1
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional redundancy in Candida auris cell surface adhesins crucial for cell-cell interaction and aggregation. Nat Commun 2024; 15:9212. [PMID: 39455573 PMCID: PMC11511831 DOI: 10.1038/s41467-024-53588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als4112 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Areej A Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One-Health Institute, KU Leuven, Leuven, Belgium.
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
2
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
3
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional Redundancy in Candida auris Cell Surface Adhesins Crucial for Cell-Cell Interaction and Aggregation. RESEARCH SQUARE 2024:rs.3.rs-4077218. [PMID: 38562859 PMCID: PMC10984083 DOI: 10.21203/rs.3.rs-4077218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W. Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Areej A. Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional Redundancy in Candida auris Cell Surface Adhesins Crucial for Cell-Cell Interaction and Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586120. [PMID: 38562758 PMCID: PMC10983922 DOI: 10.1101/2024.03.21.586120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W. Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Areej A. Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Features of the rare pathogen Meyerozyma guilliermondii strain SO and comprehensive in silico analyses of its adherence-contributing virulence factor agglutinin-like sequences. J Biomol Struct Dyn 2024:1-21. [PMID: 38189364 DOI: 10.1080/07391102.2023.2300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards β-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Malavia-Jones D, Farrer RA, Stappers MH, Edmondson MB, Borman AM, Johnson EM, Lipke PN, Gow NA. Strain and temperature dependent aggregation of Candida auris is attenuated by inhibition of surface amyloid proteins. Cell Surf 2023; 10:100110. [PMID: 37559873 PMCID: PMC10407437 DOI: 10.1016/j.tcsw.2023.100110] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Candida auris is a multi-drug resistant human fungal pathogen that has become a global threat to human health due to its drug resistant phenotype, persistence in the hospital environment and propensity for patient to patient spread. Isolates display variable aggregation that may affect the relative virulence of strains. Therefore, dissection of this phenotype has gained substantial interest in recent years. We studied eight clinical isolates from four different clades (I-IV); four of which had a strongly aggregating phenotype and four of which did not. Genome analysis identified polymorphisms associated with loss of cell surface proteins were enriched in weakly-aggregating strains. Additionally, we identified down-regulation of chitin synthase genes involved in the synthesis of the chitinous septum. Characterisation of the cells revealed no ultrastructural defects in cytokinesis or cell separation in aggregating isolates. Strongly and weakly aggregating strains did not differ in net surface charge or in cell surface hydrophobicity. The capacity for aggregation and for adhesion to polystyrene microspheres were also not correlated. However, aggregation and extracellular matrix formation were all increased at higher growth temperatures, and treatment with the amyloid protein inhibitor Thioflavin-T markedly attenuated aggregation. Genome analysis further indicated strain specific differences in the genome content of GPI-anchored proteins including those encoding genes with the potential to form amyloid proteins. Collectively our data suggests that aggregation is a complex strain and temperature dependent phenomenon that may be linked in part to the ability to form extracellular matrix and cell surface amyloids.
Collapse
Affiliation(s)
- Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Rhys A. Farrer
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Mark H.T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Matt B. Edmondson
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Andrew M. Borman
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
| | - Elizabeth M. Johnson
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
| | - Peter N. Lipke
- Biology Department, Brooklyn College of City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
7
|
Galkin AP, Sysoev EI, Valina AA. Amyloids and prions in the light of evolution. Curr Genet 2023; 69:189-202. [PMID: 37165144 DOI: 10.1007/s00294-023-01270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Functional amyloids have been identified in a wide variety of organisms including bacteria, fungi, plants, and vertebrates. Intracellular and extracellular amyloid fibrils of different proteins perform storage, protective, structural, and regulatory functions. The structural organization of amyloid fibrils determines their unique physical and biochemical properties. The formation of these fibrillar structures can provide adaptive advantages that are picked up by natural selection. Despite the great interest in functional and pathological amyloids, questions about the conservatism of the amyloid properties of proteins and the regularities in the appearance of these fibrillar structures in evolution remain almost unexplored. Using bioinformatics approaches and summarizing the data published previously, we have shown that amyloid fibrils performing similar functions in different organisms have been arising repeatedly and independently in the course of evolution. On the other hand, we show that the amyloid properties of a number of bacterial and eukaryotic proteins are evolutionarily conserved. We also discuss the role of protein-based inheritance in the evolution of microorganisms. Considering that missense mutations and the emergence of prions cause the same consequences, we propose the concept that the formation of prions, similarly to mutations, generally causes a negative effect, although it can also lead to adaptations in rare cases. In general, our analysis revealed certain patterns in the emergence and spread of amyloid fibrillar structures in the course of evolution.
Collapse
Affiliation(s)
- Alexey P Galkin
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034.
