1
|
Coffin JM, Kearney MF. False Alarm: XMRV, Cancer, and Chronic Fatigue Syndrome. Annu Rev Virol 2024; 11:261-281. [PMID: 38976866 DOI: 10.1146/annurev-virology-111821-125122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was first described in 2006 in some human prostate cancers. But it drew little attention until 2009, when it was also found, as infectious virus and as MLV-related DNA, in samples from people suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This discovery was rapidly followed by efforts of the international research community to understand the significance of the association and its potential to spread widely as an important human pathogen. Within a few years, efforts by researchers worldwide failed to repeat these findings, and mounting evidence for laboratory contamination with mouse-derived virus and viral DNA sequences became accepted as the explanation for the initial findings. As researchers engaged in these studies, we present here a historical review of the rise and fall of XMRV as a human pathogen, and we discuss the lessons learned from these events.
Collapse
Affiliation(s)
- John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA;
| | | |
Collapse
|
2
|
Moore PS, Chang Y. Are There More Human Cancer Viruses Left to Be Found? Annu Rev Virol 2024; 11:239-259. [PMID: 39326883 DOI: 10.1146/annurev-virology-111821-103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Of the thousands of viruses infecting humans, only seven cause cancer in the general population. Tumor sequencing is now a common cancer medicine procedure, and so it seems likely that more human cancer viruses already would have been found if they exist. Here, we review cancer characteristics that can inform a dedicated search for new cancer viruses, focusing on Kaposi sarcoma herpesvirus and Merkel cell polyomavirus as the most recent examples of successful genomic and transcriptomic searches. We emphasize the importance of epidemiology in determining which cancers to examine and describe approaches to virus discovery. Barriers to virus discovery, such as novel genomes and viral suppression of messenger RNA expression, may exist that prevent virus discovery using existing approaches. Optimally virus hunting should be performed in such a way that if no virus is found, the tumor can be reasonably excluded from having an infectious etiology and new information about the biology of the tumor can be found.
Collapse
Affiliation(s)
- Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
3
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
4
|
Shen J, Wen X, Xing X, Fozza C, Sechi LA. Endogenous retroviruses Suppressyn and Syncytin-2 as innovative prognostic biomarkers in Acute Myeloid Leukemia. Front Cell Infect Microbiol 2024; 13:1339673. [PMID: 38274728 PMCID: PMC10808309 DOI: 10.3389/fcimb.2023.1339673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Emerging evidence has proven that human endogenous retroviruses (HERVs) play a critical role in the pathogenesis of Acute Myeloid Leukemia (AML), whereas the specific HERVs influencing the prognosis of AML patients have yet to be fully understood. Methods In this study, a systematic exploration was achieved to identify potential prognostic HERVs for AML, sourced from TCGA and GTEx database. Differential analysis and functional enrichment studies were conducted using GO, KEGG, GSEA, and GSVA. The ESTIMATE algorithm was applied to explore the immune infiltration of HERVs in AML. A prognostic risk-score model was evaluated with predicted yearly accuracy using ROC analysis. Results Two HERVs Suppressyn and Syncytin-2, were identified as promising prognostic biomarkers, with high discrimination ability based on ROC analysis between AML and healthy cohorts from TCGA. Their expression was notably higher in AML patients compared to those in healthy individuals but correlates with favorable clinical outcomes in sub-groups such as white race, lower WBC counts, favorable and intermediate risks, and NPM1 or IDH1 mutation. Suppressyn and Syncytin-2 participated in immune-related pathways and exhibited correlations with multiple immune infiltration cells, such as T cells, mast cells, and tumor-associated macrophages. Finally, we developed a prognostic risk-scoring model combining Suppressyn and Syncytin-2, where a high risk-score is associated with better prognosis. Discussion Collectively, our findings revealed that Suppressyn and Syncytin-2 may act as valuable diagnostic and prognostic biomarkers for individuals with AML, while highlighting links between HERV activation, immunogenicity, and future therapeutic targets.
Collapse
Affiliation(s)
- Jiaxin Shen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaofen Wen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xueyang Xing
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Claudio Fozza
- Department of Medicine and Pharmacy, University of Sassari, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- SC of Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Simula ER, Zarbo IR, Arru G, Sechi E, Meloni R, Deiana GA, Solla P, Sechi LA. Antibody Response to HERV-K and HERV-W Envelope Epitopes in Patients with Myasthenia Gravis. Int J Mol Sci 2023; 25:446. [PMID: 38203616 PMCID: PMC10778599 DOI: 10.3390/ijms25010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Myasthenia gravis is an antibody-mediated autoimmune neurological disorder characterized by impaired neuromuscular junction transmission, resulting in muscle weakness. Recently, the involvement of Human Endogenous Retroviruses (HERVs) in the pathophysiology of different immune-mediated and neurodegenerative diseases, such as multiple sclerosis, has been demonstrated. We aimed to investigate potential immune system involvement related to humoral responses targeting specific epitopes of HERV-K and HERV-W envelope proteins in myasthenia gravis. Myasthenia gravis patients were recruited in the Neurology Unit, while healthy controls were selected from the Blood Transfusion Center, both affiliated with AOU Sassari. Highly immunogenic antigens of HERV-K and HERV-W envelope proteins were identified using the Immune Epitope Database (IEDB) online tool. These epitopes were utilized in enzyme-linked immunosorbent assays (ELISA) to detect autoantibodies in serum directed against these sequences. The study involved 39 Healthy Donors and 47 MG patients, further categorized into subgroups based on the presence of autoantibodies: MG-AchR Ab+ (n = 17), MG-MuSK Ab+ (n = 7), double seronegative patients (MG-DSN, n = 18), MG-LRP4 Ab + (n = 4), and one patient with no antibodies data (n = 1). Our findings revealed high levels of autoantibodies in myasthenia gravis patients directed against the HERV-K-env-su(19-37), HERV-K-env-su(109-126), HERV-K-env-su(164-186), HERV-W-env(93-108), HERV-W-env(129-14), and HERV-W-env(248-262) epitopes. Notably, these results remained highly significant even when patients were subdivided into MG-AchR Ab+ and MG-DSN subgroups. Correlation analysis further revealed significant positive associations between the antibody levels against HERV-K and HERV-W families in patients, suggesting a synergistic action of the two HERVs in the pathology context since this correlation is absent in the control group. This study marks the first identification of a specific humoral response directed against defined epitopes of HERV-K and HERV-W envelope proteins in myasthenia gravis patients. These findings lay the foundation for future investigations aimed at elucidating the molecular mechanisms driving this immune response. The detection of these autoantibodies suggests the potential for novel biomarkers, especially within the MG-DSN patient subgroup, addressing the need for new biomarkers in this population.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
| | - Ignazio Roberto Zarbo
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Giannina Arru
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Elia Sechi
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Rossella Meloni
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Giovanni Andrea Deiana
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy; (I.R.Z.); (G.A.); (E.S.); (R.M.); (G.A.D.)
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
6
|
Goubran M, Wang W, Indik S, Faschinger A, Wasilenko ST, Bintner J, Carpenter EJ, Zhang G, Nuin P, Macintyre G, Wong GKS, Mason AL. Isolation of a Human Betaretrovirus from Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14050886. [PMID: 35632628 PMCID: PMC9146342 DOI: 10.3390/v14050886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process. Accordingly, we tested the hypothesis that patients with PBC harbor a transmissible betaretrovirus by co-cultivation of PBC patients’ lymph node homogenates with the HS578T breast cancer line. Because of the low level of HBRV replication, betaretrovirus producing cells were subcloned to optimize viral isolation and production. Evidence of infection was provided by electron microscopy, RT-PCR, in situ hybridization, cloning of the HBRV proviral genome and demonstration of more than 3400 integration sites. Further evidence of viral transmissibility was demonstrated by infection of biliary epithelial cells. While HBRV did not show a preference for integration proximal to specific genomic features, analyses of common insertion sites revealed evidence of integration proximal to cancer associated genes. These studies demonstrate the isolation of HBRV with features similar to mouse mammary tumor virus and confirm that patients with PBC display evidence of a transmissible viral infection.
Collapse
Affiliation(s)
- Mariam Goubran
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Weiwei Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Stanislav Indik
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Alexander Faschinger
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Shawn T. Wasilenko
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Jasper Bintner
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Eric J. Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Guangzhi Zhang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Paulo Nuin
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Georgina Macintyre
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Gane K.-S. Wong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew L. Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-8176
| |
Collapse
|
7
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Abstract
Bats are infamous reservoirs of deadly human viruses. While retroviruses, such as the human immunodeficiency virus (HIV), are among the most significant of virus families that have jumped from animals into humans, whether bat retroviruses have the potential to infect and cause disease in humans remains unknown. Recent reports of retroviruses circulating in bat populations builds on two decades of research describing the fossil records of retroviral sequences in bat genomes and of viral metagenomes extracted from bat samples. The impact of the global COVID-19 pandemic demands that we pay closer attention to viruses hosted by bats and their potential as a zoonotic threat. Here we review current knowledge of bat retroviruses and explore the question of whether they represent a threat to humans.
