1
|
Yang W, Chen T, Zhou Q, Xu J. Resistance to linezolid in Staphylococcus aureus by mutation, modification, and acquisition of genes. J Antibiot (Tokyo) 2025; 78:4-13. [PMID: 39420155 DOI: 10.1038/s41429-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Linezolid binds to the 50S subunit of the bacterial ribosome, inhibiting bacterial protein synthesis by preventing the formation of the initiation complex. Oxazolidinone antimicrobial drugs represent the last line of defense in treating Staphylococcus aureus infections; thus, resistance to linezolid in S. aureus warrants high priority. This article examines the major mechanisms of resistance to linezolid in S. aureus, which include: mutations in the domain V of 23S rRNA (primarily G2576); chromosomal mutations in the rplC, rplD, and rplV genes (encoding the ribosomal uL3, uL4, and uL22 proteins, respectively); the exogenous acquisition of the methylase encoded by the chloramphenicol-florfenicol resistance (cfr) gene; the endogenous methylation or demethylation of 23S rRNA; the acquisition of optrA and poxtA resistance genes; and the existence of the LmrS multidrug efflux pump. In conclusion, these mechanisms mediate resistance through mutations or modifications to the bacterial target, thereby reducing the affinity of linezolid for the peptidyl transferase center (PTC) binding site or by preventing the binding of linezolid to the PTC through a ribosomal protective effect. The existence of additional, unexplained resistance mechanisms requires further investigation and verification.
Collapse
Affiliation(s)
- Wenjing Yang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Taoran Chen
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Kim E, Yang SM, Ham JH, Lee W, Jung DH, Kim HY. Integration of MALDI-TOF MS and machine learning to classify enterococci: A comparative analysis of supervised learning algorithms for species prediction. Food Chem 2025; 462:140931. [PMID: 39217752 DOI: 10.1016/j.foodchem.2024.140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This research focused on distinguishing distinct matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectral signatures of three Enterococcus species. We evaluated and compared the predictive performance of four supervised machine learning algorithms, K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), to accurately classify Enterococcus species. This study involved a comprehensive dataset of 410 strains, generating 1640 individual spectra through on-plate and off-plate protein extraction methods. Although the commercial database correctly identified 76.9% of the strains, machine learning classifiers demonstrated superior performance (accuracy 0.991). In the RF model, top informative peaks played a significant role in the classification. Whole-genome sequencing showed that the most informative peaks are biomarkers connected to proteins, which are essential for understanding bacterial classification and evolution. The integration of MALDI-TOF MS and machine learning provides a rapid and accurate method for identifying Enterococcus species, improving healthcare and food safety.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun-Hyeok Ham
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Woojung Lee
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dae-Hyun Jung
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
3
|
Osten V, Oepen K, Schneider D. The C-terminal α-helix is crucial for the activity of the bacterial ABC transporter BmrA. J Biol Chem 2024; 301:108098. [PMID: 39706270 DOI: 10.1016/j.jbc.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
ABC transporters are membrane integral proteins that consist of a transmembrane domain and nucleotide-binding domain (NBD). Two monomers (half-transporters) of the Bacillus subtilis ABC transporter Bacillus multidrug-resistance ATP (BmrA) dimerize to build a functional full-transporter. As all ABC exporters, BmrA uses the free energy of ATP hydrolysis to transport substrate molecules across the cell membrane. For substrate transport, a BmrA dimer undergoes major conformational changes. ATP binding drives dimerization of the NBDs followed by the hydrolysis of the nucleotides. Conserved structural elements within the NBD and transmembrane domain are crucial for dimerization and the activity of BmrA. In the BmrA structure, an α-helix is present at the C-terminus, which can be subdivided in two smaller helices. As shown here, the very C-terminal helix (fragment) is not crucial for the BmrA activity. In fact, based on Cys-scanning mutagenesis, this region is highly flexible. In contrast, a BmrA variant lacking the entire C-terminal α-helix, showed no ATPase and transport activity. Via Ala-scanning, we identified residues in the N-terminal fragment of the helix that are crucial for the BmrA activity, most likely via establishing contacts to structural elements involved in ATP recognition, binding, and/or hydrolysis.
Collapse
Affiliation(s)
- Veronika Osten
- Department of Chemistry - Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Kristin Oepen
- Department of Chemistry - Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry - Biochemistry, Johannes Gutenberg-University, Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
4
|
Wang Y, Zhao C, Zhao B, Duan X, Hao P, Liang X, Yang L, Gao Y. Transcriptome of Kurthia gibsonii TYL-A1 Revealed the Biotransformation Mechanism of Tylosin. Microorganisms 2024; 12:2597. [PMID: 39770799 PMCID: PMC11676290 DOI: 10.3390/microorganisms12122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Tylosin (TYL) pollution has aroused widespread concern, and its existence poses a serious threat to the environment and human health. Microbial degradation of antibiotics is considered to be an effective strategy to reduce the environmental impact of antibiotics, but its degradation mechanism is still unclear. In this study, transcriptome analysis was combined to explore the response mechanism of K. gibsonii strain TYL-A1 under TYL stress. The results showed that the strain showed a significant antioxidant response under TYL stress to cope with TYL-induced cell damage. TYL also increased the level of intracellular reactive oxygen species (ROS), damaged the integrity of the cell membrane, and inhibited the growth of strain TYL-A1. Transcriptome sequencing showed that under TYL exposure conditions, 1650 DEGs in strain TYL-A1 showed expression changes, of which 806 genes were significantly up-regulated and 844 genes were significantly down-regulated. Differentially expressed DEGs were significantly enriched in pathways related to metabolism, biosynthesis, and stress response, and tricarboxylic acid cycle, oxidative phosphorylation, and carbon metabolism genes were significantly up-regulated. In conclusion, this study provides novel insights regarding the degradation of TYL by K. gibsonii TYL-A1.
Collapse
Affiliation(s)
- Ye Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (C.Z.); (B.Z.); (X.D.); (P.H.)
| | - Cuizhu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (C.Z.); (B.Z.); (X.D.); (P.H.)
| | - Boyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (C.Z.); (B.Z.); (X.D.); (P.H.)
| | - Xinran Duan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (C.Z.); (B.Z.); (X.D.); (P.H.)
| | - Peng Hao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (C.Z.); (B.Z.); (X.D.); (P.H.)
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Lianyu Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (C.Z.); (B.Z.); (X.D.); (P.H.)
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (C.Z.); (B.Z.); (X.D.); (P.H.)
| |
Collapse
|
5
|
Gao L, Chen Y, Li S, Yang Z, Lu Y, Zhu G. Proteomic and spectral analysis reveals the role of extracellular polymeric substances in mercury biosorption by activated sludge under high-altitude conditions. ENVIRONMENTAL RESEARCH 2024; 267:120613. [PMID: 39675454 DOI: 10.1016/j.envres.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In high-altitude regions, elevated mercury (Hg) levels in wastewater treatment plants (WWTPs) influent raise concerns about treatment efficiency and environmental impact. This study investigated the Hg biosorption capacity of activated sludge under high-altitude conditions, focusing on the binding mechanisms between EPS and Hg, and variations in EPS secretion. Low pressure, oxygen, and temperature at high altitudes increase EPS secretion, enhancing Hg biosorption. EPS provides numerous binding sites for Hg, forming nonfluorescent complexes with tryptophan-like and aromatic proteins, while hydrocarbon and oxygen-containing groups limit Hg entry into microbial cells. Proteomic analysis revealed the upregulation of transporters, stress-resistance, and binding proteins, along with those involved in carbon and amino acid metabolism, which enhance microbial resilience and EPS production, leading to increased Hg biosorption. These insights reveal adaptive mechanisms that optimize pollutant removal in high-altitude environments.
Collapse
Affiliation(s)
- Lei Gao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yue Chen
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China
| | - Shuping Li
- College of Information Engineer, Xizang Minzu University, Xianyang, 712082, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China
| | - Zhonglian Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China.
| |
Collapse
|
6
|
Rajput P, Nahar KS, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:1197. [PMID: 39766587 PMCID: PMC11672434 DOI: 10.3390/antibiotics13121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.
Collapse
Affiliation(s)
- Pratiksing Rajput
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Kazi S. Nahar
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK;
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
7
|
Mayer BK, Hutchison JM, McLamore ES, Torres M, Venkiteshwaran K. Phosphate-binding proteins and peptides: from molecular mechanisms to potential applications. Curr Opin Biotechnol 2024; 90:103199. [PMID: 39276616 DOI: 10.1016/j.copbio.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Selective binding of phosphate is vital to multiple aims including phosphate transport into cells and phosphate-targeted applications such as adsorption-based water treatment and sensing. High-affinity phosphate-binding proteins and peptides offer a nature-inspired means of efficiently binding and separating phosphate from complex matrices. The binding protein PstS is characterized by a Venus flytrap topology that confers exceptional phosphate affinity and selectivity, and is effective even at low phosphate concentrations, all of which are essential for applications such as phosphate sensing, removal, and recovery. The binding event is reversible under controlled conditions, making it germane to catch-and-release objectives that advance phosphorus sustainability. Peptides such as the P loop motif are also promising for such applications. Future advances in protein/peptide design can contribute to increased implementation in engineered systems.