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034.
| | - Evgeniy I Sysoev
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| | - Anna A Valina
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| |
Collapse
|
8
|
Abstract
The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and β-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, UK.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Lipke PN, Ragonis-Bachar P. Sticking to the Subject: Multifunctionality in Microbial Adhesins. J Fungi (Basel) 2023; 9:jof9040419. [PMID: 37108873 PMCID: PMC10144551 DOI: 10.3390/jof9040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial and fungal adhesins mediate microbial aggregation, biofilm formation, and adhesion to host. We divide these proteins into two major classes: professional adhesins and moonlighting adhesins that have a non-adhesive activity that is evolutionarily conserved. A fundamental difference between the two classes is the dissociation rate. Whereas moonlighters, including cytoplasmic enzymes and chaperones, can bind with high affinity, they usually dissociate quickly. Professional adhesins often have unusually long dissociation rates: minutes or hours. Each adhesin has at least three activities: cell surface association, binding to a ligand or adhesive partner protein, and as a microbial surface pattern for host recognition. We briefly discuss Bacillus subtilis TasA, pilin adhesins, gram positive MSCRAMMs, and yeast mating adhesins, lectins and flocculins, and Candida Awp and Als families. For these professional adhesins, multiple activities include binding to diverse ligands and binding partners, assembly into molecular complexes, maintenance of cell wall integrity, signaling for cellular differentiation in biofilms and in mating, surface amyloid formation, and anchorage of moonlighting adhesins. We summarize the structural features that lead to these diverse activities. We conclude that adhesins resemble other proteins with multiple activities, but they have unique structural features to facilitate multifunctionality.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11215, USA
- Correspondence:
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
10
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. p53 amyloid aggregation in cancer: function, mechanism, and therapy. Exp Hematol Oncol 2022; 11:66. [PMID: 36171607 PMCID: PMC9520902 DOI: 10.1186/s40164-022-00317-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Similar to neurodegenerative diseases, the concept that tumors are prion like diseases has been proposed in recent years. p53, the most well-known tumor suppressor, has been extensively studied for its expression, mutation, and function in various tumors. Currently, an interesting phenomenon of p53 prion-like aggregation has been found in several tumors, and studies have found that its pathological aggregation may lead to functional alterations and ultimately affect tumor progression. It has been demonstrated that the mechanism of p53 aggregation involves its mutation, domains, isoform, etc. In addition to p53 itself, some other factors, including Zn2+ concentration, pH, temperature and chaperone abnormalities, can also contribute to p53 aggregation. Although there are some studies about the mechanism and role of p53 aggregation and amyloidosis in tumors, there still exist some controversies. In this paper, we review the mechanism of p53 amyloid fibril structure and discuss the characteristics and effects of p53 amyloid aggregation, as well as the pathogenic mechanism leading to the occurrence of aggregation in tumors. Finally, we summarize the various inhibitors targeting p53 aggregation and prion-like behavior. In conclusion, a comprehensive understanding of p53 aggregation can expand our understanding of the causes leading its loss of physiological function and that targeting p53 aggregation might be a promising therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Blocking Serum Amyloid-P Component from Binding to Macrophages and Augmenting Fungal Functional Amyloid Increases Macrophage Phagocytosis of Candida albicans. Pathogens 2022; 11:pathogens11091000. [PMID: 36145432 PMCID: PMC9505788 DOI: 10.3390/pathogens11091000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Candida-macrophage interactions are important immune defense responses associated with disseminated and deep-seated candidiasis in humans. Cells of Candida spp. express functional amyloids on their surfaces during the pathogenesis of disseminated candidiasis. These amyloids become decorated with serum amyloid P-component (SAP) that binds to Candida cells and macrophages and downregulates the cellular and cytokine response to the fungi. In this report, further characterization of the interactions of SAP and fungal functional amyloid are demonstrated. Blocking the binding of SAP to macrophage FcγR1 receptors increases phagocytosis of yeast cells; seeding a pro-amyloid-forming peptide on the yeast cell surface also increases phagocytosis of yeasts by macrophages; and, lastly, miridesap, a small palindromic molecule, prevents binding of SAP to yeasts and removes SAP that is bound to C. albicans thus, potentially increasing phagocytosis of yeasts by macrophages. Some, or all, of these interventions may be useful in boosting the host immune response to disseminated candidiasis.
