications, including zolpidem, alpidem, olprinone, zolimidine, and necopidem. CONCLUSION This comprehensive study covers the period of the last five years, and it sheds light on the developments and emerging pharmacological actions of Imidazo[1,2-a] pyridines. Additionally, the structure-activity relationship and molecular docking studies are carefully documented throughout the paper, providing medicinal chemists with a clear picture for developing new drugs.
Collapse
Affiliation(s)
- Aditya Narayan
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Shivkant Patel
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At & Po. Piparia, Ta. Waghodia, 391760, Vadodara, Gujarat, India
| | - Sunil B Baile
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At & Po. Piparia, Ta. Waghodia, 391760, Vadodara, Gujarat, India
| | - Surabhi Jain
- B. Pharmacy College Rampura-kakanpur, Gujarat Technological University, Panchmahals, Gujarat, India
| | - Smriti Sharma
- Amity Institute of Pharmacy, Amity University, Sector- 125, Noida, 201313, India
| |
Collapse
|
10
|
Choi SR, Talmon GA, Hearne K, Woo J, Truong VL, Britigan BE, Narayanasamy P. Combination Therapy with Gallium Protoporphyrin and Gallium Nitrate Exhibits Enhanced Antimicrobial Activity In Vitro and In Vivo against Methicillin-Resistant Staphylococcus aureus. Mol Pharm 2023; 20:4058-4070. [PMID: 37471668 DOI: 10.1021/acs.molpharmaceut.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.
Collapse
Affiliation(s)
- Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Kenneth Hearne
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Jennifer Woo
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Vu L Truong
- Aridis Pharmaceuticals, Los Gatos, California 95032, United States
| | - Bradley E Britigan
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center-Nebraska Western Iowa, Omaha, Nebraska 68105, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
11
|
Courbon GM, Palme PR, Mann L, Richter A, Imming P, Rubinstein JL. Mechanism of mycobacterial ATP synthase inhibition by squaramides and second generation diarylquinolines. EMBO J 2023; 42:e113687. [PMID: 37377118 PMCID: PMC10390873 DOI: 10.15252/embj.2023113687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacteria, such as Mycobacterium tuberculosis, depend on the activity of adenosine triphosphate (ATP) synthase for growth. The diarylquinoline bedaquiline (BDQ), a mycobacterial ATP synthase inhibitor, is an important medication for treatment of drug-resistant tuberculosis but suffers from off-target effects and is susceptible to resistance mutations. Consequently, both new and improved mycobacterial ATP synthase inhibitors are needed. We used electron cryomicroscopy and biochemical assays to study the interaction of Mycobacterium smegmatis ATP synthase with the second generation diarylquinoline TBAJ-876 and the squaramide inhibitor SQ31f. The aryl groups of TBAJ-876 improve binding compared with BDQ, while SQ31f, which blocks ATP synthesis ~10 times more potently than ATP hydrolysis, binds a previously unknown site in the enzyme's proton-conducting channel. Remarkably, BDQ, TBAJ-876, and SQ31f all induce similar conformational changes in ATP synthase, suggesting that the resulting conformation is particularly suited for drug binding. Further, high concentrations of the diarylquinolines uncouple the transmembrane proton motive force while for SQ31f they do not, which may explain why high concentrations of diarylquinolines, but not SQ31f, have been reported to kill mycobacteria.
Collapse
Affiliation(s)
- Gautier M Courbon
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoONCanada
- Department of Medical BiophysicsThe University of TorontoTorontoONCanada
| | - Paul R Palme
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - Lea Mann
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - Adrian Richter
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - Peter Imming
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - John L Rubinstein
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoONCanada
- Department of Medical BiophysicsThe University of TorontoTorontoONCanada
- Department of BiochemistryThe University of TorontoTorontoONCanada
| |
Collapse
|
12
|
Kägi J, Sloan W, Schimpf J, Nasiri HR, Lashley D, Friedrich T. Exploring ND-011992, a quinazoline-type inhibitor targeting quinone reductases and quinol oxidases. Sci Rep 2023; 13:12226. [PMID: 37507428 PMCID: PMC10382516 DOI: 10.1038/s41598-023-39430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.
Collapse
Affiliation(s)
- Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willough Sloan
- Department of Chemistry, William & Mary, Williamsburg, VA, USA
| | - Johannes Schimpf
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hamid R Nasiri
- Department of Cellular Microbiology, University Hohenheim, Stuttgart, Germany
| | - Dana Lashley
- Department of Chemistry, William & Mary, Williamsburg, VA, USA.
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Mathiyazakan V, Wong CF, Harikishore A, Pethe K, Grüber G. Cryo-Electron Microscopy Structure of the Mycobacterium tuberculosis Cytochrome bcc: aa3 Supercomplex and a Novel Inhibitor Targeting Subunit Cytochrome cI. Antimicrob Agents Chemother 2023; 67:e0153122. [PMID: 37158740 PMCID: PMC10269045 DOI: 10.1128/aac.01531-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
The mycobacterial cytochrome bcc:aa3 complex deserves the name "supercomplex" since it combines three cytochrome oxidases-cytochrome bc, cytochrome c, and cytochrome aa3-into one supramolecular machine and performs electron transfer for the reduction of oxygen to water and proton transport to generate the proton motive force for ATP synthesis. Thus, the bcc:aa3 complex represents a valid drug target for Mycobacterium tuberculosis infections. The production and purification of an entire M. tuberculosis cytochrome bcc:aa3 are fundamental for biochemical and structural characterization of this supercomplex, paving the way for new inhibitor targets and molecules. Here, we produced and purified the entire and active M. tuberculosis cyt-bcc:aa3 oxidase, as demonstrated by the different heme spectra and an oxygen consumption assay. The resolved M. tuberculosis cyt-bcc:aa3 cryo-electron microscopy structure reveals a dimer with its functional domains involved in electron, proton, oxygen transfer, and oxygen reduction. The structure shows the two cytochrome cIcII head domains of the dimer, the counterpart of the soluble mitochondrial cytochrome c, in a so-called "closed state," in which electrons are translocated from the bcc to the aa3 domain. The structural and mechanistic insights provided the basis for a virtual screening campaign that identified a potent M. tuberculosis cyt-bcc:aa3 inhibitor, cytMycc1. cytMycc1 targets the mycobacterium-specific α3-helix of cytochrome cI and interferes with oxygen consumption by interrupting electron translocation via the cIcII head. The successful identification of a new cyt-bcc:aa3 inhibitor demonstrates the potential of a structure-mechanism-based approach for novel compound development.