Collapse
Affiliation(s)
- Joshua A. Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
10
|
Abstract
The simultaneous discovery in 1970 of reverse transcriptase in virions of retroviruses by Howard Temin and David Baltimore was perhaps the most dramatic scientific moment of the second half of the 20th century. Ten years previously, Temin's observation of cells transformed by Rous Sarcoma virus led him to the conclusion that retroviruses replicate through a DNA intermediate he called the provirus. This heretical hypothesis was greeted with derision by fellow scientists; Temin and Baltimore performed a simple experiment, rapidly reproduced, and convincing to all. Its result was a major paradigm shift-reversal of the central dogma of molecular biology. It immediately grabbed the attention of both the scientific and lay press. It also came at a key time for cancer research, at the start of the "War on Cancer." As a theoretical base and fundamental molecular tool, it enabled a decade of (largely fruitless) search for human oncogenic retroviruses but laid the foundation for the discovery of HIV 13 years later, leading to the development of effective therapy. I had the good fortune, as a student in Temin's lab, to witness these events. I am honored to be able to share my recollection on the occasion of their 50th anniversary.
Collapse
Affiliation(s)
- John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
11
|
Shah AH, Gilbert M, Ivan ME, Komotar RJ, Heiss J, Nath A. The role of human endogenous retroviruses in gliomas: from etiological perspectives and therapeutic implications. Neuro Oncol 2021; 23:1647-1655. [PMID: 34120190 DOI: 10.1093/neuonc/noab142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accounting for approximately 8% of the human genome, Human Endogenous Retroviruses (HERVs) have been implicated in a variety of cancers including gliomas. In normal cells, tight epigenetic regulation of HERVs prevent aberrant expression; however, in cancer cells, HERVs expression remains pervasive, suggesting a role of HERVs in oncogenic transformation. HERVs may contribute to oncogenesis in several ways including insertional mutagenesis, chromosomal rearrangements, proto-oncogene formation, and maintenance of stemness. On the other hand, recent data has suggested that reversing epigenetic silencing of HERVs may induce robust anti-tumor immune responses, suggesting HERVs' potential therapeutic utility in gliomas. By reversing epigenetic modifications that silence HERVs, DNA methyltransferase and histone deacetylase inhibitors may stimulate a viral-mimicry cascade via HERV-derived dsRNA formation that induce interferon-mediated apoptosis. Leveraging this anti-tumor autoimmune response may be a unique avenue to target certain subsets of epigenetically-dysregulated gliomas. Nevertheless, the role of HERVs in gliomas as either arbitrators of oncogenesis or forerunners of the innate anti-tumor immune response remains unclear. Here, we review the role of HERVs in gliomas, their potential dichotomous function in propagating oncogenesis and stimulating the anti-tumor immune response and identify future directions for research.
Collapse
Affiliation(s)
- Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine
| | - Mark Gilbert
- Neuro-oncology Branch, National Cancer Institute, National Institute of Health
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine
| | | | | |
Collapse
|
12
|
Neil SJ, Campbell EM. Fake Science: XMRV, COVID-19, and the Toxic Legacy of Dr. Judy Mikovits. AIDS Res Hum Retroviruses 2020; 36:545-549. [PMID: 32414291 PMCID: PMC7398426 DOI: 10.1089/aid.2020.0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One cannot spend >5 min on social media at the moment without finding a link to some conspiracy theory or other regarding the origin of SARS-CoV2, the coronavirus responsible for the COVID-19 pandemic. From the virus being deliberately released as a bioweapon to pharmaceutical companies blocking the trials of natural remedies to boost their dangerous drugs and vaccines, the Internet is rife with far-fetched rumors. And predictably, now that the first immunization trials have started, the antivaccine lobby has latched on to most of them. In the last week, the trailer for a new "bombshell documentary" Plandemic has been doing the rounds, gaining notoriety for being repeatedly removed from YouTube and Facebook. We usually would not pay much heed to such things, but for retrovirologists like us, the name associated with these claims is unfortunately too familiar: Dr. Judy Mikovits.
Collapse
Affiliation(s)
- Stuart J.D. Neil
- Department of Infectious Disease, School of Immunobiology and Microbial Sciences, King's College London, London, United Kingdom
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Pisano MP, Grandi N, Tramontano E. High-Throughput Sequencing is a Crucial Tool to Investigate the Contribution of Human Endogenous Retroviruses (HERVs) to Human Biology and Development. Viruses 2020; 12:E633. [PMID: 32545287 PMCID: PMC7354619 DOI: 10.3390/v12060633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.
Collapse
Affiliation(s)
- Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.P.P.); (N.G.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Cagliari, Italy
| |
Collapse
|
14
|
Pisano MP, Grandi N, Cadeddu M, Blomberg J, Tramontano E. Comprehensive Characterization of the Human Endogenous Retrovirus HERV-K(HML-6) Group: Overview of Structure, Phylogeny, and Contribution to the Human Genome. J Virol 2019; 93:e00110-19. [PMID: 31167914 PMCID: PMC6675890 DOI: 10.1128/jvi.00110-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/27/2019] [Indexed: 11/20/2022] Open
Abstract
Eight percent of the human genome is composed of human endogenous retroviruses (HERVs), remnants of ancestral germ line infections by exogenous retroviruses, which have been vertically transmitted as Mendelian characters. The HML-6 group, a member of the class II betaretrovirus-like viruses, includes several proviral loci with an increased transcriptional activity in cancer and at least two elements that are known for retaining an intact open reading frame and for encoding small proteins such as ERVK3-1, which is expressed in various healthy tissues, and HERV-K-MEL, a small Env peptide expressed in samples of cutaneous and ocular melanoma but not in normal tissues.IMPORTANCE We reported the distribution and genetic composition of 66 HML-6 elements. We analyzed the phylogeny of the HML-6 sequences and identified two main clusters. We provided the first description of a Rec domain within the env sequence of 23 HML-6 elements. A Rec domain was also predicted within the ERVK3-1 transcript sequence, revealing its expression in various healthy tissues. Evidence about the context of insertion and colocalization of 19 HML-6 elements with functional human genes are also reported, including the sequence 16p11.2, whose 5' long terminal repeat overlapped the exon of one transcript variant of a cellular zinc finger upregulated and involved in hepatocellular carcinoma. The present work provides the first complete overview of the HML-6 elements in GRCh37(hg19), describing the structure, phylogeny, and genomic context of insertion of each locus. This information allows a better understanding of the genetics of one of the most expressed HERV groups in the human genome.
Collapse
Affiliation(s)
- Maria Paola Pisano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
15
|
Close to the Bedside: A Systematic Review of Endogenous Retroviruses and Their Impact in Oncology. J Surg Res 2019; 240:145-155. [PMID: 30933828 DOI: 10.1016/j.jss.2019.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/22/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) are genetic elements in the human genome, which resulted from ancient retroviral germline infections. HERVs have strong transcriptional promoters and enhancers that affect a cell's transcriptome. They also encode proteins that can exert effects in human cells. This review examines how our increased understanding of HERVs have led to their potential use as biomarkers and immunologic targets. MATERIAL AND METHODS PubMed/Medline, Embase, Web of Science, and Cochrane databases were used in a systematic search to identify all articles studying the potential impact of HERVs on surgical diseases. The search included studies that involved clinical patient samples in diseases including cancer, inflammatory conditions, and autoimmune disease. Articles focused on conditions not routinely managed by surgeons were excluded. RESULTS Eighty six articles met inclusion and quality criteria for this review and were included. Breast cancer and melanoma have robust evidence regarding the use of HERVs as potential tumor markers and immunologic targets. Reported evidence of the activity of HERVs in colorectal cancer, pancreatic cancer, hepatocellular cancer, prostate and ovarian cancer, germ cell tumors as well as idiopathic pulmonary hypertension, and the inflammatory response in burns was also reviewed. CONCLUSIONS Increasingly convincing evidence indicates that HERVs may play a role in solid organ malignancy and present important biomarkers or immunologic targets in multiple cancers. Innovative investigation of HERVs is a valuable focus of translational research and can deepen our understanding of cellular physiology and the effects of endogenous retroviruses on human biology. As strategies for treatment continue to focus on genome-based interventions, understanding the impact of endogenous retroviruses on human disease will be critical.