Collapse
|
12
|
Golan N, Schwartz-Perov S, Landau M, Lipke PN. Structure and Conservation of Amyloid Spines From the Candida albicans Als5 Adhesin. Front Mol Biosci 2022; 9:926959. [PMID: 35874616 PMCID: PMC9306254 DOI: 10.3389/fmolb.2022.926959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Candida Als family adhesins mediate adhesion to biological and abiotic substrates, as well as fungal cell aggregation, fungal-bacterial co-aggregation and biofilm formation. The activity of at least two family members, Als5 and Als1, is dependent on amyloid-like protein aggregation that is initiated by shear force. Each Als adhesin has a ∼300-residue N-terminal Ig-like/invasin region. The following 108-residue, low complexity, threonine-rich (T) domain unfolds under shear force to expose a critical amyloid-forming segment 322SNGIVIVATTRTV334 at the interface between the Ig-like/invasin domain 2 and the T domain of Candida albicans Als5. Amyloid prediction programs identified six potential amyloidogenic sequences in the Ig-like/invasin region and three others in the T domain of C. albicans Als5. Peptides derived from four of these sequences formed fibrils that bound thioflavin T, the amyloid indicator dye, and three of these revealed atomic-resolution structures of cross-β spines. These are the first atomic-level structures for fungal adhesins. One of these segments, from the T domain, revealed kinked β-sheets, similarly to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked segments) found in human functional amyloids. Based on the cross-β structures in Als proteins, we use evolutionary arguments to identify functional amyloidogenic sequences in other fungal adhesins, including adhesins from Candida auris. Thus, cross-β structures are often involved in fungal pathogenesis and potentially in antifungal therapy.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- European Molecular Biology Laboratory (EMBL) and Centre for Structural Systems Biology, Hamburg, Germany
| | - Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| |
Collapse
|
13
|
Nishimura A, Nakagami K, Kan K, Morita F, Takagi H. Arginine inhibits Saccharomyces cerevisiae biofilm formation by inducing endocytosis of the arginine transporter Can1. Biosci Biotechnol Biochem 2022; 86:1300-1307. [PMID: 35749478 DOI: 10.1093/bbb/zbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022]
Abstract
Biofilms are formed by the aggregation of microorganisms into multicellular structures that adhere to surfaces. Biofilm formation by yeast is a critical issue in clinical and industrial fields because of the strong adhesion of yeast biofilm to abiotic surfaces and tissues. Here, we clarified the arginine-mediated inhibition of biofilm formation by yeast. First, we showed that arginine inhibits biofilm formation in fungi such as Saccharomyces cerevisiae, Candida glabrata, and Cladosporium cladosporioides, but not in bacteria. In regard to the underlying mechanism, biochemical analysis indicated that arginine inhibits biofilm formation by suppressing Flo11-dependent flocculation. Intriguingly, a strain with deletion of the arginine transporter-encoding CAN1 was insensitive to arginine-mediated inhibition of biofilm formation. Finally, Can1 endocytosis appeared to be required for the inhibitory mechanism of biofilm formation by arginine. The present results could help to elucidate the molecular mechanism of yeast biofilm formation and its control.
Collapse
Affiliation(s)
- Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Kazuki Nakagami
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Kyoyuki Kan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Fumika Morita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| |
Collapse
|
14
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Oh SH, Schliep K, Isenhower A, Rodriguez-Bobadilla R, Vuong VM, Fields CJ, Hernandez AG, Hoyer LL. Using Genomics to Shape the Definition of the Agglutinin-Like Sequence ( ALS) Family in the Saccharomycetales. Front Cell Infect Microbiol 2021; 11:794529. [PMID: 34970511 PMCID: PMC8712946 DOI: 10.3389/fcimb.2021.794529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
The Candida albicans agglutinin-like sequence (ALS) family is studied because of its contribution to cell adhesion, fungal colonization, and polymicrobial biofilm formation. The goal of this work was to derive an accurate census and sequence for ALS genes in pathogenic yeasts and other closely related species, while probing the boundaries of the ALS family within the Order Saccharomycetales. Bioinformatic methods were combined with laboratory experimentation to characterize 47 novel ALS loci from 8 fungal species. AlphaFold predictions suggested the presence of a conserved N-terminal adhesive domain (NT-Als) structure in all Als proteins reported to date, as well as in S. cerevisiae alpha-agglutinin (Sag1). Lodderomyces elongisporus, Meyerozyma guilliermondii, and Scheffersomyces stipitis were notable because each species had genes with C. albicans ALS features, as well as at least one that encoded a Sag1-like protein. Detection of recombination events between the ALS family and gene families encoding other cell-surface proteins such as Iff/Hyr and Flo suggest widespread domain swapping with the potential to create cell-surface diversity among yeast species. Results from the analysis also revealed subtelomeric ALS genes, ALS pseudogenes, and the potential for yeast species to secrete their own soluble adhesion inhibitors. Information presented here supports the inclusion of SAG1 in the ALS family and yields many experimental hypotheses to pursue to further reveal the nature of the ALS family.
Collapse
Affiliation(s)
- Soon-Hwan Oh
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Klaus Schliep
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Allyson Isenhower
- Department of Biology, Millikin University, Decatur, IL, United States
| | | | - Vien M. Vuong
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher J. Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lois L. Hoyer
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
17
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
18
|
Bouyx C, Schiavone M, Teste MA, Dague E, Sieczkowski N, Julien A, François JM. The dual role of amyloid-β-sheet sequences in the cell surface properties of FLO11-encoded flocculins in Saccharomyces cerevisiae. eLife 2021; 10:e68592. [PMID: 34467855 PMCID: PMC8457840 DOI: 10.7554/elife.68592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans-interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.
