1
|
Malyshev D, Lee CC, Andersson M. Evaluating Bacterial Spore Preparation Methods for Scanning Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:564-573. [PMID: 38701197 DOI: 10.1093/mam/ozae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024]
Abstract
Scanning electron microscopy (SEM) can reveal the ultrastructure of bacterial spores, including morphology, surface features, texture, spore damage, germination, and appendages. Understanding these features can provide a basis for adherence, how physical and environmental stressors affect spore viability, integrity, and functionality, as well as the distribution and function of surface appendages. However, the spore sample preparation method can significantly impact the SEM images' appearance, resolution, and overall quality. In this study, we compare different spore preparation methods to identify optimal approaches for preparation time, spore appearance and resolved features, including the exosporium and spore pili, for SEM imaging. We use Bacillus paranthracis as model species and evaluate the efficacy of preparation protocols using different fixation and drying methods, as well as imaging under room- and cryogenic temperatures. We compare and assess method complexity to the visibility of the spore exosporium and spore appendages across different methods. Additionally, we use Haralick texture features to quantify the differences in spore surface appearance and determine the most suitable method for preserving spore structures and surface features during SEM evaluation. The findings from this study will help establish protocols for preparing bacterial spores for SEM and facilitating accurate and reliable analysis of spores' characteristics.
Collapse
Affiliation(s)
- Dmitry Malyshev
- Department of Physics, Umeå University, Linnaeus Väg, Umeå 901 87, Sweden
| | - Cheng Choo Lee
- Umeå Centre for Electron Microscopy (UCEM), Umeå University, Linnaeus Väg, Umeå 901 87, Sweden
| | - Magnus Andersson
- Department of Physics, Umeå University, Linnaeus Väg, Umeå 901 87, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Linnaeus Väg, Umeå 901 87, Sweden
| |
Collapse
|
2
|
Khanal S, Kim TD, Begyn K, Duverger W, Kramer G, Brul S, Rajkovic A, Devlieghere F, Heyndrickx M, Schymkowitz J, Rousseau F, Broussolle V, Michiels C, Aertsen A. Mechanistic insights into the adaptive evolvability of spore heat resistance in Bacillus cereus sensu lato. Int J Food Microbiol 2024; 418:110709. [PMID: 38663147 DOI: 10.1016/j.ijfoodmicro.2024.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 05/27/2024]
Abstract
Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.
Collapse
Affiliation(s)
- Sadhana Khanal
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wouter Duverger
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, box 802, 3000 Leuven, Belgium
| | | | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium..
| |
Collapse
|
3
|
Yang W, Yuan Y, He L, Fan H. Single-cell analysis reveals microbial spore responses to sodium hypochlorite. JOURNAL OF BIOPHOTONICS 2024; 17:e202400015. [PMID: 38613161 DOI: 10.1002/jbio.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Pollution from toxic spores has caused us a lot of problems because spores are extremely resistant and can survive most disinfectants. Therefore, the detection of spore response to disinfectant is of great significance for the development of effective decontamination strategies. In this work, we investigated the effect of 0.5% sodium hypochlorite on the molecular and morphological properties of single spores of Bacillus subtilis using single-cell techniques. Laser tweezers Raman spectroscopy showed that sodium hypochlorite resulted in Ca2+-dipicolinic acid release and nucleic acid denaturation. Atomic force microscopy showed that the surface of treated spores changed from rough to smooth, protein shells were degraded at 10 min, and the permeability barrier was destroyed at 15 min. The spore volume decreased gradually over time. Live-cell imaging showed that the germination and growth rates decreased with increasing treatment time. These results provide new insight into the response of spores to sodium hypochlorite.
Collapse
Affiliation(s)
- Weiming Yang
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong, China
| | - Yufeng Yuan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Lin He
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Haihua Fan
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Dorbani I, Armengaud J, Carlin F, Duport C. Proteome of spores from biological indicators in sterilization processes: Bacillus pumilus and Bacillus atrophaeus. Proteomics 2024; 24:e2300293. [PMID: 38059874 DOI: 10.1002/pmic.202300293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Bacillus atrophaeus and Bacillus pumilus spores are widely used as biological indicators to assess the effectiveness of decontamination procedures. Spores are intricate, multi-layered cellular structures primarily composed of proteins, which significantly contribute to their extreme resistance. Therefore, conducting a comprehensive proteome analysis of spores is crucial to identify the specific proteins conferring spore resistance. Here, we employed a high-throughput shotgun proteomic approach to compare the spore proteomes of B. atrophaeus DSM675 and B. pumilus DSM492, identifying 1312 and 1264 proteins, respectively. While the overall number of proteins found in both strains is roughly equivalent, a closer examination of a subset of 54 spore-specific proteins revealed noteworthy distinctions. Among these 54 proteins, 23 were exclusively detected in one strain, while others were shared between both. Notably, of the 31 proteins detected in both strains, 10 exhibited differential abundance levels, including key coat layer morphogenetic proteins. The exploration of these 54 proteins, considering their presence, absence, and differential abundance, provides a unique molecular signature that may elucidate the differences in sensitivity/resistance profiles between the two strains.
Collapse
Affiliation(s)
- Imed Dorbani
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
- Claranor SA, Avignon, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | | | | |
Collapse
|
5
|
Huessy B, Bumann D, Ebert D. Ectopical expression of bacterial collagen-like protein supports its role as adhesin in host-parasite coevolution. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231441. [PMID: 38577215 PMCID: PMC10987987 DOI: 10.1098/rsos.231441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
For a profound understanding of antagonistic coevolution, it is necessary to identify the coevolving genes. The bacterium Pasteuria and its host, the microcrustacean Daphnia, are a well-characterized paradigm for co-evolution, but the underlying genes remain largely unknown. A genome-wide association study suggested a Pasteuria collagen-like protein 7 (Pcl7) as a candidate mediating parasite attachment and driving its coevolution with the host. Since Pasteuria ramosa cannot currently be genetically manipulated, we used Bacillus thuringiensis to express a fusion protein of a Pcl7 carboxy-terminus from P. ramosa and the amino-terminal domain of a B. thuringiensis collagen-like protein (CLP). Mutant B. thuringiensis (Pcl7-Bt) spores but not wild-type B. thuringiensis (WT-Bt) spores attached to the same site of susceptible hosts as P. ramosa. Furthermore, Pcl7-Bt spores attached readily to susceptible host genotypes, but only slightly to resistant host genotypes. These findings indicated that the fusion protein was properly expressed and folded and demonstrated that indeed the C-terminus of Pcl7 mediates attachment in a host genotype-specific manner. These results provide strong evidence for the involvement of a CLP in the coevolution of Daphnia and P. ramosa and open new avenues for genetic epidemiological studies of host-parasite interactions.