Collapse
|
16
|
Lytvyak E, Hosamani I, Montano-Loza AJ, Saxinger L, Mason AL. Randomized clinical trial: Combination antiretroviral therapy with tenofovir-emtricitabine and lopinavir-ritonavir in patients with primary biliary cholangitis. CANADIAN LIVER JOURNAL 2019; 2:31-44. [PMID: 33981960 DOI: 10.3138/canlivj.2018-0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prior studies using reverse transcriptase inhibitors to treat a human betaretrovirus (HBRV) in patients with primary biliary cholangitis (PBC) resulted in a 21% reduction in alkaline phosphatase (ALP). Herein, we studied the safety and efficacy of combination tenofovir-emtricitabine (TDF/FTC) and lopinavir-ritonavir (LPRr) in PBC patients unresponsive to ursodeoxycholic acid (UDCA). METHODS A double-blind randomized controlled trial was performed in patients on UDCA for 6 months or more with ALP levels greater than two-fold the upper limit of normal or bilirubin greater than the upper limit of normal. Patients were randomized to daily TDF/FTC 300/200 mg and LPRr 800/200 mg versus identical placebo for 6 months. The primary endpoint was reduction of ALP below 1.67 × ULN or normalization of bilirubin. HBRV DNA levels were assessed in peripheral blood mononuclear cells (PBMC) using digital droplet polymerase chain reaction. RESULTS The enrolment was limited to 13 patients because most patients were unable to tolerate LPRr due to the development of gastrointestinal symptoms. No difference in the primary endpoint was achieved. A significant reduction was observed in ALP by 25% (P < 0.05) and in HBRV proviral load (P < 0.05) after 6 months of combination antiretroviral therapy. The majority of patients had diminished levels of LPRr after 6 months' therapy suggesting inadequate intake of protease inhibitor toward the end of the study. CONCLUSIONS Combination anti-retroviral therapy resulted in improvement in hepatic biochemistry with reduction in proviral load. The frequency of side effects from LPRr in patients with PBC exceeds the frequency reported for HIV, warranting the search for better tolerated combinations in future studies.
Collapse
Affiliation(s)
- Ellina Lytvyak
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ishwar Hosamani
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| | - Aldo J Montano-Loza
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| | - Lynora Saxinger
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew L Mason
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Kruse K, Nettling M, Wappler N, Emmer A, Kornhuber M, Staege MS, Grosse I. WebHERV: A Web Server for the Computational Investigation of Gene Expression Associated With Endogenous Retrovirus-Like Sequences. Front Microbiol 2018; 9:2384. [PMID: 30455669 PMCID: PMC6231192 DOI: 10.3389/fmicb.2018.02384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/18/2018] [Indexed: 01/25/2023] Open
Abstract
More than eight percent of the human genome consists of human endogenous retroviruses (HERVs). Typically, the expression of HERVs is repressed, but varying activities of HERVs have been observed in diseases ranging from cancer to neuro-degeneration. Such activities can include the transcription of HERV-derived open reading frames, which can be translated into proteins. However, as a consequence of mutations that disrupt open reading frames, most HERV-like sequences have lost their protein-coding capacity. Nevertheless, these loci can still influence the expression of adjacent genes and, hence, mediate biological effects. Here, we present WebHERV (http://calypso.informatik.uni-halle.de/WebHERV/), a web server that enables the computational prediction of active HERV-like sequences in the human genome based on a comparison of genome coordinates of expressed sequences uploaded by the user and genome coordinates of HERV-like sequences stored in the specialized key-value store DRUMS. Using WebHERV, we predicted putative candidates of active HERV-like sequences in Hodgkin lymphoma (HL) cell lines, validated one of them by a modified SMART (switching mechanism at 5′ end of RNA template) technique, and identified a new alternative transcription start site for cytochrome P450, family 4, subfamily Z, polypeptide 1 (CYP4Z1).
Collapse
Affiliation(s)
- Konstantin Kruse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin Nettling
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadine Wappler
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Malte Kornhuber
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Helios Hospital, Sangerhausen, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Klag T, Courth L, Ostaff MJ, Ott G, Stange EF, Malek NP, Seifarth W, Wehkamp J. Human Endogenous Retroviruses: Residues of Ancient Times Are Differentially Expressed in Crohn's Disease. Inflamm Intest Dis 2018; 3:125-137. [PMID: 30820434 DOI: 10.1159/000494026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background Eight percent of the human genome consists of human endogenous retroviruses (HERV). These genetic elements are remnants of ancient retroviral germ-line infections. Altered HERV expression is associated with several chronic inflammatory diseases. A physiological role of the HERV-derived proteins syncytin-1 and -2 has been described for the integrity of the human placental cell layer in terms of maintaining feto-maternal tolerance. The aim of this project was to investigate HERV expression in Crohn's disease (CD) with a further focus on syncytins in the gut. Material and Methods Seventy-four ileal and colonic tissue samples of CD patients and healthy controls have been investigated for mRNA expression of major HERV groups by a comprehensive microarray screening. The most prominent differences have been validated by qRT-PCR. Immunohistochemistry (IHC), Western Blot (WB) and qRT-PCR were performed for syncytin-1 and -2. Results HERV microarray screening revealed a distinct expression profile in ileal and colonic tissue, as well as differential expression in CD compared to healthy controls. qRT-PCR validated differential expression of at least 3 HERV-groups in CD. qRT-PCR, IHC and WB showed a tissue-dependent diminished epithelial expression of syncytins in inflamed CD. Conclusion For the first time, HERV expression has been comprehensively studied in the gut. Between CD and healthy controls we could show a tissue dependent differential HERV expression profile. Notably, we could show that syncytin-1 and -2 are expressed in the epithelial layer in ileal and colonic tissue samples, whereas their diminished tissue-dependent expression in inflamed CD might modulate inflammatory processes at the gut barrier.
Collapse
Affiliation(s)
- Thomas Klag
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Lioba Courth
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Maureen J Ostaff
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - German Ott
- Department of Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Eduard F Stange
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Wolfgang Seifarth
- Department of Internal Medicine III, University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Ottina E, Levy P, Eksmond U, Merkenschlager J, Young GR, Roels J, Stoye JP, Tüting T, Calado DP, Kassiotis G. Restoration of Endogenous Retrovirus Infectivity Impacts Mouse Cancer Models. Cancer Immunol Res 2018; 6:1292-1300. [PMID: 30143537 PMCID: PMC6485373 DOI: 10.1158/2326-6066.cir-18-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/19/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022]
Abstract
Mouse models have been instrumental in establishing fundamental principles of cancer initiation and progression and continue to be invaluable in the discovery and further development of cancer therapies. Nevertheless, important aspects of human disease are imperfectly approximated in mouse models, notably the involvement of endogenous retroviruses (ERVs). Replication-defective ERVs, present in both humans and mice, may affect tumor development and antitumor immunity through mechanisms not involving infection. Here, we revealed an adverse effect of murine ERVs with restored infectivity on the behavior of mouse cancer models. In contrast to human cancer, where infectious ERVs have never been detected, we found that ERV infectivity was frequently restored in transplantable, as well as genetic, mouse cancer models. Such replication-competent, ERV-derived retroviruses were responsible for unusually high expression of retroviral nucleic acids and proteins in mouse cancers. Infectious ERV-derived retroviruses produced by mouse cancer cells could directly infect tumor-infiltrating host immune cells and fundamentally modified the host's immune defenses to cancer, as well as the outcome of immunotherapy. Therefore, infectious retroviruses, variably arising in mouse cancer models, but not in human cancer, have the potential to confound many immunologic studies and should be considered as a variable, if not altogether avoided. Cancer Immunol Res; 6(11); 1292-300. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Endogenous Retroviruses/pathogenicity
- Female
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Positive Regulatory Domain I-Binding Factor 1/genetics
- Proto-Oncogene Proteins B-raf/genetics
- Retroviridae Infections/virology
- Viral Tropism/physiology
Collapse
Affiliation(s)
- Eleonora Ottina
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | - Prisca Levy
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | - Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, London, UK
| | - Juliette Roels
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | - Dinis P Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, London, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
20
|
Grandi N, Tramontano E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Front Immunol 2018; 9:2039. [PMID: 30250470 PMCID: PMC6139349 DOI: 10.3389/fimmu.2018.02039] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022] Open
Abstract
About 8% of our genome is composed of sequences with viral origin, namely human Endogenous Retroviruses (HERVs). HERVs are relics of ancient infections that affected the primates' germ line along the last 100 million of years, and became stable elements at the interface between self and foreign DNA. Intriguingly, HERV co-evolution with the host led to the domestication of activities previously devoted to the retrovirus life cycle, providing novel cellular functions. For example, selected HERV envelope proteins have been coopted for pregnancy-related purposes, and proviral Long Terminal Repeats participate in the transcriptional regulation of various cellular genes. Given the HERV persistence in the host genome and its basal expression in most healthy tissues, it is reasonable that human defenses should prevent HERV-mediated immune activation. Despite this, HERVs and their products (including RNA, cytosolic DNA, and proteins) are still able to modulate and be influenced by the host immune system, fascinatingly suggesting a central role in the evolution and functioning of the human innate immunity. Indeed, HERV sequences had been major contributors in shaping and expanding the interferon network, dispersing inducible genes that have been occasionally domesticated in various mammalian lineages. Also the HERV integration within or near to genes encoding for critical immune factors has been shown to influence their activity, or to be responsible for their polymorphic variation in the human population, such as in the case of an HERV-K(HML10) provirus in the major histocompatibility complex region. In addition, HERV expressed products have been shown to modulate innate immunity effectors, being therefore often related on the one side to inflammatory and autoimmune disorders, while on the other side to the control of excessive immune activation through their immunosuppressive properties. Finally, HERVs have been proposed to establish a protective effect against exogenous infections. The present review summarizes the involvement of HERVs and their products in innate immune responses, describing how their intricate interplay with the first line of human defenses can actively contribute either to the host protection or to his damage, implying a subtle balance between the persistence of HERV expression and the maintenance of a basal immune alert.