Collapse
Affiliation(s)
- Vikneswaran Mathiyazakan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Chui-Fann Wong
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Amaravadhi Harikishore
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore, Republic of Singapore
| |
Collapse
|
14
|
Lee BS, Singh S, Pethe K. Inhibiting respiration as a novel antibiotic strategy. Curr Opin Microbiol 2023; 74:102327. [PMID: 37235914 DOI: 10.1016/j.mib.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The approval of the first-in-class antibacterial bedaquiline for tuberculosis marks a breakthrough in antituberculosis drug development. The drug inhibits mycobacterial respiration and represents the validation of a wholly different metabolic process as a druggable target space. In this review, we discuss the advances in the development of mycobacterial respiratory inhibitors, as well as the potential of applying this strategy to other pathogens. The non-fermentative nature of mycobacteria explains their vulnerability to respiration inhibition, and we caution that this strategy may not be equally effective in other organisms. Conversely, we also showcase fundamental studies that reveal ancillary functions of the respiratory pathway, which are crucial to some pathogens' virulence, drug susceptibility and fitness, introducing another perspective of targeting bacterial respiration as an antibiotic strategy.
Collapse
Affiliation(s)
- Bei Shi Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| | - Samsher Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; National Centre for Infectious Diseases, Singapore 308442, Singapore.
| |
Collapse
|
15
|
Kalia NP, Singh S, Hards K, Cheung CY, Sviriaeva E, Banaei-Esfahani A, Aebersold R, Berney M, Cook GM, Pethe K. M. tuberculosis relies on trace oxygen to maintain energy homeostasis and survive in hypoxic environments. Cell Rep 2023; 42:112444. [PMID: 37115669 DOI: 10.1016/j.celrep.2023.112444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The bioenergetic mechanisms by which Mycobacterium tuberculosis survives hypoxia are poorly understood. Current models assume that the bacterium shifts to an alternate electron acceptor or fermentation to maintain membrane potential and ATP synthesis. Counterintuitively, we find here that oxygen itself is the principal terminal electron acceptor during hypoxic dormancy. M. tuberculosis can metabolize oxygen efficiently at least two orders of magnitude below the concentration predicted to occur in hypoxic lung granulomas. Despite a difference in apparent affinity for oxygen, both the cytochrome bcc:aa3 and cytochrome bd oxidase respiratory branches are required for hypoxic respiration. Simultaneous inhibition of both oxidases blocks oxygen consumption, reduces ATP levels, and kills M. tuberculosis under hypoxia. The capacity of mycobacteria to scavenge trace levels of oxygen, coupled with the absence of complex regulatory mechanisms to achieve hierarchal control of the terminal oxidases, may be a key determinant of long-term M. tuberculosis survival in hypoxic lung granulomas.
Collapse
Affiliation(s)
- Nitin Pal Kalia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER-H) Hyderabad, Hyderabad, Telangana 500037, India
| | - Samsher Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ekaterina Sviriaeva
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8057 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8057 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand.
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; National Centre for Infectious Diseases, Singapore 308442, Singapore.
| |
Collapse
|
16
|
Verma AK, Dubey S, Srivastava SK. "Identification of alkaloid compounds as potent inhibitors of Mycobacterium tuberculosis NadD using computational strategies". Comput Biol Med 2023; 158:106863. [PMID: 37030267 DOI: 10.1016/j.compbiomed.2023.106863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
Mycobacterium tuberculosis is leading cause of death worldwide. NAD participates in a host of redox reactions in energy landscape of organisms. Several studies implicate surrogate energy pathways involving NAD pools as important in survival of active as well as dormant mycobacteria. One of the NAD metabolic pathway enzyme, nicotinate mononucleotide adenylyltransferase (NadD) is indispensable in mycobacterial NAD metabolism and is perceived as an attractive drug target in pathogen. In this study, we have employed in silico screening, simulation and MM-PBSA strategies to identify potentially important alkaloid compounds against mycobacterial NadD for structure-based inhibitor development. We have performed an exhaustive structure-based virtual screening of an alkaloid library, ADMET, DFT profiling followed by Molecular Dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculation to identify 10 compounds which exhibit favourable drug like properties and interactions. Interaction energies of these 10 alkaloid molecules range between -190 kJ/mol and -250 kJ/mol. These compounds could be promising starting point in the development of selective inhibitors against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - Saumya Dubey
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - Sandeep Kumar Srivastava
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
17
|
Gupta S, Kumawat S, Fatima Z, Priya, Chatterjee S. Quantitative analysis of the bioenergetics of Mycobacterium tuberculosis along with Glyoxylate cycle as a drug target under inhibition of enzymes using Petri net. Comput Biol Chem 2023; 104:107828. [PMID: 36893566 DOI: 10.1016/j.compbiolchem.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The bacteria Mycobacterium tuberculosis is responsible for the infectious disease Tuberculosis. Targeting the tubercule bacteria is an important challenge in developing the antimycobacterials. The glyoxylate cycle is considered as a potential target for the development of anti-tuberculosis agents, due to its absence in the humans. Humans only possess tricarboxylic acid cycle, while this cycle gets connected to glyoxylate cycle in microbes. Glyoxylate cycle is essential to the Mycobacterium for its growth and survival. Due to this reason, it is considered as a potential therapeutic target for the development of anti-tuberculosis agents. Here, we explore the effect on the behavior of the tricarboxylic acid cycle, glyoxylate cycle and their integrated pathway with the bioenergetics of the Mycobacterium, under the inhibition of key glyoxylate cycle enzymes using Continuous Petri net. Continuous Petri net is a special Petri net used to perform the quantitative analysis of the networks. We first study the tricarboxylic acid cycle and glyoxylate cycle of the tubercule bacteria by simulating its Continuous Petri net model under different scenarios. Both the cycles are then integrated with the bioenergetics of the bacteria and the integrated pathway is again simulated under different conditions. The simulation graphs show the metabolic consequences of inhibiting the key glyoxylate cycle enzymes and adding the uncouplers on the individual as well as integrated pathway. The uncouplers that inhibit the synthesis of adenosine triphosphate, play an important role as anti-mycobacterials. The simulation study done here validates the proposed Continuous Petri net model as compared with the experimental outcomes and also explains the consequences of the enzyme inhibition on the biochemical reactions involved in the metabolic pathways of the mycobacterium.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Mathematics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram, India; Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Sunita Kumawat
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Zeeshan Fatima
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia; Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India.
