1
|
Snaebjornsson MT, Poeller P, Komkova D, Röhrig F, Schlicker L, Winkelkotte AM, Chaves-Filho AB, Al-Shami KM, Caballero CD, Koltsaki I, Vogel FCE, Frias-Soler RC, Rudalska R, Schwarz JD, Wolf E, Dauch D, Steuer R, Schulze A. Targeting aldolase A in hepatocellular carcinoma leads to imbalanced glycolysis and energy stress due to uncontrolled FBP accumulation. Nat Metab 2025:10.1038/s42255-024-01201-w. [PMID: 39833612 DOI: 10.1038/s42255-024-01201-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Increased glycolytic flux is a hallmark of cancer; however, an increasing body of evidence indicates that glycolytic ATP production may be dispensable in cancer, as metabolic plasticity allows cancer cells to readily adapt to disruption of glycolysis by increasing ATP production via oxidative phosphorylation. Using functional genomic screening, we show here that liver cancer cells show a unique sensitivity toward aldolase A (ALDOA) depletion. Targeting glycolysis by disrupting the catalytic activity of ALDOA led to severe energy stress and cell cycle arrest in murine and human hepatocellular carcinoma cell lines. With a combination of metabolic flux analysis, metabolomics, stable-isotope tracing and mathematical modelling, we demonstrate that inhibiting ALDOA induced a state of imbalanced glycolysis in which the investment phase outpaced the payoff phase. Targeting ALDOA effectively converted glycolysis from an energy producing into an energy-consuming process. Moreover, we found that depletion of ALDOA extended survival and reduced cancer cell proliferation in an animal model of hepatocellular carcinoma. Thus, our findings indicate that induction of imbalanced glycolysis by targeting ALDOA presents a unique opportunity to overcome the inherent metabolic plasticity of cancer cells.
Collapse
Affiliation(s)
- Marteinn T Snaebjornsson
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Poeller
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daria Komkova
- Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Florian Röhrig
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alina M Winkelkotte
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kamal M Al-Shami
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carolina Dehesa Caballero
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ioanna Koltsaki
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberto Carlos Frias-Soler
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ramona Rudalska
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- IFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Jessica D Schwarz
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
- Biochemical Institute, University of Kiel, Kiel, Germany
| | - Daniel Dauch
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- IFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen, Germany
| | - Ralf Steuer
- Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Akanmori NN, Junop MS, Gupta RS, Park J. Conformational flexibility of human ribokinase captured in seven crystal structures. Int J Biol Macromol 2025; 299:140109. [PMID: 39837438 DOI: 10.1016/j.ijbiomac.2025.140109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
d-ribose is a critical sugar substrate involved in the biosynthesis of nucleotides, amino acids, and cofactors, with its phosphorylation to ribose-5-phosphate by ribokinase (RK) constituting the initial step in its metabolism. RK is conserved across all domains of life, and its activity is significantly enhanced by monovalent metal (M+) ions, particularly K+, although the precise mechanism of this activation remains unclear. In this study, we present several crystal structures of human RK in both unliganded and substrate-bound states, offering detailed insights into its substrate binding process, reaction mechanism, and conformational changes throughout the catalytic cycle. Notably, bound ATP exhibited significant conformational flexibility in its triphosphate moiety, a feature shared with other RK homologues, suggesting that achieving a catalytically productive triphosphate configuration plays a key role in regulating enzyme activity. We also identified a unique conformational change in the M+ ion binding loop of human RK, specifically the flipping of the Gly306-Thr307 peptide plane, likely influenced by the ionic radius of the bound ion. These findings provide new insights into the RK reaction mechanism and its activation by M+ ions, paving the way for future investigations into the allosteric regulation of human RK and related sugar kinase enzymes.
Collapse
Affiliation(s)
- Naomi N Akanmori
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada
| | - Murray S Junop
- Department of Biochemistry, Western University, 1151 Richmond Street, London, Ontario, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
3
|
Yang C, Chen H, Wu Y, Shen X, Liu H, Liu T, Shen X, Xue R, Sun N, Deng C. Deep Learning-Enabled Rapid Metabolic Decoding of Small Extracellular Vesicles via Dual-Use Mass Spectroscopy Chip Array. Anal Chem 2025; 97:271-280. [PMID: 39711466 DOI: 10.1021/acs.analchem.4c04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The increasing focus of small extracellular vesicles (sEVs) in liquid biopsy has created a significant demand for streamlined improvements in sEV isolation methods, efficient collection of high-quality sEV data, and powerful rapid analysis of large data sets. Herein, we develop a high-throughput dual-use mass spectroscopic chip array (DUMSCA) for the rapid isolation and detection of plasma sEVs. The DUMSCA realizes more than a 50% increase in speed compared to traditional method and confirms proficiency in robust storage, reuse, high-efficiency desorption/ionization, and metabolite quantification. With the collected metabolic data matrix of sEVs, a deep learning model achieves high-performance diagnosis of Crohn's disease. Furthermore, discovered biomarkers by feature sparsification and tandem mass spectrometry experiments also exhibited remarkable performance in diagnosis. This work demonstrates the rapidity and validity of DUMSCA for disease diagnosis, enabling the diagnosis of diseases without the necessity for prior knowledge and providing a high-throughput technology for sEV-based liquid biopsy that will empower its vigorous development.
Collapse
Affiliation(s)
- Chenyu Yang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - He Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangguo Shen
- Department of Gastroenterology and Hepatology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch Fudan University), Shanghai 200940, China
| | - Hongchun Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Gastroenterology and Hepatology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch Fudan University), Shanghai 200940, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Maharjan A, Singhvi M, Kim BS. Cell-free biocatalysis for co-production of nicotinamide mononucleotide and ethanol from Saccharomyces cerevisiae and recombinant Escherichia coli. Enzyme Microb Technol 2025; 184:110585. [PMID: 39813904 DOI: 10.1016/j.enzmictec.2025.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Cell-free enzyme systems have emerged as a promising approach for producing various biometabolites, offering several advantages over traditional whole-cell systems. This study presents an approach to producing nicotinamide mononucleotide (NMN) by combining a Saccharomyces cerevisiae cell-free enzyme with a recombinant Escherichia coli cell-free enzyme. The system leverages the ATP generated by yeast during ethanol fermentation to produce NMN in the presence of nicotinamide (NAM) as a substrate. The optimal cell-free enzyme concentration and substrate concentration were investigated to maximize NMN production. The results showed that combined cell-free enzymes led to increased NMN and ethanol yields, with a maximum production of 1.5 mM NMN (2.7-fold) and ethanol production of 0.45 g/L achieved (1.6-fold) compared to individual cell-free enzymes. Furthermore, the study demonstrated that the protein concentration affected NMN production, with optimal production achieved at 5 g/L. This study demonstrates the potential of integrating multiple metabolic pathways in a single cell-free system, paving the way for the development of more efficient and sustainable bioproduction processes.
Collapse
Affiliation(s)
- Anoth Maharjan
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Mamata Singhvi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
5
|
Sheng Y, Qiao C, Zhang Z, Shi X, Yang L, Xi R, Yu J, Liu W, Zhang G, Wang F. Calcium Channel Blocker Lacidipine Promotes Antitumor Immunity by Reprogramming Tryptophan Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409310. [PMID: 39585774 PMCID: PMC11744582 DOI: 10.1002/advs.202409310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Dysfunction of calcium channels is involved in the development and progression of some cancers. However, it remains unclear the role of calcium channel inhibitors in tumor immunomodulation. Here, calcium channel blocker lacidipine is identified to potently inhibit the enzymatic activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism. Lacidipine activates effector T cells and incapacitates regulatory T cells (Tregs) to augment the anti-tumor effect of chemotherapeutic agents in breast cancer by converting immunologically "cold" into "hot" tumors. Mechanistically, lacidipine targets calcium channels (CaV1.2/1.3) to inhibit Pyk2-JAK1-calmodulin complex-mediated IDO1 transcription suppression, which suppresses the kynurenine pathway and maintains the total nicotinamide adenine dinucleotide (NAD) pool by regulating NAD biosynthesis. These results reveal a new function of calcium channels in IDO1-mediated tryptophan metabolism in tumor immunity and warrant further development of lacidipine for the metabolic immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| | - Chong Qiao
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| | - Zhonghui Zhang
- School Of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou511400China
| | - Xiaoke Shi
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Linhan Yang
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ruiying Xi
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jialing Yu
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wanli Liu
- State Key Laboratory of Membrane BiologySchool of Life SciencesInstitute for ImmunologyBeijing Advanced Innovation Center for Structural BiologyBeijing Key Lab for Immunological Research on Chronic DiseasesBeijing100084China
| | - Guolin Zhang
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| | - Fei Wang
- Center for Natural Products ResearchChengdu Institute of BiologyChinese Academy of SciencesChengdu610041China
| |
Collapse
|
6
|
Cabulong RB, Kafle SR, Singh A, Sharma M, Kim BS. Biological production of nicotinamide mononucleotide: a review. Crit Rev Biotechnol 2024:1-18. [PMID: 39675885 DOI: 10.1080/07388551.2024.2433993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 12/17/2024]
Abstract
Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: Escherichia coli, Bacillus subtilis, and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Saroj Raj Kafle
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Anju Singh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
7
|
Jia X, Luo S, Ye X, Liu L, Wen W. Evolution of the biochemistry underpinning purine alkaloid metabolism in plants. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230366. [PMID: 39343019 PMCID: PMC11449220 DOI: 10.1098/rstb.2023.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
Purine alkaloids are naturally occurring nitrogenous methylated derivatives of purine nucleotide degradation products, having essential roles in medicine, food and various other aspects of our daily lives. They are generated through convergent evolution in different plant species. The pivotal reaction steps within the purine alkaloid metabolic pathways have been largely elucidated, and the convergent evolution of purine alkaloids has been substantiated through bioinformatic, biochemical and other research perspectives within S-adenosyl-ʟ-methionine-dependent N-methyltransferases. Currently, the biological and ecological roles of purine alkaloids, further refinement of the purine alkaloid metabolic pathways and the investigation of purine alkaloid adaptive evolutionary mechanisms continue to attract widespread research interest. The exploration of the purine alkaloid metabolic pathways also enhances our comprehension of the biochemical mechanism, providing insights into inter-species interactions and adaptive evolution and offering potential value in drug development and agricultural applications. Here, we review the progress of research in the distribution, metabolic pathway elucidation and regulation, evolutionary mechanism and ecological roles of purine alkaloids in plants. The opportunities and challenges involved in elucidating the biochemical basis and evolutionary mechanisms of the purine alkaloid metabolic pathways, as well as other research aspects, are also discussed. This article is part of the theme issue 'The evolution of plant meta-bolism'.