Collapse
Affiliation(s)
- Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA.
| | - Justin M Hutchison
- Department of Civil, Environmental & Architectural Engineering, University of Kansas, Lawrence, KS, USA
| | - Eric S McLamore
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Agricultural Sciences, Clemson University, Clemson, SC, USA
| | - Maria Torres
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Kaushik Venkiteshwaran
- Department of Civil, Coastal and Environmental Engineering, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
8
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
9
|
Tian L, Wu L, Zhong XF, Ma LH, Du GY. Genome-Wide Characterization of ABC Transporter Genes and Expression Profiles in Red Macroalga Pyropia yezoensis Expose to Low-Temperature. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1179-1193. [PMID: 39269589 DOI: 10.1007/s10126-024-10355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
Pyropia yezoensis is an important economic macroalga widely cultivated in the East Asia countries of China, Korea, and Japan. The ATP-binding cassette (ABC) transporter gene family is one of the largest transporter families in all forms of life involved in various biological processes. The characteristics of ABC transporter genes in P. yezoensis (PyABC) and their functions in stress resistance, however, remain largely unknown. In this study, PyABCs were identified and characterized their expression patterns under low-temperature stress. A total of 48 PyABCs transporters were identified and divided into eight subfamilies, which are mostly predicted as membrane-binding proteins. The cis-elements of phytohormone and low-temperature response were distinguished in promoter sequences of PyABCs. Transcriptome analysis showed that PyABCs are involved in response to low-temperature stress. Among them, 12 PyABCs were significantly up-regulated after 24 h of exposure to low temperature (2 °C). Further quantitative RT-PCR analysis corroborated the highest expression happened at 24 for detected genes of PyABCC8, PyABCF3, and PyABCI1, extraordinarily for PyABCF3, and followed by decreased expression at 48 h. The expression of PyABCI1 was generally low in all tested strains. Whereas, in a strain of P. yezoensis with lower tolerance to low temperature, the expression was observed higher in PyABCC1, PyABCC8, and remarkably high in PyABCF3. This study provided valuable information on ABC gene families in P. yezoensis and their functional characteristics, especially on low-temperature resistance, and would help to understand the adaptive mechanisms of P. yezoensis to adverse environments.
Collapse
Affiliation(s)
- Lin Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Lan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xue-Feng Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Li-Hong Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Guo-Ying Du
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Bickers SC, Benlekbir S, Rubinstein JL, Kanelis V. Structure of a dimeric full-length ABC transporter. Nat Commun 2024; 15:9946. [PMID: 39550367 PMCID: PMC11569179 DOI: 10.1038/s41467-024-54147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Activities of ATP binding cassette (ABC) proteins are regulated by multiple mechanisms, including protein interactions, phosphorylation, proteolytic processing, and/or oligomerization of the ABC protein itself. Here we present the structure of yeast cadmium factor 1 (Ycf1p) in its mature form following cleavage by Pep4p protease. Ycf1p, a C subfamily ABC protein (ABCC), is homologue of human multidrug resistance protein 1. Remarkably, a portion of cleaved Ycf1p forms a well-ordered dimer, alongside monomeric particles also present in solution. While numerous other ABC proteins have been proposed to dimerize, no high-resolution structures have been reported. Both phosphorylation of the regulatory (R) region and ATPase activity are lower in the Ycf1p dimer compared to the monomer, indicating that dimerization affects Ycf1p function. The interface between Ycf1p protomers features protein-protein interactions and contains bound lipids, suggesting that lipids stabilize the dimer. The Ycf1p dimer structure may inform the dimerization interfaces of other ABCC dimers.
Collapse
Affiliation(s)
- Sarah C Bickers
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
11
|
Fernandes N, Achemchem F, Gonzales-Barron U, Cadavez V. Biopreservation strategies using bacteriocins to control meat spoilage and foodborne outbreaks. Ital J Food Saf 2024; 13:12558. [PMID: 39749182 PMCID: PMC11694622 DOI: 10.4081/ijfs.2024.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/09/2024] [Indexed: 01/04/2025] Open
Abstract
Fresh meat is highly perishable, presenting challenges in spoilage mitigation and waste reduction globally. Despite the efforts, foodborne outbreaks from meat consumption persist. Biopreservation offers a natural solution to extend shelf life by managing microbial communities. However, challenges include the effective diffusion of bacteriocins through the meat matrix and the potential inhibition of starter cultures by bacteriocins targeting closely related lactic acid bacteria (LAB). LAB, predominant in meat, produce bacteriocins - small, stable peptides with broad antimicrobial properties effective across varying pH and temperature conditions. This review highlights the recent advances in the optimization of bacteriocin use, considering its structure and mode of action. Moreover, the strengths and weaknesses of different techniques for bacteriocin screening, including novel bioengineering methods, are described. Finally, we discuss the advantages and limitations of the modes of application of bacteriocins toward the preservation of fresh, cured, and novel meat products.
Collapse
Affiliation(s)
- Nathália Fernandes
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Fouad Achemchem
- LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Ursula Gonzales-Barron
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Vasco Cadavez
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| |
Collapse
|
12
|
Hauptmann AL, Johansen J, Stæger FF, Nielsen DS, Mulvad G, Hanghøj K, Rasmussen S, Hansen T, Albrechtsen A. Gut heavy metal and antibiotic resistome of humans living in the high Arctic. Front Microbiol 2024; 15:1493803. [PMID: 39539714 PMCID: PMC11557323 DOI: 10.3389/fmicb.2024.1493803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Contaminants, such as heavy metals (HMs), accumulate in the Arctic environment and the food web. The diet of the Indigenous Peoples of North Greenland includes locally sourced foods that are central to their nutritional, cultural, and societal health but these foods also contain high concentrations of heavy metals. While bacteria play an essential role in the metabolism of xenobiotics, there are limited studies on the impact of heavy metals on the human gut microbiome, and it is so far unknown if and how Arctic environmental contaminants impact the gut microbes of humans living in and off the Arctic environment. Using a multiomics approach including amplicon, metagenome, and metatranscriptome sequencing, we identified and assembled a near-complete (NC) genome of a mercury-resistant bacterial strain from the human gut microbiome, which expressed genes known to reduce mercury toxicity. At the overall ecological level studied through α- and β-diversity, there was no significant effect of heavy metals on the gut microbiota. Through the assembly of a high number of NC metagenome-assembled genomes (MAGs) of human gut microbes, we observed an almost complete overlap between heavy metal-resistant strains and antibiotic-resistant strains in which resistance genes were all located on the same genetic elements.
Collapse
Affiliation(s)
- Aviaja Lyberth Hauptmann
- SILA Department, Institute of Health and Nature, Ilisimatusarfik – The University of Greenland, Nuuk, Greenland
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Joachim Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frederik Filip Stæger
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Gert Mulvad
- SILA Department, Institute of Health and Nature, Ilisimatusarfik – The University of Greenland, Nuuk, Greenland
| | - Kristian Hanghøj
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Vollenweider V, Roncoroni F, Kümmerli R. Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in Escherichia coli. MICROLIFE 2024; 5:uqae021. [PMID: 39502382 PMCID: PMC11536758 DOI: 10.1093/femsml/uqae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024]
Abstract
Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental Pseudomonas spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three Escherichia coli strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive E. coli wildtype strain and two isogenic variants carrying the bla TEM-1 β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all E. coli variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (envZ and ompF), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (opp) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the E. coli variant carrying bla TEM-1 on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying E. coli strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Flavie Roncoroni
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Del Chierico F, Piazzesi A, Fiscarelli EV, Ristori MV, Pirona I, Russo A, Citerà N, Macari G, Santarsiero S, Bianco F, Antenucci V, Damiani V, Mercuri L, De Vincentis GC, Putignani L. Changes in the pharyngeal and nasal microbiota in pediatric patients with adenotonsillar hypertrophy. Microbiol Spectr 2024; 12:e0072824. [PMID: 39248478 PMCID: PMC11449029 DOI: 10.1128/spectrum.00728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
The present study aimed to investigate the pharyngeal and nasal microbiota composition in children with adenotonsillar hypertrophy (AH) and assess longitudinal alterations in both microbiota after a probiotic oral spray treatment. A cohort of 57 AH patients were enrolled and randomly assigned to the probiotic and placebo groups for a 5-month treatment course. Pharyngeal and nasal swabs were collected before and after treatment and analyzed by 16S rRNA-based metataxonomics and axenic cultures for pathobiont identification. 16S rRNA sequences from pharyngeal and nasal swabs of 65 healthy children (HC) were used as microbiota reference profiles. We found that the pharyngeal and nasal microbiota of AH children were similar. When compared to HC, we observed an increase of the genera Rothia, Granulicatella, Streptococcus, Neisseria, and Haemophilus, as well as a reduction of Corynebacterium, Pseudomonas, Acinetobacter, and Moraxella in both microbiota of AH patients. After probiotic treatment, we confirmed the absence of adverse effects and a reduction of upper respiratory tract infections (URTI). Moreover, the composition of pharyngeal microbiota was positively influenced by the reduction of potential pathobionts, like Haemophilus spp., with an increase of beneficial microbial metabolic pathways. Finally, the probiotic reduced the abundance of the pathobionts Streptococcus mitis and Gemella haemolysans in relation to AH severity. In conclusion, our results highlight the alterations of the pharyngeal and nasal microbiota associated with AH. Moreover, probiotic administration conferred protection against URTI and reduced the presence of potential pathobionts in patients with AH. IMPORTANCE Adenotonsillar hypertrophy (AH) is considered the main cause of breathing disorders during sleep in children. AH patients, after significant morbidity and often multiple courses of antibiotics, often proceed to tonsillectomy and/or adenoidectomy. Given the potential risks associated with these procedures, there is a growing interest in the use of nonsurgical adjuvant therapies, such as probiotics, that could potentially reduce their need for surgical intervention. In this study, we investigated the pharyngeal and nasal microbiota in patients with AH compared with healthy children. Furthermore, we tested the effects of probiotic spray administration on both disease symptoms and microbiota profiles, to evaluate the possible use of this microbial therapy as an adjuvant for AH patients.