Collapse
Affiliation(s)
- Clara Bouyx
- Toulouse Biotechnology Institute, INSAToulouseFrance
| | - Marion Schiavone
- Toulouse Biotechnology Institute, INSAToulouseFrance
- Lallemand, Lallemand SASBlagnacFrance
| | | | | | | | | | | |
Collapse
|
19
|
Lipke PN, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds. Pathogens 2021; 10:pathogens10081013. [PMID: 34451476 PMCID: PMC8398270 DOI: 10.3390/pathogens10081013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid structures assemble through a repeating type of bonding called "cross-β", in which identical sequences in many protein molecules form β-sheets that interdigitate through side chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy (SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical characteristics of cross-β interactions. These properties include affinity for amyloid-binding dyes, birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid agents. We present a model for how cross-β bonds form in trans between two adhering cells. These characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a new type of cell-cell adhesion.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: ; Tel.: +1-(917)-696-4862
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| |
Collapse
|
20
|
Kumar A. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth. Annu Rev Genet 2021; 55:1-21. [PMID: 34280314 DOI: 10.1146/annurev-genet-071719-020249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
21
|
Choraghe RP, Neumann AK. Dectin-1-Mediated DC-SIGN Recruitment to Candida albicans Contact Sites. Life (Basel) 2021; 11:life11020108. [PMID: 33572494 PMCID: PMC7923000 DOI: 10.3390/life11020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
At host-pathogen contact sites with Candida albicans, Dectin-1 activates pro-inflammatory signaling, while DC-SIGN promotes adhesion to the fungal surface. We observed that Dectin-1 and DC-SIGN collaborate to enhance capture/retention of C. albicans under fluid shear culture conditions. Therefore, we devised a cellular model system wherein we could investigate the interaction between these two receptors during the earliest stages of host-pathogen interaction. In cells expressing both receptors, DC-SIGN was quickly recruited to contact sites (103.15% increase) but Dectin-1 did not similarly accumulate. Once inside the contact site, FRAP studies revealed a strong reduction in lateral mobility of DC-SIGN (but not Dectin-1), consistent with DC-SIGN engaging in multivalent adhesive binding interactions with cell wall mannoprotein ligands. Interestingly, in the absence of Dectin-1 co-expression, DC-SIGN recruitment to the contact was much poorer-only 35.04%. These data suggested that Dectin-1 promotes the active recruitment of DC-SIGN to the contact site. We proposed that Dectin-1 signaling activates the RHOA pathway, leading to actomyosin contractility that promotes DC-SIGN recruitment, perhaps via the formation of a centripetal actomyosin flow (AMF) directed into the contact site. Indeed, RHOA pathway inhibitors significantly reduced Dectin-1-associated DC-SIGN recruitment to the contact site. We used agent-based modeling to predict DC-SIGN transport kinetics with ("Directed + Brownian") and without ("Brownian") the hypothesized actomyosin flow-mediated transport. The Directed + Brownian transport model predicted a DC-SIGN contact site recruitment (106.64%), similar to that we observed experimentally under receptor co-expression. Brownian diffusive transport alone predicted contact site DC-SIGN recruitment of only 55.60%. However, this value was similar to experimentally observed DC-SIGN recruitment in cells without Dectin-1 or expressing Dectin-1 but treated with RHOA inhibitor, suggesting that it accurately predicted DC-SIGN recruitment when a contact site AMF would not be generated. TIRF microscopy of nascent cell contacts on glucan-coated glass revealed Dectin-1-dependent DC-SIGN and F-actin (LifeAct) recruitment kinetics to early stage contact site membranes. DC-SIGN entry followed F-actin with a temporal lag of 8.35 ± 4.57 s, but this correlation was disrupted by treatment with RHOA inhibitor. Thus, computational and experimental evidence provides support for the existence of a Dectin-1/RHOA-dependent AMF that produces a force to drive DC-SIGN recruitment to pathogen contact sites, resulting in improved pathogen capture and retention by immunocytes. These data suggest that the rapid collaborative response of Dectin-1 and DC-SIGN in early contact sties might be important for the efficient acquisition of yeast under flow conditions, such as those that prevail in circulation or mucocutaneous sites of infection.
Collapse
|
22
|
Involvement of amyloid proteins in the formation of biofilms in the pathogenic yeast Candida albicans. Res Microbiol 2021; 172:103813. [PMID: 33515679 DOI: 10.1016/j.resmic.2021.103813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Candida species represent a major fungal threat for human health. Within the Candida genus, the yeast Candida albicans is the most frequently incriminated species during episodes of candidiasis or candidemia. Biofilm formation is used by C. albicans to produce a microbial community that is important in an infectious context. The cell wall, the most superficial cellular compartment, is of paramount importance regarding the establishment of biofilms. C. albicans cell wall contains proteins with amyloid properties that are necessary for biofilm formation due to their adhesion properties. This review focuses on these amyloid proteins during biofilm formation in the yeast C. albicans.
Collapse
|
23
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|
24
|
Nil Z, Hervás R, Gerbich T, Leal P, Yu Z, Saraf A, Sardiu M, Lange JJ, Yi K, Unruh J, Slaughter B, Si K. Amyloid-like Assembly Activates a Phosphatase in the Developing Drosophila Embryo. Cell 2020; 178:1403-1420.e21. [PMID: 31491385 DOI: 10.1016/j.cell.2019.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/07/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022]
Abstract
Prion-like proteins can assume distinct conformational and physical states in the same cell. Sequence analysis suggests that prion-like proteins are prevalent in various species; however, it remains unclear what functional space they occupy in multicellular organisms. Here, we report the identification of a prion-like protein, Herzog (CG5830), through a multimodal screen in Drosophila melanogaster. Herzog functions as a membrane-associated phosphatase and controls embryonic patterning, likely being involved in TGF-β/BMP and FGF/EGF signaling pathways. Remarkably, monomeric Herzog is enzymatically inactive and becomes active upon amyloid-like assembly. The prion-like domain of Herzog is necessary for both its assembly and membrane targeting. Removal of the prion-like domain impairs activity, while restoring assembly on the membrane using a heterologous prion-like domain and membrane-targeting motif can restore phosphatase activity. This study provides an example of a prion-like domain that allows an enzyme to gain essential functionality via amyloid-like assembly to control animal development.