Collapse
Affiliation(s)
- Benjamin Huessy
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
- University of Basel, Basel4056, Switzerland
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
| |
Collapse
|
6
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
7
|
Gummelt C, Dupke S, Howaldt S, Zimmermann F, Scholz HC, Laue M, Klee SR. Analysis of Sporulation in Bacillus cereus Biovar anthracis Which Contains an Insertion in the Gene for the Sporulation Factor σ K. Pathogens 2023; 12:1442. [PMID: 38133325 PMCID: PMC10745906 DOI: 10.3390/pathogens12121442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bacillus cereus biovar anthracis (Bcbva) is an untypical pathogen causing a fatal anthrax-like disease in a variety of wildlife species in African rainforest areas. In contrast to Bacillus anthracis and most species of the B. cereus group, all strains of the Bcbva cluster contain a 22 kb insertion in the sigK gene which encodes the essential late sporulation sigma factor σK. This insertion is excised during sporulation in a site-specific recombination process resulting in an intact sigK gene and a circular molecule. The sporulation kinetics of two strains each of Bcbva and B. anthracis were compared by the expression analysis of eight sporulation-associated genes, including sigK, using reverse transcriptase quantitative real-time PCR. In addition, morphological sporulation stages were analyzed and quantified by electron microscopy. Our results indicated that the necessary excision of the insertion in Bcbva neither delayed nor inhibited its sporulation. In two spontaneous mutants of Bcbva, the excision of the sigK insertion and sporulation were impeded due to mutations in the spo0A and spoVG regulator genes, respectively. The spo0A frameshift mutation was overcome by intragenic suppression in a revertant which was able to sporulate normally, despite an M171S amino acid exchange in the global regulator Spo0A. A screening of the NCBI database identified further strains of the B. cereus group which possess unrelated insertions in the sigK gene, and two strains containing almost identical insertions at the same gene position. Some of the sigK insertions encode putative prophages, whereas the Bcbva insertion encoded a type I restriction-modification system. The function of these insertions and if they are possibly essential for sporulation remains to be assessed.
Collapse
Affiliation(s)
- Constanze Gummelt
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (C.G.); (S.D.); (S.H.); (H.C.S.)
| | - Susann Dupke
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (C.G.); (S.D.); (S.H.); (H.C.S.)
| | - Sabine Howaldt
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (C.G.); (S.D.); (S.H.); (H.C.S.)
| | - Fee Zimmermann
- Epidemiology of Highly Pathogenic Microorganisms (P3), Robert Koch Institute, 13353 Berlin, Germany;
| | - Holger C. Scholz
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (C.G.); (S.D.); (S.H.); (H.C.S.)
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Silke R. Klee
- Highly Pathogenic Microorganisms (ZBS 2), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (C.G.); (S.D.); (S.H.); (H.C.S.)
| |
Collapse
|
8
|
Soni A, Brightwell G. Effect of novel and conventional food processing technologies on Bacillus cereus spores. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:265-287. [PMID: 38461001 DOI: 10.1016/bs.afnr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Palmerston North, New Zealand
| |
Collapse
|
9
|
Sogues A, Fioravanti A, Jonckheere W, Pardon E, Steyaert J, Remaut H. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat Commun 2023; 14:7051. [PMID: 37923757 PMCID: PMC10624894 DOI: 10.1038/s41467-023-42826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
The Gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a deadly disease mostly affecting wildlife and livestock, as well as representing a bioterrorism threat. Its cell surface is covered by the mutually exclusive S-layers Sap and EA1, found in early and late growth phases, respectively. Here we report the nanobody-based structural characterization of EA1 and its native lattice contacts. The EA1 assembly domain consists of 6 immunoglobulin-like domains, where three calcium-binding sites structure interdomain contacts that allow monomers to adopt their assembly-competent conformation. Nanobody-induced depolymerization of EA1 S-layers results in surface defects, membrane blebbing and cell lysis under hypotonic conditions, indicating that S-layers provide additional mechanical stability to the cell wall. Taken together, we report a complete model of the EA1 S-layer and present a set of nanobodies that may have therapeutic potential against Bacillus anthracis.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Wim Jonckheere
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
10
|
Li Y, Zhang S, Liu J, Zhang Y, Zhang N, Cheng Q, Zhang H, Wu X. The pentraxin family in autoimmune disease. Clin Chim Acta 2023; 551:117592. [PMID: 37832905 DOI: 10.1016/j.cca.2023.117592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.
Collapse
Affiliation(s)
- Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, PR China
| | - Jingqi Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, PR China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
11
|
Marini E, Olivença C, Ramalhete S, Aguirre AM, Ingle P, Melo MN, Antunes W, Minton NP, Hernandez G, Cordeiro TN, Sorg JA, Serrano M, Henriques AO. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog 2023; 19:e1011741. [PMID: 37956166 PMCID: PMC10681294 DOI: 10.1371/journal.ppat.1011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/27/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.
Collapse
Affiliation(s)
- Eleonora Marini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Andrea Martinez Aguirre
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Wilson Antunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Joseph A Sorg
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| |
Collapse
|
12
|
Li J, Yang J, Xin W, Wu S, Wang X, Wang C, Zhang Z. Inactivation of Bacillus subtilis spores by a combination of high-pressure thermal treatment and potassium sorbate. Food Microbiol 2023; 115:104345. [PMID: 37567628 DOI: 10.1016/j.fm.2023.104345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Combining High-pressure Thermal Treatment (HPTT) and Potassium Sorbate (PS) may have a stronger spore inactivation effect. Spores of Bacillus subtilis were subjected to HPTT at 600 MPa-65 °C/75 °C and a combination of HPTT and PS of 0.1% and 0.2% concentrations. After these treatments, different procedures and techniques were employed to investigate the spore's inactivation. The results revealed that 4.92 ± 0.05 log spores were inactivated after treatment at 600 MPa-75 °C, while 5.97 ± 0.09 log spores were inactivated when the HPTT treatment was combined with 0.2% PS. Changes in permeability of the spore's inner membrane were characterized by OD600 value and release rates of nucleic acids, protein, and dipicolinic acid (DPA). Compared with HPTT treatment at 600 MPa-75 °C, the OD600 value of spores decreased further by about 50% after treatment with a combination of HPTT and 0.2% PS. Additionally, the combined treatments resulted in a significant increase in the OD260 and OD280 values, as well as the DPA release. The spore size analysis indicated a significant decrease in the size of spores treated with a combination of HPTT at 600 MPa-75 °C and PS of 0.2% concentration. Furthermore, the flow cytometry analysis and confocal laser scanning microscopy (CLSM) analysis indicated that the inner membrane damage of spores was higher after combined treatments than that after HPTT treatment alone. A significant reduction was also found in the Na+/K+-ATPase activity after the combined treatments. Also, the FTIR analysis revealed that the combined treatments resulted in significant adverse changes in the spores' inner membrane, cell wall, cortex, and nucleic acid. Therefore, the combination of HPTT and PS has a stronger inactivation effect and can be suggested as a promising strategy for the inactivation of Bacillus subtilis spores.