Collapse
Affiliation(s)
| | - Antonia Piazzesi
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Alessandra Russo
- Unit of Microbiomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicoletta Citerà
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Sara Santarsiero
- Unit of Otorhinolaryngology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabrizio Bianco
- Quality Team Studi Clinici, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valeria Antenucci
- Modelli Innovativi di Regolamentazione in Pediatria, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
15
|
Clifton BE, Alcolombri U, Uechi GI, Jackson CJ, Laurino P. The ultra-high affinity transport proteins of ubiquitous marine bacteria. Nature 2024; 634:721-728. [PMID: 39261732 PMCID: PMC11485210 DOI: 10.1038/s41586-024-07924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
SAR11 bacteria are the most abundant microorganisms in the surface ocean1 and have global biogeochemical importance2-4. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters5,6. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gen-Ichiro Uechi
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
16
|
Sukumaran R, Shahina K, Nair AS. RFGR: Repeat Finder for Complete and Assembled Whole Genomes and NGS Reads. Biochem Genet 2024; 62:4157-4173. [PMID: 38212571 DOI: 10.1007/s10528-023-10628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Repetitive DNA sequences cause genomic instability and are important genetic markers. Identification of repeats is a critical step in genome annotation and analysis. On the other hand, repeats also pose a technical challenge for genome assembly and alignment programs using NGS data. RFGR is a comprehensive tool that can find exact repetitive sequences in complete genomes and assembled genomes, as well as NGS reads of prokaryotes. For complete genomes, RFGR uses a suffix trees to find seed repeats of repetitive sequences of fixed length with indels. For assembled genomes, RFGR uses a modified Bowtie aligner to find seed repeats of exact repetitive sequences in the contigs/ scaffolds, which are then extended to maximal repeats. The repeats are classified and for repeats near a gene, RFGR reports the gene as well. For the control dataset of E. coli UTI89 and E. coli K12, RFGR reports 35,141 and 49,352 repeats, respectively. For NGS reads, RFGR uses the frequency of the repetitive k-mers to determine FASTQ reads containing repetitive sequences and removes them from the dataset. An E. coli K12 NGS dataset pre-processed using RFGR, on comparison with the original dataset, gives an improved assembly. The N50 value improves by 22.86% with a decrease in size of the assembly graph by nearly 50%. Thus, with RFGR, we achieve a better assembly with reduced computation. RFGR can be improved in terms of the length of the minimum repeat found, extending to find approximate repeats and to be applicable to Eukaryotes as well.
Collapse
Affiliation(s)
- Rashmi Sukumaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom, Trivandrum, Kerala, India.
| | - K Shahina
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom, Trivandrum, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom, Trivandrum, Kerala, India
| |
Collapse
|
17
|
Qiao JW, Wu BJ, Wang WQ, Yuan CX, Su S, Zhang ZF, Fan YL, Liu TX. The ATP-binding cassette transporter subfamily G member 4 mediates cuticular hydrocarbon transport to regulate drought tolerance in Acyrthosiphon pisum. Int J Biol Macromol 2024; 278:134605. [PMID: 39127281 DOI: 10.1016/j.ijbiomac.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ABC transporters are a highly conserved membrane protein class that promote the transport of substances across membranes. Under drought conditions, insects primarily regulate the content of cuticular hydrocarbon (CHC) to retain water and prevent evaporative loss. Involvement of ABC transporter protein G (ABCG) subfamily genes in insect CHC transport has been relatively understudied. In this study, we demonstrated that ABCG4 gene in Acyrthosiphon pisum (ApABCG4) is involved in CHC transport and affects drought tolerance by regulating CHC accumulation. ApABCG4 is strongly expressed in the abdominal cuticle and embryonic stages of A. pisum. Effective silencing of ApABCG4 was achieved using RNAi, and the silencing duration was analyzed. ApABCG4 silencing resulted in a significant decrease in the total and component contents of the CHC and cuticular waxy coatings of A. pisum. Nevertheless, the internal hydrocarbon content remained unchanged. The lack of cuticular hydrocarbons significantly reduced the drought tolerance of A. pisum, shortening its survival time under drought stress. Drought stress caused significant upregulation of ApABCG4. Molecular docking showed that ApABCG4 has a high binding affinity for nine n-alkanes of CHC through electrostatic interactions. These results indicate that ApABCG4 is a novel RNAi target with key applications in aphid biological control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Bing-Jin Wu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Wen-Qiang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Cai-Xia Yuan
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Sha Su
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhan-Feng Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Tong-Xian Liu
- Institute of Entomology and Institute of Plant Health and Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
18
|
Khan IA, Yu T, Li Y, Hu C, Zhao X, Wei Q, Zhong Y, Yang M, Liu J, Chen Z. In vivo toxicity of upconversion nanoparticles (NaYF 4:Yb, Er) in zebrafish during early life stages: Developmental toxicity, gut-microbiome disruption, and proinflammatory effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116905. [PMID: 39191133 DOI: 10.1016/j.ecoenv.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (Ln-UCNPs) have been considered promising materials for various fields, such as biomedical and industrial applications. However, data and reports regarding its toxicity and environmental risks are scarce. Under these circumstances, data must be obtained to fully understand potential toxicity and adverse outcome pathways. In the present study, the toxicity of uncoated Ln-UCNP cores (NaYF4:Yb, Er) was systematically assessed in zebrafish embryos during early developmental stages. Ln-UCNPs were found to have multiple toxic effects, such as effects on survival rates, delayed hatching times, shorter body lengths, altered heart rates and blood circulation (significantly reduced), and neurobehavioral impairments in response to photoperiod stimulation. Bioimaging showed that Ln-UCNPs were distributed on the chorion, eyes, and skin at 72 hpf. However, it accumulates in the pharynx, esophagus, and intestine after oral administration. Ln-UCNPs disrupt the diversity and abundance of host-associated microorganisms (gut microbiota) leading to an increase in the prevalence of harmful bacteria in zebrafish. Transcriptomic and Ingenuity Pathway Analysis (IPA) predicted Interleukin-8 (IL-8) signaling, neuroinflammation, cardiac hypertrophy signaling pathways, immune and inflammation-related response interferon-gamma (ifnγ), and miR-155 as key mediators in regulatory effects. Based on this, a causal network was built showing the strong links between the induced gene expression of differentially expressed genes (DEGs), such as nitric oxide synthase 2 (nos2) and tumor necrosis factor (tnf) upon Ln-UCNPs treatment, and with the downstream adverse outcomes, in particular, the promotion of apoptosis, liver damage, and inflammatory response. Finally, RT-qPCR analysis confirmed the up-regulated expression of nos2 and tnf in the exposed larvae, consistent with the observation of an increased number of fluorescence-labelled neutrophils and macrophages in lyz: DsRed transgenic zebrafish until 120 hpf exposure, which together demonstrated the proinflammatory effects of Ln-UCNPs on organisms. In conclusion, we illustrated the developmental toxicity, disruption of gut-microbiome, and proinflammatory effects of Ln-UCNP cores on zebrafish, and the causal network from IPA analysis may help further elucidate the adverse outcome pathway of Ln-UCNPs.