Collapse
Affiliation(s)
- Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
21
|
Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, Stoye J, Tristem M, Johnson WE. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology 2018; 15:59. [PMID: 30153831 PMCID: PMC6114882 DOI: 10.1186/s12977-018-0442-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
Retroviral integration into germline DNA can result in the formation of a vertically inherited proviral sequence called an endogenous retrovirus (ERV). Over the course of their evolution, vertebrate genomes have accumulated many thousands of ERV loci. These sequences provide useful retrospective information about ancient retroviruses, and have also played an important role in shaping the evolution of vertebrate genomes. There is an immediate need for a unified system of nomenclature for ERV loci, not only to assist genome annotation, but also to facilitate research on ERVs and their impact on genome biology and evolution. In this review, we examine how ERV nomenclatures have developed, and consider the possibilities for the implementation of a systematic approach for naming ERV loci. We propose that such a nomenclature should not only provide unique identifiers for individual loci, but also denote orthologous relationships between ERVs in different species. In addition, we propose that-where possible-mnemonic links to previous, well-established names for ERV loci and groups should be retained. We show how this approach can be applied and integrated into existing taxonomic and nomenclature schemes for retroviruses, ERVs and transposable elements.
Collapse
Affiliation(s)
- Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Hung Fan
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697, USA
| | - Thierry Heidmann
- Department of Molecular Physiology and Pathology of Infectious and Endogenous Retroviruses, CNRS UMR 9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Jens Mayer
- Department of Human Genetics, Center of Human and Molecular Biology, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jonathan Stoye
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, 02467, USA.
| |
Collapse
|
22
|
Abstract
The human betaretrovirus and the closely related mouse mammary tumor virus have been linked with the development of cholangitis and mitochondrial antibody production in patients with primary biliary cholangitis (PBC) and mouse models of autoimmune biliary disease, respectively. In vitro, betaretroviruses have been found to stimulate the expression of mitochondrial autoantigens on the cell surface of biliary epithelial cells. In vivo, both mitochondrial autoantigens and viral proteins have been shown to be co-expressed in biliary epithelium and lymphoid tissue. Notably, both mice and humans make poor antibody responses to betaretrovirus infection, whereas proinflammatory responses to viral proteins have been observed in T lymphocyte studies. Furthermore, proviral integration studies have confirmed the presence of human betaretrovirus in biliary epithelium of patients with PBC. Preliminary proof of principal studies using combination antiretroviral therapy have shown that suppression of viral expression is associated with sustained biochemical response. As the previous regimen used was poorly tolerated, further randomized controlled trials are planned to determine whether betaretrovirus infection plays an important role in the development of PBC.
Collapse
Affiliation(s)
- Andrew L Mason
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
23
|
Kassiotis G, Stoye JP. Making a virtue of necessity: the pleiotropic role of human endogenous retroviruses in cancer. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0277. [PMID: 28893944 PMCID: PMC5597744 DOI: 10.1098/rstb.2016.0277] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/18/2022] Open
Abstract
Like all other mammals, humans harbour an astonishing number of endogenous retroviruses (ERVs), as well as other retroelements, embedded in their genome. These remnants of ancestral germline infection with distinct exogenous retroviruses display various degrees of open reading frame integrity and replication capability. Modern day exogenous retroviruses, as well as the infectious predecessors of ERVs, are demonstrably oncogenic. Further, replication-competent ERVs continue to cause cancers in many other species of mammal. Moreover, human cancers are characterized by transcriptional activation of human endogenous retroviruses (HERVs). These observations conspire to incriminate HERVs as causative agents of human cancer. However, exhaustive investigation of cancer genomes suggests that HERVs have entirely lost the ability for re-infection and thus the potential for insertional mutagenic activity. Although there may be non-insertional mechanisms by which HERVs contribute to cancer development, recent evidence also uncovers potent anti-tumour activities exerted by HERV replication intermediates or protein products. On balance, it appears that HERVs, despite their oncogenic past, now represent potential targets for immune-mediated anti-tumour mechanisms. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK .,Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, UK .,Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
24
|
Grandi N, Tramontano E. HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Front Microbiol 2018; 9:462. [PMID: 29593697 PMCID: PMC5861771 DOI: 10.3389/fmicb.2018.00462] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancient infections accounting for about the 8% of our genome. Despite their persistence in human DNA led to the accumulation of mutations, HERVs are still contributing to the human transcriptome, and a growing number of findings suggests that their expression products may have a role in various diseases. Among HERV products, the envelope proteins (Env) are currently highly investigated for their pathogenic properties, which could likely be participating to several disorders with complex etiology, particularly in the contexts of autoimmunity and cancer. In fact, HERV Env proteins have been shown, on the one side, to trigger both innate and adaptive immunity, prompting inflammatory, cytotoxic and apoptotic reactions; and, on the other side, to prevent the immune response activation, presenting immunosuppressive properties and acting as immune downregulators. In addition, HERV Env proteins have been shown to induce abnormal cell-cell fusion, possibly contributing to tumor development and metastasizing processes. Remarkably, even highly defective HERV env genes and alternative env splicing variants can provide further mechanisms of pathogenesis. A well-known example is the HERV-K(HML2) env gene that, depending on the presence or the absence of a 292-bp deletion, can originate two proteins of different length (Np9 and Rec) proposed to have oncogenic properties. The understanding of their involvement in complex pathological disorders made HERV Env proteins potential targets for therapeutic interventions. Of note, a monoclonal antibody directed against a HERV-W Env is currently under clinical trial as therapeutic approach for multiple sclerosis, representing the first HERV-based treatment. The present review will focus on the current knowledge of the HERV Env expression, summarizing its role in human physiology and its possible pathogenic effects in various cancer and autoimmune disorders. It moreover analyzes HERV Env possible exploitation for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
25
|
Gröger V, Cynis H. Human Endogenous Retroviruses and Their Putative Role in the Development of Autoimmune Disorders Such as Multiple Sclerosis. Front Microbiol 2018; 9:265. [PMID: 29515547 PMCID: PMC5826199 DOI: 10.3389/fmicb.2018.00265] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral germ line infections of human ancestors and make up ~8% of the human genome. Under physiological conditions, these elements are frequently inactive or non-functional due to deactivating mutations and epigenetic control. However, they can be reactivated under certain pathological conditions and produce viral transcripts and proteins. Several disorders, like multiple sclerosis or amyotrophic lateral sclerosis are associated with increased HERV expression. Although their detailed contribution to individual diseases has yet to be elucidated, an increasing number of studies in vitro and in vivo suggest HERVs as potent modulators of the immune system. They are able to affect the transcription of other immune-related genes, interact with pattern recognition receptors, and influence the positive and negative selection of developing thymocytes. Interestingly, HERV envelope proteins can both stimulate and suppress immune responses based on different mechanisms. In the light of HERV proteins becoming an emerging drug target for autoimmune-related disorders and cancer, we will provide an overview on recent findings of the complex interactions between HERVs and the human immune system with a focus on autoimmunity.