Collapse
Affiliation(s)
- Jiajia Li
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Jie Yang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Weishan Xin
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Sirui Wu
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Xujuan Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Chuanfa Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Zhong Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, 750021, PR China.
| |
Collapse
|
13
|
Lablaine A, Chamot S, Serrano M, Billaudeau C, Bornard I, Carballido-López R, Carlin F, Henriques AO, Broussolle V. A new fluorescence-based approach for direct visualization of coat formation during sporulation in Bacillus cereus. Sci Rep 2023; 13:15136. [PMID: 37704668 PMCID: PMC10499802 DOI: 10.1038/s41598-023-42143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The human pathogenic bacteria Bacillus cereus, Bacillus anthracis and the entomopathogenic Bacillus thuringiensis form spores encased in a protein coat surrounded by a balloon-like exosporium. These structures mediate spore interactions with its environment, including the host immune system, control the transit of molecules that trigger germination and thus are essential for the spore life cycle. Formation of the coat and exosporium has been traditionally visualized by transmission electronic microscopy on fixed cells. Recently, we showed that assembly of the exosporium can be directly observed in live B. cereus cells by super resolution-structured illumination microscopy (SR-SIM) using the membrane MitoTrackerGreen (MTG) dye. Here, we demonstrate that the different steps of coat formation can also be visualized by SR-SIM using MTG and SNAP-cell TMR-star dyes during B. cereus sporulation. We used these markers to characterize a subpopulation of engulfment-defective B. cereus cells that develops at a suboptimal sporulation temperature. Importantly, we predicted and confirmed that synthesis and accumulation of coat material, as well as synthesis of the σK-dependent protein BxpB, occur in cells arrested during engulfment. These results suggest that, unlike the well-studied model organism Bacillus subtilis, the activity of σK is not strictly linked to the state of forespore development in B. cereus.
Collapse
Affiliation(s)
- Armand Lablaine
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Cyrille Billaudeau
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Frédéric Carlin
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | |
Collapse
|
14
|
Hamiot A, Lemy C, Krzewinski F, Faille C, Dubois T. Sporulation conditions influence the surface and adhesion properties of Bacillus subtilis spores. Front Microbiol 2023; 14:1219581. [PMID: 37720141 PMCID: PMC10502511 DOI: 10.3389/fmicb.2023.1219581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Spore-forming bacteria of the Bacillus subtilis group are responsible for recurrent contamination of processing lines in the food industry which can lead to food spoilage. The persistence of B. subtilis would be due to the high resistance of spores to extreme environmental condition and their propensity to contaminate surfaces. While it is well known that sporulation conditions modulate spore resistance properties, little is known about their effect on surface and adhesion properties. Here, we studied the impact of 13 sporulation conditions on the surface and adhesion properties of B. subtilis 168 spores. We showed that Ca2+ or Mg2+ depletion, lower oxygen availability, acidic pH as well as oxidative stresses during sporulation lead to the release of more hydrophobic and adherent spores. The consequences of these sporulation conditions on crust composition in carbohydrates and proteins were also evaluated. The crust glycans of spores produced in a sporulation medium depleted in Ca2+ or Mg2+ or oxygen-limited conditions were impaired and contained lower amounts of rhamnose and legionaminic acid. In addition, we showed that lower oxygen availability or addition of hydrogen peroxide during sporulation decreases the relative amount of two crust proteins (CgeA and CotY) and the changes observed in these conditions could be due to transcriptional repression of genes involved in crust synthesis in late stationary phase. The fact that sporulation conditions affect the ease with which spores can contaminate surfaces could explain the frequent and recurrent presence of B. subtilis spores in food processing lines.
Collapse
Affiliation(s)
- Audrey Hamiot
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Christelle Lemy
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Frederic Krzewinski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christine Faille
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Thomas Dubois
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| |
Collapse
|
15
|
Chattopadhyay D, Walker DR, Rich-New ST, Kearney JF, Turnbough, Jr. CL. Crystal structure and induced stability of trimeric BxpB: implications for the assembly of BxpB-BclA complexes in the exosporium of Bacillus anthracis. mBio 2023; 14:e0117223. [PMID: 37382447 PMCID: PMC10470788 DOI: 10.1128/mbio.01172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
The outermost exosporium layer of Bacillus anthracis spores, the causative agents of anthrax, is comprised of a basal layer and an external hair-like nap. The nap includes filaments composed of trimers of the collagen-like glycoprotein BclA. Essentially all BclA trimers are attached to the spore in a process in which part of the 38-residue amino-terminal domain (NTD) of BclA forms an extremely stable interaction with the basal layer protein BxpB. Evidence indicates that the BclA-BxpB interaction is direct and requires trimeric BxpB. To further investigate the nature of the BclA-BxpB interaction, we determined the crystal structure of BxpB. The structure was trimeric with each monomer consisting of 11 β strands with connecting loops. The structure did not include apparently disordered amino acids 1-19, which contain the only two cysteine residues of the 167-residue BxpB. The orientation of the structure reveals regions of BxpB that could be involved in interacting with the BclA NTD and with adjacent cysteine-rich proteins in the basal layer. Furthermore, the BxpB structure closely resembles that of the 134-residue carboxyl-terminal domain of BclA, which forms trimers that are highly resistant to heat and detergent. We demonstrated that BxpB trimers do not share this resistance. However, when BxpB trimers are mixed with a peptide containing residues 20-38 of BclA, they form a complex that is as stable as BclA-BxpB complexes extracted from spores. Together, our results provide new insights into the mechanism of BclA-BxpB attachment and incorporation into the exosporium. IMPORTANCE The B. anthracis exosporium plays major roles in spore survival and infectivity, but the complex mechanism of its assembly is poorly understood. Key steps in this process are the stable attachment of collagen-like BclA filaments to the major basal layer structural protein BxpB and the insertion of BxpB into an underlying basal layer scaffold. The goal of this study is to further elucidate these interactions thereby advancing our understanding of exosporium assembly, a process shared by many spore-forming bacteria including important human pathogens.