Collapse
Affiliation(s)
- Xinxin Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Shijie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Xiali Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Lin Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| |
Collapse
|
8
|
Woldetsadik YA, Lazinski DW, Camilli A. A Vibrio cholerae anti-phage system depletes nicotinamide adenine dinucleotide to restrict virulent bacteriophages. mBio 2024; 15:e0245724. [PMID: 39377576 PMCID: PMC11559045 DOI: 10.1128/mbio.02457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
Bacteria and their predatory viruses (bacteriophages or phages) are in a perpetual molecular arms race. This has led to the evolution of numerous phage defensive systems in bacteria that are still being discovered, as well as numerous ways of interference or circumvention on the part of phages. Here, we identify a unique molecular battle between the classical biotype of Vibrio cholerae and virulent phages ICP1, ICP2, and ICP3. We show that classical biotype strains resist almost all isolates of these phages due to a 25-kb genomic island harboring several putative anti-phage systems. We observed that one of these systems, Nezha, encoding SIR2-like and helicase proteins, inhibited the replication of all three phages. Bacterial SIR2-like enzymes degrade the essential metabolic coenzyme nicotinamide adenine dinucleotide (NAD+), thereby preventing replication of the invading phage. In support of this mechanism, we identified one phage isolate, ICP1_2001, which circumvents Nezha by encoding two putative NAD+ regeneration enzymes. By restoring the NAD+ pool, we hypothesize that this system antagonizes Nezha without directly interacting with its proteins and should be able to antagonize other anti-phage systems that deplete NAD+.IMPORTANCEBacteria and phages are in a perpetual molecular arms race, with bacteria evolving an extensive arsenal of anti-phage systems and phages evolving mechanisms to overcome these systems. This study identifies a previously uncharacterized facet of the arms race between Vibrio cholerae and its phages. We identify an NAD+-depleting anti-phage defensive system called Nezha, potent against three virulent phages. Remarkably, one phage encodes proteins that regenerate NAD+ to counter the effects of Nezha. Without Nezha, the NAD+ regeneration genes are detrimental to the phage. Our study provides new insight into the co-evolutionary dynamics between bacteria and phages and informs the microbial ecology and phage therapy fields.
Collapse
Affiliation(s)
- Yishak A. Woldetsadik
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David W. Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Hernandez DM, Marzouk M, Cole M, Fortoul MC, Reddy Kethireddy S, Contractor R, Islam H, Moulder T, Kalifa AR, Marin Meneses E, Barbosa Mendoza M, Thomas R, Masud S, Pubien S, Milanes P, Diaz-Tang G, Lopatkin AJ, Smith RP. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. Microbiol Spectr 2024; 12:e0189524. [PMID: 39436125 PMCID: PMC11619438 DOI: 10.1128/spectrum.01895-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. Previous work found that the relationship between [ATP] and growth rate can account for the strength and occurrence of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. Using a combination of flux balance analysis and experimentation, we show that nucleotide synthesis can determine the relationship between [ATP] and growth and thus the strength of inoculum effect in an antibiotic class-dependent manner. If the [ATP]/growth rate is sufficiently high as determined by exogenously supplied nitrogenous bases, the inoculum effect does not occur. This is consistent for both Escherichia coli and Pseudomonas aeruginosa. Interestingly, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for β-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect, which may pave the way for intervention strategies to reduce the inoculum effect in the clinic. IMPORTANCE If a bacterial population can grow and reach a sufficiently high density, routine doses of antibiotics can be ineffective. This phenomenon, called the inoculum effect, has been observed for nearly all antibiotics and bacterial species. It has also been reported to result in antibiotic failure in the clinic. Understanding how to reduce the inoculum effect can make high-density infections easier to treat. Here, we show that purine and pyrimidine synthesis affect the strength of the inoculum effect; as the transcriptional activity of pyrimidine synthesis increases, the strength of the inoculum effect for aminoglycosides decreases. Conversely, as the transcriptional activity of purine synthesis increases, the strength of the inoculum effect for β-lactam antibiotics decreases. Our work highlights the importance of nucleotide synthesis in determining the strength of the inoculum effect, which may lead to the identification of new ways to treat high-density infections in the clinic.
Collapse
Affiliation(s)
- Daniella M. Hernandez
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Melissa Marzouk
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Madeline Cole
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Marla C. Fortoul
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saipranavi Reddy Kethireddy
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Rehan Contractor
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Habibul Islam
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
| | - Trent Moulder
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ariane R. Kalifa
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Estefania Marin Meneses
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Maximiliano Barbosa Mendoza
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ruth Thomas
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saad Masud
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sheena Pubien
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Patricia Milanes
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Gabriela Diaz-Tang
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert P. Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
10
|
Figueroa-Gonzalez PA, Bornemann TLV, Hinzke T, Maaß S, Trautwein-Schult A, Starke J, Moore CJ, Esser SP, Plewka J, Hesse T, Schmidt TC, Schreiber U, Bor B, Becher D, Probst AJ. Metaproteogenomics resolution of a high-CO 2 aquifer community reveals a complex cellular adaptation of groundwater Gracilibacteria to a host-dependent lifestyle. MICROBIOME 2024; 12:194. [PMID: 39369255 PMCID: PMC11452946 DOI: 10.1186/s40168-024-01889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Bacteria of the candidate phyla radiation (CPR), constituting about 25% of the bacterial biodiversity, are characterized by small cell size and patchy genomes without complete key metabolic pathways, suggesting a symbiotic lifestyle. Gracilibacteria (BD1-5), which are part of the CPR branch, possess alternate coded genomes and have not yet been cultivated. The lifestyle of Gracilibacteria, their temporal dynamics, and activity in natural ecosystems, particularly in groundwater, has remained largely unexplored. Here, we aimed to investigate Gracilibacteria activity in situ and to discern their lifestyle based on expressed genes, using the metaproteogenome of Gracilibacteria as a function of time in the cold-water geyser Wallender Born in the Volcanic Eifel region in Germany. RESULTS We coupled genome-resolved metagenomics and metaproteomics to investigate a cold-water geyser microbial community enriched in Gracilibacteria across a 12-day time-series. Groundwater was collected and sequentially filtered to fraction CPR and other bacteria. Based on 725 Gbps of metagenomic data, 1129 different ribosomal protein S3 marker genes, and 751 high-quality genomes (123 population genomes after dereplication), we identified dominant bacteria belonging to Gallionellales and Gracilibacteria along with keystone microbes, which were low in genomic abundance but substantially contributing to proteomic abundance. Seven high-quality Gracilibacteria genomes showed typical limitations, such as limited amino acid or nucleotide synthesis, in their central metabolism but no co-occurrence with potential hosts. The genomes of these Gracilibacteria were encoded for a high number of proteins involved in cell to cell interaction, supporting the previously surmised host-dependent lifestyle, e.g., type IV and type II secretion system subunits, transporters, and features related to cell motility, which were also detected on protein level. CONCLUSIONS We here identified microbial keystone taxa in a high-CO2 aquifer, and revealed microbial dynamics of Gracilibacteria. Although Gracilibacteria in this ecosystem did not appear to target specific organisms in this ecosystem due to lack of co-occurrence despite enrichment on 0.2-µm filter fraction, we provide proteomic evidence for the complex machinery behind the host-dependent lifestyle of groundwater Gracilibacteria. Video Abstract.