| | - Priya
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health science and Technology Institute, Faridabad, India.
| |
Collapse
|
18
|
Alexpandi R, Abirami G, Murugesan B, Durgadevi R, Swasthikka RP, Cai Y, Ragupathi T, Ravi AV. Tocopherol-assisted magnetic Ag-Fe 3O 4-TiO 2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130044. [PMID: 36179621 DOI: 10.1016/j.jhazmat.2022.130044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many endeavours have been prompted with photocatalytic nanomaterials by the need to eradicate pathogenic microorganisms from water bodies. Herein, a tocopherol-assisted Ag-Fe3O4-TiO2 nanocomposite (TAFTN) was synthesized for photocatalytic bacterial inactivation. The prepared TAFTN became active under sunlight due to its narrowed bandgap, inactivating the bacterial contaminants via photo-induced ROS stress. The ROS radicals destroy bacteria by creating oxidative stress, which damages the cell membrane and cellular components such as nucleic acids and proteins. For the first time, the nano-LC-MS/MS-based quantitative proteomics reveals that the disrupted proteins are involved in a variety of cellular functions; the most of these are involved in the metabolic pathway, eventually leading to bacterial death during TAFTN-photocatalysis under sunlight. Furthermore, the toxicity analysis confirmed that the inactivated bacteria seemed to have no detrimental impact on zebrafish model, showing that the disinfected water via TAFTN-photocatalysis is enormously safe. Furthermore, the TAFTN-photocatalysis successfully killed the bacterial cells in natural seawater, indicating the consistent photocatalytic efficacy when recycled repeatedly. The results of this work demonstrate that the produced nanocomposite might be a powerful recyclable and sunlight-active photocatalyst for environmental water treatment.
Collapse
Affiliation(s)
- Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Balaji Murugesan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Ravindran Durgadevi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Roshni Prithiviraj Swasthikka
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Thennarasu Ragupathi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
19
|
Redox Cycling Dioxonaphthoimidazoliums Disrupt Iron Homeostasis in Mycobacterium bovis Bacillus Calmette-Guérin. Microbiol Spectr 2022; 10:e0197022. [PMID: 36377959 PMCID: PMC9769636 DOI: 10.1128/spectrum.01970-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The dioxonaphthoimidazolium scaffold is a novel, highly bactericidal redox cycling antituberculosis chemotype that is reliant on the respiratory enzyme Type II NADH dehydrogenase (NDH2) for the generation of reactive oxygen species (ROS). Here, we employed Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) reporter strains to show that ROS generated by the redox cycler SA23 simulated an iron deficient state in the bacteria, which led to a compensatory increase in the expression of the iron acquisition mbtB gene while collaterally reducing the expression of the iron storage bfrB gene. Exacerbating the iron deficiency via the inclusion of an iron chelator or aggravating oxidative stress by deploying a catalase (KatG) loss-of-function mutant strain enhanced the activity of SA23, whereas a combined approach of treating the katG mutant strain with an iron chelator led to even greater gains in activity. Our results support the notion that the activity of SA23 pivots on a vicious cycle of events that involve the derailment of iron homeostasis toward greater acquisition of the metal, overwhelmed oxidative stress defenses due to enhanced Fenton reactivity, and, ultimately, self-inflicted death. Hence, we posit that redox cyclers that concurrently perturb the iron equilibrium and cellular respiration are well-positioned to be potent next-generation anti-tubercular drugs. IMPORTANCE Cellular respiration in mycobacteria is a potentially rich target space for the discovery of novel drug entities. Here, we show that a redox cycling bactericidal small molecule that selectively activates a respiratory complex in mycobacteria has the surprising effect of disrupting iron homeostasis. Our results support the notion that the disruption of cellular respiration is a potent driver of reactive oxygen species (ROS) generation by the redox cycling molecule. Mycobacteria respond by acquiring iron to restore the levels depleted by the prevailing oxidizing conditions, which inadvertently trigger the compensatory acquisition of the metal. This leads to overwhelmed oxidative stress defenses and yet more iron depletion. For organisms that are unable to break out of this pernicious cycle of events, cell death is the inevitable outcome. Hence, aberrant ROS production by a redox cycling bactericidal agent inflicts a plethora of damaging effects on mycobacteria, including the derailment of iron homeostasis.