Collapse
Affiliation(s)
| | - Dionna R. Walker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shane T. Rich-New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
16
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
17
|
Verguet N, Mondange L, Nolent F, Depeille A, Garnier A, Neulat-Ripoll F, Gorgé O, Tournier JN. Assessment of calcium hypochlorite for Bacillus anthracis spore surface's decontamination. Res Microbiol 2023; 174:104053. [PMID: 36925026 DOI: 10.1016/j.resmic.2023.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Contamination with microorganisms occurs in laboratories but is also of high concern in the context of bioterrorism. Decontamination is a cornerstone that promotes good laboratory practices and occupational health and safety. Among the most resistant structures formed by microorganisms are spores, produced notably by Clostridium and Bacillus species. Here, we compared six products containing four different molecules (hydrogen peroxide, peracetic acid, sodium and calcium hypochlorite) on B. anthracis Sterne spores. We first selected the most efficient product based on its activity against spore suspensions using French and European standards. Four products showed sporicidal activity, of which only two did so in a time frame consistent with good laboratory practices. Then, we tested one of these two products under laboratory conditions on fully virulent B. anthracis spores, during common use and after contamination through a spill of a highly concentrated spore suspension. We, thus, robustly validated a decontaminant based on calcium hypochlorite not only on its ability to kill spores but also on its effectiveness under laboratory conditions. At the end, we were able to assure a complete disinfection in 1 min after spillover and in 2 min for common use.
Collapse
Affiliation(s)
- Noémie Verguet
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Lou Mondange
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; Yersinia Unit, Institut Pasteur, 75015 Paris, France.
| | - Flora Nolent
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Anne Depeille
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Annabelle Garnier
- Immunopathology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Fabienne Neulat-Ripoll
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Gorgé
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Jean-Nicolas Tournier
- CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; École du Val-de-Grâce, 75015 Paris, France.
| |
Collapse
|
18
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
19
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
20
|
Valijam S, Nilsson DP, Öberg R, Albertsdóttir Jonsmoen UL, Porch A, Andersson M, Malyshev D. A lab-on-a-chip utilizing microwaves for bacterial spore disruption and detection. Biosens Bioelectron 2023; 231:115284. [PMID: 37031508 DOI: 10.1016/j.bios.2023.115284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Bacterial spores are problematic in agriculture, the food industry, and healthcare, with the fallout costs from spore-related contamination being very high. Spores are difficult to detect since they are resistant to many of the bacterial disruption techniques used to bring out the biomarkers necessary for detection. Because of this, effective and practical spore disruption methods are desirable. In this study, we demonstrate the efficiency of a compact microfluidic lab-on-chip built around a coplanar waveguide (CPW) operating at 2.45 GHz. We show that the CPW generates an electric field hotspot of ∼10 kV/m, comparable to that of a commercial microwave oven, while using only 1.2 W of input power and thus resulting in negligible sample heating. Spores passing through the microfluidic channel are disrupted by the electric field and release calcium dipicolinic acid (CaDPA), a biomarker molecule present alongside DNA in the spore core. We show that it is possible to detect this disruption in a bulk spore suspension using fluorescence spectroscopy. We then use laser tweezers Raman spectroscopy (LTRS) to show the loss of CaDPA on an individual spore level and that the loss increases with irradiation power. Only 22% of the spores contain CaDPA after exposure to 1.2 W input power, compared to 71% of the untreated control spores. Additionally, spores exposed to microwaves appear visibly disrupted when imaged using scanning electron microscopy (SEM). Overall, this study shows the advantages of using a CPW for disrupting spores for biomarker release and detection.
Collapse
|
21
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
22
|
Durand-Heredia J, Hsieh HY, Spreng KA, Stewart GC. Roles and Organization of BxpB (ExsFA) and ExsFB in the Exosporium Outer Basal Layer of Bacillus anthracis. J Bacteriol 2022; 204:e0029022. [PMID: 36394311 PMCID: PMC9765029 DOI: 10.1128/jb.00290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
BxpB (also known as ExsFA) and ExsFB are an exosporium basal layer structural protein and a putative interspace protein of Bacillus anthracis that are known to be required for proper incorporation of the BclA collagen-like glycoprotein on the spore surface. Despite extensive similarity of the two proteins, their distribution in the spore is markedly different. We utilized a fluorescent fusion approach to examine features of the two genes that affect spore localization. The timing of expression of the bxpB and exsFB genes and their distinct N-terminal sequences were both found to be important for proper assembly into the exosporium basal layer. Results of this study provided evidence that the BclA nap glycoprotein is not covalently attached to BxpB protein despite the key role that the latter plays in BclA incorporation. Assembly of the BxpB- and ExsFB-containing outer basal layer appears not to be completely abolished in mutants lacking the ExsY and CotY basal layer structural proteins despite these spores lacking a visible exosporium. The BxpB and, to a lesser extent, the ExsFB proteins, were found to be capable of self-assembly in vitro into higher-molecular-weight forms that are stable to boiling in SDS under reducing conditions. IMPORTANCE The genus Bacillus consists of spore-forming bacteria. Some species of this genus, especially those that are pathogens of animals or insects, contain an outermost spore layer called the exosporium. The zoonotic pathogen B. anthracis is an example of this group. The exosporium likely contributes to virulence and environmental persistence of these pathogens. This work provides important new insights into the exosporium assembly process and the interplay between BclA and BxpB in this process.
Collapse
Affiliation(s)
- Jorge Durand-Heredia
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Hsin-Yeh Hsieh
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Krista A. Spreng
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - George C. Stewart
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
23
|
ExsY, CotY, and CotE Effects on Bacillus anthracis Outer Spore Layer Architecture. J Bacteriol 2022; 204:e0029122. [PMID: 36194010 PMCID: PMC9664949 DOI: 10.1128/jb.00291-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are the major pathogens of the spore-forming genus Bacillus and possess an outer spore layer, the exosporium, not found in many of the nonpathogenic species. The exosporium consists of a basal layer with the ExsY, CotY, and BxpB proteins being the major structural components and an exterior nap layer containing the BclA glycoprotein. During the assembly process, the nascent exosporium basal layer is attached to the spore coat by a protein linker that includes the CotO and CotE proteins. Using transmission electron microscopy, Western blotting, immunofluorescence, and fluorescent fusion protein approaches, we examined the impact of single, double, and triple mutants of the major exosporium proteins on exosporium protein content and distribution. Plasmid-based expression of exsY and cotE resulted in increased production of exosporium lacking spores, and the former also resulted in outer spore coat disruptions. The exosporium bottlecap produced by exsY null spores was found to be more stable than previously reported, and its spore association was partially dependent on CotE. Deletion mutants of five putative spore genes (bas1131, bas1142, bas1143, bas2277, and bas3594) were created and shown not to have obvious effects on spore morphology or BclA and BxpB content. The BclC collagen-like glycoprotein was found to be present in the spore and possibly localized to the interspace region. IMPORTANCE B. anthracis is an important zoonotic animal pathogen causing sporadic outbreaks of anthrax worldwide. Spores are the infectious form of the bacterium and can persist in soil for prolonged periods of time. The outermost B. anthracis spore layer is the exosporium, a protein shell that is the site of interactions with both the soil and with the innate immune system of infected hosts. Although much is known regarding the sporulation process among members of the genus Bacillus, significant gaps in our understanding of the exosporium assembly process exist. This study provides evidence for the properties of key exosporium basal layer structural proteins. The results of this work will guide future studies on exosporium protein-protein interactions during the assembly process.