Collapse
Affiliation(s)
- Imran Ahamed Khan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chengzhang Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhong Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian 362200, China; Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
19
|
Ahmad HA, Sun X, Wang Z, Ahmad S, El-Baz A, Lee T, Ni BJ, Ni SQ. Metagenomic unveils the promotion of mainstream PD-anammox process at lower nZVI concentration and inhibition at higher dosage. BIORESOURCE TECHNOLOGY 2024; 408:131168. [PMID: 39069143 DOI: 10.1016/j.biortech.2024.131168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The partial-denitrification-anammox (PdNA) process exhibits great potential in enabling the simultaneous removal of NO3--N and NH4+-N. This study delved into the impact of exogenous nano zero-valent iron (nZVI) on the PdNA process. Adding 10 mg L-1 of nZVI increased nitrogen removal efficiency up to 83.12 % and maintained higher relative abundances of certain beneficial bacteria. The maximum relative abundance of Candidatus Brocadia (1.6 %), Candidatus Kuenenia (1.5 %), Ignavibacterium (1.3 %), and Azospira (1.2 %) was observed at 10 mg L-1 of nZVI. However, the greatest relative abundance of Thauera (1.3 %) was recorded under 50 mg L-1. Moreover, applying nZVI selectively enhanced the abundance of NO3--N reductase genes. So, keeping the nZVI concentration at 10 mg L-1 or below is advisable to ensure a stable PdNA process in mainstream conditions. Considering nitrogen removal efficiency, using nZVI in the PD-anammox process could be more cost-effective in enhancing its adoption in industrial and mainstream settings.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaojie Sun
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Pusan 609-735, Republic of Korea
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
20
|
Granzow BN, Repeta DJ. What Is the Molecular Weight of "High" Molecular Weight Dissolved Organic Matter? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14709-14717. [PMID: 39102585 PMCID: PMC11339928 DOI: 10.1021/acs.est.4c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
The use of ultrafiltration to isolate high molecular weight dissolved organic matter (HMWDOM) from seawater is a fundamental tool in the environmental organic chemist's toolbox. Yet, important characteristics of HMWDOM relevant to its origin and cycling, such as its molecular weight distribution, remain poorly defined. We used diffusion-ordered NMR spectroscopy coupled with mixed-mode chromatography to separate and characterize two major components of marine HMWDOM: acylpolysaccharides (APS) and high molecular weight humic substances (HS). The molecular weights (MWs) of APS and HS both fell within distinct, narrow envelopes; 2.0-16 kDa for APS and 0.9-6.5 kDa for HS. In water samples from the North Pacific Ocean the average MW of both components decreased with depth through the mesopelagic. However, the minimum MW of APS was >2 kDa, well above the molecular weight cutoff of the ultrafilter, suggesting APS removal processes below 2 kDa are highly efficient. The MW distribution of APS shows only small variations with depth, while the MW distribution of HS narrowed due to removal of HMW components. Despite the narrowing of the MW distribution, the concentration of HS did not decrease with depth between 15 and 915 m. This suggests that HMW HS produced in surface waters was either degraded into lower MW compounds without significant remineralization, or that HMW HS was remineralized but replaced by an additional source of HS in the mesopelagic ocean. Based on these results, we propose potential pathways for the production and removal of these major components of HMWDOM.
Collapse
Affiliation(s)
- Benjamin N. Granzow
- Geoscience
Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Daniel J. Repeta
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
21
|
Nemchinova M, Schuurman-Wolters GK, Whittaker JJ, Arkhipova V, Marrink SJ, Poolman B, Guskov A. Exploring the Ligand Binding and Conformational Dynamics of the Substrate-Binding Domain 1 of the ABC Transporter GlnPQ. J Phys Chem B 2024; 128:7822-7832. [PMID: 39090964 PMCID: PMC11331510 DOI: 10.1021/acs.jpcb.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The adenosine triphosphate (ATP)-binding cassette (ABC) importer GlnPQ from Lactococcus lactis has two sequential covalently linked substrate-binding domains (SBDs), which capture the substrates and deliver them to the translocon. The two SBDs differ in their ligand specificities, binding affinities and the distance to the transmembrane domain; interestingly, both SBDs can bind their ligands simultaneously without affecting each other. In this work, we studied the binding of ligands to both SBDs using X-ray crystallography and molecular dynamics simulations. We report three high-resolution structures of SBD1, namely, the wild-type SBD1 with bound asparagine or arginine, and E184D SBD1 with glutamine bound. Molecular dynamics (MD) simulations provide a detailed insight into the dynamics associated with open-closed transitions of the SBDs.
Collapse
Affiliation(s)
- Mariia Nemchinova
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Gea K. Schuurman-Wolters
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Jacob J. Whittaker
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Valentina Arkhipova
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Bert Poolman
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
22
|
Mélida H, Kappel L, Ullah SF, Bulone V, Srivastava V. Quantitative proteomic analysis of plasma membranes from the fish pathogen Saprolegnia parasitica reveals promising targets for disease control. Microbiol Spectr 2024; 12:e0034824. [PMID: 38888349 PMCID: PMC11302233 DOI: 10.1128/spectrum.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and β-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in β-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.
Collapse
Affiliation(s)
- Hugo Mélida
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Lisa Kappel
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| |
Collapse
|
23
|
Tong AY, Tong EL, Hannani MA, Shaffer SN, Santiago D, Ferré-D'Amaré AR, Passalacqua LFM, Abdelsayed MM. RNA thermometers are widespread upstream of ABC transporter genes in bacteria. J Biol Chem 2024; 300:107547. [PMID: 38992441 PMCID: PMC11342760 DOI: 10.1016/j.jbc.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
RNA thermometers are temperature-sensing non-coding RNAs that regulate the expression of downstream genes. A well-characterized RNA thermometer motif discovered in bacteria is the ROSE-like element (repression of heat shock gene expression). ATP-binding cassette (ABC) transporters are a superfamily of transmembrane proteins that harness ATP hydrolysis to facilitate the export and import of substrates across cellular membranes. Through structure-guided bioinformatics, we discovered that ROSE-like RNA thermometers are widespread upstream of ABC transporter genes in bacteria. X-ray crystallography, biochemistry, and cellular assays indicate that these RNA thermometers are functional regulatory elements. This study expands the known biological role of RNA thermometers to these key membrane transporters.
Collapse
Affiliation(s)
- Alina Y Tong
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Elisha L Tong
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Michael A Hannani
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Samantha N Shaffer
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Danna Santiago
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Michael M Abdelsayed
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA.
| |
Collapse
|
24
|
Ousalem F, Ngo S, Oïffer T, Omairi-Nasser A, Hamon M, Monlezun L, Boël G. Global regulation via modulation of ribosome pausing by the ABC-F protein EttA. Nat Commun 2024; 15:6314. [PMID: 39060293 PMCID: PMC11282234 DOI: 10.1038/s41467-024-50627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Having multiple rounds of translation of the same mRNA creates dynamic complexities along with opportunities for regulation related to ribosome pausing and stalling at specific sequences. Yet, mechanisms controlling these critical processes and the principles guiding their evolution remain poorly understood. Through genetic, genomic, physiological, and biochemical approaches, we demonstrate that regulating ribosome pausing at specific amino acid sequences can produce ~2-fold changes in protein expression levels which strongly influence cell growth and therefore evolutionary fitness. We demonstrate, both in vivo and in vitro, that the ABC-F protein EttA directly controls the translation of mRNAs coding for a subset of enzymes in the tricarboxylic acid (TCA) cycle and its glyoxylate shunt, which modulates growth in some chemical environments. EttA also modulates expression of specific proteins involved in metabolically related physiological and stress-response pathways. These regulatory activities are mediated by EttA rescuing ribosomes paused at specific patterns of negatively charged residues within the first 30 amino acids of nascent proteins. We thus establish a unique global regulatory paradigm based on sequence-specific modulation of translational pausing.