Collapse
|
20
|
Lawer A, Tyler C, Hards K, Keighley LM, Cheung CY, Kierek F, Su S, Matikonda SS, McInnes T, Tyndall JDA, Krause KL, Cook GM, Gamble AB. Synthesis and Biological Evaluation of Aurachin D Analogues as Inhibitors of Mycobacterium tuberculosis Cytochrome bd Oxidase. ACS Med Chem Lett 2022; 13:1663-1669. [PMID: 36262396 PMCID: PMC9575164 DOI: 10.1021/acsmedchemlett.2c00401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
A revised total synthesis of aurachin D (1a), an isoprenoid quinolone alkaloid that targets Mycobacterium tuberculosis (Mtb) cytochrome bd (cyt-bd) oxidase, was accomplished using an oxazoline ring-opening reaction. The ring opening enabled access to a range of electron-poor analogues, while electron-rich analogues could be prepared using the Conrad-Limpach reaction. The aryl-substituted and side-chain-modified aurachin D analogues were screened for inhibition of Mtb cyt-bd oxidase and growth inhibition of Mtb. Nanomolar inhibition of Mtb cyt-bd oxidase was observed for the shorter-chain analogue 1d (citronellyl side chain) and the aryl-substituted analogues 1g/1k (fluoro substituent at C6/C7), 1t/1v (hydroxy substituent at C5/C6) and 1u/1w/1x (methoxy substituent at C5/C6/C7). Aurachin D and the analogues did not inhibit growth of nonpathogenic Mycobacterium smegmatis, but the citronellyl (1d) and 6-fluoro-substituted (1g) inhibitors from the Mtb cyt-bd oxidase assay displayed moderate growth inhibition against pathogenic Mtb (MIC = 4-8 μM).
Collapse
Affiliation(s)
- Aggie Lawer
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Chelsea Tyler
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Laura M. Keighley
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Chen-Yi Cheung
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Fabian Kierek
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Simon Su
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | | | - Tyler McInnes
- Department
of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | | - Kurt L. Krause
- Department
of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Gregory M. Cook
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin 9054, New Zealand
| | - Allan B. Gamble
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
21
|
Response of Mycobacterium smegmatis to the Cytochrome bcc Inhibitor Q203. Int J Mol Sci 2022; 23:ijms231810331. [PMID: 36142240 PMCID: PMC9498996 DOI: 10.3390/ijms231810331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
For the design of next-generation tuberculosis chemotherapy, insight into bacterial defence against drugs is required. Currently, targeting respiration has attracted strong attention for combatting drug-resistant mycobacteria. Q203 (telacebec), an inhibitor of the cytochrome bcc complex in the mycobacterial respiratory chain, is currently evaluated in phase-2 clinical trials. Q203 has bacteriostatic activity against M. tuberculosis, which can be converted to bactericidal activity by concurrently inhibiting an alternative branch of the mycobacterial respiratory chain, cytochrome bd. In contrast, non-tuberculous mycobacteria, such as Mycobacterium smegmatis, show only very little sensitivity to Q203. In this report, we investigated factors that M. smegmatis employs to adapt to Q203 in the presence or absence of a functional cytochrome bd, especially regarding its terminal oxidases. In the presence of a functional cytochrome bd, M. smegmatis responds to Q203 by increasing the expression of cytochrome bcc as well as of cytochrome bd, whereas a M. smegmatisbd-KO strain adapted to Q203 by increasing the expression of cytochrome bcc. Interestingly, single-cell studies revealed cell-to-cell variability in drug adaptation. We also investigated the role of a putative second cytochrome bd isoform postulated for M. smegmatis. Although this putative isoform showed differential expression in response to Q203 in the M. smegmatisbd-KO strain, it did not display functional features similar to the characterised cytochrome bd variant.
Collapse
|
22
|
Verma N, Arora V, Awasthi R, Chan Y, Jha NK, Thapa K, Jawaid T, Kamal M, Gupta G, Liu G, Paudel KR, Hansbro PM, George Oliver BG, Singh SK, Chellappan DK, Dureja H, Dua K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Gibson AJ, Stiens J, Passmore IJ, Faulkner V, Miculob J, Willcocks S, Coad M, Berg S, Werling D, Wren BW, Nobeli I, Villarreal-Ramos B, Kendall SL. Defining the Genes Required for Survival of Mycobacterium bovis in the Bovine Host Offers Novel Insights into the Genetic Basis of Survival of Pathogenic Mycobacteria. mBio 2022; 13:e0067222. [PMID: 35862770 PMCID: PMC9426507 DOI: 10.1128/mbio.00672-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis has severe impacts on both humans and animals. Understanding the genetic basis of survival of both Mycobacterium tuberculosis, the human-adapted species, and Mycobacterium bovis, the animal-adapted species, is crucial to deciphering the biology of both pathogens. There are several studies that identify the genes required for survival of M. tuberculosis in vivo using mouse models; however, there are currently no studies probing the genetic basis of survival of M. bovis in vivo. In this study, we utilize transposon insertion sequencing in M. bovis AF2122/97 to determine the genes required for survival in cattle. We identify genes encoding established mycobacterial virulence functions such as the ESX-1 secretion system, phthiocerol dimycocerosate (PDIM) synthesis, mycobactin synthesis, and cholesterol catabolism that are required in vivo. We show that, as in M. tuberculosis H37Rv, phoPR is required by M. bovis AF2122/97 in vivo despite the known defect in signaling through this system. Comparison to studies performed in species that are able to use carbohydrates as an energy source, such as M. bovis BCG and M. tuberculosis, suggests that there are differences in the requirement for genes involved in cholesterol import (mce4 operon) and oxidation (hsd). We report a good correlation with existing mycobacterial virulence functions but also find several novel virulence factors, including genes involved in protein mannosylation, aspartate metabolism, and glycerol-phosphate metabolism. These findings further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause tuberculosis and provide insight for the development of novel diagnostics and therapeutics. IMPORTANCE This is the first report of the genetic requirements of an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC) in a natural host. M. bovis has devastating impacts on cattle, and bovine tuberculosis is a considerable economic, animal welfare, and public health concern. The data highlight the importance of mycobacterial cholesterol catabolism and identify several new virulence factors. Additionally, the work informs the development of novel differential diagnostics and therapeutics for TB in both human and animal populations.