Collapse
Affiliation(s)
- Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
| | - Tjorven Hinzke
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, 17489, Greifswald, Germany
- Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, 17489, Germany
| | - Sandra Maaß
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Joern Starke
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Carrie J Moore
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Julia Plewka
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Tobias Hesse
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, 45141, Germany
| | - Torsten C Schmidt
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, 45141, Germany
| | - Ulrich Schreiber
- Department of Geology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Batbileg Bor
- Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany.
| |
Collapse
|
11
|
Zhang X, Niu P, Liu H, Fang H. Production of pyrimidine nucleosides in microbial systems via metabolic engineering: Theoretical analysis research and prospects. Biotechnol Adv 2024; 75:108419. [PMID: 39053562 DOI: 10.1016/j.biotechadv.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Pyrimidine nucleosides, as intermediate materials of significant commercial value, find extensive applications in the pharmaceutical industry. However, the current production of pyrimidine nucleosides largely relies on chemical synthesis, creating environmental problems that do not align with sustainable development goals. Recent progress in systemic metabolic engineering and synthetic biology has enabled the synthesis of natural products like pyrimidine nucleosides through microbial fermentation, offering a more sustainable alternative. Nevertheless, the intricate and tightly regulated biosynthetic pathways involved in the microbial production of pyrimidine nucleosides pose a formidable challenge. This study focuses on metabolic engineering and synthetic biology strategies aimed at enhancing pyrimidine nucleoside production. These strategies include gene modification, transcriptional regulation, metabolic flux analysis, cofactor balance optimization, and transporter engineering. Finally, this research highlights the challenges involved in the further development of pyrimidine nucleoside-producing strains and offers potential solutions in order to provide theoretical guidance for future research endeavors in this field.
Collapse
Affiliation(s)
- Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Pilian Niu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
12
|
Osterman I, Samra H, Rousset F, Loseva E, Itkin M, Malitsky S, Yirmiya E, Millman A, Sorek R. Phages reconstitute NAD + to counter bacterial immunity. Nature 2024; 634:1160-1167. [PMID: 39322677 DOI: 10.1038/s41586-024-07986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Bacteria defend against phage infection through a variety of antiphage defence systems1. Many defence systems were recently shown to deplete cellular nicotinamide adenine dinucleotide (NAD+) in response to infection, by cleaving NAD+ into ADP-ribose (ADPR) and nicotinamide2-7. It was demonstrated that NAD+ depletion during infection deprives the phage of this essential molecule and impedes phage replication. Here we show that a substantial fraction of phages possess enzymatic pathways allowing reconstitution of NAD+ from its degradation products in infected cells. We describe NAD+ reconstitution pathway 1 (NARP1), a two-step pathway in which one enzyme phosphorylates ADPR to generate ADPR pyrophosphate (ADPR-PP), and the second enzyme conjugates ADPR-PP and nicotinamide to generate NAD+. Phages encoding NARP1 can overcome a diverse set of defence systems, including Thoeris, DSR1, DSR2, SIR2-HerA and SEFIR, all of which deplete NAD+ as part of their defensive mechanism. Phylogenetic analyses show that NARP1 is primarily encoded on phage genomes, suggesting a phage-specific function in countering bacterial defences. A second pathway, NARP2, allows phages to overcome bacterial defences by building NAD+ using metabolites different from ADPR-PP. Our findings reveal a unique immune evasion strategy in which viruses rebuild molecules depleted by defence systems, thus overcoming host immunity.
Collapse
Affiliation(s)
- Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Hadar Samra
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francois Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Loseva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Hansen AK, Argondona JA, Miao S, Percy DM, Degnan PH. Rapid Loss of Nutritional Symbionts in an Endemic Hawaiian Herbivore Radiation Is Associated with Plant Galling Habit. Mol Biol Evol 2024; 41:msae190. [PMID: 39238368 PMCID: PMC11425488 DOI: 10.1093/molbev/msae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
Insect herbivores frequently cospeciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host-plant species, Metrosideros polymorpha within the last ∼5 MY. Using 16S rRNA sequencing, we investigated the bacterial microbiomes of 19 Pariaconus species and identified distinct symbiont profiles associated with specific host-plant ecologies. Phylogenetic analyses and metagenomic reconstructions revealed significant differences in microbial diversity and functions among psyllids with different host-plant ecologies. Within a few millions of years, Pariaconus species convergently evolved the closed-gall habit twice. This shift to enclosed galls coincided with the loss of the Morganella-like symbiont that provides the essential amino acid arginine to free-living and open-gall sister species. After the Pariaconus lineage left Kauai and colonized younger islands, both open- and closed-gall species lost the Dickeya-like symbiont. This symbiont is crucial for synthesizing essential amino acids (phenylalanine, tyrosine, and lysine) as well as B vitamins in free-living species. The recurrent loss of these symbionts in galling species reinforces evidence that galls are nutrient sinks and, combined with the rapidity of the evolutionary timeline, highlights the dynamic role of insect-symbiont relationships during the diversification of feeding ecologies. We propose new Candidatus names for the novel Morganella-like and Dickeya-like symbionts.
Collapse
Affiliation(s)
- Allison K Hansen
- Department of Entomology, University of California, Riverside, CA, USA
| | - Jacob A Argondona
- Department of Entomology, University of California, Riverside, CA, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, CA, USA
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
14
|
Jiménez-Nava RA, Chávez-Camarillo GM, Cristiani-Urbina E. Kinetics of Riboflavin Production by Hyphopichia wangnamkhiaoensis under Varying Nutritional Conditions. Int J Mol Sci 2024; 25:9430. [PMID: 39273377 PMCID: PMC11395577 DOI: 10.3390/ijms25179430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Riboflavin, an essential vitamin for humans, is extensively used in various industries, with its global demand being met through fermentative processes. Hyphopichia wangnamkhiaoensis is a novel dimorphic yeast species capable of producing riboflavin. However, the nutritional factors affecting riboflavin production in this yeast species remain unknown. Therefore, we conducted a kinetic study on the effects of various nutritional factors-carbon and energy sources, nitrogen sources, vitamins, and amino acids-on batch riboflavin production by H. wangnamkhiaoensis. Batch experiments were performed in a bubble column bioreactor to evaluate cell growth, substrate consumption, and riboflavin production. The highest riboflavin production was obtained when the yeast growth medium was supplemented with glucose, ammonium sulfate, biotin, and glycine. Using these chemical components, along with the mineral salts from Castañeda-Agullo's culture medium, we formulated a novel, low-cost, and effective culture medium (the RGE medium) for riboflavin production by H. wangnamkhiaoensis. This medium resulted in the highest levels of riboflavin production and volumetric productivity, reaching 16.68 mg/L and 0.713 mg/L·h, respectively, within 21 h of incubation. These findings suggest that H. wangnamkhiaoensis, with its shorter incubation time, could improve the efficiency and cost-effectiveness of industrial riboflavin production, paving the way for more sustainable production methods.
Collapse
Affiliation(s)
- Raziel Arturo Jiménez-Nava
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, Mexico City 11340, Mexico
| | - Griselda Ma Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, Mexico City 11340, Mexico
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
| |
Collapse
|
15
|
Wang P, Ma Y, Li J, Su J, Chi J, Zhu X, Zhu X, Zhang C, Bi C, Zhang X. Exploring the De Novo NMN Biosynthesis as an Alternative Pathway to Enhance NMN Production. ACS Synth Biol 2024; 13:2425-2435. [PMID: 39023319 DOI: 10.1021/acssynbio.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Nicotinamide mononucleotide (NMN) serves as a precursor for NAD+ synthesis and has been shown to have positive effects on the human body. Previous research has predominantly focused on the nicotinamide phosphoribosyltransferase-mediated route (NadV-mediated route) for NMN biosynthesis. In this study, we have explored the de novo NMN biosynthesis route as an alternative pathway to enhance NMN production. Initially, we systematically engineered Escherichia coli to enhance its capacity for NMN synthesis and accumulation, resulting in a remarkable over 100-fold increase in NMN yield. Subsequently, we progressively enhanced the de novo NMN biosynthesis route to further augment NMN production. We screened and identified the crucial role of MazG in catalyzing the enzymatic cleavage of NAD+ to NMN. And the de novo NMN biosynthesis route was optimized and integrated with the NadV-mediated NMN biosynthetic pathways, leading to an intracellular concentration of 844.10 ± 17.40 μM NMN. Furthermore, the introduction of two transporters enhanced the uptake of NAM and the excretion of NMN, resulting in NMN production of 1293.73 ± 61.38 μM. Finally, by engineering an E. coli strain with optimized PRPP synthetase, we achieved the highest NMN production, reaching 3067.98 ± 27.25 μM after 24 h of fermentation at the shake flask level. In addition to constructing an efficient E. coli cell factory for NMN production, our findings provide new insights into understanding the NAD+ salvage pathway and its role in energy metabolism within E. coli.
Collapse
Affiliation(s)
- Pengju Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yidan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300382, China
| | - Junchang Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Junxi Chi
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingmiao Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
16
|
Ma Y, Jing X, Li D, Zhang T, Xiang H, Xia Y, Xu F. Proteomics and metabolomics analyses of urine for investigation of gallstone disease in a high-altitude area. Metabolomics 2024; 20:99. [PMID: 39143352 DOI: 10.1007/s11306-024-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The incidence of gallstones is high in Qinghai Province. However, the molecular mechanisms underlying the development of gallstones remain unclear. METHODS In this study, we collected urine samples from 30 patients with gallstones and 30 healthy controls. The urine samples were analysed using multi-omics platforms. Proteomics analysis was conducted using data-independent acquisition, whereas metabolomics analysis was performed using liquid chromatography-mass spectrometry (LC-MS). RESULTS Among the patients with gallstones, we identified 49 down-regulated and 185 up-regulated differentially expressed proteins as well as 195 up-regulated and 189 down-regulated differentially expressed metabolites. Six pathways were significantly enriched: glycosaminoglycan degradation, arginine and proline metabolism, histidine metabolism, pantothenate and coenzyme A biosynthesis, drug metabolism-other enzymes, and the pentose phosphate pathway. Notably, 10 differentially expressed proteins and metabolites showed excellent predictive performance and were selected as potential biomarkers. CONCLUSION The findings of our metabolomics and proteomics analyses provide new insights into novel biomarkers for patients with cholelithiasis in high-altitude areas.