Collapse
Affiliation(s)
- Zelha Nil
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Rubén Hervás
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Therese Gerbich
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Paulo Leal
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Mihaela Sardiu
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Brian Slaughter
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA
| | - Kausik Si
- Stowers Institute for Medical Research, 1000E 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
25
|
El-Kirat-Chatel S, Beaussart A, Mathelié-Guinlet M, Dufrêne YF. The importance of force in microbial cell adhesion. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
27
|
Vendele I, Willment JA, Silva LM, Palma AS, Chai W, Liu Y, Feizi T, Spyrou M, Stappers MHT, Brown GD, Gow NAR. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog 2020; 16:e1007927. [PMID: 31999794 PMCID: PMC7012452 DOI: 10.1371/journal.ppat.1007927] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/11/2020] [Accepted: 12/22/2019] [Indexed: 01/09/2023] Open
Abstract
During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4–7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the β-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface. Invasive fungal infections remain an important health problem in immunocompromised patients. Immune recognition of fungal pathogens involves binding of specific cell wall components by pathogen recognition receptors (PRRs) and subsequent activation of immune defences. Some cell wall components are conserved among fungal species while other components are species-specific and phenotypically diverse. The fungal cell wall is dynamic and capable of changing its composition and organization when adapting to different growth niches and environmental stresses. Differences in the composition of the cell wall lead to differential immune recognition by the host. Understanding how changes in the cell wall composition affect recognition by PRRs is likely to be of major diagnostic and clinical relevance. Here we address this fundamental question using four soluble immune receptor-probes which recognize mannans and β-glucan in the cell wall. We use this novel methodology to demonstrate that mannan epitopes are differentially distributed in the inner and outer layers of fungal cell wall in a clustered or diffuse manner. Immune reactivity of fungal cell surfaces was not correlated with relatedness of different fungal species, and mannan-detecting receptor-probes discriminated between cell surface mannans generated by the same fungus growing under different conditions. These studies demonstrate that mannan-epitopes on fungal cell surfaces are differentially distributed within and between the cell walls of fungal pathogens.
Collapse
Affiliation(s)
- Ingrida Vendele
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Janet A. Willment
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Lisete M. Silva
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Angelina S. Palma
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wengang Chai
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Maria Spyrou
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Kosolapova AO, Belousov MV, Sulatskaya AI, Belousova ME, Sulatsky MI, Antonets KS, Volkov KV, Lykholay AN, Shtark OY, Vasileva EN, Zhukov VA, Ivanova AN, Zykin PA, Kuznetsova IM, Turoverov KK, Tikhonovich IA, Nizhnikov AA. Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules 2019; 9:biom9110694. [PMID: 31690032 PMCID: PMC6920782 DOI: 10.3390/biom9110694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Rhizobium leguminosarum. Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have β-barrel structure and are likely to be involved in the control of plant-microbial symbiosis. We demonstrated that the full-length RopA and RopB form bona fide amyloid fibrils in vitro. In particular, these fibrils are β-sheet-rich, bind Thioflavin T (ThT), exhibit green birefringence upon staining with Congo Red (CR), and resist treatment with ionic detergents and proteases. The heterologously expressed RopA and RopB intracellularly aggregate in yeast and assemble into amyloid fibrils at the surface of Escherichia coli. The capsules of the R. leguminosarum cells bind CR, exhibit green birefringence, and contain fibrils of RopA and RopB in vivo.
Collapse
Affiliation(s)
- Anastasiia O Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Mikhail V Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Maria E Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Kirill V Volkov
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna N Lykholay
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Oksana Y Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Ekaterina N Vasileva
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Vladimir A Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Alexandra N Ivanova
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Komarov Botanical Institute RAS, 197376 Komarov Botanical Institute RAS, Russia.
| | - Pavel A Zykin
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
| | - Igor A Tikhonovich
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| |
Collapse
|
29
|
Reinmets K, Dehkharghani A, Guasto JS, Fuchs SM. Microfluidic quantification and separation of yeast based on surface adhesion. LAB ON A CHIP 2019; 19:3481-3489. [PMID: 31524206 DOI: 10.1039/c9lc00275h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fungal adhesion is fundamental to processes ranging from infections to food production to bioengineering. Yet, robust, population-scale quantification methods for yeast surface adhesion are lacking. We developed a microfluidic assay to discriminate and separate genetically-related yeast strains based on adhesion strength, and to quantify effects of ionic strength and substrate hydrophobicity on adhesion. This approach will enable the rapid screening and fractionation of yeast based on adhesive properties for genetic protein engineering, anti-fouling surfaces, and a host of other applications.