Collapse
Affiliation(s)
- Amanda J. Gibson
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ian J. Passmore
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Valwynne Faulkner
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Josephous Miculob
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Sam Willcocks
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Coad
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Stefan Berg
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Dirk Werling
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | | | - Sharon L. Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
24
|
McNeil MB, Cheung CY, Waller NJE, Adolph C, Chapman CL, Seeto NEJ, Jowsey W, Li Z, Hameed HMA, Zhang T, Cook GM. Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:980844. [PMID: 36093195 PMCID: PMC9461714 DOI: 10.3389/fcimb.2022.980844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Mycobacterial bioenergetics has emerged as a promising space for the development of novel therapeutics. Further to this, unique combinations of respiratory inhibitors have been shown to have synergistic or synthetic lethal interactions, suggesting that combinations of bioenergetic inhibitors could drastically shorten treatment times. Realizing the full potential of this unique target space requires an understanding of which combinations of respiratory complexes, when inhibited, have the strongest interactions and potential in a clinical setting. In this review, we discuss (i) chemical-interaction, (ii) genetic-interaction and (iii) chemical-genetic interaction studies to explore the consequences of inhibiting multiple mycobacterial respiratory components. We provide potential mechanisms to describe the basis for the strongest interactions. Finally, whilst we place an emphasis on interactions that occur with existing bioenergetic inhibitors, by highlighting interactions that occur with alternative respiratory components we envision that this information will provide a rational to further explore alternative proteins as potential drug targets and as part of unique drug combinations.
Collapse
Affiliation(s)
- Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cara Adolph
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cassandra L. Chapman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Noon E. J. Seeto
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| |
Collapse
|
25
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
26
|
Friedrich T, Wohlwend D, Borisov VB. Recent Advances in Structural Studies of Cytochrome bd and Its Potential Application as a Drug Target. Int J Mol Sci 2022; 23:ijms23063166. [PMID: 35328590 PMCID: PMC8951039 DOI: 10.3390/ijms23063166] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cytochrome bd is a triheme copper-free terminal oxidase in membrane respiratory chains of prokaryotes. This unique molecular machine couples electron transfer from quinol to O2 with the generation of a proton motive force without proton pumping. Apart from energy conservation, the bd enzyme plays an additional key role in the microbial cell, being involved in the response to different environmental stressors. Cytochrome bd promotes virulence in a number of pathogenic species that makes it a suitable molecular drug target candidate. This review focuses on recent advances in understanding the structure of cytochrome bd and the development of its selective inhibitors.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany; (T.F.); (D.W.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
27
|
Scarim CB, Pavan FR. Recent advancement in drug development of nitro(NO 2 )-heterocyclic compounds as lead scaffolds for the treatment of Mycobacterium tuberculosis. Drug Dev Res 2022; 83:842-858. [PMID: 35106801 DOI: 10.1002/ddr.21921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Tuberculosis (TB) is an infectious disease caused predominantly by Mycobacterium tuberculosis (Mtb). It was responsible for approximately 1.4 million deaths worldwide in 2019. The lack of new drugs to treat drug-resistant strains is a principal factor for the slow rise in TB infections. Our aim is to aid the development of new TB treatments by describing improvements (last decade, 2011-2021) to nitro(NO2 )-based compounds that have shown activity or pharmacological properties (e.g., anti-proliferative, anti-kinetoplastid) against Mtb. For all compounds, we have included final correlations of minimum inhibitory concentrations against Mtb (H37 Rv).
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Department of Cell and Molecular Biology, University of Mississippi Medical Center (UMMC), Jackson, Mississippi, USA
| | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
28
|
Multiplexed transcriptional repression identifies a network of bactericidal interactions between mycobacterial respiratory complexes. iScience 2022; 25:103573. [PMID: 34984329 PMCID: PMC8692989 DOI: 10.1016/j.isci.2021.103573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Combinations of respiratory inhibitors can have synergistic or synthetic lethal interactions with sterilizing activity, suggesting that regimens with multiple bioenergetic inhibitors could shorten treatment times. However, realizing this potential requires an understanding of which combinations of respiratory complexes, when inhibited, have the strongest consequences on bacterial growth and viability. Here we have used multiplex CRISPR interference (CRISPRi) and Mycobacterium smegmatis as a physiological and molecular model for mycobacterial respiration to identify interactions between respiratory complexes. In this study, we identified synthetic lethal and synergistic interactions between respiratory complexes and demonstrated how the engineering of CRISPRi-guide sequences can be used to further explore networks of interacting gene pairs. These results provide fundamental insights into the functions of and interactions between bioenergetic complexes and the utility of CRISPRi in designing drug combinations.
Collapse
|
29
|
Thomas SS, Pethe K. Determination of Bioenergetic Parameters in Mycobacterium ulcerans. Methods Mol Biol 2022; 2387:219-230. [PMID: 34643916 DOI: 10.1007/978-1-0716-1779-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The oxidative phosphorylation (OxPhos) pathway has emerged as an attractive pathway for the development of anti-mycobacterial drugs. The OxPhos pathway is essential for ATP resynthesis and maintenance of the electrochemical transmembrane gradient. The bioenergetic parameters of the pathway such as oxygen consumption rate and ATP levels are quantifiable using current technology. Measuring these parameters are useful tools to gauge rapidly the impact of drug candidates on their capacity to inhibit the OxPhos pathway in Mycobacterium ulcerans.