Collapse
Affiliation(s)
- Ying Ma
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Xining, 810001, Qinghai, China
| | - Xiaofeng Jing
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Defu Li
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Xining, 810001, Qinghai, China
| | - Tiecheng Zhang
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Haiqi Xiang
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yonghong Xia
- Department of Hepatobiliary Surgery, Qinghai Provincial Traffic Hospital, Xining, 810001, Qinghai, China.
| | - Fan Xu
- Department of Evidence-Based Medicine and Social Medicine, School of Public Health , Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
17
|
Zhang C, Zhou DF, Wang MY, Song YZ, Zhang C, Zhang MM, Sun J, Yao L, Mo XH, Ma ZX, Yuan XJ, Shao Y, Wang HR, Dong SH, Bao K, Lu SH, Sadilek M, Kalyuzhnaya MG, Xing XH, Yang S. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth. Nat Commun 2024; 15:5969. [PMID: 39013920 PMCID: PMC11252147 DOI: 10.1038/s41467-024-50342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Di-Fei Zhou
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Meng-Ying Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Ya-Zhen Song
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Chong Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
| | - Ming-Ming Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Jing Sun
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, PR China
| | - Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Zeng-Xin Ma
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Xiao-Jie Yuan
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Yi Shao
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Hao-Ran Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Si-Han Dong
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, Hubei, PR China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, PR China.
| |
Collapse
|
18
|
Kelly SD, Williams DM, Zhu S, Kim T, Jana M, Nothof J, Thota VN, Lowary TL, Whitfield C. Klebsiella pneumoniae O-polysaccharide biosynthesis highlights the diverse organization of catalytic modules in ABC transporter-dependent glycan assembly. J Biol Chem 2024; 300:107420. [PMID: 38815868 PMCID: PMC11231755 DOI: 10.1016/j.jbc.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shawna Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manas Jana
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Nothof
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
19
|
Woldetsadik YA, Lazinski DW, Camilli A. A Vibrio cholerae Anti-Phage System Depletes Nicotinamide Adenine Dinucleotide to Restrict Virulent Bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599363. [PMID: 38948830 PMCID: PMC11212891 DOI: 10.1101/2024.06.17.599363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bacteria and their predatory viruses (bacteriophages or phages) are in a perpetual molecular arms race. This has led to the evolution of numerous phage defensive systems in bacteria that are still being discovered, as well as numerous ways of interference or circumvention on the part of phages. Here, we identify a unique molecular battle between the classical biotype of Vibrio cholerae and virulent phages ICP1, ICP2, and ICP3. We show that classical biotype strains resist almost all isolates of these phages due to a 25-kb genomic island harboring several putative anti-phage systems. We observed that one of these systems, Nezha, encoding SIR2-like and helicase proteins, inhibited the replication of all three phages. Bacterial SIR2-like enzymes degrade the essential metabolic coenzyme nicotinamide adenine dinucleotide (NAD+), thereby preventing replication of the invading phage. In support of this mechanism, we identified one phage isolate, ICP1_2001, which circumvents Nezha by encoding two putative NAD+ regeneration enzymes. By restoring the NAD+ pool, we hypothesize that this system antagonizes Nezha without directly interacting with either protein and should be able to antagonize other anti-phage systems that deplete NAD+.
Collapse
Affiliation(s)
- Yishak A. Woldetsadik
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David W. Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Murdoch E, Schweizer LM, Schweizer M. Hypothesis: evidence that the PRS gene products of Saccharomyces cerevisiae support both PRPP synthesis and maintenance of cell wall integrity. Curr Genet 2024; 70:6. [PMID: 38733432 PMCID: PMC11088543 DOI: 10.1007/s00294-024-01290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
The gene products of PRS1-PRS5 in Saccharomyces cerevisiae are responsible for the production of PRPP (5-phospho-D-ribosyl-α-1-pyrophosphate). However, it has been demonstrated that they are also involved in the cell wall integrity (CWI) signalling pathway as shown by protein-protein interactions (PPIs) with, for example Slt2, the MAP kinase of the CWI pathway. The following databases: SGD, BioGRID and Hit Predict, which collate PPIs from various research papers, have been scrutinized for evidence of PPIs between Prs1-Prs5 and components of the CWI pathway. The level of certainty in PPIs was verified by interaction scores available in the Hit Predict database revealing that well-documented interactions correspond with higher interaction scores and can be graded as high confidence interactions based on a score > 0.28, an annotation score ≥ 0.5 and a method-based high confidence score level of ≥ 0.485. Each of the Prs1-Prs5 polypeptides shows some degree of interaction with the CWI pathway. However, Prs5 has a vital role in the expression of FKS2 and Rlm1, previously only documented by reporter assay studies. This report emphasizes the importance of investigating interactions using more than one approach since every method has its limitations and the use of different methods, as described herein, provides complementary experimental and statistical data, thereby corroborating PPIs. Since the experimental data described so far are consistent with a link between PRPP synthetase and the CWI pathway, our aim was to demonstrate that these data are also supported by high-throughput bioinformatic analyses promoting our hypothesis that two of the five PRS-encoding genes contain information required for the maintenance of CWI by combining data from our targeted approach with relevant, unbiased data from high-throughput analyses.
Collapse
Affiliation(s)
- Emily Murdoch
- School of Energy, Geoscience, Infrastructure and Society, Institute of Life and Earth Sciences, Energy, Geoscience, Infrastructure and Society, Riccarton Campus, Edinburgh, EH14 4AS, UK
| | | | - Michael Schweizer
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Riccarton Campus, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
21
|
Hengardi MT, Liang C, Madivannan K, Yang LK, Koduru L, Kanagasundaram Y, Arumugam P. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:121. [PMID: 38725068 PMCID: PMC11080194 DOI: 10.1186/s12934-024-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miselle Tiana Hengardi
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| | - Cui Liang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Keshiniy Madivannan
- Innovation & Enterprise, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Lay Kien Yang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yoganathan Kanagasundaram
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Prakash Arumugam
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
22
|
Hernandez DM, Marzouk M, Cole M, Fortoul MC, Kethireddy SR, Contractor R, Islam H, Moulder T, Kalifa AR, Meneses EM, Mendoza MB, Thomas R, Masud S, Pubien S, Milanes P, Diaz-Tang G, Lopatkin AJ, Smith RP. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588696. [PMID: 38645041 PMCID: PMC11030397 DOI: 10.1101/2024.04.09.588696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. We previously found that growth productivity, which captures the relationship between [ATP] and growth, can account for the strength of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. We show that nucleotide synthesis can determine the relationship between [ATP] and growth, and thus the strength of inoculum effect in an antibiotic class-dependent manner. Specifically, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for β-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect and paves the way for intervention strategies to reduce the inoculum effect in the clinic.
Collapse
Affiliation(s)
- Daniella M. Hernandez
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Melissa Marzouk
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Madeline Cole
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Marla C. Fortoul
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Saipranavi Reddy Kethireddy
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Rehan Contractor
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Habibul Islam
- Department of Chemical Engineering, University of Rochester; Rochester, NY 14627; USA
| | - Trent Moulder
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Ariane R. Kalifa
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Estefania Marin Meneses
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Maximiliano Barbosa Mendoza
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Ruth Thomas
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Saad Masud
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Sheena Pubien
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Patricia Milanes
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Gabriela Diaz-Tang
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester; Rochester, NY 14627; USA
- Department of Microbiology and Immunology, University of Rochester Medical Center; Rochester, NY 14627; USA
- Department of Biomedical Engineering, University of Rochester Medical Center; Rochester, NY 14627; USA
| | - Robert P. Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| |
Collapse
|
23
|
Gao S, Wu F, Gurcha SS, Batt SM, Besra GS, Rao Z, Zhang L. Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis. Nat Microbiol 2024; 9:976-987. [PMID: 38491273 PMCID: PMC10994848 DOI: 10.1038/s41564-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-β-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
24
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. mBio 2024; 15:e0291823. [PMID: 38380943 PMCID: PMC10936187 DOI: 10.1128/mbio.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs. IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Zou S, Zhang B, Han Y, Liu J, Zhao K, Xue Y, Zheng Y. Design of a cofactor self-sufficient whole-cell biocatalyst for enzymatic asymmetric reduction via engineered metabolic pathways and multi-enzyme cascade. Biotechnol J 2024; 19:e2300744. [PMID: 38509791 DOI: 10.1002/biot.202300744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
NAD(P)H-dependent oxidoreductases are crucial biocatalysts for synthesizing chiral compounds. Yet, the industrial implementation of enzymatic redox reactions is often hampered by an insufficient supply of expensive nicotinamide cofactors. Here, a cofactor self-sufficient whole-cell biocatalyst was developed for the enzymatic asymmetric reduction of 2-oxo-4-[(hydroxy)(-methyl)phosphinyl] butyric acid (PPO) to L-phosphinothricin (L-PPT). The endogenous NADP+ pool was significantly enhanced by regulating Preiss-Handler pathway toward NAD(H) synthesis and, in the meantime, introducing NAD kinase to phosphorylate NAD(H) toward NADP+. The intracellular NADP(H) concentration displayed a 2.97-fold increase with the strategy compared with the wild-type strain. Furthermore, a recombinant multi-enzyme cascade biocatalytic system was constructed based on the Escherichia coli chassis. In order to balance multi-enzyme co-expression levels, the strategy of modulating rate-limiting enzyme PmGluDH by RBS strengths regulation successfully increased the catalytic efficiency of PPO conversion. Finally, the cofactor self-sufficient whole-cell biocatalyst effectively converted 300 mM PPO to L-PPT in 2 h without the need to add exogenous cofactors, resulting in a 2.3-fold increase in PPO conversion (%) from 43% to 100%, with a high space-time yield of 706.2 g L-1 d-1 and 99.9% ee. Overall, this work demonstrates a technological example for constructing a cofactor self-sufficient system for NADPH-dependent redox biocatalysis.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Bing Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yuyue Han
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Jinlong Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Kuo Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Pang L, Liang N, Li C, Merriman TR, Zhang H, Yan F, Sun W, Li R, Xue X, Liu Z, Wang C, Cheng X, Chen S, Yin H, Dalbeth N, Yuan X. A stable liver-specific urate oxidase gene knockout hyperuricemia mouse model finds activated hepatic de novo purine biosynthesis and urate nephropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167009. [PMID: 38237409 DOI: 10.1016/j.bbadis.2023.167009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024]
Abstract
Urate oxidase (Uox)-deficient mice could be an optimal animal model to study hyperuricemia and associated disorders. We develop a liver-specific conditional knockout Uox-deficient (UoxCKO) mouse using the Cre/loxP gene targeting system. These UoxCKO mice spontaneously developed hyperuricemia with accumulated serum urate metabolites. Blocking urate degradation, the UoxCKO mice showed significant de novo purine biosynthesis (DNPB) in the liver along with amidophosphoribosyltransferase (Ppat). Pegloticase and allopurinol reversed the elevated serum urate (SU) levels in UoxCKO mice and suppressed the Ppat up-regulation. Although urate nephropathy occurred in 30-week-old UoxCKO mice, 90 % of Uox-deficient mice had a normal lifespan without pronounced urate transport abnormality. Thus, UoxCKO mice are a stable model of human hyperuricemia. Activated DNPB in the UoxCKO mice provides new insights into hyperuricemia, suggesting increased SU influences purine synthesis.