Collapse
|
30
|
Ho V, Herman-Bausier P, Shaw C, Conrad KA, Garcia-Sherman MC, Draghi J, Dufrene YF, Lipke PN, Rauceo JM. An Amyloid Core Sequence in the Major Candida albicans Adhesin Als1p Mediates Cell-Cell Adhesion. mBio 2019; 10:e01766-19. [PMID: 31594814 PMCID: PMC6786869 DOI: 10.1128/mbio.01766-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023] Open
Abstract
The human fungal commensal Candida albicans can become a serious opportunistic pathogen in immunocompromised hosts. The C. albicans cell adhesion protein Als1p is a highly expressed member of a large family of paralogous adhesins. Als1p can mediate binding to epithelial and endothelial cells, is upregulated in infections, and is important for biofilm formation. Als1p includes an amyloid-forming sequence at amino acids 325 to 331, identical to the sequence in the paralogs Als5p and Als3p. Therefore, we mutated Val326 to test whether this sequence is important for activity. Wild-type Als1p (Als1pWT) and Als1p with the V326N mutation (Als1pV326N) were expressed at similar levels in a Saccharomyces cerevisiae surface display model. Als1pV326N cells adhered to bovine serum albumin (BSA)-coated beads similarly to Als1pWT cells. However, cells displaying Als1pV326N showed visibly smaller aggregates and did not fluoresce in the presence of the amyloid-binding dye Thioflavin-T. A new analysis tool for single-molecule force spectroscopy-derived surface mapping showed that statistically significant force-dependent Als1p clustering occurred in Als1pWT cells but was absent in Als1pV326N cells. In single-cell force spectroscopy experiments, strong cell-cell adhesion was dependent on an intact amyloid core sequence on both interacting cells. Thus, the major adhesin Als1p interacts through amyloid-like β-aggregation to cluster adhesin molecules in cis on the cell surface as well as in trans to form cell-cell bonds.IMPORTANCE Microbial cell surface adhesins control essential processes such as adhesion, colonization, and biofilm formation. In the opportunistic fungal pathogen Candida albicans, the agglutinin-like sequence (ALS) gene family encodes eight cell surface glycoproteins that mediate adherence to biotic and abiotic surfaces and cell-cell aggregation. Als proteins are critical for commensalism and virulence. Their activities include attachment and invasion of endothelial and epithelial cells, morphogenesis, and formation of biofilms on host tissue and indwelling medical catheters. At the molecular level, Als5p-mediated cell-cell aggregation is dependent on the formation of amyloid-like nanodomains between Als5p-expressing cells. A single-site mutation to valine 326 abolishes cellular aggregation and amyloid formation. Our results show that the binding characteristics of Als1p follow a mechanistic model similar to Als5p, despite its differential expression and biological roles.
Collapse
Affiliation(s)
- Vida Ho
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | | | - Christopher Shaw
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Karen A Conrad
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Melissa C Garcia-Sherman
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Jeremy Draghi
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Yves F Dufrene
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Peter N Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| | - Jason M Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
31
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 580] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
32
|
Dehullu J, Vorholt JA, Lipke PN, Dufrêne YF. Fluidic Force Microscopy Captures Amyloid Bonds between Microbial Cells. Trends Microbiol 2019; 27:728-730. [PMID: 31272796 DOI: 10.1016/j.tim.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Fluidic force microscopy (FluidFM) is a recent force-controlled pipette technology that enables manipulation of single cells. FluidFM can be used for quantification of forces between single cells, and a novel mode of cell-cell adhesion was uncovered: amyloid-like interactions that mediate homophilic adhesion in the fungal pathogen Candida albicans.
Collapse
Affiliation(s)
- Jérôme Dehullu
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg1-5/10, 8093 Zurich, Switzerland
| | - Peter N Lipke
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life sciences and Biotechnology (WELBIO), Brussels, Belgium.