Collapse
Affiliation(s)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| |
Collapse
|
26
|
Grandi N, Cadeddu M, Blomberg J, Mayer J, Tramontano E. HERV-W group evolutionary history in non-human primates: characterization of ERV-W orthologs in Catarrhini and related ERV groups in Platyrrhini. BMC Evol Biol 2018; 18:6. [PMID: 29351742 PMCID: PMC5775608 DOI: 10.1186/s12862-018-1125-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/14/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The genomes of all vertebrates harbor remnants of ancient retroviral infections, having affected the germ line cells during the last 100 million years. These sequences, named Endogenous Retroviruses (ERVs), have been transmitted to the offspring in a Mendelian way, being relatively stable components of the host genome even long after their exogenous counterparts went extinct. Among human ERVs (HERVs), the HERV-W group is of particular interest for our physiology and pathology. A HERV-W provirus in locus 7q21.2 has been coopted during evolution to exert an essential role in placenta, and the group expression has been tentatively linked to Multiple Sclerosis and other diseases. Following up on a detailed analysis of 213 HERV-W insertions in the human genome, we now investigated the ERV-W group genomic spread within primate lineages. RESULTS We analyzed HERV-W orthologous loci in the genome sequences of 12 non-human primate species belonging to Simiiformes (parvorders Catarrhini and Platyrrhini), Tarsiiformes and to the most primitive Prosimians. Analysis of HERV-W orthologous loci in non-human Catarrhini primates revealed species-specific insertions in the genomes of Chimpanzee (3), Gorilla (4), Orangutan (6), Gibbon (2) and especially Rhesus Macaque (66). Such sequences were acquired in a retroviral fashion and, in the majority of cases, by L1-mediated formation of processed pseudogenes. There were also a number of LTR-LTR homologous recombination events that occurred subsequent to separation of Catarrhini sub-lineages. Moreover, we retrieved 130 sequences in Marmoset and Squirrel Monkeys (family Cebidae, Platyrrhini parvorder), identified as ERV1-1_CJa based on RepBase annotations, which appear closely related to the ERV-W group. Such sequences were also identified in Atelidae and Pitheciidae, representative of the other Platyrrhini families. In contrast, no ERV-W-related sequences were found in genome sequence assemblies of Tarsiiformes and Prosimians. CONCLUSIONS Overall, our analysis now provides a detailed picture of the ERV-W sequences colonization of the primate lineages genomes, revealing the exact dynamics of ERV-W locus formations as well as novel insights into the evolution and origin of the group.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| |
Collapse
|
27
|
Chang Y, Moore PS, Weiss RA. Human oncogenic viruses: nature and discovery. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160264. [PMID: 28893931 PMCID: PMC5597731 DOI: 10.1098/rstb.2016.0264] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Seven kinds of virus collectively comprise an important cause of cancer, particularly in less developed countries and for people with damaged immune systems. Discovered over the past 54 years, most of these viruses are common infections of humankind for which malignancy is a rare consequence. Various cofactors affect the complex interaction between virus and host and the likelihood of cancer emerging. Although individual human tumour viruses exert their malignant effects in different ways, there are common features that illuminate mechanisms of oncogenesis more generally, whether or not there is a viral aetiology.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Yuan Chang
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Res Pav 1.8, Pittsburgh, PA 15213, USA
| | - Patrick S Moore
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Res Pav 1.8, Pittsburgh, PA 15213, USA
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, Cruciform Bldg 1.3, Gower Street, London WC1 6BT, UK
| |
Collapse
|
28
|
Díaz-Carballo D, Klein J, Acikelli AH, Wilk C, Saka S, Jastrow H, Wennemuth G, Dammann P, Giger-Pabst U, Khosrawipour V, Rassow J, Nienen M, Strumberg D. Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells. Oncotarget 2017; 8:95945-95964. [PMID: 29221178 PMCID: PMC5707072 DOI: 10.18632/oncotarget.21606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 08/25/2017] [Indexed: 12/24/2022] Open
Abstract
About 8 % of the human genome consists of human endogenous retroviruses (HERVs), which are relicts of ancient exogenous retroviral infections incurred during evolution. Although the majority of HERVs have functional gene defects or epigenetic modifications, many of them are still able to produce retroviral proteins that have been proposed to be involved in cellular transformation and cancer development. We found that, in chemo-resistant U87RETO glioblastoma cells, cytotoxic stress induced by etoposide promotes accumulation and large-scale fission of mitochondria, associated with the detection of HERV-WE1 (syncytin-1) and HERV-FRD1 (syncytin-2) in these organelles. In addition, mitochondrial preparations also contained the corresponding receptors, i.e. ASCT2 and MFSD2. We clearly demonstrated that mitochondria associated with HERV-proteins were shuttled between adjacent cancer cells not only via tunneling tubes, but also by direct cellular uptake across the cell membrane. Furthermore, anti-syncytin-1 and anti-syncytin-2 antibodies were able to specifically block this direct cellular uptake of mitochondria even more than antibodies targeting the cognate receptors. Here, we suggest that the association of mitochondria with syncytin-1/syncytin-2 together with their respective receptors could represent a novel mechanism of cell-to-cell transfer. In chemotherapy-refractory cancer cells, this might open up attractive avenues to novel mitochondria-targeting therapies.
Collapse
Affiliation(s)
- David Díaz-Carballo
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Jacqueline Klein
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Ali H Acikelli
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Camilla Wilk
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Sahitya Saka
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Holger Jastrow
- Institute of Anatomy and Experimental Morphology, University of Duisburg-Essen, Essen, Germany
| | - Gunther Wennemuth
- Institute of Anatomy and Experimental Morphology, University of Duisburg-Essen, Essen, Germany
| | - Phillip Dammann
- Central Animal Laboratory, University of Duisburg-Essen, Essen, Germany
| | - Urs Giger-Pabst
- Department of Surgery, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Veria Khosrawipour
- Department of Surgery, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Joachim Rassow
- Institute of Biochemistry and Pathobiochemistry, Department of Cellular Biochemistry, Ruhr-University of Bochum, Bochum, Germany
| | - Mikalai Nienen
- Department of Nephrology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Dirk Strumberg
- Institute for Molecular Oncology and Experimental Therapeutics, Department of Hematology and Medical Oncology, Marienhospital Herne, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
29
|
Kriesel JD, Bhetariya PJ, Chan BK, Wilson T, Fischer KF. Enrichment of Retroviral Sequences in Brain Tissue from Patients with Severe Demyelinating Diseases. ACTA ACUST UNITED AC 2017; 3. [PMID: 29202119 PMCID: PMC5707126 DOI: 10.16966/2473-1846.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Our group has used deep sequencing to identify viral RNA signatures in human brain specimens. We have previously used this method to detect HSV1, GBV-C, and measles virus sequence in brain tissue from deceased donors. Deep sequencing was performed on brain specimens from a cohort of patients who died with progressive forms of MS, revealing evidence of increased expression of some human endogenous retrovirus (HERV) domains. Objectives Identify RNA sequences and new antigens involved in the pathogenesis of MS Methods Deep sequencing was performed on RNA extracted from 12 progressive MS, 2 neuromyelitis optica (MS/NMO = demyelination group), 14 normal control, and 7 other neurologic disease (OND) control frozen brain specimens. The resulting single-ended 50 bp sequences (reads) were compared to a non redundant viral database representing (NRVDB) all 1.2 M viral records in GenBank. A retroviral gene catalog (RVGC) was prepared by identifying human genetic loci (GRCh37.p13) homologous to domains contained in the Gypsy 2.0 retro element database. Reads were aligned to the RVGC and human transcriptome with Bowtie2. The resulting viral hit rates (VHRs) were normalized by the number of high quality reads. The expression of human genes, including HERVs, was determined using Cufflinks. Comparisons between the groups were performed using the false discovery rate. Results Fifty to 131 million high quality reads per specimen were obtained. Comparison of the reads to the NRVDB suggested that the demyelination and OND specimens had higher VHRs against some retroviral sequences compared with the controls. This was confirmed by retroviral domain averaging. Gene expression analysis showed differential expression among some HERV sequences. Single read mapping revealed one envelope and one reverse transcriptase sequence record that were significantly enriched among the demyelination samples compared to the normal controls. Less restrictive (comprehensive) read mapping showed that 2 integrase, 2 core, 2 envelope, and 3 KRAB sequences that were overexpressed in the demyelination group. Conclusions These data demonstrate that some endogenous retroviral sequences are significantly overexpressed in these demyelination brain tissue specimens, but the magnitude of this overexpression is small. This is consistent with the concept of HERV activation as a part of the innate immune response.