Collapse
Affiliation(s)
- Lei Pang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China, University of Chinese Academy of Sciences, Beijing, China
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, AL, United States
| | - Hui Zhang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Fei Yan
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenyan Sun
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rui Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaomei Xue
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Liu
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Can Wang
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Cheng
- Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China, University of Chinese Academy of Sciences, Beijing, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China, University of Chinese Academy of Sciences, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Medicine, State Key Laboratory of Marine Pollution (SKLMP), The Shenzhen Research Institute, City University of Hong Kong, Hong Kong, China.
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - Xuan Yuan
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China; Shandong Provincial Key Laboratory of Metabolic Diseases, Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
27
|
Cheng F, Li KX, Wu SS, Liu HY, Li H, Shen Q, Xue YP, Zheng YG. Biosynthesis of Nicotinamide Mononucleotide: Synthesis Method, Enzyme, and Biocatalytic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3302-3313. [PMID: 38330904 DOI: 10.1021/acs.jafc.3c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nicotinamide mononucleotide (NMN) has garnered substantial interest as a functional food product. Industrial NMN production relies on chemical methods, facing challenges in separation, purification, and regulatory complexities, leading to elevated prices. In contrast, NMN biosynthesis through fermentation or enzyme catalysis offers notable benefits like eco-friendliness, recyclability, and efficiency, positioning it as a primary avenue for future NMN synthesis. Enzymatic NMN synthesis encompasses the nicotinamide-initial route and nicotinamide ribose-initial routes. Key among these is nicotinamide riboside kinase (NRK), pivotal in the latter route. The NRK-mediated biosynthesis is emerging as a prominent trend due to its streamlined route, simplicity, and precise specificity. The essential aspect is to obtain an engineered NRK that exhibits elevated activity and robust stability. This review comprehensively assesses diverse NMN synthesis methods, offering valuable insights into efficient, sustainable, and economical production routes. It spotlights the emerging NRK-mediated biosynthesis pathway and its significance. The establishment of an adenosine triphosphate (ATP) regeneration system plays a pivotal role in enhancing NMN synthesis efficiency through NRK-catalyzed routes. The review aims to be a reference for researchers developing green and sustainable NMN synthesis, as well as those optimizing NMN production.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ke-Xin Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Shan-Shan Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hai-Yun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Huan Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
28
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
29
|
Devasahayam Arokia Balaya R, Palollathil A, Kumar STA, Chandrasekaran J, Upadhyay SS, Parate SS, Sajida M, Karthikkeyan G, Prasad TSK. Role of Hemigraphis alternata in wound healing: metabolomic profiling and molecular insights into mechanisms. Sci Rep 2024; 14:3872. [PMID: 38365839 PMCID: PMC10873326 DOI: 10.1038/s41598-024-54352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
Hemigraphis alternata (H. alternata), commonly known as Red Flame Ivy, is widely recognized for its wound healing capabilities. However, the pharmacologically active plant components and their mechanisms of action in wound healing are yet to be determined. This study presents the mass spectrometry-based global metabolite profiling of aqueous and ethanolic extract of H. alternata leaves. The analysis identified 2285 metabolites from 24,203 spectra obtained in both positive and negative polarities. The identified metabolites were classified under ketones, carboxylic acids, primary aliphatic amines, steroids and steroid derivatives. We performed network pharmacology analysis to explore metabolite-protein interactions and identified 124 human proteins as targets for H. alternata metabolites. Among these, several of them were implicated in wound healing including prothrombin (F2), alpha-2A adrenergic receptor (ADRA2A) and fibroblast growth factor receptor 1 (FGFR1). Gene ontology analysis of target proteins enriched cellular functions related to glucose metabolic process, platelet activation, membrane organization and response to wounding. Additionally, pathway enrichment analysis revealed potential molecular network involved in wound healing. Moreover, in-silico docking analysis showed strong binding energy between H. alternata metabolites with identified protein targets (F2 and PTPN11). Furthermore, the key metabolites involved in wound healing were further validated by multiple reaction monitoring-based targeted analysis.
Collapse
Affiliation(s)
- Rex Devasahayam Arokia Balaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - Sumaithangi Thattai Arun Kumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - Jaikanth Chandrasekaran
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, 600116, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - M Sajida
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | | |
Collapse
|
30
|
Zhou M, Wei L, Wu C, Chen W, Tang Z. Systematic Engineering of Escherichia coli for Efficient Production of Cytidine 5'-Monophosphate. ACS OMEGA 2024; 9:6663-6668. [PMID: 38371780 PMCID: PMC10870394 DOI: 10.1021/acsomega.3c07713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Cytidine 5'-monophosphate (CMP) was widely applied in the food and pharmaceutical industries. Currently, CMP is mainly produced by enzyme catalysis. However, the starting materials for enzyme catalysis were relatively expensive. Therefore, seeking a low-cost production process for CMP was attractive. In this study, Escherichia coli (E. coli) was systematically modified to produce CMP. First, a the cytidine-producing strain was constructed by deleting cdd, rihA, rihB, and rihC. Second, the genes involved in the pyrimidine precursor competing pathway and negative regulation were deleted to increase cyti dine biosynthesis. Third, the deletion of the genes that caused the loss of CMP phosphatase activity led to the accumulation of CMP, and the overexpression of the rate-limiting step genes and feedback inhibition resistance genes greatly increased the yield of CMP. The yield of CMP was further increased to 1013.6 mg/L by blocking CMP phosphorylation. Ultimately, the yield of CMP reached 15.3 g/L in a 50 L bioreactor. Overall, the engineered E. coli with a high yield of CMP was successfully constructed and showed the potential for industrial production.
Collapse
Affiliation(s)
- Min Zhou
- Institute
of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Liyuan Wei
- Institute
of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Chongzhi Wu
- Institute
of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
| | - Wei Chen
- Hangzhou
Hizyme Biotech Co., Ltd., Hangzhou 310011, China
| | - Zhengju Tang
- Taizhou
Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| |
Collapse
|
31
|
Peng F, Hong J, Cui J, An YN, Guo Q, Shen Q, Cheng F, Xue YP, Zheng YG. Improvement of an enzymatic cascade synthesis of nicotinamide mononucleotide via protein engineering and reaction-process reinforcement. Biotechnol J 2024; 19:e2300748. [PMID: 38403401 DOI: 10.1002/biot.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Enzymatic synthesis of β-nicotinamide mononucleotide (NMN) from D-ribose has garnered widespread attention due to its cheap material, the use of mild reaction conditions, and the ability to produce highly pure products with the desired optical properties. However, the overall NMN yield of this method is impeded by the low activity of rate-limiting enzymes. The ribose-phosphate diphosphokinase (PRS) and nicotinamide phosphoribosyltransferase (NAMPT), that control the rate of the reaction, were engineered to improve the reaction efficacy. The actives of mutants PRS-H150Q and NAMPT-Y15S were 334% and 57% higher than that of their corresponding wild-type enzymes, respectively. Furthermore, by adding pyrophosphatase, the byproduct pyrophosphate which can inhibit the activity of NAMPT was degraded, leading to a 6.72% increase in NMN yield. Following with reaction-process reinforcement, a high yield of 8.10 g L-1 NMN was obtained after 3 h of reaction, which was 56.86-fold higher than that of the stepwise reaction synthesis (0.14 g L-1 ), indicating that the in vitro enzymatic synthesis of NMN from D-ribose and niacinamide is an economical and feasible route.