Collapse
|
24
|
Durand‐Heredia J, Stewart GC. Localization of the CotY and ExsY proteins to the exosporium basal layer of Bacillus anthracis. Microbiologyopen 2022; 11:e1327. [PMID: 36314748 PMCID: PMC9562818 DOI: 10.1002/mbo3.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Spores are an infectious form of the zoonotic bacterial pathogen, Bacillus anthracis. The outermost spore layer is the exosporium, comprised of a basal layer and an external glycoprotein nap layer. The major structural proteins of the inner basal layer are CotY (at the mother cell central pole or bottlecap) and ExsY around the rest of the spore. The basis for the cap or noncap specificity of the CotY and ExsY proteins is currently unknown. We investigated the role of sequence differences between these proteins in localization during exosporium assembly. We found that sequence differences were less important than the timing of expression of the respective genes in the positioning of these inner basal layer structural proteins. Fusion constructs with the fluorescent protein fused at the N-terminus resulted in poor incorporation whereas fusions at the carboxy terminus of CotY or ExsY resulted in good incorporation. However, complementation studies revealed that fusion constructs, although accurate indicators of protein localization, were not fully functional. A model is presented that explains the localization patterns observed. Bacterial two-hybrid studies in Escherichia coli hosts were used to examine protein-protein interactions with full-length and truncated proteins. The N-terminus amino acid sequences of ExsY and CotY appear to be recognized by spore proteins located in the spore interspace, consistent with interactions seen with ExsY and CotY with the interspace proteins CotE and CotO, known to be involved with exosporium attachment.
Collapse
Affiliation(s)
- Jorge Durand‐Heredia
- Department of Veterinary Pathobiology and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - George C. Stewart
- Department of Veterinary Pathobiology and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
25
|
Sani AA, Pereira AFM, Furlanetto A, de Sousa DSM, Zapata TB, Rall VLM, Fernandes A. Inhibitory activities of propolis, nisin, melittin and essential oil compounds on Paenibacillus alvei and Bacillus subtilis. J Venom Anim Toxins Incl Trop Dis 2022; 28:20220025. [PMID: 36118843 PMCID: PMC9469734 DOI: 10.1590/1678-9199-jvatitd-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Background Natural products represent important sources of antimicrobial compounds. Propolis and compounds from essential oils comprise good examples of such substances because of their inhibitory effects on bacterial spores, including bee pathogens. Methods Ethanol extracts of propolis (EEP) from Apis mellifera were prepared using different methods: double ultrasonication, double maceration and maceration associated with ultrasonication. Together with the antimicrobial peptides nisin and melittin, and compounds present in the essential oils of clove (Syzygium aromaticum) and cinnamon (Cinnamomum zeylanicum), assays were carried out on one Bacillus subtilis isolate and Paenibacillus alvei (ATCC 6344) against vegetative and sporulated forms, using the resazurin microtiter assay. Synergism with all the antimicrobials in association with tetracycline was verified by the time-kill curve method. Potassium and phosphate efflux, release of proteins and nucleic acids were investigated. Results EEPs showed the same MIC, 156.25 µg/mL against B. subtilis and 78.12 µg/mL against P. alvei. The peptides showed better activities against B. subtilis (MIC of 12 µg/mL for melittin and 37.50 µg/mL for nisin). Antimicrobials showed similar inhibitory effects, but cinnamaldehyde (39.06 µg/mL) showed the best action against P. alvei. Melittin and nisin showed the greatest capacity to reduce spores, regarding B. subtilis there was a 100% reduction at 6.25 and 0.78 µg/mL, respectively. Concerning P. alvei, the reduction was 93 and 98% at concentrations of 80 µg/mL of melittin and 15 µg/mL of nisin. EEPs showed the highest effects on the protein release against B. subtilis and P. alvei. Nucleic acid release, phosphate and potassium efflux assays indicated bacterial cell membrane damage. Synergism between antimicrobials and tetracycline was demonstrated against both bacteria. Conclusion All antimicrobials tested showed antibacterial activities against vegetative and sporulated forms of P. alvei and B. subtilis, especially nisin and melittin. Synergism with tetracycline and damage on bacterial cell membrane also occurred.
Collapse
Affiliation(s)
- Alessandra Aguirra Sani
- Department of Chemical and Biological Sciences, Botucatu Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ana Flávia Marques Pereira
- Department of Chemical and Biological Sciences, Botucatu Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Alessandra Furlanetto
- Department of Chemical and Biological Sciences, Botucatu Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Débora Silva Marques de Sousa
- Department of Chemical and Biological Sciences, Botucatu Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tatiane Baptista Zapata
- Department of Chemical and Biological Sciences, Botucatu Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vera Lucia Mores Rall
- Department of Chemical and Biological Sciences, Botucatu Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ary Fernandes
- Department of Chemical and Biological Sciences, Botucatu Biosciences Institute (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
26
|
Lehmann D, Sladek M, Khemmani M, Boone TJ, Rees E, Driks A. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol Microbiol 2022; 118:258-277. [PMID: 35900297 PMCID: PMC9549345 DOI: 10.1111/mmi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
A fundamental question in cell biology is how cells assemble their outer layers. The bacterial endospore is a well-established model for cell layer assembly. However, the assembly of the exosporium, a complex protein shell comprising the outermost layer in the pathogen Bacillus anthracis, remains poorly understood. Exosporium assembly begins with the deposition of proteins at one side of the spore surface, followed by the progressive encirclement of the spore. We seek to resolve a major open question: the mechanism directing exosporium assembly to the spore, and then into a closed shell. We hypothesized that material directly underneath the exosporium (the interspace) directs exosporium assembly to the spore and drives encirclement. In support of this, we show that the interspace possesses at least two distinct layers of polysaccharide. Secondly, we show that putative polysaccharide biosynthetic genes are required for exosporium encirclement, suggesting a direct role for the interspace. These results not only significantly clarify the mechanism of assembly of the exosporium, an especially widespread bacterial outer layer, but also suggest a novel mechanism in which polysaccharide layers drive the assembly of a protein shell.
Collapse
Affiliation(s)
- Dörte Lehmann
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Margaret Sladek
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tyler J Boone
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
27
|
Malyshev D, Robinson NF, Öberg R, Dahlberg T, Andersson M. Reactive oxygen species generated by infrared laser light in optical tweezers inhibits the germination of bacterial spores. JOURNAL OF BIOPHOTONICS 2022; 15:e202200081. [PMID: 35538633 DOI: 10.1002/jbio.202200081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial spores are highly resistant to heat, radiation and various disinfection chemicals. The impact of these on the biophysical and physicochemical properties of spores can be studied on the single-cell level using optical tweezers. However, the effect of the trapping laser on spores' germination rate is not fully understood. In this work, we assess the impact of 1064 nm laser light on the germination of Bacillus thuringiensis spores. The results show that the germination rate of spores after laser exposure follows a sigmoid dose-response relationship, with only 15% of spores germinating after 20 J of laser light. Under anaerobic growth conditions, the percentage of germinating spores at 20 J increased to 65%. The results thereby indicate that molecular oxygen is a major contributor to the germination-inhibiting effect observed. Thus, our study highlights the risk for optical trapping of spores and ways to mitigate it.