Collapse
Affiliation(s)
- Farès Ousalem
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
- Biomarqueurs et nouvelles cibles thérapeutiques en oncologie, INSERM U981, Université Paris Saclay, Institut de Cancérologie Gustave Roussy, Villejuif Cedex, France
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Thomas Oïffer
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Amin Omairi-Nasser
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marion Hamon
- CNRS, Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, Paris, France
| | - Laura Monlezun
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
25
|
Shen C, Li X, Qin J. Kiwifruit-Agaricus blazei intercropping effectively improved yield productivity, nutrient uptake, and rhizospheric bacterial community. Sci Rep 2024; 14:16546. [PMID: 39019951 PMCID: PMC11255323 DOI: 10.1038/s41598-024-66030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
Intercropping systems have garnered attention as a sustainable agricultural approach for efficient land use, increased ecological diversity in farmland, and enhanced crop yields. This study examined the effect of intercropping on the kiwifruit rhizosphere to gain a deeper understanding of the relationships between cover plants and kiwifruit in this sustainable agricultural system. Soil physicochemical properties and bacterial communities were analyzed using the Kiwifruit-Agaricus blazei intercropping System. Moreover, a combined analysis of 16S rRNA gene sequencing and metabolomic sequencing was used to identify differential microbes and metabolites in the rhizosphere. Intercropping led to an increase in soil physicochemical and enzyme activity, as well as re-shaping the bacterial community and increasing microbial diversity. Proteobacteria, Bacteroidota, Myxococcota, and Patescibacteria were the most abundant and diverse phyla in the intercropping system. Expression analysis further revealed that the bacterial genera BIrii41, Acidibacter, and Altererythrobacter were significantly upregulated in the intercropping system. Moreover, 358 differential metabolites (DMs) were identified between the monocropping and intercropping cultivation patterns, with fatty acyls, carboxylic acids and derivatives, and organooxygen compounds being significantly upregulated in the intercropping system. The KEGG metabolic pathways further revealed considerable enrichment of DMs in ABC transporters, histidine metabolism, and pyrimidine metabolism. This study identified a significant correlation between 95 bacterial genera and 79 soil metabolites, and an interactive network was constructed to explore the relationships between these differential microbes and metabolites in the rhizosphere. This study demonstrated that Kiwifruit-Agaricus blazei intercropping can be an effective, labor-saving, economic, and sustainable practice for reshaping bacterial communities and promoting the accumulation and metabolism of beneficial microorganisms in the rhizosphere.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-Economy Research Center, Ankang University, Ankang, 725000, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, 725000, China
| | - Jianfeng Qin
- Ankang Academy of Agricultural Sciences, Ankang, 725000, China
| |
Collapse
|
26
|
Liu X, Hu J, Wang W, Yang H, Tao E, Ma Y, Sha S. Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments. Int J Mol Sci 2024; 25:7771. [PMID: 39063012 PMCID: PMC11277187 DOI: 10.3390/ijms25147771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) remains a threat to human health worldwide. Mycobacterium tuberculosis (Mtb) and other nontuberculous mycobacteria (NTM) can form biofilms, and in vitro and animal experiments have shown that biofilms cause serious drug resistance and mycobacterial persistence. Deeper investigations into the mechanisms of mycobacterial biofilm formation and, consequently, the exploration of appropriate antibiofilm treatments to improve the efficiency of current anti-TB drugs will be useful for curing TB. In this review, the genes and molecules that have been recently reported to be involved in mycobacterial biofilm development, such as ABC transporter, Pks1, PpiB, GroEL1, MprB, (p)ppGpp, poly(P), and c-di-GMP, are summarized. Biofilm-induced clinical problems, including biofilm-related infections and enhanced virulence, as well as their possible mechanisms, are also discussed in detail. Moreover, we also illustrate newly synthesized anti-TB agents that target mycobacterial biofilm, as well as some assistant methods with high efficiency in reducing biofilms in hosts, such as the use of nanoparticles.
Collapse
Affiliation(s)
- Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Hanyu Yang
- The Queen’s University of Belfast Joint College, China Medical University, Shenyang 110122, China;
| | - Erning Tao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| |
Collapse
|
27
|
Jakaria Al-Mujahidy SM, Kryukov K, Ikeo K, Saito K, Uddin ME, Ibn Sina AA. Functional genomic analysis of the isolated potential probiotic Lactobacillus delbrueckii subsp. indicus TY-11 and its comparison with other Lactobacillus delbrueckii strains. Microbiol Spectr 2024; 12:e0347023. [PMID: 38771133 PMCID: PMC11218508 DOI: 10.1128/spectrum.03470-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus. IMPORTANCE This study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.
Collapse
Affiliation(s)
- Sk. Md. Jakaria Al-Mujahidy
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kei Saito
- Laboratory of Physics and Cell Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Md. Ekhlas Uddin
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Abu Ali Ibn Sina
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
28
|
Yang X, Hu T, Liang J, Xiong Z, Lin Z, Zhao Y, Zhou X, Gao Y, Sun S, Yang X, Guddat LW, Yang H, Rao Z, Zhang B. An oligopeptide permease, OppABCD, requires an iron-sulfur cluster domain for functionality. Nat Struct Mol Biol 2024; 31:1072-1082. [PMID: 38548954 DOI: 10.1038/s41594-024-01256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024]
Abstract
Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs). Here, using cryo-electron microscopy, we determined the high-resolution structures of Mycobacterium tuberculosis OppABCD in the resting state, oligopeptide-bound pre-translocation state, AMPPNP-bound pre-catalytic intermediate state and ATP-bound catalytic intermediate state. The structures show an assembly of a cluster C SBP with its ABC translocator and a functionally required [4Fe-4S] cluster-binding domain in OppD. Moreover, the ATP-bound OppABCD structure has an outward-occluded conformation, although no substrate was observed in the transmembrane cavity. Here, we reveal an oligopeptide recognition and translocation mechanism of OppABCD, which provides a perspective on how this and other type I ABC importers facilitate bulk substrate transfer across the lipid bilayer.
Collapse
Affiliation(s)
- Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Zhenli Lin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaoting Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Queensland, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
29
|
Yang R, Yang Y, Yuan Y, Zhang B, Liu T, Shao Z, Li Y, Yang P, An J, Cao Y. MsABCG1, ATP-Binding Cassette G transporter from Medicago Sativa, improves drought tolerance in transgenic Nicotiana Tabacum. PHYSIOLOGIA PLANTARUM 2024; 176:e14446. [PMID: 39092508 DOI: 10.1111/ppl.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.
Collapse
Affiliation(s)
- Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yeyan Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yinying Yuan
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Benzhong Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zitong Shao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuanying Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Niu SQ, Song HR, Zhang X, Bao XW, Li T, He LY, Li Y, Li Y, Zhang DX, Bai J, Liu SJ, Guo JL. The Cd resistant mechanism of Proteus mirabilis Ch8 through immobilizing and detoxifying. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116432. [PMID: 38728947 DOI: 10.1016/j.ecoenv.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.
Collapse
Affiliation(s)
- Shu-Qi Niu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Hao-Ran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xiu-Wen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Ting Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dai-Xi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Si-Jing Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China.
| |
Collapse
|
31
|
Lekshmi M, Ortiz-Alegria A, Kumar S, Varela MF. Major facilitator superfamily efflux pumps in human pathogens: Role in multidrug resistance and beyond. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100248. [PMID: 38974671 PMCID: PMC11225705 DOI: 10.1016/j.crmicr.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The major facilitator superfamily (MFS) of proteins constitutes a large group of related solute transporters found across all known living taxa of organisms. The transporters of the MFS contain an extremely diverse array of substrates, including ions, molecules of intermediary metabolism, and structurally different antimicrobial agents. First discovered over 30 years ago, the MFS represents an important collection of integral membrane transporters. Bacterial microorganisms expressing multidrug efflux pumps belonging to the MFS are considered serious pathogens, accounting for alarming morbidity and mortality numbers annually. This review article considers recent advances in the structure-function relationships, the transport mechanism, and modulation of MFS multidrug efflux pumps within the context of drug resistance mechanisms of bacterial pathogens of public health concerns.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Post Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States
| | - Sanath Kumar
- QC Laboratory, Post Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States
| |
Collapse
|
32
|
Li X, Zheng Z, Zhou W, Huang H, Zhou Y, Xu Q, Zhu X, Teng Y. HOXB2 promotes cisplatin resistance by upregulating lncRNA DANCR in ovarian cancer. J Ovarian Res 2024; 17:124. [PMID: 38851728 PMCID: PMC11161928 DOI: 10.1186/s13048-024-01424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Ovarian cancer (OV) is a highly fatal malignant disease that commonly manifests at an advanced stage. Drug resistance, particularly platinum resistance, is a leading cause of treatment failure because first-line systemic chemotherapy primarily relies on platinum-based regimens. By analyzing the gene expression levels in the Cancer Genome Atlas database, Genotype-Tissue Expression database, and Gene Expression Omnibus datasets, we discerned that HOXB2 was highly expressed in OV and was associated with poor prognosis and cisplatin resistance. Immunohistochemistry and loss-of-function experiments on HOXB2 were conducted to explore its role in OV. We observed that suppressing HOXB2 could impair the growth and cisplatin resistance of OV in vivo and in vitro. Mechanical investigation and experimental validation based on RNA-Seq revealed that HOXB2 regulated ATP-binding cassette transporter members and the ERK signaling pathway. We further demonstrated that HOXB2 modulated the expression of long non-coding RNA DANCR, a differentiation antagonizing non-protein coding RNA, and thus influenced its downstream effectors ABCA1, ABCG1, and ERK signaling to boost drug resistance and cancer proliferation. These results verified that high expression of HOXB2 correlated with platinum resistance and poor prognosis of OV. Therefore, targeting HOXB2 may be a promising strategy for OV therapy.