Collapse
Affiliation(s)
- Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jian Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jie Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Ya-Ni An
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Qian Guo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
32
|
Chen L, Zhou Q, Zhang P, Tan W, Li Y, Xu Z, Ma J, Kupfer GM, Pei Y, Song Q, Pei H. Direct stimulation of de novo nucleotide synthesis by O-GlcNAcylation. Nat Chem Biol 2024; 20:19-29. [PMID: 37308732 PMCID: PMC10746546 DOI: 10.1038/s41589-023-01354-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
O-linked β-N-acetyl glucosamine (O-GlcNAc) is at the crossroads of cellular metabolism, including glucose and glutamine; its dysregulation leads to molecular and pathological alterations that cause diseases. Here we report that O-GlcNAc directly regulates de novo nucleotide synthesis and nicotinamide adenine dinucleotide (NAD) production upon abnormal metabolic states. Phosphoribosyl pyrophosphate synthetase 1 (PRPS1), the key enzyme of the de novo nucleotide synthesis pathway, is O-GlcNAcylated by O-GlcNAc transferase (OGT), which triggers PRPS1 hexamer formation and relieves nucleotide product-mediated feedback inhibition, thereby boosting PRPS1 activity. PRPS1 O-GlcNAcylation blocked AMPK binding and inhibited AMPK-mediated PRPS1 phosphorylation. OGT still regulates PRPS1 activity in AMPK-deficient cells. Elevated PRPS1 O-GlcNAcylation promotes tumorigenesis and confers resistance to chemoradiotherapy in lung cancer. Furthermore, Arts-syndrome-associated PRPS1 R196W mutant exhibits decreased PRPS1 O-GlcNAcylation and activity. Together, our findings establish a direct connection among O-GlcNAc signals, de novo nucleotide synthesis and human diseases, including cancer and Arts syndrome.
Collapse
Affiliation(s)
- Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Qi Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Ziwen Xu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Gary M Kupfer
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yanxin Pei
- Center for Cancer and Immunology, Brain Tumor Institute, Children's National Health System, Washington, DC, USA
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
33
|
Zhou M, Li Y, Cai Y, Sun Y, Chen W, Wang J, Shen F, Zhan Y, Ying J, Chen S. Development of an Inosine Hyperproducer from Bacillus licheniformis by Systems Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20210-20221. [PMID: 38079219 DOI: 10.1021/acs.jafc.3c07715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Inosine is widely used in food, chemical, and medicine. This study developed Bacillus licheniformis into an inosine hyperproducer through systems metabolic engineering. First, purine metabolism was activated by deleting inhibitors PurR and YabJ and overexpressing the pur operon. Then, the 5-phosphoribosyl-1-pyrophosphate (PRPP) supply was increased by optimizing the glucose transport system and pentose phosphate pathway, increasing the inosine titer by 97% and decreasing the titers of byproducts by 36%. Next, to prevent the degradation of inosine, genes deoD and pupG coding purine nucleoside phosphorylase were deleted, accumulating 0.91 g/L inosine in the culture medium. Additionally, the downregulation of adenosine 5'-monophosphate (AMP) synthesis pathway increased the inosine titer by 409%. Importantly, enhancing the glycine and aspartate supply increased the inosine titer by 298%. Finally, the guanosine synthesis pathway was blocked, leading to strain IR-8-2 producing 27.41 g/L inosine with a 0.46 g inosine/g glucose yield and a 0.38 g/(L·h) productivity in a shake flask.
Collapse
Affiliation(s)
- Menglin Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Youhua Cai
- Star Lake Bioscience Co. Inc, Zhaoging, Zhaoging, Guangdong 526000, PR China
| | - Yaqi Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Wu Chen
- Star Lake Bioscience Co. Inc, Zhaoging, Zhaoging, Guangdong 526000, PR China
| | - Jin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Feng Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jun Ying
- Star Lake Bioscience Co. Inc, Zhaoging, Zhaoging, Guangdong 526000, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, PR China
| |
Collapse
|
34
|
Sato M, Sakano S, Nakahara M, Tamura Y, Hara K, Hashimoto H, Tang Y, Watanabe K. Uncommon Arrangement of Self-resistance Allows Biosynthesis of de novo Purine Biosynthesis Inhibitor that Acts as an Immunosuppressor. J Am Chem Soc 2023; 145:26883-26889. [PMID: 38051581 PMCID: PMC10868411 DOI: 10.1021/jacs.3c09600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
(-)-FR901483 (1) isolated from the fungus Cladobotryum sp. No.11231 achieves immunosuppression via nucleic acid biosynthesis inhibition rather than IL-2 production inhibition as accomplished by FK506 and cyclosporin A. Recently, we identified the frz gene cluster for the biosynthesis of 1. It contains frzK, a gene homologous to phosphoribosyl pyrophosphate amidotransferase (PPAT)that catalyzes the initial step of de novo purine biosynthesis. We speculated that frzK encodes a PPAT that escapes inhibition by 1 and functions as a self-resistance enzyme (SRE) for the producing host. Nevertheless, details remained elusive. Here, we report the biochemical and structural analyses of FrzK and its Escherichia coli counterpart, PurF. Recombinantly produced FrzK exhibited PPAT activity, albeit weaker than PurF, but evaded strong inhibition by 1. These results confirmed that the target of 1 is PPAT, and FrzK acts as an SRE by maintaining the de novo purine biosynthetic capability in the presence of 1. To understand how FrzK evades inhibition by 1, we determined the crystal structure of PurF in the complex with 1 and constructed a homology model of FrzK. Sequence and structural analyses of various PPATs identified that many residues unique to FrzK occur near the Flexible Loop that remains disordered when inactive but becomes ordered and covers up the active site upon activation by substrate binding. Kinetic characterizations of mutants of the unique residues revealed that the resistance of FrzK against 1 may be conferred by structurally predisposing the Flexible Loop to the active, closed conformation even in the presence of 1.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Sakurako Sakano
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Miku Nakahara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yui Tamura
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kodai Hara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Hashimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
35
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
36
|
Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023; 33:950-966. [PMID: 36967301 PMCID: PMC10518033 DOI: 10.1016/j.tcb.2023.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Nucleotides are the foundational elements of life. Proliferative cells acquire nutrients for energy production and the synthesis of macromolecules, including proteins, lipids, and nucleic acids. Nucleotides are continuously replenished through the activation of the nucleotide synthesis pathways. Despite the importance of nucleotides in cell physiology, there is still much to learn about how the purine and pyrimidine synthesis pathways are regulated in response to intracellular and exogenous signals. Over the past decade, evidence has emerged that several signaling pathways [Akt, mechanistic target of rapamycin complex I (mTORC1), RAS, TP53, and Hippo-Yes-associated protein (YAP) signaling] alter nucleotide synthesis activity and influence cell function. Here, we examine the mechanisms by which these signaling networks affect de novo nucleotide synthesis in mammalian cells. We also discuss how these molecular links can be targeted in diseases such as cancers and immune disorders.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Lee A, Knox R, Reynolds M, McRoy E, Nguyen H. S-adenosylmethionine and nicotinamide riboside therapy in Arts syndrome: A case report and literature review. JIMD Rep 2023; 64:417-423. [PMID: 37927483 PMCID: PMC10623096 DOI: 10.1002/jmd2.12395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 11/07/2023] Open
Abstract
Phospho-ribosyl-pyrophosphate synthetase 1 (PRPS1) deficiency is secondary to loss of function variants in PRPS1. This enzyme generates phospho-ribosyl-pyrophosphate (PRPP), which is utilized in the synthesis of purines, nicotinamide adenine dinucleotide (NAD), and NAD phosphate (NADP), among other metabolic pathways. Arts syndrome, or severe PRPS1 deficiency, is an X-linked condition characterized by congenital sensorineural hearing loss, optic atrophy, developmental delays, ataxia, hypotonia, and recurrent infections that can cause progressive clinical decline, often resulting in death before 5 years of age. Supplementation of the purine and NAD pathways outside of PRPP-dependent reactions is a logical approach and has been reported in a handful of patients, two with S-adenosylmethionine (SAMe) and one with SAMe and nicotinamide riboside (NR). We present the clinical course of a fourth Arts syndrome patient who was started on therapy and review previously reported patients. All patients had stability or improvement of symptoms, suggesting that SAMe and NR can be a treatment option in Arts syndrome, though further studies are warranted.