Collapse
Affiliation(s)
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
28
|
Lamba S, Mundanda Muthappa D, Fanning S, Scannell AGM. Sporulation and Biofilms as Survival Mechanisms of Bacillus Species in Low-Moisture Food Production Environments. Foodborne Pathog Dis 2022; 19:448-462. [PMID: 35819266 DOI: 10.1089/fpd.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-moisture foods (LMF) have clear advantages with respect to limiting the growth of foodborne pathogens. However, the incidences of Bacillus species in LMF reported in recent years raise concerns about food quality and safety, particularly when these foods are used as ingredients in more complex higher moisture products. This literature review describes the interlinked pathways of sporulation and biofilm formation by Bacillus species and their underlying molecular mechanisms that contribute to the bacteriums' persistence in LMF production environments. The long-standing challenges of food safety and quality in the LMF industry are also discussed with a focus on the bakery industry.
Collapse
Affiliation(s)
- Sakshi Lamba
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Dechamma Mundanda Muthappa
- UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Malyshev D, Öberg R, Landström L, Andersson PO, Dahlberg T, Andersson M. pH-induced changes in Raman, UV-vis absorbance, and fluorescence spectra of dipicolinic acid (DPA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120869. [PMID: 35065519 DOI: 10.1016/j.saa.2022.120869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Dipicolinic acid (DPA) is an essential component for the protection of DNA in bacterial endospores and is often used as a biomarker for spore detection. Depending upon the pH of the solution, DPA exists in different ionic forms. Therefore, it is important to understand how these ionic forms influence spectroscopic response. In this work, we characterize Raman and absorption spectra of DPA in a pH range of 2.0-10.5. We show that the ring breathing mode Raman peak of DPA shifts from 1003 cm-1 to 1017 cm-1 and then to 1000 cm-1 as pH increases from 2 to 5. The relative peak intensities related to the different ionic forms of DPA are used to experimentally derive the pKa values (2.3 and 4.8). We observe using UV-vis spectroscopy that the changes in the absorption spectrum of DPA as a function of pH correlate with the changes observed in Raman spectroscopy, and the same pKa values are verified. Lastly, using fluorescence spectroscopy and exciting a DPA solution at between 210-330 nm, we observe a shift in fluorescence emission from 375 nm to 425 nm between pH 2 and pH 6 when exciting at 320 nm. Our work shows that the different spectral responses from the three ionic forms of DPA may have to be taken into account in, e.g., spectral analysis and for detection applications.
Collapse
Affiliation(s)
| | - Rasmus Öberg
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, Sweden; Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | | | - Magnus Andersson
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
30
|
Abe K, Kato H, Hasegawa Y, Yamamoto T, Nomura N, Obana N. Visualization and characterization of spore morphogenesis in Paenibacillus polymyxa ATCC39564. J GEN APPL MICROBIOL 2022; 68:79-86. [PMID: 35418538 DOI: 10.2323/jgam.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Paenibacillus polymyxa is a spore-forming Gram-positive bacterial species. Both its sporulation process and the spore properties are poorly understood. Here, we investigated sporulation in P. polymyxa ATCC39564. When cultured at 37℃ for 24 h in sporulation medium, more than 80% of the total cells in the culture were spores. Time-lapse imaging revealed that cellular morphological changes during sporulation of P. polymyxa were highly similar to those of B. subtilis. We demonstrated that genetic deletion of spo0A, sigE, sigF, sigG, or sigK, which are highly conserved transcriptional regulators in spore forming bacteria, abolished spore formation. In P. polymyxa, spo0A was required for cell growth in sporulation medium, as well as for the initiation of sporulation. The sigE and sigF mutants formed abnormal multiple asymmetric septa during the early stage of sporulation. The sigG and sigK mutants formed forespores in the sporangium, but they did not become mature. Moreover, fluorescence reporter analysis confirmed compartment-specific gene expression of spoIID and spoVFA in the mother cell and spoIIQ and sspF in the forespore. Transmission electron microscopy imaging revealed that P. polymyxa produces multilayered endospores but lacking a balloon-shaped exosporium. Our results indicate that spore morphogenesis is conserved between P. polymyxa and B. subtilis. However, P. polymyxa genomes lack many homologues encoding spore-coat proteins that are found in B. subtills, suggesting that there are differences in the spore coat composition and surface structure between P. polymyxa and B. subtilis.
Collapse
Affiliation(s)
- Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Hiroko Kato
- Gradudate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuta Hasegawa
- Gradudate School of Life and Environmental Sciences, University of Tsukuba
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
31
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
32
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
33
|
Malyshev D, Öberg R, Dahlberg T, Wiklund K, Landström L, Andersson PO, Andersson M. Laser induced degradation of bacterial spores during micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120381. [PMID: 34562861 DOI: 10.1016/j.saa.2021.120381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Micro-Raman spectroscopy combined with optical tweezers is a powerful method to analyze how the biochemical composition and molecular structures of individual biological objects change with time. In this work we investigate laser induced effects in the trapped object. Bacillus thuringiensis spores, which are robust organisms known for their resilience to light, heat, and chemicals are used for this study. We trap spores and monitor the Raman peak from CaDPA (calcium dipicolinic acid), which is a chemical protecting the spore core. We see a correlation between the amount of laser power used in the trap and the release of CaDPA from the spore. At a laser power of 5 mW, the CaDPA from spores in water suspension remain intact over the 90 min experiment, however, at higher laser powers an induced effect could be observed. SEM images of laser exposed spores (after loss of CaDPA Raman peak was confirmed) show a notable alteration of the spores' structure. Our Raman data indicates that the median dose exposure to lose the CaDPA peak was ∼60 J at 808 nm. For decontaminated/deactivated spores, i.e., treated in sodium hypochlorite or peracetic acid solutions, the sensitivity on laser power is even more pronounced and different behavior could be observed on spores treated by the two chemicals. Importantly, the observed effect is most likely photochemical since the increase of the spore temperature is in the order of 0.1 K as suggested by our numerical multiphysics model. Our results show that care must be taken when using micro-Raman spectroscopy on biological objects since photoinduced effects may substantially affect the results.