Collapse
Affiliation(s)
- J D Kriesel
- Department of Internal Medicine, Division of Infectious Diseases, USA
| | - P J Bhetariya
- Department of Internal Medicine, Division of Infectious Diseases, USA
| | - B K Chan
- Yale University, Department of Ecology and Evolutionary Biology, New Haven, Connecticut, USA
| | - T Wilson
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - K F Fischer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
30
|
Grandi N, Tramontano E. Type W Human Endogenous Retrovirus (HERV-W) Integrations and Their Mobilization by L1 Machinery: Contribution to the Human Transcriptome and Impact on the Host Physiopathology. Viruses 2017; 9:v9070162. [PMID: 28653997 PMCID: PMC5537654 DOI: 10.3390/v9070162] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Human Endogenous Retroviruses (HERVs) are ancient infection relics constituting ~8% of our DNA. While HERVs’ genomic characterization is still ongoing, impressive amounts of data have been obtained regarding their general expression across tissues. Among HERVs, one of the most studied is the W group, which is the sole HERV group specifically mobilized by the long interspersed element-1 (LINE-1) machinery, providing a source of novel insertions by retrotransposition of HERV-W processed pseudogenes, and comprising a member encoding a functional envelope protein coopted for human placentation. The HERV-W group has been intensively investigated for its putative role in several diseases, such as cancer, inflammation, and autoimmunity. Despite major interest in the link between HERV-W expression and human pathogenesis, no conclusive correlation has been demonstrated so far. In general, (i) the absence of a proper identification of the specific HERV-W sequences expressed in a given condition; and (ii) the lack of studies attempting to connect the various observations in the same experimental conditions are the major problems preventing the definitive assessment of the HERV-W impact on human physiopathology. In this review, we summarize the current knowledge on the HERV-W group presence within the human genome and its expression in physiological tissues as well as in the main pathological contexts.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
31
|
Panelli S, Lorusso L, Balestrieri A, Lupo G, Capelli E. XMRV and Public Health: The Retroviral Genome Is Not a Suitable Template for Diagnostic PCR, and Its Association with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Appears Unreliable. Front Public Health 2017; 5:108. [PMID: 28589117 PMCID: PMC5439170 DOI: 10.3389/fpubh.2017.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
A few years ago, a highly significant association between the xenotropic murine leukemia virus-related virus (XMRV) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a complex debilitating disease of poorly understood etiology and no definite treatment, was reported in Science, raising concern for public welfare. Successively, the failure to reproduce these findings, and the suspect that the diagnostic PCR was vitiated by laboratory contaminations, led to the retraction of the paper. Notwithstanding, XMRV continued to be the subject of researches and public debates. Occasional positivity in humans was also detected recently, even if the data always appeared elusive and non-reproducible. In this study, we discuss the current status of this controversial association and propose that a major role in the unreliability of the results was played by the XMRV genomic composition in itself. In this regard, we present bioinformatic analyses that show: (i) aspecific, spurious annealings of the available primers in multiple homologous sites of the human genome; (ii) strict homologies between whole XMRV genome and interspersed repetitive elements widespread in mammalian genomes. To further detail this scenario, we screen several human and mammalian samples by using both published and newly designed primers. The experimental data confirm that available primers are far from being selective and specific. In conclusion, the occurrence of highly conserved, repeated DNA sequences in the XMRV genome deeply undermines the reliability of diagnostic PCRs by leading to artifactual and spurious amplifications. Together with all the other evidences, this makes the association between the XMRV retrovirus and CFS totally unreliable.
Collapse
Affiliation(s)
- Simona Panelli
- Department of Earth and Environmental Sciences, Section of Animal Biology, University of Pavia, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Pavia, Italy
| | - Lorenzo Lorusso
- Neurology Unit, A.S.S.T. Franciacorta, Chiari (Brescia), Italy
| | | | - Giuseppe Lupo
- Department of Earth and Environmental Sciences, Section of Animal Biology, University of Pavia, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Pavia, Italy
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, Section of Animal Biology, University of Pavia, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Pavia, Italy
| |
Collapse
|
32
|
Morandi E, Tarlinton RE, Tanasescu R, Gran B. Human endogenous retroviruses and multiple sclerosis: Causation, association, or after-effect? Mult Scler 2017; 23:1050-1055. [DOI: 10.1177/1352458517704711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
From the early days of MS discovery, infections have been proposed as a possible cause of the disease. In the last three decades, an association between human endogenous retrovirus expression and MS has been further investigated and confirmed. Nevertheless, the role of such retroviruses in the disease needs clarification. In this review, we introduce MSRV/HERV-W and describe its association with MS. We then summarize the evidence for the involvement of MSRV/HERV-W in the aetiology and progression of MS and its possible role as biomarker and drug target. Biological mechanisms for HERV effects in MS may involve the activation of innate immune pathways by the envelope protein of MSRV (MSRVEnv). In addition to in vitro and experimental studies, further insight on how HERVs may influence immune-mediated pathology in MS may also come from the use of antiretroviral treatments in patients.
Collapse
Affiliation(s)
- Elena Morandi
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK
| | - Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Radu Tanasescu
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK/Division of Clinical Neurosciences, Department of Neurology, University of Medicine and Pharmacy Carol Davila, Colentina Hospital, Bucharest, Romania
| | - Bruno Gran
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK/Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
33
|
Xenotropic Murine Leukemia Virus-Related Virus (XMRV) and the Safety of the Blood Supply. Clin Microbiol Rev 2017; 29:749-57. [PMID: 27358491 DOI: 10.1128/cmr.00086-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In 2006, a new virus, xenotropic murine leukemia virus-related virus (XMRV), was discovered in a cohort of U.S. men with prostate cancer. Soon after this initial finding, XMRV was also detected in samples from patients with chronic fatigue syndrome (CFS). The blood community, which is highly sensitive to the threat of emerging infectious diseases since the HIV/AIDS crisis, recommended indefinite deferral of all blood donors with a history of CFS. As XMRV research progressed, conflicting results emerged regarding the importance of this virus in the pathophysiology of prostate cancer and/or CFS. Molecular biologists traced the development of XMRV to a recombination event in a laboratory mouse that likely occurred circa 1993. The virus was propagated via cell lines derived from a tumor present in this mouse and spread through contamination of laboratory samples. Well-controlled experiments showed that detection of XMRV was due to contaminated samples and was not a marker of or a causal factor in prostate cancer or CFS. This paper traces the development of XMRV in the prostate and CFS scientific communities and explores the effect it had on the blood community.
Collapse
|
34
|
Abstract
Understanding pathogen exchange among human, wildlife, and livestock populations, and the varying ecological and cultural contexts in which this exchange takes place, is a major challenge. The present review contextualizes the risk factors that result from human interactions with livestock, companion animals, animal exhibits, wildlife through nature-based tourism, and wildlife through consumption. Given their phylogenetic relatedness to humans, primates are emphasized in this discussion; primates serve as reservoirs for several human pathogens, and some human pathogens can decimate wild primate populations. Anthropologists must play a central role in understanding cultural variation in attitudes toward other species as well as perceived risks when interacting with animals. I argue that the remediation of emerging infectious diseases will be accomplished primarily through human behavioral changes rather than through efforts in pathogen discovery. Given the history of human interactions with wildlife, candid discussions on zoonotic diseases will be increasingly important for our combined survival.
Collapse
|
35
|
Affiliation(s)
- John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111;
| | - Hung Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| |
Collapse
|
36
|
Grandi N, Cadeddu M, Blomberg J, Tramontano E. Contribution of type W human endogenous retroviruses to the human genome: characterization of HERV-W proviral insertions and processed pseudogenes. Retrovirology 2016; 13:67. [PMID: 27613107 PMCID: PMC5016936 DOI: 10.1186/s12977-016-0301-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Background Human endogenous retroviruses (HERVs) are ancient sequences integrated in the germ line cells and vertically transmitted through the offspring constituting about 8 % of our genome. In time, HERVs accumulated mutations that compromised their coding capacity. A prominent exception is HERV-W locus 7q21.2, producing a functional Env protein (Syncytin-1) coopted for placental syncytiotrophoblast formation. While expression of HERV-W sequences has been investigated for their correlation to disease, an exhaustive description of the group composition and characteristics is still not available and current HERV-W group information derive from studies published a few years ago that, of course, used the rough assemblies of the human genome available at that time. This hampers the comparison and correlation with current human genome assemblies. Results In the present work we identified and described in detail the distribution and genetic composition of 213 HERV-W elements. The bioinformatics analysis led to the characterization of several previously unreported features and provided a phylogenetic classification of two main subgroups with different age and structural characteristics. New facts on HERV-W genomic context of insertion and co-localization with sequences putatively involved in disease development are also reported. Conclusions The present work is a detailed overview of the HERV-W contribution to the human genome and provides a robust genetic background useful to clarify HERV-W role in pathologies with poorly understood etiology, representing, to our knowledge, the most complete and exhaustive HERV-W dataset up to date. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042, Monserrato, Cagliari, Italy. .,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy.
| |
Collapse
|
37
|
Abstract
After the discovery of retroviral reverse transcriptase in 1970, there was a flurry of activity, sparked by the "War on Cancer," to identify human cancer retroviruses. After many false claims resulting from various artifacts, most scientists abandoned the search, but the Gallo laboratory carried on, developing both specific assays and new cell culture methods that enabled them to report, in the accompanying 1980 PNAS paper, identification and partial characterization of human T-cell leukemia virus (HTLV; now known as HTLV-1) produced by a T-cell line from a lymphoma patient. Follow-up studies, including collaboration with the group that first identified a cluster of adult T-cell leukemia (ATL) cases in Japan, provided conclusive evidence that HTLV was the cause of this disease. HTLV-1 is now known to infect at least 4-10 million people worldwide, about 5% of whom will develop ATL. Despite intensive research, knowledge of the viral etiology has not led to improvement in treatment or outcome of ATL. However, the technology for discovery of HTLV and acknowledgment of the existence of pathogenic human retroviruses laid the technical and intellectual foundation for the discovery of the cause of AIDS soon afterward. Without this advance, our ability to diagnose and treat HIV infection most likely would have been long delayed.