Collapse
Affiliation(s)
- Angela Lee
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington UniversitySaint LouisMissouriUSA
| | - Renatta Knox
- Department of Pediatrics and NeurologyWashington UniversitySaint LouisMissouriUSA
| | - Margaret Reynolds
- Departments of Pediatrics, Division of OphthalmologyWashington UniversitySaint LouisMissouriUSA
| | - Erin McRoy
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington UniversitySaint LouisMissouriUSA
| | - Hoanh Nguyen
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington UniversitySaint LouisMissouriUSA
| |
Collapse
|
38
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen deficient zones with diverse metabolic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564641. [PMID: 37961710 PMCID: PMC10634959 DOI: 10.1101/2023.10.30.564641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Archaea belonging to the DPANN superphylum have been found within an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise 15-26% of the archaeal community within marine oxygen deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes belonging to DPANN phyla Nanoarchaeota, Pacearchaeota, Woesarchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and Arabian Sea. We find these archaea to be permanent, stable residents of all 3 major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25-50% of archaea. ODZ DPANN appear capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven Wilbert
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Divisions of Biology and Biological Engineering and Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
39
|
Maisat W, Yuki K. Volatile anesthetic isoflurane exposure facilitates Enterococcus biofilm infection. FASEB J 2023; 37:e23186. [PMID: 37665578 PMCID: PMC10495085 DOI: 10.1096/fj.202301128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Enterococcus faecalis (E. faecalis) is one of the major pathogenic bacteria responsible for surgical site infections. Biofilm infections are major hospital-acquired infections. Previous studies suggested that ions could regulate biofilm formation in microbes. Volatile anesthetics, frequently administered in surgical setting, target ion channels. Here, we investigated the role of ion channels/transporters and volatile anesthetics in the biofilm formation by E. faecalis MMH594 strain and its ion transporter mutants. We found that a chloride transporter mutant significantly reduced biofilm formation compared to the parental strain. Downregulation of teichoic acid biosynthesis in the chloride transporter mutant impaired biofilm matrix formation and cellular adhesion, leading to mitigated biofilm formation. Among anesthetics, isoflurane exposure enhanced biofilm formation in vitro and in vivo. The upregulation of de novo purine biosynthesis pathway by isoflurane exposure potentially enhanced biofilm formation, an essential process for DNA, RNA, and ATP synthesis. We also demonstrated that isoflurane exposure to E. faecalis increased cyclic-di-AMP and extracellular DNA production, consistent with the increased purine biosynthesis. We further showed that isoflurane enhanced the enzymatic activity of phosphoribosyl pyrophosphate synthetase (PRPP-S). With the hypothesis that isoflurane directly bound to PRPP-S, we predicted isoflurane binding site on it using rigid docking. Our study provides a better understanding of the underlying mechanisms of E. faecalis biofilm formation and highlights the potential impact of an ion transporter and volatile anesthetic on this process. These findings may lead to the development of novel strategies for preventing E. faecalis biofilm formation and improving patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
40
|
Feng L, Zhang PY, Gao W, Yu J, Robson SC. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front Oncol 2023; 13:1244280. [PMID: 37746249 PMCID: PMC10513429 DOI: 10.3389/fonc.2023.1244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
Collapse
Affiliation(s)
- Lili Feng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Y. Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Canton, MA, United States
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Xu J, Zhao N, Meng X, Li J, Zhang T, Xu R, Wei X, Fan M. Transcriptomic and Metabolomic Profiling Uncovers Response Mechanisms of Alicyclobacillus acidoterrestris DSM 3922 T to Acid Stress. Microbiol Spectr 2023; 11:e0002223. [PMID: 37318333 PMCID: PMC10434157 DOI: 10.1128/spectrum.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Alicyclobacillus acidoterrestris, which has strong acidophilic and heat-resistant properties, can cause spoilage of pasteurized acidic juice. The current study determined the physiological performance of A. acidoterrestris under acidic stress (pH 3.0) for 1 h. Metabolomic analysis was carried out to investigate the metabolic responses of A. acidoterrestris to acid stress, and integrative analysis with transcriptome data was also performed. Acid stress inhibited the growth of A. acidoterrestris and altered its metabolic profiles. In total, 63 differential metabolites, mainly enriched in amino acid metabolism, nucleotide metabolism, and energy metabolism, were identified between acid-stressed cells and the control. Integrated transcriptomic and metabolomic analysis revealed that A. acidoterrestris maintains intracellular pH (pHi) homeostasis by enhancing amino acids decarboxylation, urea hydrolysis, and energy supply, which was verified using real-time quantitative PCR and pHi measurement. Additionally, two-component systems, ABC transporters, and unsaturated fatty acid synthesis also play crucial roles in resisting acid stress. Finally, a model of the responses of A. acidoterrestris to acid stress was proposed. IMPORTANCE Fruit juice spoilage caused by A. acidoterrestris contamination has become a major concern and challenge in the food industry, and this bacterium has been suggested as a target microbe in the design of the pasteurization process. However, the response mechanisms of A. acidoterrestris to acid stress still remain unknown. In this study, integrative transcriptomic, metabolomic, and physiological approaches were used to uncover the global responses of A. acidoterrestris to acid stress for the first time. The obtained results can provide new insights into the acid stress responses of A. acidoterrestris, which will point out future possible directions for the effective control and application of A. acidoterrestris.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Food Engineering, Luohe Vocational College of Food, Luohe, Henan, China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruoyun Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Food Engineering, Luohe Vocational College of Food, Luohe, Henan, China
| |
Collapse
|
42
|
Sui Y, Che Y, Zhong Y, He L. Genome-Wide Association Studies Using 3VmrMLM Model Provide New Insights into Branched-Chain Amino Acid Contents in Rice Grains. PLANTS (BASEL, SWITZERLAND) 2023; 12:2970. [PMID: 37631180 PMCID: PMC10459631 DOI: 10.3390/plants12162970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Rice (Oryza sativa L.) is a globally important food source providing carbohydrates, amino acids, and dietary fiber for humans and livestock. The branched-chain amino acid (BCAA) level is a complex trait related to the nutrient quality of rice. However, the genetic mechanism underlying the BCAA (valine, leucine, and isoleucine) accumulation in rice grains remains largely unclear. In this study, the grain BCAA contents and 239,055 SNPs of a diverse panel containing 422 rice accessions were adopted to perform a genome-wide association study (GWAS) using a recently proposed 3VmrMLM model. A total of 357 BCAA-content-associated main-effect quantitative trait nucleotides (QTNs) were identified from 15 datasets (12 BCAA content datasets and 3 BLUP datasets of BCAA). Furthermore, the allelic variation of two novel candidate genes, LOC_Os01g52530 and LOC_Os06g15420, responsible for the isoleucine (Ile) content alteration were identified. To reveal the genetic basis of the potential interactions between the gene and environmental factor, 53 QTN-by-environment interactions (QEIs) were detected using the 3VmrMLM model. The LOC_Os03g24460, LOC_Os01g55590, and LOC_Os12g31820 were considered as the candidate genes potentially contributing to the valine (Val), leucine (Leu), and isoleucine (Ile) accumulations, respectively. Additionally, 10 QTN-by-QTN interactions (QQIs) were detected using the 3VmrMLM model, which were putative gene-by-gene interactions related to the Leu and Ile contents. Taken together, these findings suggest that the implementation of the 3VmrMLM model in a GWAS may provide new insights into the deeper understanding of BCAA accumulation in rice grains. The identified QTNs/QEIs/QQIs serve as potential targets for the genetic improvement of rice with high BCAA levels.
Collapse
Affiliation(s)
| | | | | | - Liqiang He
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
43
|
Pinson B, Moenner M, Saint-Marc C, Granger-Farbos A, Daignan-Fornier B. On-demand utilization of phosphoribosyl pyrophosphate by downstream anabolic pathways. J Biol Chem 2023; 299:105011. [PMID: 37414150 PMCID: PMC10413152 DOI: 10.1016/j.jbc.2023.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
The pentose phosphate pathway (PPP) is critical for anabolism and biomass production. Here we show that the essential function of PPP in yeast is the synthesis of phosphoribosyl pyrophosphate (PRPP) catalyzed by PRPP-synthetase. Using combinations of yeast mutants, we found that a mildly decreased synthesis of PRPP affects biomass production, resulting in reduced cell size, while a more severe decrease ends up affecting yeast doubling time. We establish that it is PRPP itself that is limiting in invalid PRPP-synthetase mutants and that the resulting metabolic and growth defect can be bypassed by proper supplementation of the medium with ribose-containing precursors or by the expression of bacterial or human PRPP-synthetase. In addition, using documented pathologic human hyperactive forms of PRPP-synthetase, we show that intracellular PRPP as well as its derived products can be increased in both human and yeast cells, and we describe the ensuing metabolic and physiological consequences. Finally, we found that PRPP consumption appears to take place "on demand" by the various PRPP-utilizing pathways, as shown by blocking or increasing the flux in specific PRPP-consuming metabolic routes. Overall, our work reveals important similarities between human and yeast for both synthesis and consumption of PRPP.