| |
Collapse
|
33
|
Dehullu J, Valotteau C, Herman-Bausier P, Garcia-Sherman M, Mittelviefhaus M, Vorholt JA, Lipke PN, Dufrêne YF. Fluidic Force Microscopy Demonstrates That Homophilic Adhesion by Candida albicans Als Proteins Is Mediated by Amyloid Bonds between Cells. NANO LETTERS 2019; 19:3846-3853. [PMID: 31038969 PMCID: PMC6638552 DOI: 10.1021/acs.nanolett.9b01010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fungal pathogen Candida albicans frequently forms drug-resistant biofilms in hospital settings and in chronic disease patients. Cell adhesion and biofilm formation involve a family of cell surface Als (agglutinin-like sequence) proteins. It is now well documented that amyloid-like clusters of laterally arranged Als proteins activate cell-cell adhesion under mechanical stress, but whether amyloid-like bonds form between aggregating cells is not known. To address this issue, we measure the forces driving Als5-mediated intercellular adhesion using an innovative fluidic force microscopy platform. Strong cell-cell adhesion is dependent on expression of amyloid-forming Als5 at high cell surface density and is inhibited by a short antiamyloid peptide. Furthermore, there is greatly attenuated binding between cells expressing amyloid-forming Als5 and cells with a nonamyloid form of Als5. Thus, homophilic bonding between Als5 proteins on adhering cells is the major mode of fungal aggregation, rather than protein-ligand interactions. These results point to a model whereby amyloid-like β-sheet interactions play a dual role in cell-cell adhesion, that is, in formation of adhesin nanoclusters ( cis-interactions) and in homophilic bonding between amyloid sequences on opposing cells ( trans-interactions). Because potential amyloid-forming sequences are found in many microbial adhesins, we speculate that this novel mechanism of amyloid-based homophilic adhesion might be widespread and could represent an interesting target for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Jérôme Dehullu
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Herman-Bausier
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Melissa Garcia-Sherman
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | | | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Peter N. Lipke
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 4000 Liege, Belgium
| |
Collapse
|
34
|
Shanmugam N, Baker MODG, Ball SR, Steain M, Pham CLL, Sunde M. Microbial functional amyloids serve diverse purposes for structure, adhesion and defence. Biophys Rev 2019; 11:287-302. [PMID: 31049855 PMCID: PMC6557962 DOI: 10.1007/s12551-019-00526-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The functional amyloid state of proteins has in recent years garnered much attention for its role in serving crucial and diverse biological roles. Amyloid is a protein fold characterised by fibrillar morphology, binding of the amyloid-specific dyes Thioflavin T and Congo Red, insolubility and underlying cross-β structure. Amyloids were initially characterised as an aberrant protein fold associated with mammalian disease. However, in the last two decades, functional amyloids have been described in almost all biological systems, from viruses, to bacteria and archaea, to humans. Understanding the structure and role of these amyloids elucidates novel and potentially ancient mechanisms of protein function throughout nature. Many of these microbial functional amyloids are utilised by pathogens for invasion and maintenance of infection. As such, they offer novel avenues for therapies. This review examines the structure and mechanism of known microbial functional amyloids, with a particular focus on the pathogenicity conferred by the production of these structures and the strategies utilised by microbes to interfere with host amyloid structures. The biological importance of microbial amyloid assemblies is highlighted by their ubiquity and diverse functionality.
Collapse
Affiliation(s)
- Nirukshan Shanmugam
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Max O D G Baker
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah R Ball
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Megan Steain
- Infectious Diseases and Immunology, Central Clinical School, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health and Sydney Nano, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
35
|
Candida albicans Interactions with Mucosal Surfaces during Health and Disease. Pathogens 2019; 8:pathogens8020053. [PMID: 31013590 PMCID: PMC6631630 DOI: 10.3390/pathogens8020053] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Flexible adaptation to the host environment is a critical trait that underpins the success of numerous microbes. The polymorphic fungus Candida albicans has evolved to persist in the numerous challenging niches of the human body. The interaction of C. albicans with a mucosal surface is an essential prerequisite for fungal colonisation and epitomises the complex interface between microbe and host. C. albicans exhibits numerous adaptations to a healthy host that permit commensal colonisation of mucosal surfaces without provoking an overt immune response that may lead to clearance. Conversely, fungal adaptation to impaired immune fitness at mucosal surfaces enables pathogenic infiltration into underlying tissues, often with devastating consequences. This review will summarise our current understanding of the complex interactions that occur between C. albicans and the mucosal surfaces of the human body.
Collapse
|
36
|
Serum Amyloid P Component Binds Fungal Surface Amyloid and Decreases Human Macrophage Phagocytosis and Secretion of Inflammatory Cytokines. mBio 2019; 10:mBio.00218-19. [PMID: 30862745 PMCID: PMC6414697 DOI: 10.1128/mbio.00218-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In patients with invasive fungal diseases, there is often little cellular inflammatory response. We tested the idea that binding of the human constitutive plasma protein serum amyloid P component (SAP) (also called PTX2) to Candida albicans dampens the innate immune response to this fungus. Many pathogenic fungi have cell surface amyloid-like structures important for adhesion and biofilm formation. Human SAP bound to fungi that expressed functional cell surface amyloid, but SAP had minimal binding to fungi with reduced expression of cell surface amyloid. In the absence of SAP, phagocytosis of fungi by human macrophages was potentiated by expression of amyloid on the fungi. SAP binding to fungi inhibited their phagocytosis by macrophages. Macrophages pretreated with SAP displayed reduced fungal phagocytosis, reduced secretion of inflammatory cytokines (IFN-γ, IL-6, and TNF-α), and increased secretion of the anti-inflammatory cytokine IL-10. SAP bound to fungi or added to the medium upregulated the expression of the anti-inflammatory receptor CD206 on macrophages. These findings suggest that SAP bound to amyloid-like structures on fungal cells dampens the host cellular immune response in fungal diseases such as invasive candidiasis.IMPORTANCE Macrophages are a key part of our innate immune system and are responsible for recognizing invading microbes, ingesting them, and sending appropriate signals to other immune cells. We have found that human macrophages can recognize invading yeast pathogens that have a specific molecular pattern of proteins on their surfaces: these proteins have structures similar to the structures of amyloid aggregates in neurodegenerative diseases like Alzheimer's disease. However, this surface pattern also causes the fungi to bind a serum protein called serum amyloid P component (SAP). In turn, the SAP-coated yeasts are poorly recognized and seldom ingested by the macrophages, and the macrophages have a more tolerant and less inflammatory response in the presence of SAP. Therefore, we find that surface structures on the yeast can alter how the macrophages react to invading microbes.