Collapse
|
38
|
Parrish NF, Tomonaga K. Endogenized viral sequences in mammals. Curr Opin Microbiol 2016; 31:176-183. [PMID: 27128186 DOI: 10.1016/j.mib.2016.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
Reverse-transcribed RNA molecules compose a significant portion of the human genome. Many of these RNA molecules were retrovirus genomes either infecting germline cells or having done so in a previous generation but retaining transcriptional activity. This mechanism itself accounts for a quarter of the genomic sequence information of mammals for which there is data. We understand relatively little about the causes and consequences of retroviral endogenization. This review highlights functions ascribed to sequences of viral origin endogenized into mammalian genomes and suggests some of the most pressing questions raised by these observations.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
39
|
Searching for Common Mammalian Retroviruses in Pediatric Idiopathic Diseases. Viruses 2016; 8:86. [PMID: 27102168 PMCID: PMC4810276 DOI: 10.3390/v8030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/17/2022] Open
Abstract
Mammalian retroviruses cause a variety of diseases in their hosts, including hematological and immunodeficiency disorders. Both human T-cell leukemia (HTLV) and human immunodeficiency (HIV) viruses originated from several independent zoonotic transmissions, indicating that cross-species transmissions from animal to humans may still occur. Thus, as the risk for retroviral transmissions from animals to humans increase, we investigated whether mammalian retroviruses are involved in selected pediatric idiopathic diseases whose symptoms evoke retroviral infections. Blood samples, sera, and synovial fluids, or bone marrow cells were collected from pediatric patients under 18 years of age with different autoimmune idiopathic diseases. Overall, we screened clinical samples from 110 children using sensitive nested and semi-nested PCR strategies targeting env genes, and a C-type retrovirus reverse transcriptase (RT) activity kit. All clinical samples were free of retroviral signatures, indicating the unlikelihood of an etiological role of the retroviruses we assessed in the pediatric diseases we tested.
Collapse
|
40
|
Abstract
Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.
Collapse
|
41
|
Munro AC, Houldcroft C. Human cancers and mammalian retroviruses: should we worry about bovine leukemia virus? Future Virol 2016. [DOI: 10.2217/fvl.16.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew C Munro
- School of Clinical Medicine, University of Cambridge, Long Road, Cambridge, CB2 0SP, UK
| | | |
Collapse
|
42
|
Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol 2016; 7:54-86. [PMID: 26862491 PMCID: PMC4734938 DOI: 10.5306/wjco.v7.i1.54] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/31/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
In the early 1900s, numerous seminal publications reported that high rates of cancer occurred in certain occupations. During this period, work with infectious agents produced only meager results which seemed irrelevant to humans. Then in the 1980s ground breaking evidence began to emerge that a variety of viruses also cause cancer in humans. There is now sufficient evidence of carcinogenicity in humans for human T-cell lymphotrophic virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, human papillomavirus, Epstein-Barr virus, and human herpes virus 8 according to the International Agency for Research on Cancer (IARC). Many other causes of cancer have also been identified by the IARC, which include: Sunlight, tobacco, pharmaceuticals, hormones, alcohol, parasites, fungi, bacteria, salted fish, wood dust, and herbs. The World Cancer Research Fund and the American Institute for Cancer Research have determined additional causes of cancer, which include beta carotene, red meat, processed meats, low fibre diets, not breast feeding, obesity, increased adult height and sedentary lifestyles. In brief, a historical review of the discoveries of the causes of human cancer is presented with extended discussions of the difficulties encountered in identifying viral causes of cancer.
Collapse
|
43
|
Morandi E, Tarlinton RE, Gran B. Multiple Sclerosis between Genetics and Infections: Human Endogenous Retroviruses in Monocytes and Macrophages. Front Immunol 2015; 6:647. [PMID: 26734011 PMCID: PMC4689809 DOI: 10.3389/fimmu.2015.00647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/11/2015] [Indexed: 01/02/2023] Open
Abstract
The etiology of multiple sclerosis (MS) is still unknown, but there is strong evidence that genetic predisposition associated with environmental factors can trigger the disease. An estimated 30 million years ago, exogenous retroviruses are thought to have integrated themselves into human germ line cells, becoming part of human DNA and being transmitted over generations. Usually such human endogenous retroviruses (HERVs) are silenced or expressed at low levels, but in some pathological conditions, such as MS, their expression is higher than that in the healthy population. Three HERV families have been associated with MS: HERV-H, HERV-K, and HERV-W. The envelope protein of MS-associated retrovirus (MSRV) from the HERV-W family currently has the strongest evidence as a potential trigger for MS. In addition to expression in peripheral immune cells, MSRV is expressed in monocytes and microglia in central nervous system lesions of people with MS and, through the activation of toll-like receptor 4, it has been shown to drive the production of proinflammatory cytokines, reduction of myelin protein expression, and death of oligodendrocyte precursors. In conclusion, the association between HERVs and MS is well documented and a pathological role for MSRV in MS is plausible. Further studies are required to determine whether the presence of these HERVs is a cause or an effect of immune dysregulation in MS.
Collapse
Affiliation(s)
- Elena Morandi
- Clinical Neurology Research Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham , Nottingham , UK
| | - Rachael E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham , Nottingham , UK
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham , Nottingham , UK
| |
Collapse
|
44
|
Kalra S, Burbelo PD, Bayat A, Ching KH, Thurm A, Iadarola MJ, Swedo SE. No Evidence of Antibodies against GAD65 and Other Specific Antigens in Children with Autism. BBA CLINICAL 2015; 4:81-84. [PMID: 26366376 PMCID: PMC4564997 DOI: 10.1016/j.bbacli.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background The presence of autoantibodies has been proposed as evidence for a role of autoimmunity in autism. This report investigates the prevalence of autoantibodies in children with autism using the luciferase immunoprecipitation systems (LIPS) immunoassay technology. A panel of autoantibody targets against several known and candidate neurological autoantigens, autoimmune-associated autoantigens and viruses was employed. Methods Serological analysis was performed on typically developing children (n = 55), developmentally delayed children without autism (n = 24) and children diagnosed with autism (n = 104). Autoantibodies were measured against glutamic acid decarboxylase-65 (GAD65), a CNS autoantigen proposed to be associated with autism and against Ro52, glial fibrillary acidic protein, tyrosine hydroxylase, aquaporin-4, and gamma-enolase, the mouse mammary tumor virus and the xenotropic murine leukemia virus. Antibody levels and seropositivity prevalence were analyzed for statistically significant differences between the three groups. Results The majority of the children (98%) were seronegative for all targets in the antigen panel. No GAD65 seropositive children were detected in the cohort. Several low level seropositive sera against several of the protein targets were identified in isolated children in each of the three groups, but there was no difference in prevalence. Conclusion Using this panel of antigens and a sensitive, robust assay, no evidence of unusual immunoreactivity was detected in children with autism, providing evidence against a role of autoimmunity against several previously implicated proteins in autism spectrum disorder pathogenesis. General significance The idea that autoantibodies represent an underlying cause or are biomarkers for autism pathophysiology is not supported by this report.
Collapse
Affiliation(s)
- Simran Kalra
- Pediatrics and Developmental Branch, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD
| | - Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Ahmad Bayat
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Kathryn H Ching
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Audrey Thurm
- Pediatrics and Developmental Branch, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Susan E Swedo
- Pediatrics and Developmental Branch, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
45
|
Nadeau MJ, Manghera M, Douville RN. Inside the Envelope: Endogenous Retrovirus-K Env as a Biomarker and Therapeutic Target. Front Microbiol 2015; 6:1244. [PMID: 26617584 PMCID: PMC4643131 DOI: 10.3389/fmicb.2015.01244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 11/27/2022] Open
Abstract
Due to multiple ancestral human retroviral germ cell infections, the modern human genome is strewn with relics of these infections, termed endogenous retroviruses (ERVs). ERV expression has been silenced due to negative selective pressures and genetic phenomena such as mutations and epigenetic silencing. Nonetheless, select ERVs have retained the capacity to be damaging to their host when reawakened. Much of the current research on the ERVK Env protein strongly suggests a causal or contributive role in the pathogenesis of various cancers, autoimmune and infectious diseases. Additionally, there is a small body of research suggesting that ERVK Env has been domesticated for use in placental development, akin to the ERVW syncytin. Though much is left to ascertain, the innate immune response to ERVK Env expression has been partially characterized and appears to be due to a region located in the transmembrane domain of the Env protein. In this review, we aim to highlight ERVK Env as a biomarker for inflammatory conditions and explore its use as a future therapeutic target for cancers, HIV infection and neurological disease.