Collapse
Affiliation(s)
- Sangeeta Susan Thomas
- NTU Institute for Health Technologies (HealthTech NTU), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Nanyang Technological University, Singapore, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Nanyang Technological University, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
30
|
Zhou S, Wang W, Zhou X, Zhang Y, Lai Y, Tang Y, Xu J, Li D, Lin J, Yang X, Ran T, Chen H, Guddat LW, Wang Q, Gao Y, Rao Z, Gong H. Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates. eLife 2021; 10:69418. [PMID: 34819223 PMCID: PMC8616580 DOI: 10.7554/elife.69418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoting Zhou
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ting Ran
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Hongming Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, China.,Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021; 22:12688. [PMID: 34884491 PMCID: PMC8657789 DOI: 10.3390/ijms222312688] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria-the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
32
|
Siletsky SA, Borisov VB. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Int J Mol Sci 2021; 22:10852. [PMID: 34639193 PMCID: PMC8509429 DOI: 10.3390/ijms221910852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia;
| |
Collapse
|
33
|
Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, Rubinstein JL. Structure of mycobacterial CIII 2CIV 2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). eLife 2021; 10:e71959. [PMID: 34590581 PMCID: PMC8523172 DOI: 10.7554/elife.71959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
The imidazopyridine telacebec, also known as Q203, is one of only a few new classes of compounds in more than 50 years with demonstrated antituberculosis activity in humans. Telacebec inhibits the mycobacterial respiratory supercomplex composed of complexes III and IV (CIII2CIV2). In mycobacterial electron transport chains, CIII2CIV2 replaces canonical CIII and CIV, transferring electrons from the intermediate carrier menaquinol to the final acceptor, molecular oxygen, while simultaneously transferring protons across the inner membrane to power ATP synthesis. We show that telacebec inhibits the menaquinol:oxygen oxidoreductase activity of purified Mycobacterium smegmatis CIII2CIV2 at concentrations similar to those needed to inhibit electron transfer in mycobacterial membranes and Mycobacterium tuberculosis growth in culture. We then used electron cryomicroscopy (cryoEM) to determine structures of CIII2CIV2 both in the presence and absence of telacebec. The structures suggest that telacebec prevents menaquinol oxidation by blocking two different menaquinol binding modes to prevent CIII2CIV2 activity.
Collapse
Affiliation(s)
- David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sylwia Król
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Rana Abdelaziz
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | | | - Peter Imming
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
- Department of Biochemistry, The University of TorontoTorontoCanada
| |
Collapse
|
34
|
Sindhu T, Debnath P. Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Curr Mol Pharmacol 2021; 15:380-392. [PMID: 34602044 DOI: 10.2174/1874467214666210928152512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
The cytochrome bc1-aa3 supercomplex plays an essential role in the cellular respiratory system of Mycobacterium Tuberculosis. It transfers electrons from menaquinol to cytochrome aa3 (Complex IV) via cytochrome bc1 (Complex III), which reduces the oxygen. The electron transfer from a variety of donors into oxygen through the respiratory electron transport chain is essential to pump protons across the membrane creating an electrochemical transmembrane gradient (proton motive force, PMF) that regulates the synthesis of ATP via the oxidative phosphorylation process. Cytochrome bc1-aa3 supercomplex in M. tuberculosis is, therefore, a major drug target for antibiotic action. In recent years, several respiratory chain components have been targeted for developing new candidate drugs, illustrating the therapeutic potential of obstructing energy conversion of M. tuberculosis. The recently available cryo-EM structure of mycobacterial cytochrome bc1-aa3 supercomplex with open and closed conformations has opened new avenues for understanding its structure and function for developing more effective, new therapeutics against pulmonary tuberculosis. In this review, we discuss the role and function of several components, subunits, and drug targeting elements of the supercomplex cytochrome bc1-aa3, and its potential inhibitors in detail.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| | - Pal Debnath
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| |
Collapse
|
35
|
Yang L, Hu X, Chai X, Ye Q, Pang J, Li D, Hou T. Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors. Drug Discov Today 2021; 27:326-336. [PMID: 34537334 DOI: 10.1016/j.drudis.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.
Collapse
Affiliation(s)
- Liu Yang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueping Hu
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qing Ye
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Lab of Computer-aided Design and Computer Graphics (CAD&CG), Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
36
|
Gupta S, Fatima Z, Kumawat S. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. Biosystems 2021; 209:104509. [PMID: 34461147 DOI: 10.1016/j.biosystems.2021.104509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 02/02/2023]
Abstract
Tuberculosis is one of the life-threatening diseases globally, caused by the bacteria Mycobacterium tuberculosis. In order to control this epidemic globally, there is an urgent need to discover new drugs with novel mechanism of action that can help in shortening the duration of treatment for both drug resistant and drug sensitive tuberculosis. Mycobacterium essentially depends on oxidative phosphorylation for its growth and establishment of pathogenesis. This pathway is unique in Mycobacterium tuberculosis as compared to host due to the differences in some of the enzyme complexes carrying electron transfer. Hence, it serves as an important drug target area. The uncouplers which inhibit adenosine triphosphate synthesis, could play a vital role in serving as antimycobacterial agents and thus could help in eradicating this deadly disease. In this article, the bioenergetics of Mycobacterium tuberculosis are studied with and without uncouplers using Petri net. Petri net is among the most widely used mathematical and computational tools to model and study the complex biochemical networks. We first represented the bioenergetic pathway as a Petri net which is then validated and analyzed using invariant analysis techniques of Petri net. The valid mathematical models presented here are capable to explain the molecular mechanism of uncouplers and the processes occurring within the electron transport chain of Mycobacterium tuberculosis. The results explained the net behavior in agreement with the biological results and also suggested some possible processes and pathways to be studied as a drug target for developing antimycobacterials.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India.
| | - Sunita Kumawat
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| |
Collapse
|
37
|
Dong K, Li Y, Luo S, Zhang F, Pan H, Zhao L, Wang Y, Liao X. Hydrostatic pressure boost rate and mode to enhance sterilization mediated by GroEL-interacting proteins. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
39
|
Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants (Basel) 2021; 10:antiox10060839. [PMID: 34073980 PMCID: PMC8225038 DOI: 10.3390/antiox10060839] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) comprise the superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
- Correspondence: (V.B.B.); (E.F.)