Collapse
|
37
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
38
|
Xu Y, Wang C, Hou J, Wang P, You G, Miao L. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34765-34776. [PMID: 30324376 DOI: 10.1007/s11356-018-3418-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
In this study, the biofilm formation of Pseudomonas aeruginosa in the presence of cerium oxide nanoparticles (CeO2 NPs) was investigated. With the addition of 0.1 mg/L and 1 mg/L CeO2 NPs, the biofilm development was substantially enhanced. During the attachment process, the enhanced surface hydrophobicity and excess production of mannosan and rhamnolipids in CeO2 NP treatments were detected, which were conductive to the colonization of bacterial cells. During the maturation period, the biofilm biomass was accelerated by the improved aggregation percentage as well as the secretion of extracellular DNA and pyocyanin. The reactive oxygen species (ROS) generated by CeO2 NPs were found to activate the N-butyryl homoserine lactone (C4-HSL) and quinolone signals secreted by Pseudomonas aeruginosa. Moreover, the quorum sensing (QS) systems of rhl and pqs were initiated, reflected by the stimulated expression levels of biofilm formation-related genes rhlI-rhlR, rhlAB, and pqsR-pqsA. The addition of a quorum quencher, furanone C-30, significantly declined the activities of QS-controlled catalase and superoxide dismutase. A dose of antioxidant, ascorbic acid, effectively relieved the accelerating effects of NPs on biofilm formation. These results indicated that CeO2 NPs could accelerate biofilm formation through the interference of QS system by generating ROS, which provides possible targets for controlling biofilm growth in the NP exposure environments.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| |
Collapse
|
39
|
Willaert RG. Adhesins of Yeasts: Protein Structure and Interactions. J Fungi (Basel) 2018; 4:jof4040119. [PMID: 30373267 PMCID: PMC6308950 DOI: 10.3390/jof4040119] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of yeast cells to adhere to other cells or substrates is crucial for many yeasts. The budding yeast Saccharomyces cerevisiae can switch from a unicellular lifestyle to a multicellular one. A crucial step in multicellular lifestyle adaptation is self-recognition, self-interaction, and adhesion to abiotic surfaces. Infectious yeast diseases such as candidiasis are initiated by the adhesion of the yeast cells to host cells. Adhesion is accomplished by adhesin proteins that are attached to the cell wall and stick out to interact with other cells or substrates. Protein structures give detailed insights into the molecular mechanism of adhesin-ligand interaction. Currently, only the structures of a very limited number of N-terminal adhesion domains of adhesins have been solved. Therefore, this review focuses on these adhesin protein families. The protein architectures, protein structures, and ligand interactions of the flocculation protein family of S. cerevisiae; the epithelial adhesion family of C. glabrata; and the agglutinin-like sequence protein family of C. albicans are reviewed and discussed.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), IJRG VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
- Department Bioscience Engineering, University Antwerp, 2020 Antwerp, Belgium.
| |
Collapse
|
40
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Sentandreu R, Caminero A, Rentería I, León-Ramirez C, González-de-la-Vara L, Valentin-Gomez E, Ruiz-Herrera J. Analysis of the 3H8 antigen of Candida albicans reveals new aspects of the organization of fungal cell wall proteins. FEMS Yeast Res 2018; 18:4966986. [PMID: 29648589 DOI: 10.1093/femsyr/foy035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
The walls of both, yeast and mycelial cells of Candida albicans possess a species-specific antigen that is recognized by a monoclonal antibody (MAb 3H8). This antigen can be extracted in the form of a very high Mr complex, close or over 106 Da, by treatment, with β-1,3-glucanase, β mercaptoethanol or dithothreitol, or mild alkali, but not by saturated hydrogen fluoride (HF) in pyridine, suggesting that the complex is bound to wall β-1,3 glucans, and to proteins by disulfide bonds, but not to β-1,6 glucans. Through its sensitivity to trypsin and different deglycosylation procedures, it was concluded that the epitope is associated to a glycoprotein containing N-glycosidic, but not O-glycosidic mannan moieties. By means of electrophoresis in polycrylamide gradient gels, followed by mass spectrometric analysis, the epitope was pinpointed to a very high MW complex containing Agglutinin-Like Sequence (ALS) family proteins, and other cytoplasmic, membrane and secreted proteins. The components of this complex are bound by unknown covalent bonds. The material extracted with β mercaptoethanol or dilute alkali appeared under the electron microscope as large aggregates in the form of spheroidal and mostly web-like structures of large sizes. These, and additional data, suggest that this protein complex may constitute an important part of the basic glycoprotein structure of C. albicans. The possibility that similar complexes exist in the wall of other fungi is an attractive, although yet untested possibility.
Collapse
Affiliation(s)
- Rafael Sentandreu
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - Antonio Caminero
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - Itzel Rentería
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Claudia León-Ramirez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Luis González-de-la-Vara
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Eulogio Valentin-Gomez
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| |
Collapse
|
42
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|