Collapse
Grants
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- No. 81974406, No.82172934, and No.82002730 National Natural Science Foundation of China
- 21YF1434600 Shanghai Sailing Program
- 21YF1434600 Shanghai Sailing Program
- 21YF1434600 Shanghai Sailing Program
- 21YF1434600 Shanghai Sailing Program
- 21YF1434600 Shanghai Sailing Program
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhen Zheng
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian, China
| | - Wanzhen Zhou
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huixian Huang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qinyang Xu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaolu Zhu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Yincheng Teng
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
33
|
Gianinetti A, Ghizzoni R, Desiderio F, Morcia C, Terzi V, Baronchelli M. QTL Analysis of β-Glucan Content and Other Grain Traits in a Recombinant Population of Spring Barley. Int J Mol Sci 2024; 25:6296. [PMID: 38928003 PMCID: PMC11204098 DOI: 10.3390/ijms25126296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Barley with high grain β-glucan content is valuable for functional foods. The identification of loci for high β-glucan content is, thus, of great importance for barley breeding. Segregation mapping for the content in β-glucan and other barley grain components (starch, protein, lipid, ash, phosphorous, calcium, sodium) was performed using the progeny of the cross between Glacier AC38, a mutant with high amylose, and CDC Fibar, a high β-glucan waxy cultivar. The offspring of this cross showed transgressive segregation for β-glucan content. Linkage analysis based on single-nucleotide polymorphism (SNP) molecular markers was used for the genotyping of the parents and recombinant inbred lines (RILs). Two Quantitative Trait Loci (QTL) for β-glucan content and several QTL for other grain components were found. The former ones, located on chromosomes 1H and 7H, explained 27.9% and 27.4% of the phenotypic variance, respectively. Glacier AC38 provided the allele for high β-glucan content at the QTL on chromosome 1H, whereas CDC Fibar contributed the allele at the QTL on chromosome 7H. Their recombination resulted in a novel haplotype with higher β-glucan content, up to 18.4%. Candidate genes are proposed for these two QTL: HvCslF9, involved in β-glucan biosynthesis, for the QTL on chromosome 1H; Horvu_PLANET_7H01G069300, a gene encoding an ATP-Binding Cassette (ABC) transporter, for the QTL on chromosome 7H.
Collapse
|
34
|
Kasten A, Cascorbi I. Understanding the impact of ABCG2 polymorphisms on drug pharmacokinetics: focus on rosuvastatin and allopurinol. Expert Opin Drug Metab Toxicol 2024; 20:519-528. [PMID: 38809523 DOI: 10.1080/17425255.2024.2362184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION In addition to the well-established understanding of the pharmacogenetics of drug-metabolizing enzymes, there is growing data on the effects of genetic variation in drug transporters, particularly ATP-binding cassette (ABC) transporters. However, the evidence that these genetic variants can be used to predict drug effects and to adjust individual dosing to avoid adverse events is still limited. AREAS COVERED This review presents a summary of the current literature from the PubMed database as of February 2024 regarding the impact of genetic variants on ABCG2 function and their relevance to the clinical use of the HMG-CoA reductase inhibitor rosuvastatin and the xanthine oxidase inhibitor allopurinol. EXPERT OPINION Although there are pharmacogenetic guidelines for the ABCG2 missense variant Q141K, there is still some conflicting data regarding the clinical benefits of these recommendations. Some caution appears to be warranted in homozygous ABCG2 Q141K carriers when rosuvastatin is administered at higher doses and such information is already included in the drug label. The benefit of dose adaption to lower possible side effects needs to be evaluated in prospective clinical studies.
Collapse
Affiliation(s)
- Anne Kasten
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
35
|
Smith OB, Frkic RL, Rahman MG, Jackson CJ, Kaczmarski JA. Identification and Characterization of a Bacterial Periplasmic Solute Binding Protein That Binds l-Amino Acid Amides. Biochemistry 2024; 63:1322-1334. [PMID: 38696389 DOI: 10.1021/acs.biochem.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Periplasmic solute-binding proteins (SBPs) are key ligand recognition components of bacterial ATP-binding cassette (ABC) transporters that allow bacteria to import nutrients and metabolic precursors from the environment. Periplasmic SBPs comprise a large and diverse family of proteins, of which only a small number have been empirically characterized. In this work, we identify a set of 610 unique uncharacterized proteins within the SBP_bac_5 family that are found in conserved operons comprising genes encoding (i) ABC transport systems and (ii) putative amidases from the FmdA_AmdA family. From these uncharacterized SBP_bac_5 proteins, we characterize a representative periplasmic SBP from Mesorhizobium sp. A09 (MeAmi_SBP) and show that MeAmi_SBP binds l-amino acid amides but not the corresponding l-amino acids. An X-ray crystal structure of MeAmi_SBP bound to l-serinamide highlights the residues that impart distinct specificity for l-amino acid amides and reveals a structural Ca2+ binding site within one of the lobes of the protein. We show that the residues involved in ligand and Ca2+ binding are conserved among the 610 SBPs from experimentally uncharacterized FmdA_AmdA amidase-associated ABC transporter systems, suggesting these homologous systems are also likely to be involved in the sensing, uptake, and metabolism of l-amino acid amides across many Gram-negative nitrogen-fixing soil bacteria. We propose that MeAmi_SBP is involved in the uptake of such solutes to supplement pathways such as the citric acid cycle and the glutamine synthetase-glutamate synthase pathway. This work expands our currently limited understanding of microbial interactions with l-amino acid amides and bacterial nitrogen utilization.
Collapse
Affiliation(s)
- Oliver B Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rebecca L Frkic
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Marina G Rahman
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Joe A Kaczmarski
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
36
|
Chen Z, Zhang Y, Mao D, Wang X, Luo Y. NaClO Co-selects antibiotic and disinfectant resistance in Klebsiella pneumonia: Implications for the potential risk of extensive disinfectant use during COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134102. [PMID: 38554506 DOI: 10.1016/j.jhazmat.2024.134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
The inappropriate use of antibiotics is widely recognized as the primary driver of bacterial antibiotic resistance. However, less attention has been given to the potential induction of multidrug-resistant bacteria through exposure to disinfectants. In this study, Klebsiella pneumonia, an opportunistic pathogen commonly associated with hospital and community-acquired infection, was experimentally exposed to NaClO at both minimum inhibitory concentration (MIC) and sub-MIC levels over a period of 60 days. The result demonstrated that NaClO exposure led to enhanced resistance of K. pneumonia to both NaClO itself and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin). Concurrently, the evolved resistant strains exhibited fitness costs, as evidenced by decreased growth rates. Whole population sequencing revealed that both concentrations of NaClO exposure caused genetic mutations in the genome of K. pneumonia. Some of these mutations were known to be associated with antibiotic resistance, while others had not previously been identified as such. In addition, 11 identified mutations were located in the virulence factors, demonstrating that NaClO exposure may also impact the pathogenicity of K. pneumoniae. Overall, this study highlights the potential for the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic to contribute to the emergence of antibiotic-resistant bacteria. ENVIRONMENTAL IMPLICATION: Considering the potential hazardous effects of disinfectant residues on environment, organisms and biodiversity, the sharp rise in use of disinfectants during COVID-19 pandemic has been considered highly likely to cause worldwide secondary disasters in ecosystems and human health. This study demonstrated that NaClO exposure enhanced the resistance of K. pneumonia to both NaClO and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin), highlighting the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic may increase the emergence of antibiotic-resistant bacteria in the environment.
Collapse
Affiliation(s)
- Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yulin Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
37
|
Chen Y, Gu J, Yang B, Yang L, Pang J, Luo Q, Li Y, Li D, Deng Z, Dong C, Dong H, Zhang Z. Structure and activity of the septal peptidoglycan hydrolysis machinery crucial for bacterial cell division. PLoS Biol 2024; 22:e3002628. [PMID: 38814940 PMCID: PMC11139282 DOI: 10.1371/journal.pbio.3002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.