Collapse
Affiliation(s)
- Marie-Josée Nadeau
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada
| | - Mamneet Manghera
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| | - Renée N Douville
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
46
|
Wang W, Indik S, Wasilenko ST, Faschinger A, Carpenter EJ, Tian Z, Zhang Y, Wong GKS, Mason AL. Frequent proviral integration of the human betaretrovirus in biliary epithelium of patients with autoimmune and idiopathic liver disease. Aliment Pharmacol Ther 2015; 41:393-405. [PMID: 25521721 PMCID: PMC4312917 DOI: 10.1111/apt.13054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND A human betaretrovirus (HBRV) has been linked with primary biliary cirrhosis (PBC) following the detection of viral particles in biliary epithelium by electron microscopy and cloning of the betaretrovirus genome from biliary epithelium and peri-hepatic lymph nodes. Evidence for viral infection was found in the majority of PBC patients' peri-hepatic lymph node samples. However, less than a third of the liver samples had detectable HBRV, whereas others were unable to detect betaretrovirus infection or noted the presence of virus in the liver of patients with other diagnoses. AIMS To address the hypothesis that the betaretrovirus may be below the limits of detection in the liver, biliary epithelial cells (BEC) were investigated for the evidence of infection. METHODS Ligation-mediated PCR and next generation sequencing were used to detect proviral integrations in liver, lymph nodes and BEC isolated from liver transplant recipients. Hybridisation-based assays were used to detect betaretroviral RNA in BEC. RESULTS Unique HBRV integrations and betaretrovirus RNA were detected in the majority of biliary epithelia derived from patients with PBC, autoimmune hepatitis and cryptogenic liver disease but rarely in other liver transplant recipients with primary sclerosing cholangitis and other hepatic disorders. HBRV integrations were commonly found in PBC patients' lymph nodes but rarely in whole liver samples. CONCLUSIONS Human betaretrovirus infection is frequently observed at the site of disease in patients with primary biliary cirrhosis and also in biliary epithelium of patients with autoimmune hepatitis and cryptogenic liver disease.
Collapse
Affiliation(s)
- W Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada
| | - S Indik
- Department of Virology, University of Veterinary MedicineVienna, Austria
| | - S T Wasilenko
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada
| | - A Faschinger
- Department of Virology, University of Veterinary MedicineVienna, Austria
| | - E J Carpenter
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
| | - Z Tian
- BGI-Shenzhen, Bei Shan Industrial ZoneShenzhen, China
| | - Y Zhang
- BGI-Shenzhen, Bei Shan Industrial ZoneShenzhen, China
| | - G K-S Wong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada,Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada,BGI-Shenzhen, Bei Shan Industrial ZoneShenzhen, China,Li Ka Shing Institute of Virology, University of AlbertaEdmonton, AB, Canada,Prof. G. K.-S. Wong,, Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada.,
| | - A L Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of AlbertaEdmonton, AB, Canada,Li Ka Shing Institute of Virology, University of AlbertaEdmonton, AB, Canada,Correspondence to:, Dr A. L. Mason, Division of Gastroenterology and Hepatology, 7-142 KGR, University of Alberta, Edmonton, AB, Canada T6G 2E1., E-mail:
| |
Collapse
|
47
|
Naveira H, Bello X, Abal-Fabeiro JL, Maside X. Evidence for the persistence of an active endogenous retrovirus (ERVE) in humans. Genetica 2014; 142:451-60. [PMID: 25192754 DOI: 10.1007/s10709-014-9789-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
Transposable elements (TEs) account for nearly half (44 %) of the human genome. However, their overall activity has been steadily declining over the past 35-50 million years, so that <0.05 % of TEs are presumably still "alive" (potentially transposable) in human populations. All the active elements are retrotransposons, either autonomous (LINE-1 and possibly the endogenous retrovirus ERVK), or non-autonomous (Alu and SVA, whose transposition is dependent on the LINE-1 enzymatic machinery). Here we show that a lineage of the endogenous retrovirus ERVE was recently engaged in ectopic recombination events and may have at least one potentially fully functional representative, initially reported as a novel retrovirus isolated from blood cells of a Chinese patient with chronic myeloid leukemia, which bears signals of positive selection on its envelope region. Altogether, there is strong evidence that ERVE should be included in the short list of potentially active TEs, and we give clues on how to identify human specific insertions of this element that are likely to be segregating in some of our populations.
Collapse
MESH Headings
- Animals
- Base Sequence
- Endogenous Retroviruses/classification
- Endogenous Retroviruses/genetics
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Genome, Human/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- Retroelements/genetics
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Horacio Naveira
- Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Celular e Molecular, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071, A Coruña, Spain,
| | | | | | | |
Collapse
|
48
|
Abstract
One lineage of human endogenous retroviruses (HERVs), HERV-K(HML2), is upregulated in many cancers, some autoimmune/inflammatory diseases, and HIV-infected cells. Despite 3 decades of research, it is not known if these viruses play a causal role in disease, and there has been recent interest in whether they can be used as immunotherapy targets. Resolution of both these questions will be helped by an ability to distinguish between the effects of different integrated copies of the virus (loci). Research so far has concentrated on the 20 or so recently integrated loci that, with one exception, are in the human reference genome sequence. However, this viral lineage has been copying in the human population within the last million years, so some loci will inevitably be present in the human population but absent from the reference sequence. We therefore performed the first detailed search for such loci by mining whole-genome sequences generated by next-generation sequencing. We found a total of 17 loci, and the frequency of their presence ranged from only 2 of the 358 individuals examined to over 95% of them. On average, each individual had six loci that are not in the human reference genome sequence. Comparing the number of loci that we found to an expectation derived from a neutral population genetic model suggests that the lineage was copying until at least ∼250,000 years ago. IMPORTANCE About 5% of the human genome sequence is composed of the remains of retroviruses that over millions of years have integrated into the chromosomes of egg and/or sperm precursor cells. There are indications that protein expression of these viruses is higher in some diseases, and we need to know (i) whether these viruses have a role in causing disease and (ii) whether they can be used as immunotherapy targets in some of them. Answering both questions requires a better understanding of how individuals differ in the viruses that they carry. We carried out the first careful search for new viruses in some of the many human genome sequences that are now available thanks to advances in sequencing technology. We also compared the number that we found to a theoretical expectation to see if it is likely that these viruses are still replicating in the human population today.
Collapse
|
49
|
Kassiotis G. Endogenous retroviruses and the development of cancer. THE JOURNAL OF IMMUNOLOGY 2014; 192:1343-9. [PMID: 24511094 DOI: 10.4049/jimmunol.1302972] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian genomes include a considerable number of endogenous retroviruses (ERVs), relics of ancestral infectious retroviruses, whose proviruses have invaded the germ-line. The documented ability of infectious retroviruses to cause cancer has greatly contributed to the discovery of ERVs. It also reinforced the concept that ERVs are causative agents of many cancers, a notion that historically has not always stood up to experimental scrutiny. The recent greater appreciation of the complexity of ERV biology and the identification of dedicated host mechanisms controlling ERV activity have revealed novel interactions between ERVs and their hosts, with the potential to cause or contribute to disease. In this review, the involvement of ERVs in cancer initiation and progression is discussed, as well as their contribution to our understanding of the process of transformation and to the invention of innovative preventive and therapeutic cancer treatments.
Collapse
Affiliation(s)
- George Kassiotis
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
50
|
Kessler AF, Wiesner M, Denner J, Kämmerer U, Vince GH, Linsenmann T, Löhr M, Ernestus RI, Hagemann C. Expression-analysis of the human endogenous retrovirus HERV-K in human astrocytic tumors. BMC Res Notes 2014; 7:159. [PMID: 24642114 PMCID: PMC3995297 DOI: 10.1186/1756-0500-7-159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/14/2014] [Indexed: 11/30/2022] Open
Abstract
Background The human endogenous retrovirus K (HERV-K) has been acquired by the genome of human ancestors million years ago. It is the most complete of the HERVs with transcriptionally active gag, pol and env genes. Splice variants of env, which are rec, 1.5 kb transcript and Np9 have been suggested to be tumorigenic. Transcripts of HERV-K have been detected in a multitude of human cancers. However, no such reports are available concerning glioblastomas (GBM), the most common malignant brain tumor in adults. Patients have a limited prognosis of 14.6 months in median, despite standard treatment. Therefore, we elucidated whether HERV-K transcripts could be detected in these tumors and serve as new molecular target for treatment. Findings We analyzed human GBM cell lines, tissue samples from patients and primary cell cultures of different passages for HERV-K full length mRNA and env, rec and 1.5 kb transcripts. While the GBM cell lines U138, U251, U343 and GaMG displayed weak and U87 strong expression of the full length HERV-K, the splice products could not be detected, despite a weak expression of env mRNA in U87 cells. Very few tissue samples from patients showed weak expression of env mRNA, but none of the rec or 1.5 kb transcripts. Primary cells expressed the 1.5 kb transcript weakly in early passages, but lost HERV-K expression with extended culture time. Conclusions These data suggest that HERV-K splice products do not play a role in human malignant gliomas and therefore, are not suitable as targets for new therapy regimen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carsten Hagemann
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str, 11, Würzburg D-97080, Germany.
| |
Collapse
|