Collapse
Affiliation(s)
- Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France; Metabolic Analyse Service, TBMCore - Université de Bordeaux - CNRS UAR 3427 - INSERM US005, Bordeaux, France
| | - Michel Moenner
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France
| | - Alexandra Granger-Farbos
- Metabolic Analyse Service, TBMCore - Université de Bordeaux - CNRS UAR 3427 - INSERM US005, Bordeaux, France
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS - Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
44
|
Johnsen U, Ortjohann M, Reinhardt A, Turner JM, Stratton C, Weber KR, Sanchez KM, Maupin-Furlow J, Davies C, Schönheit P. Discovery of a novel transcriptional regulator of sugar catabolism in archaea. Mol Microbiol 2023; 120:224-240. [PMID: 37387308 PMCID: PMC10838023 DOI: 10.1111/mmi.15114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
The haloarchaeon Haloferax volcanii degrades D-glucose via the semiphosphorylative Entner-Doudoroff pathway and D-fructose via a modified Embden-Meyerhof pathway. Here, we report the identification of GfcR, a novel type of transcriptional regulator that functions as an activator of both D-glucose and D-fructose catabolism. We find that in the presence of D-glucose, GfcR activates gluconate dehydratase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase and also acts as activator of the phosphotransferase system and of fructose-1,6-bisphosphate aldolase, which are involved in uptake and degradation of D-fructose. In addition, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase are activated by GfcR in the presence of D-fructose and also during growth on D-galactose and glycerol. Electrophoretic mobility shift assays indicate that GfcR binds directly to promoters of regulated genes. Specific intermediates of the degradation pathways of the three hexoses and of glycerol were identified as inducer molecules of GfcR. GfcR is composed of a phosphoribosyltransferase (PRT) domain with an N-terminal helix-turn-helix motif and thus shows homology to PurR of Gram-positive bacteria that is involved in the transcriptional regulation of nucleotide biosynthesis. We propose that GfcR of H. volcanii evolved from a PRT-like enzyme to attain a function as a transcriptional regulator of central sugar catabolic pathways in archaea.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Marius Ortjohann
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Andreas Reinhardt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Jonathan M. Turner
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Caleb Stratton
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Katherine R. Weber
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Karol M. Sanchez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
45
|
Grucela PK, Fuhrer T, Sauer U, Chao Y, Zhang YE. Ribose 5-phosphate: the key metabolite bridging the metabolisms of nucleotides and amino acids during stringent response in Escherichia coli? MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:141-144. [PMID: 37395996 PMCID: PMC10311079 DOI: 10.15698/mic2023.07.799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
The bacterial stringent response and its effector alarmone guanosine penta- or tetra - phosphates (p)ppGpp are vital for bacterial tolerance and survival of various stresses in environments (including antibiotics) and host cells (virulence). (p)ppGpp does so by binding to its numerous target proteins and reprograming bacterial transcriptome to tune down the synthesis of nucleotides and rRNA/tRNA, and up-regulate amino acid biosynthesis genes. Recent identification of more novel (p)ppGpp direct binding proteins in Escherichia coli and their deep studies have unveiled unprecedented details of how (p)ppGpp coordinates the nucleotide and amino acid metabolic pathways upon stringent response; however, the mechanistic link between nucleotide and amino acid metabolisms remains still incompletely understood. Here we propose the metabolite ribose 5'-phosphate as the key link between nucleotide and amino acid metabolisms and a working model integrating both the transcriptional and metabolic effects of (p)ppGpp on E. coli physiological adaptation during the stringent response.
Collapse
Affiliation(s)
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Everett Zhang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
46
|
Cifuente JO, Schulze J, Bethe A, Di Domenico V, Litschko C, Budde I, Eidenberger L, Thiesler H, Ramón Roth I, Berger M, Claus H, D'Angelo C, Marina A, Gerardy-Schahn R, Schubert M, Guerin ME, Fiebig T. A multi-enzyme machine polymerizes the Haemophilus influenzae type b capsule. Nat Chem Biol 2023; 19:865-877. [PMID: 37277468 PMCID: PMC10299916 DOI: 10.1038/s41589-023-01324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/31/2023] [Indexed: 06/07/2023]
Abstract
Bacterial capsules have critical roles in host-pathogen interactions. They provide a protective envelope against host recognition, leading to immune evasion and bacterial survival. Here we define the capsule biosynthesis pathway of Haemophilus influenzae serotype b (Hib), a Gram-negative bacterium that causes severe infections in infants and children. Reconstitution of this pathway enabled the fermentation-free production of Hib vaccine antigens starting from widely available precursors and detailed characterization of the enzymatic machinery. The X-ray crystal structure of the capsule polymerase Bcs3 reveals a multi-enzyme machine adopting a basket-like shape that creates a protected environment for the synthesis of the complex Hib polymer. This architecture is commonly exploited for surface glycan synthesis by both Gram-negative and Gram-positive pathogens. Supported by biochemical studies and comprehensive 2D nuclear magnetic resonance, our data explain how the ribofuranosyltransferase CriT, the phosphatase CrpP, the ribitol-phosphate transferase CroT and a polymer-binding domain function as a unique multi-enzyme assembly.
Collapse
Affiliation(s)
- Javier O Cifuente
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Valerio Di Domenico
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Cecilia D'Angelo
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Alberto Marina
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
47
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
48
|
Lu GM, Hu HH, Chang CC, Zhong J, Zhou X, Guo CJ, Zhang T, Li YL, Yin B, Liu JL. Structural basis of human PRPS2 filaments. Cell Biosci 2023; 13:100. [PMID: 37248548 DOI: 10.1186/s13578-023-01037-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND PRPP synthase (PRPS) transfers the pyrophosphate groups from ATP to ribose-5-phosphate to produce 5-phosphate ribose-1-pyrophosphate (PRPP), a key intermediate in the biosynthesis of several metabolites including nucleotides, dinucleotides and some amino acids. There are three PRPS isoforms encoded in human genome. While human PRPS1 (hPRPS1) and human PRPS2 (hPRPS2) are expressed in most tissues, human PRPS3 (hPRPS3) is exclusively expressed in testis. Although hPRPS1 and hPRPS2 share 95% sequence identity, hPRPS2 has been shown to be less sensitive to allosteric inhibition and specifically upregulated in certain cancers in the translational level. Recent studies demonstrate that PRPS can form a subcellular compartment termed the cytoophidium in multiple organisms across prokaryotes and eukaryotes. Forming filaments and cytoophidia is considered as a distinctive mechanism involving the polymerization of the protein. Previously we solved the filament structures of Escherichia coli PRPS (ecPRPS) using cryo-electron microscopy (cryo-EM) 1. RESULTS Order to investigate the function and molecular mechanism of hPRPS2 polymerization, here we solve the polymer structure of hPRPS2 at 3.08 Å resolution. hPRPS2 hexamers stack into polymers in the conditions with the allosteric/competitive inhibitor ADP. The binding modes of ADP at the canonical allosteric site and at the catalytic active site are clearly determined. A point mutation disrupting the inter-hexamer interaction prevents hPRPS2 polymerization and results in significantly reduced catalytic activity. CONCLUSION Findings suggest that the regulation of hPRPS2 polymer is distinct from ecPRPS polymer and provide new insights to the regulation of hPRPS2 with structural basis.
Collapse
Affiliation(s)
- Guang-Ming Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tianyi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Boqi Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
49
|
Yuan Q, Wu M, Liao Y, Liang S, Lu Y, Lin Y. Rapid prototyping enzyme homologs to improve titer of nicotinamide mononucleotide using a strategy combining cell-free protein synthesis with split GFP. Biotechnol Bioeng 2023; 120:1133-1146. [PMID: 36585353 DOI: 10.1002/bit.28326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Engineering biological systems to test new pathway variants containing different enzyme homologs is laborious and time-consuming. To tackle this challenge, a strategy was developed for rapidly prototyping enzyme homologs by combining cell-free protein synthesis (CFPS) with split green fluorescent protein (GFP). This strategy featured two main advantages: (1) dozens of enzyme homologs were parallelly produced by CFPS within hours, and (2) the expression level and activity of each homolog was determined simultaneously by using the split GFP assay. As a model, this strategy was applied to optimize a 3-step pathway for nicotinamide mononucleotide (NMN) synthesis. Ten enzyme homologs from different organisms were selected for each step. Here, the most productive homolog of each step was identified within 24 h rather than weeks or months. Finally, the titer of NMN was increased to 1213 mg/L by improving physiochemical conditions, tuning enzyme ratios and cofactor concentrations, and decreasing the feedback inhibition, which was a more than 12-fold improvement over the initial setup. This strategy would provide a promising way to accelerate design-build-test cycles for metabolic engineering to improve the production of desired products.
Collapse
Affiliation(s)
- Qingyan Yuan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minhui Wu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yibo Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
50
|
Arif MAR, Tripodi P, Waheed MQ, Afzal I, Pistrick S, Schütze G, Börner A. Genetic Analyses of Seed Longevity in Capsicum annuum L. in Cold Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1321. [PMID: 36987009 PMCID: PMC10057624 DOI: 10.3390/plants12061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seed longevity is the most important trait in the genebank management system. No seed can remain infinitely viable. There are 1241 accessions of Capsicum annuum L. available at the German Federal ex situ genebank at IPK Gatersleben. C. annuum (Capsicum) is the most economically important species of the genus Capsicum. So far, there is no report that has addressed the genetic basis of seed longevity in Capsicum. Here, we convened a total of 1152 Capsicum accessions that were deposited in Gatersleben over forty years (from 1976 to 2017) and assessed their longevity by analyzing the standard germination percentage after 5-40 years of storage at -15/-18 °C. These data were used to determine the genetic causes of seed longevity, along with 23,462 single nucleotide polymorphism (SNP) markers covering all of the 12 Capsicum chromosomes. Using the association-mapping approach, we identified a total of 224 marker trait associations (MTAs) (34, 25, 31, 35, 39, 7, 21 and 32 MTAs after 5-, 10-, 15-, 20-, 25-, 30-, 35- and 40-year storage intervals) on all the Capsicum chromosomes. Several candidate genes were identified using the blast analysis of SNPs, and these candidate genes are discussed.
Collapse
Affiliation(s)
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | | | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sibylle Pistrick
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Gudrun Schütze
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| |
Collapse
|