Collapse
Affiliation(s)
| | - Rasmus Öberg
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, Sweden; Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Magnus Andersson
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
34
|
Portinha IM, Douillard FP, Korkeala H, Lindström M. Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum. Int J Mol Sci 2022; 23:ijms23020754. [PMID: 35054941 PMCID: PMC8775613 DOI: 10.3390/ijms23020754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
Clostridium botulinum produces the botulinum neurotoxin that causes botulism, a rare but potentially lethal paralysis. Endospores play an important role in the survival, transmission, and pathogenesis of C. botulinum. C. botulinum strains are very diverse, both genetically and ecologically. Group I strains are terrestrial, mesophilic, and produce highly heat-resistant spores, while Group II strains can be terrestrial (type B) or aquatic (type E) and are generally psychrotrophic and produce spores of moderate heat resistance. Group III strains are either terrestrial or aquatic, mesophilic or slightly thermophilic, and the heat resistance properties of their spores are poorly characterized. Here, we analyzed the sporulation dynamics in population, spore morphology, and other spore properties of 10 C. botulinum strains belonging to Groups I–III. We propose two distinct sporulation strategies used by C. botulinum Groups I–III strains, report their spore properties, and suggest a putative role for the exosporium in conferring high heat resistance. Strains within each physiological group produced spores with similar characteristics, likely reflecting adaptation to respective environmental habitats. Our work provides new information on the spores and on the population and single-cell level strategies in the sporulation of C. botulinum.
Collapse
|
35
|
Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. Int J Mol Sci 2022; 23:ijms23010550. [PMID: 35008975 PMCID: PMC8745062 DOI: 10.3390/ijms23010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.
Collapse
|
36
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
37
|
Zegeye ED, Pradhan B, Llarena AK, Aspholm M. Enigmatic Pilus-Like Endospore Appendages of Bacillus cereus Group Species. Int J Mol Sci 2021; 22:12367. [PMID: 34830248 PMCID: PMC8619143 DOI: 10.3390/ijms222212367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The endospores (spores) of many Bacillus cereus sensu lato species are decorated with multiple hair/pilus-like appendages. Although they have been observed for more than 50 years, all efforts to characterize these fibers in detail have failed until now, largely due to their extraordinary resilience to proteolytic digestion and chemical solubilization. A recent structural analysis of B. cereus endospore appendages (Enas) using cryo-electron microscopy has revealed the structure of two distinct fiber morphologies: the longer and more abundant "Staggered-type" (S-Ena) and the shorter "Ladder-like" type (L-Ena), which further enabled the identification of the genes encoding the S-Ena. Ena homologs are widely and uniquely distributed among B. cereus sensu lato species, suggesting that appendages play important functional roles in these species. The discovery of ena genes is expected to facilitate functional studies involving Ena-depleted mutant spores to explore the role of Enas in the interaction between spores and their environment. Given the importance of B. cereus spores for the food industry and in medicine, there is a need for a better understanding of their biological functions and physicochemical properties. In this review, we discuss the current understanding of the Ena structure and the potential roles these remarkable fibers may play in the adhesion of spores to biotic and abiotic surfaces, aggregation, and biofilm formation.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| | - Brajabandhu Pradhan
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium;
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| |
Collapse
|
38
|
Pradhan B, Liedtke J, Sleutel M, Lindbäck T, Zegeye ED, O´Sullivan K, Llarena A, Brynildsrud O, Aspholm M, Remaut H. Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli. EMBO J 2021; 40:e106887. [PMID: 34031903 PMCID: PMC8408608 DOI: 10.15252/embj.2020106887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by β-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.
Collapse
Affiliation(s)
- Brajabandhu Pradhan
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Janine Liedtke
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Mike Sleutel
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Toril Lindbäck
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ephrem Debebe Zegeye
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Kristin O´Sullivan
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ann‐Katrin Llarena
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ola Brynildsrud
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
- Division of Infection Control and Environmental HealthNorwegian Institute of Public HealthOsloNorway
| | - Marina Aspholm
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Han Remaut
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
39
|
Spore-Associated Proteins Involved in c-di-GMP Synthesis and Degradation of Bacillus anthracis. J Bacteriol 2021; 203:e0013521. [PMID: 34096779 DOI: 10.1128/jb.00135-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bis-(3'-5')-cyclic-dimeric GMP (c-di-GMP) is an important bacterial regulatory signaling molecule affecting biofilm formation, toxin production, motility, and virulence. The genome of Bacillus anthracis, the causative agent of anthrax, is predicted to encode ten putative GGDEF/EAL/HD-GYP-domain containing proteins. Heterologous expression in Bacillus subtilis hosts indicated that there are five active GGDEF domain-containing proteins and four active EAL or HD-GYP domain-containing proteins. Using an mCherry gene fusion-Western blotting approach, the expression of the c-di-GMP-associated proteins was observed throughout the in vitro life cycle. Of the six c-di-GMP-associated proteins found to be present in sporulating cells, four (CdgA, CdgB, CdgD, and CdgG) contain active GGDEF domains. The six proteins expressed in sporulating cells are retained in spores in a CotE-independent manner and thus are not likely to be localized to the exosporium layer of the spores. Individual deletion mutations involving the nine GGDEF/EAL protein-encoding genes and one HD-GYP protein-encoding gene did not affect sporulation efficiency, the attachment of the exosporium glycoprotein BclA, or biofilm production. Notably, expression of anthrax toxin was not affected by deletion of any of the cdg determinants. Three determinants encoding proteins with active GGDEF domains were found to affect germination kinetics. This study reveals a spore association of cyclic-di-GMP regulatory proteins and a likely role for these proteins in the biology of the B. anthracis spore. IMPORTANCE The genus Bacillus is composed of Gram-positive, rod shaped, soil-dwelling bacteria. As a mechanism for survival in the harsh conditions in soil, the organisms undergo sporulation, and the resulting spores permit the organisms to survive harsh environmental conditions. Although most species are saprophytes, Bacillus cereus and Bacillus anthracis are human pathogens and Bacillus thuringiensis is an insect pathogen. The bacterial c-di-GMP regulatory system is an important control system affecting motility, biofilm formation, and toxin production. The role of c-di-GMP has been studied in the spore-forming bacilli Bacillus subtilis, Bacillus amyloliquefaciens, B. cereus, and B. thuringiensis. However, this regulatory system has not heretofore been examined in the high-consequence zoonotic pathogen of this genus, B. anthracis.