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia;
| | - Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Correspondence: (V.B.B.); (E.F.)
| |
Collapse
|
40
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
41
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
42
|
Chang DPS, Guan XL. Metabolic Versatility of Mycobacterium tuberculosis during Infection and Dormancy. Metabolites 2021; 11:88. [PMID: 33540752 PMCID: PMC7913082 DOI: 10.3390/metabo11020088] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a highly successful intracellular pathogen with the ability to withstand harsh conditions and reside long-term within its host. In the dormant and persistent states, the bacterium tunes its metabolism and is able to resist the actions of antibiotics. One of the main strategies Mtb adopts is through its metabolic versatility-it is able to cometabolize a variety of essential nutrients and direct these nutrients simultaneously to multiple metabolic pathways to facilitate the infection of the host. Mtb further undergo extensive remodeling of its metabolic pathways in response to stress and dormancy. In recent years, advancement in systems biology and its applications have contributed substantially to a more coherent view on the intricate metabolic networks of Mtb. With a more refined appreciation of the roles of metabolism in mycobacterial infection and drug resistance, and the success of drugs targeting metabolism, there is growing interest in further development of anti-TB therapies that target metabolism, including lipid metabolism and oxidative phosphorylation. Here, we will review current knowledge revolving around the versatility of Mtb in remodeling its metabolism during infection and dormancy, with a focus on central carbon metabolism and lipid metabolism.
Collapse
Affiliation(s)
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore;
| |
Collapse
|
43
|
Lee BS, Hards K, Engelhart CA, Hasenoehrl EJ, Kalia NP, Mackenzie JS, Sviriaeva E, Chong SMS, Manimekalai MSS, Koh VH, Chan J, Xu J, Alonso S, Miller MJ, Steyn AJC, Grüber G, Schnappinger D, Berney M, Cook GM, Moraski GC, Pethe K. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol Med 2021; 13:e13207. [PMID: 33283973 PMCID: PMC7799364 DOI: 10.15252/emmm.202013207] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
The approval of bedaquiline has placed energy metabolism in the limelight as an attractive target space for tuberculosis antibiotic development. While bedaquiline inhibits the mycobacterial F1 F0 ATP synthase, small molecules targeting other components of the oxidative phosphorylation pathway have been identified. Of particular interest is Telacebec (Q203), a phase 2 drug candidate inhibitor of the cytochrome bcc:aa3 terminal oxidase. A functional redundancy between the cytochrome bcc:aa3 and the cytochrome bd oxidase protects M. tuberculosis from Q203-induced death, highlighting the attractiveness of the bd-type terminal oxidase for drug development. Here, we employed a facile whole-cell screen approach to identify the cytochrome bd inhibitor ND-011992. Although ND-011992 is ineffective on its own, it inhibits respiration and ATP homeostasis in combination with Q203. The drug combination was bactericidal against replicating and antibiotic-tolerant, non-replicating mycobacteria, and increased efficacy relative to that of a single drug in a mouse model. These findings suggest that a cytochrome bd oxidase inhibitor will add value to a drug combination targeting oxidative phosphorylation for tuberculosis treatment.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Kiel Hards
- Department of Microbiology and ImmunologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| | - Curtis A Engelhart
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Erik J Hasenoehrl
- Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxNYUSA
| | - Nitin P Kalia
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Ramalingaswami FellowClinical Microbiology DivisionCSIR‐IIIMJammu and KashmirIndia
| | - Jared S Mackenzie
- Africa Health Research InstituteNelson R. Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Ekaterina Sviriaeva
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Shi Min Sherilyn Chong
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Nanyang Institute of Technology in Health and MedicineInterdisciplinary Graduate SchoolNanyang Technological UniversitySingaporeSingapore
| | | | - Vanessa H Koh
- Department of MicrobiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Disease ProgrammeDepartment of Microbiology and ImmunologyNational University of SingaporeSingaporeSingapore
| | - John Chan
- Department of MedicineAlbert Einstein College of MedicineBronxNYUSA
| | - Jiayong Xu
- Department of MedicineAlbert Einstein College of MedicineBronxNYUSA
| | - Sylvie Alonso
- Department of MicrobiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Disease ProgrammeDepartment of Microbiology and ImmunologyNational University of SingaporeSingaporeSingapore
| | - Marvin J Miller
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameINUSA
| | - Adrie J C Steyn
- Africa Health Research InstituteNelson R. Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of MicrobiologyUniversity of AlabamaBirminghamALUSA
| | - Gerhard Grüber
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Dirk Schnappinger
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Michael Berney
- Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxNYUSA
| | - Gregory M Cook
- Department of Microbiology and ImmunologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| | - Garrett C Moraski
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Kevin Pethe
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
44
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
45
|
Bahuguna A, Rawat S, Rawat DS. QcrB in Mycobacterium tuberculosis: The new drug target of antitubercular agents. Med Res Rev 2021; 41:2565-2581. [PMID: 33400275 DOI: 10.1002/med.21779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 12/12/2020] [Indexed: 11/08/2022]
Abstract
Drug-resistance in mycobacterial infections is a major global health problem that leads to high mortality and socioeconomic pressure in developing countries around the world. From finding new targets to discovering novel chemical scaffolds, there is an urgent need for the development of better approaches for the cure of tuberculosis. Recently, energy metabolism in mycobacteria, particularly the oxidative phosphorylation pathway of cellular respiration, has emerged as a novel target pathway in drug discovery. New classes of antibacterials which target oxidative phosphorylation pathway either by interacting with a protein or any step in the pathway of oxidative phosphorylation can combat dormant mycobacterial infections leading to shortening of tuberculosis chemotherapy. Adenosine triphosphate synthase is one such recently discovered target of the newly approved antitubercular drug bedaquiline. Cytochrome bcc is another new target of the antitubercular drug candidate Q203, currently in phase II clinical trial. Research suggests that b subunit of cytochrome bcc, QcrB, is the target of Q203. The review article describes the structure, function, and importance of targeting QcrB throwing light on all chemical classes of QcrB inhibitors discovered to date. An understanding of the structure and function of validated targets and their inhibitors would enable the development of new chemical entities.