Collapse
Affiliation(s)
- Yatian Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiayue Gu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Biao Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lili Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Pang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Danyang Li
- The Cryo-EM Center, Core facility of Wuhan University, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Singh RP, Sinha A, Deb S, Kumari K. First report on in-depth genome and comparative genome analysis of a metal-resistant bacterium Acinetobacter pittii S-30, isolated from environmental sample. Front Microbiol 2024; 15:1351161. [PMID: 38741743 PMCID: PMC11089254 DOI: 10.3389/fmicb.2024.1351161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
A newly isolated bacterium Acinetobacter pittii S-30 was recovered from waste-contaminated soil in Ranchi, India. The isolated bacterium belongs to the ESKAPE organisms which represent the major nosocomial pathogens that exhibit high antibiotic resistance. Furthermore, average nucleotide identity (ANI) analysis also showed its closest match (>95%) to other A. pittii genomes. The isolate showed metal-resistant behavior and was able to survive up to 5 mM of ZnSO4. Whole genome sequencing and annotations revealed the occurrence of various genes involved in stress protection, motility, and metabolism of aromatic compounds. Moreover, genome annotation identified the gene clusters involved in secondary metabolite production (biosynthetic gene clusters) such as arylpolyene, acinetobactin like NRP-metallophore, betalactone, and hserlactone-NRPS cluster. The metabolic potential of A. pittii S-30 based on cluster of orthologous, and Kyoto Encyclopedia of Genes and Genomes indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux systems etc., which is relatively rare in A. pittii strains. Additionally, the presence of various carbohydrate-active enzymes such as glycoside hydrolases (GHs), glycosyltransferases (GTs), and other genes associated with lignocellulose breakdown suggests that strain S-30 has strong biomass degradation potential. Furthermore, an analysis of genetic diversity and recombination in A. pittii strains was performed to understand the population expansion hypothesis of A. pittii strains. To our knowledge, this is the first report demonstrating the detailed genomic characterization of a heavy metal-resistant bacterium belonging to A. pittii. Therefore, the A. pittii S-30 could be a good candidate for the promotion of plant growth and other biotechnological applications.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Ayushi Sinha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
39
|
Arumapperuma T, Snow AJD, Lee M, Sharma M, Zhang Y, Lingford JP, Goddard-Borger ED, Davies GJ, Williams SJ. Capture-and-release of a sulfoquinovose-binding protein on sulfoquinovose-modified agarose. Org Biomol Chem 2024; 22:3237-3244. [PMID: 38567495 DOI: 10.1039/d4ob00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The solute-binding protein (SBP) components of periplasmic binding protein-dependent ATP-binding cassette (ABC)-type transporters often possess exquisite selectivity for their cognate ligands. Maltose binding protein (MBP), the best studied of these SBPs, has been extensively used as a fusion partner to enable the affinity purification of recombinant proteins. However, other SBPs and SBP-ligand based affinity systems remain underexplored. The sulfoquinovose-binding protein SmoF, is a substrate-binding protein component of the ABC transporter cassette in Agrobacterium tumefaciens involved in importing sulfoquinovose (SQ) and its derivatives for SQ catabolism. Here, we show that SmoF binds with high affinity to the octyl glycoside of SQ (octyl-SQ), demonstrating remarkable tolerance to extension of the anomeric substituent. The 3D X-ray structure of the SmoF·octyl-SQ complex reveals accommodation of the octyl chain, which projects to the protein surface, providing impetus for the synthesis of a linker-equipped SQ-amine using a thiol-ene reaction as a key step, and its conjugation to cyanogen bromide modified agarose. We demonstrate the successful capture and release of SmoF from SQ-agarose resin using SQ as competitive eluant, and selectivity for release versus other organosulfonates. We show that SmoF can be captured and purified from a cell lysate, demonstrating the utility of SQ-agarose in capturing SQ binding proteins from complex mixtures. The present work provides a pathway for development of 'capture-and-release' affinity resins for the discovery and study of SBPs.
Collapse
Affiliation(s)
- Thimali Arumapperuma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Alexander J D Snow
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington YO10 5DD, UK.
| | - Mihwa Lee
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington YO10 5DD, UK.
| | - Yunyang Zhang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - James P Lingford
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia.
| | - Ethan D Goddard-Borger
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington YO10 5DD, UK.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
40
|
Shea AE, Forsyth VS, Stocki JA, Mitchell TJ, Frick-Cheng AE, Smith SN, Hardy SL, Mobley HLT. Emerging roles for ABC transporters as virulence factors in uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2024; 121:e2310693121. [PMID: 38607934 PMCID: PMC11032443 DOI: 10.1073/pnas.2310693121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Allyson E. Shea
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jolie A. Stocki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Taylor J. Mitchell
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Arwen E. Frick-Cheng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Sicily L. Hardy
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL36688
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
41
|
Pethe A, Debnath M. Wastewater treatment using moving bed biofilm reactor technology: a case study of ceramic industry. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11026. [PMID: 38641883 DOI: 10.1002/wer.11026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Abstract
Biological approaches and coagulation are frequently used to reduce the chemical oxygen demand (COD) for treatment of ceramic effluent water. The technology known as the moving bed biofilm reactor (MBBR) can accomplish this goal. Further, the process of emulsification-aided innovative MBBR using biosurfactants can be proposed for ceramic effluent treatment. In a step-by-step upgrading scheme, biosurfactants and a consortia of halophilic and halotolerant microbial culture was utilized for the treatment of the effluent water. Over the course of 21 days, a progressive decrease in COD of up to 95.79% was achieved. Over the next 48 h period, the biochemical oxygen demand (BOD) was reduced by 98.3%, while total suspended solids (TSS) decreased by 79.41%. With the use of this innovative MBBR technology, biofilm formation accelerated, lowering the COD, BOD, and TSS levels. This allows treated water to be used for further research on recycling it back into the ceramics sector and repurposing it for agricultural purposes. PRACTITIONER POINTS: Implementation of modified MBBR technology for the treatment of effluent water. Biosurfactants could reduce in the organic and inorganic loads. Increase in MLSS values with COD removal observed. The plant operations without the use of chemical coagulants was effective with biosurfactants. Biofilm formation on carriers was scraped and the presence of surfactin and rhamnolipid was confirmed.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| |
Collapse
|
42
|
Ganesan R, Gupta H, Jeong JJ, Sharma SP, Won SM, Oh KK, Yoon SJ, Han SH, Yang YJ, Baik GH, Bang CS, Kim DJ, Suk KT. Characteristics of microbiome-derived metabolomics according to the progression of alcoholic liver disease. Hepatol Int 2024; 18:486-499. [PMID: 37000389 DOI: 10.1007/s12072-023-10518-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/07/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIM The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL Clinicaltrials.gov, number NCT04339725.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Young Joo Yang
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Gwang Ho Baik
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Chang Seok Bang
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
43
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
44
|
Pranavathiyani G, Pan A. Prediction of Essential Proteins of Klebsiella pneumoniae using Integrative Bioinformatics and Systems Biology Approach: Unveiling New Avenues for Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:138-147. [PMID: 38478777 DOI: 10.1089/omi.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Klebsiella pneumoniae is an opportunistic multidrug-resistant bacterial pathogen responsible for various health care-associated infections. The prediction of proteins that are essential for the survival of bacterial pathogens can greatly facilitate the drug development and discovery pipeline toward target identification. To this end, the present study reports a comprehensive computational approach integrating bioinformatics and systems biology-based methods to identify essential proteins of K. pneumoniae involved in vital processes. From the proteome of this pathogen, we predicted a total of 854 essential proteins based on sequence, protein-protein interaction (PPI) and genome-scale metabolic model methods. These predicted essential proteins are involved in vital processes for cellular regulation such as translation, metabolism, and biosynthesis of essential factors, among others. Cluster analysis of the PPI network revealed the highly connected modules involved in the basic functionality of the organism. Further, the predicted consensus set of essential proteins of K. pneumoniae was evaluated by comparing them with existing resources (NetGenes and PATHOgenex) and literature. The findings of this study offer guidance toward understanding cell functionality, thereby facilitating the understanding of pathogen systems and providing a way forward to shortlist potential therapeutic candidates for developing novel antimicrobial agents against K. pneumoniae. In addition, the research strategy presented herein is a fusion of sequence and systems biology-based approaches that offers prospects as a model to predict essential proteins for other pathogens.
Collapse
Affiliation(s)
- Gnanasekar Pranavathiyani
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| |
Collapse
|
45
|
Hong HR, Prince CR, Tetreault DD, Wu L, Feaga HA. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. Proc Natl Acad Sci U S A 2024; 121:e2314437121. [PMID: 38349882 PMCID: PMC10895253 DOI: 10.1073/pnas.2314437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in Bacillus subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
46
|
Zhai L, Bonds AC, Smith CA, Oo H, Chou JCC, Welander PV, Dassama LMK. Novel sterol binding domains in bacteria. eLife 2024; 12:RP90696. [PMID: 38329015 PMCID: PMC10942540 DOI: 10.7554/elife.90696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Sterol lipids are widely present in eukaryotes and play essential roles in signaling and modulating membrane fluidity. Although rare, some bacteria also produce sterols, but their function in bacteria is not known. Moreover, many more species, including pathogens and commensal microbes, acquire or modify sterols from eukaryotic hosts through poorly understood molecular mechanisms. The aerobic methanotroph Methylococcus capsulatus was the first bacterium shown to synthesize sterols, producing a mixture of C-4 methylated sterols that are distinct from those observed in eukaryotes. C-4 methylated sterols are synthesized in the cytosol and localized to the outer membrane, suggesting that a bacterial sterol transport machinery exists. Until now, the identity of such machinery remained a mystery. In this study, we identified three novel proteins that may be the first examples of transporters for bacterial sterol lipids. The proteins, which all belong to well-studied families of bacterial metabolite transporters, are predicted to reside in the inner membrane, periplasm, and outer membrane of M. capsulatus, and may work as a conduit to move modified sterols to the outer membrane. Quantitative analysis of ligand binding revealed their remarkable specificity for 4-methylsterols, and crystallographic structures coupled with docking and molecular dynamics simulations revealed the structural bases for substrate binding by two of the putative transporters. Their striking structural divergence from eukaryotic sterol transporters signals that they form a distinct sterol transport system within the bacterial domain. Finally, bioinformatics revealed the widespread presence of similar transporters in bacterial genomes, including in some pathogens that use host sterol lipids to construct their cell envelopes. The unique folds of these bacterial sterol binding proteins should now guide the discovery of other proteins that handle this essential metabolite.