Collapse
Affiliation(s)
| | - Srishti Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
46
|
Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 2020; 10:589318. [PMID: 33330134 PMCID: PMC7719681 DOI: 10.3389/fcimb.2020.589318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Collapse
Affiliation(s)
- Sapna Bajeli
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Navin Baid
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Manjot Kaur
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
47
|
Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome bcc- aa3 Supercomplex. Int J Mol Sci 2020; 21:ijms21228521. [PMID: 33198276 PMCID: PMC7697965 DOI: 10.3390/ijms21228521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatisaa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.
Collapse
|
48
|
Kumar S, Koehn JT, Gonzalez-Juarrero M, Crans DC, Crick DC. Mycobacterium tuberculosis Survival in J774A.1 Cells Is Dependent on MenJ Moonlighting Activity, Not Its Enzymatic Activity. ACS Infect Dis 2020; 6:2661-2671. [PMID: 32866371 DOI: 10.1021/acsinfecdis.0c00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MenJ, a flavoprotein oxidoreductase, is responsible for the saturation of the β-isoprene unit of mycobacterial menaquinone, resulting in the conversion of menaquinone with nine isoprene units (MK-9) to menaquinone with nine isoprene units where the double bond in the second unit is reduced [MK-9(II-H2)]. The hydrogenation of MK-9 increases the efficiency of the mycobacterial electron transport system, whereas the deletion of MenJ results in decreased survival of the bacteria inside J774A.1 macrophage-like cells but is not required for growth in culture. Thus, it was suggested that MenJ may represent a contextual drug target in M. tuberculosis, that is, a drug target that is valid only in the context of an infected macrophage. However, it was unclear if the conversion of MK-9 to MK-9(II-H2) or the MenJ protein itself was responsible for bacterial survival. In order to resolve this issue, a plasmid expressing folded, full-length, inactive MenJ was engineered. Primary sequence analysis data revealed that MenJ shares conserved FAD binding, NADH binding, and catalytic and C-terminal motifs with archaeal geranylgeranyl reductases. A MenJ mutant deficient in any one of these motifs is devoid of reductase activity. Therefore, point mutations of highly conserved amino acids in the conserved motifs were generated and the recombinant proteins were monitored for conformational changes by circular dichroism and oxidoreductase activity. The mutational analysis indicates that amino acids tryptophan 215 (W215) and cysteine 46 (C46) of M. tuberculosis MenJ, conserved in known archaeal geranylgeranyl reductases and putative menaquinone saturases, are essential to the hydrogenation of MK-9. The mutation of either C46 to serine (C46S) or W215 to leucine (W215L) in MenJ completely abolishes the catalytic activity in vitro, and menJ knockout strains of M. tuberculosis expressing either the C46S or W215L mutant protein are unable to convert MK-9 to MK-9(II-H2) but survive inside the J774A.1 cells. Thus, surprisingly, the survival of M. tuberculosis in J774A.1 cells is dependent on the expression of MenJ rather than its oxidoreductase activity, the conversion of MK-9 to MK-9(II-H2) as previously hypothesized. Overall, the current data suggest that MenJ is a moonlighting protein.
Collapse
|
49
|
Appetecchia F, Consalvi S, Scarpecci C, Biava M, Poce G. SAR Analysis of Small Molecules Interfering with Energy-Metabolism in Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13:E227. [PMID: 32878317 PMCID: PMC7557483 DOI: 10.3390/ph13090227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis remains the world's top infectious killer: it caused a total of 1.5 million deaths and 10 million people fell ill with TB in 2018. Thanks to TB diagnosis and treatment, mortality has been falling in recent years, with an estimated 58 million saved lives between 2000 and 2018. However, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains is a major concern that might reverse this progress. Therefore, the development of new drugs acting upon novel mechanisms of action is a high priority in the global health agenda. With the approval of bedaquiline, which targets mycobacterial energy production, and delamanid, which targets cell wall synthesis and energy production, the energy-metabolism in Mtb has received much attention in the last decade as a potential target to investigate and develop new antimycobacterial drugs. In this review, we describe potent anti-mycobacterial agents targeting the energy-metabolism at different steps with a special focus on structure-activity relationship (SAR) studies of the most advanced compound classes.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (C.S.); (M.B.)
| |
Collapse
|
50
|
Transcriptional Inhibition of the F 1F 0-Type ATP Synthase Has Bactericidal Consequences on the Viability of Mycobacteria. Antimicrob Agents Chemother 2020; 64:AAC.00492-20. [PMID: 32423951 DOI: 10.1128/aac.00492-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Bedaquiline, an inhibitor of the mycobacterial ATP synthase, has revolutionized the treatment of Mycobacterium tuberculosis infection. Although a potent inhibitor, it is characterized by poorly understood delayed time-dependent bactericidal activity. Here, we demonstrate that in contrast to bedaquiline, the transcriptional inhibition of the ATP synthase in M. tuberculosis and Mycobacterium smegmatis has rapid bactericidal activity. These results validate the mycobacterial ATP synthase as a drug target with the potential for rapid bactericidal activity.
Collapse
|