Collapse
Affiliation(s)
- Liting Zhai
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | - Amber C Bonds
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Clyde A Smith
- Department of Chemistry and Stanford Synchrotron Radiation Lightsource, Stanford UniversityStanfordUnited States
| | - Hannah Oo
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | | | - Paula V Welander
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Laura MK Dassama
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
47
|
Soares LW, King CG, Fernando CM, Roth A, Breaker RR. Genetic disruption of the bacterial raiA motif noncoding RNA causes defects in sporulation and aggregation. Proc Natl Acad Sci U S A 2024; 121:e2318008121. [PMID: 38306478 PMCID: PMC10861870 DOI: 10.1073/pnas.2318008121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 02/04/2024] Open
Abstract
Several structured noncoding RNAs in bacteria are essential contributors to fundamental cellular processes. Thus, discoveries of additional ncRNA classes provide opportunities to uncover and explore biochemical mechanisms relevant to other major and potentially ancient processes. A candidate structured ncRNA named the "raiA motif" has been found via bioinformatic analyses in over 2,500 bacterial species. The gene coding for the RNA typically resides between the raiA and comFC genes of many species of Bacillota and Actinomycetota. Structural probing of the raiA motif RNA from the Gram-positive anaerobe Clostridium acetobutylicum confirms key features of its sophisticated secondary structure model. Expression analysis of raiA motif RNA reveals that the RNA is constitutively produced but reaches peak abundance during the transition from exponential growth to stationary phase. The raiA motif RNA becomes the fourth most abundant RNA in C. acetobutylicum, excluding ribosomal RNAs and transfer RNAs. Genetic disruption of the raiA motif RNA causes cells to exhibit substantially decreased spore formation and diminished ability to aggregate. Restoration of normal cellular function in this knock-out strain is achieved by expression of a raiA motif gene from a plasmid. These results demonstrate that raiA motif RNAs normally participate in major cell differentiation processes by operating as a trans-acting factor.
Collapse
Affiliation(s)
- Lucas W. Soares
- Department of Microbial Pathogenesis, Yale University, New Haven, CT06536
| | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| | - Chrishan M. Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| | - Adam Roth
- HHMI, Yale University, New Haven, CT06511-8103
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
- HHMI, Yale University, New Haven, CT06511-8103
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
| |
Collapse
|
48
|
Ranjit P, Varkey D, Shah BS, Paulsen IT. Substrate specificity and ecological significance of PstS homologs in phosphorus uptake in marine Synechococcus sp. WH8102. Microbiol Spectr 2024; 12:e0278623. [PMID: 38179917 PMCID: PMC10846223 DOI: 10.1128/spectrum.02786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Phosphorus, a vital macronutrient, often limits primary productivity in marine environments. Marine Synechococcus strains, including WH8102, rely on high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate in oligotrophic oceans. However, WH8102 possesses three distinct PstS homologs whose substrate specificity and ecological roles are unclear. The three PstS homologs were heterologously expressed and purified to investigate their substrate specificity and binding kinetics. Our study revealed that all three PstS homologs exhibited a high degree of specificity for phosphate but differed in phosphate binding affinities. Notably, PstS1b displayed nearly 10-fold higher binding affinity (KD = 0.44 µM) compared to PstS1a (KD = 3.3 μM) and PstS2 (KD = 4.3 μM). Structural modeling suggested a single amino acid variation in the binding pocket of PstS1b (threonine instead of serine in PstS1a and PstS2) likely contributed to its higher Pi affinity. Genome context data, together with the protein biophysical data, suggest distinct ecological roles for the three PstS homologs. We propose that PstS1b may be involved in scavenging inorganic phosphorus in oligotrophic conditions and that PstS1a may be involved in transporting recycled phosphate derived from organic phosphate cleavage. The role of PstS2 is less clear, but it may be involved in phosphate uptake when environmental phosphate concentrations are transiently higher. The conservation of three distinct PstS homologs in Synechococcus clade III strains likely reflects distinct adaptations for P acquisition under varying oligotrophic conditions.IMPORTANCEPhosphorus is an essential macronutrient that plays a key role in marine primary productivity and biogeochemistry. However, intense competition for bioavailable phosphorus in the marine environment limits growth and productivity of ecologically important cyanobacteria. In oligotrophic oceans, marine Synechococcus strains, like WH8102, utilize high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate. However, WH8102 possesses three distinct PstS homologs, with unclear substrate specificity and ecological roles, creating a knowledge gap in understanding phosphorus acquisition mechanisms in picocyanobacteria. Through genomic, functional, biophysical, and structural analysis, our study unravels the ecological functions of these homologs. Our findings enhance our understanding of cyanobacterial nutritional uptake strategies and shed light on the crucial role of these conserved nutrient uptake systems in adaptation to specific niches, which ultimately underpins the success of marine Synechococcus across a diverse array of marine ecosystems.
Collapse
Affiliation(s)
- Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
49
|
Chen L, Luo Y, Zhang C, Liu X, Fang N, Wang X, Zhao X, Jiang J. Trifloxystrobin induced developmental toxicity by disturbing the ABC transporters, carbohydrate and lipid metabolism in adult zebrafish. CHEMOSPHERE 2024; 349:140747. [PMID: 38000556 DOI: 10.1016/j.chemosphere.2023.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The environmental risks of trifloxystrobin (TR) have drawn attention because of its multiplex toxicity on aquatic organisms, but few studies have paid close attention to its chronic toxicity at environmental concentrations. In present study, histopathology, metabolomics and transcriptomics were comprehensively performed to investigate the toxic effects and biological responses on adult zebrafish after exposure to 0.1, 1 and 10 μg/L TR for 21 d. Results demonstrated long-term exposure of TR affected zebrafish liver, ovary and heart development. Metabolomics revealed 0.1, 1 and 10 μg/L TR simultaneously decreased the carbohydrates enriched in glucose metabolism and ABC transporters pathways, such as glycogen, lactose, lactulose, maltose, maltotriose, d-trehalose, while 1 μg/L and 10 μg/L TR significantly increased many metabolites related to glycerophospholipid and sphingolipid metabolism in zebrafish liver. Transcriptomics showed TR activated the transcription of the Abcb4, Abcb5 and Abcb11 involved in ABC transporters, Pck1, Pfk, Hk, Gyg1a and Pygma related to glucose metabolism, as well as the Lpcat1, Lpcat4, Gpat2, Cers and Sgms in glycerophospholipid and sphingolipid metabolism. Results further demonstrated high concentration of TR strongly affected the DNA repair system, while low dose of TR caused pronounced effects on cardiomyocytes and oocyte regulation pathways at transcriptional levels. The results indicated the abnormal liver, gonad and heart development caused by TR might be ascribed to the disturbance of carbohydrates and lipid metabolism mediating by the Abcb4, Abcb5 and Abcb11 ABC transporters, and long-term exposure of environmental concentration of TR was sufficient to affect zebrafish normal metabolism and development.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
50
|
Mirabal B, Andrade BS, Souza SPA, Oliveira IBDS, Melo TS, Barbosa FS, Jaiswal AK, Seyffert N, Portela RW, Soares SDC, Azevedo V, Meyer R, Tiwari S, Castro TLDP. In silico approaches for predicting natural compounds with therapeutic potential and vaccine candidates against Streptococcus equi. J Biomol Struct Dyn 2024:1-15. [PMID: 38239063 DOI: 10.1080/07391102.2023.2301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Equine strangles is a prevalent disease that affects the upper respiratory in horses and is caused by the Gram-positive bacterium Streptococcus equi. In addition to strangles, other clinical conditions are caused by the two S. equi subspecies, equi and zooepidemicus, which present relevant zoonotic potential. Treatment of infections caused by S. equi has become challenging due to the worldwide spreading of infected horses and the unavailability of effective therapeutics and vaccines. Penicillin treatment is often recommended, but multidrug resistance issues arised. We explored the whole genome sequence of 18 S. equi isolates to identify candidate proteins to be targeted by natural drug-like compounds or explored as immunogens. We considered only proteins shared among the sequenced strains of subspecies equi and zooepidemicus, absent in the equine host and predicted to be essential and involved in virulence. Of these, 4 proteins with cytoplasmic subcellular location were selected for molecular docking with a library of 5008 compounds, while 6 proteins were proposed as prominent immunogens against S. equi due to their probabilities of behaving as adhesins. The molecular docking analyses revealed the best ten ligands for each of the 4 drug target candidates, and they were ranked according to their binding affinities and the number of hydrogen bonds for complex stability. Finally, the natural 5-ring compound C25H20F3N5O3 excelled in molecular dynamics simulations for the increased stability in the interaction with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB). This research paves the way to developing new therapeutics to minimize the impacts caused by S. equi infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bernardo Mirabal
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Silva Andrade
- Department of Biological Sciences, State University of Southwest Bahia, Jequié, Brazil
| | | | | | - Tarcisio Silva Melo
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Feira de Santana, Brazil
| | - Fabrício Santos Barbosa
- Postgraduate Program in Chemistry, State University of Southwest Bahia (UESB), Jequié, Brazil
| | - Arun Kumar Jaiswal
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nubia Seyffert
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Siomar de Castro Soares
- Microbiology and Parasitology, Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Sandeep Tiwari
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Thiago Luiz de Paula Castro
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|