Collapse
|
40
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
41
|
The Morphogenetic Protein CotE Positions Exosporium Proteins CotY and ExsY during Sporulation of Bacillus cereus. mSphere 2021; 6:6/2/e00007-21. [PMID: 33883264 PMCID: PMC8546674 DOI: 10.1128/msphere.00007-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The exosporium is the outermost spore layer of some Bacillus and Clostridium species and related organisms. It mediates the interactions of spores with their environment, modulates spore adhesion and germination, and has been implicated in pathogenesis. In Bacillus cereus, the exosporium consists of a crystalline basal layer, formed mainly by the two cysteine-rich proteins CotY and ExsY, surrounded by a hairy nap composed of glycoproteins. The morphogenetic protein CotE is necessary for the integrity of the B. cereus exosporium, but how CotE directs exosporium assembly remains unknown. Here, we used super-resolution fluorescence microscopy to follow the localization of SNAP-tagged CotE, CotY, and ExsY during B. cereus sporulation and evidenced the interdependencies among these proteins. Complexes of CotE, CotY, and ExsY are present at all sporulation stages, and the three proteins follow similar localization patterns during endospore formation that are reminiscent of the localization pattern of Bacillus subtilis CotE. We show that B. cereus CotE guides the formation of one cap at both forespore poles by positioning CotY and then guides forespore encasement by ExsY, thereby promoting exosporium elongation. By these two actions, CotE ensures the formation of a complete exosporium. Importantly, we demonstrate that the assembly of the exosporium is not a unidirectional process, as previously proposed, but occurs through the formation of two caps, as observed during B. subtilis coat morphogenesis, suggesting that a general principle governs the assembly of the spore surface layers of Bacillaceae. IMPORTANCE Spores of Bacillaceae are enveloped in an outermost glycoprotein layer. In the B. cereus group, encompassing the Bacillus anthracis and B. cereus pathogens, this layer is easily recognizable by a characteristic balloon-like appearance and separation from the underlying coat by an interspace. In spite of its importance for the environmental interactions of spores, including those with host cells, the mechanism of assembly of the exosporium is poorly understood. We used super-resolution fluorescence microscopy to directly visualize the formation of the exosporium during the sporulation of B. cereus, and we studied the localization and interdependencies of proteins essential for exosporium morphogenesis. We discovered that these proteins form a morphogenetic scaffold before a complete exosporium or coat is detectable. We describe how the different proteins localize to the scaffold and how they subsequently assemble around the spore, and we present a model for the assembly of the exosporium.
Collapse
|
42
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
43
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Malyshev D, Dahlberg T, Wiklund K, Andersson PO, Henriksson S, Andersson M. Mode of Action of Disinfection Chemicals on the Bacterial Spore Structure and Their Raman Spectra. Anal Chem 2021; 93:3146-3153. [PMID: 33523636 PMCID: PMC7893628 DOI: 10.1021/acs.analchem.0c04519] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Contamination of
toxic spore-forming bacteria is problematic since
spores can survive a plethora of disinfection chemicals and it is
hard to rapidly detect if the disinfection chemical has inactivated
the spores. Thus, robust decontamination strategies and reliable detection
methods to identify dead from viable spores are critical. In this
work, we investigate the chemical changes of Bacillus
thuringiensis spores treated with sporicidal agents
such as chlorine dioxide, peracetic acid, and sodium hypochlorite
using laser tweezers Raman spectroscopy. We also image treated spores
using SEM and TEM to verify if we can correlate structural changes
in the spores with changes to their Raman spectra. We found that over
30 min, chlorine dioxide did not change the Raman spectrum or the
spore structure, peracetic acid showed a time-dependent decrease in
the characteristic DNA/DPA peaks and ∼20% of the spores were
degraded and collapsed, and spores treated with sodium hypochlorite
showed an abrupt drop in DNA and DPA peaks within 20 min and some
structural damage to the exosporium. Structural changes appeared in
spores after 10 min, compared to the inactivation time of the spores,
which is less than a minute. We conclude that vibrational spectroscopy
provides powerful means to detect changes in spores but it might be
problematic to identify if spores are live or dead after a decontamination
procedure.
Collapse
Affiliation(s)
| | | | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, 906 21 Sweden.,Department of Engineering Sciences, Uppsala University, Box 35 751 03, Uppsala, Sweden
| | - Sara Henriksson
- Umeå Core Facility for Electron Microscopy, Umeå University, Umeå, 901 87 Sweden
| | | |
Collapse
|
45
|
Freitas C, Plannic J, Isticato R, Pelosi A, Zilhão R, Serrano M, Baccigalupi L, Ricca E, Elsholz AKW, Losick R, O. Henriques A. A protein phosphorylation module patterns the Bacillus subtilis spore outer coat. Mol Microbiol 2020; 114:934-951. [PMID: 32592201 PMCID: PMC7821199 DOI: 10.1111/mmi.14562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.
Collapse
Affiliation(s)
- Carolina Freitas
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Present address:
Department of EcophysiologyMax‐Planck Institute for Terrestrial MicrobiologyKarl‐von‐Frisch‐Str. 10MarburgD‐35043Germany
| | - Jarnaja Plannic
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- University of LjubljanaLjubljanaSlovenia
| | | | | | - Rita Zilhão
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Departamento de Biologia VegetalUniversidade de LisboaLisboaPortugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | | | - Ezio Ricca
- Department of BiologyUniversity Federico IINaplesItaly
| | - Alexander K. W. Elsholz
- Biological LaboratoriesHarvard UniversityCambridgeMAUSA
- Present address:
Max Planck Unit for the Science of PathogensCharitèplatz 1Berlin10117Germany
| | | | - Adriano O. Henriques
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
46
|
The Clostridioides difficile Cysteine-Rich Exosporium Morphogenetic Protein, CdeC, Exhibits Self-Assembly Properties That Lead to Organized Inclusion Bodies in Escherichia coli. mSphere 2020; 5:5/6/e01065-20. [PMID: 33208520 PMCID: PMC7677010 DOI: 10.1128/msphere.01065-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endospore of Clostridioides difficile is the vehicle for transmission and persistence of the pathogen, and, specifically, the exosporium is the first contact between the host and the spore. The underlying mechanisms that govern exosporium assembly in C. difficile remain understudied, in part due to difficulties in obtaining pure soluble recombinant proteins of the C. difficile exosporium. Understanding the exosporium assembly’s molecular bases may be essential to developing new therapies against C. difficile infection. Clostridioides difficile is an obligately anaerobic, spore-forming, Gram-positive pathogenic bacterium that is considered the leading cause of nosocomial diarrhea worldwide. Recent studies have attempted to understand the biology of the outermost layer of C. difficile spores, the exosporium, which is believed to contribute to early interactions with the host. The fundamental role of the cysteine-rich proteins CdeC and CdeM has been described. However, the molecular details behind the mechanism of exosporium assembly are missing. The underlying mechanisms that govern exosporium assembly in C. difficile remain poorly studied, in part due to difficulties in obtaining pure soluble recombinant proteins of the C. difficile exosporium. In this work, we observed that CdeC was able to form organized inclusion bodies (IBs) in Escherichia coli filled with lamella-like structures separated by an interspace of 5 to 15 nm; however, CdeC expression in an E. coli strain with a more oxidative environment led to the loss of the lamella-like organization of CdeC IBs. Additionally, dithiothreitol (DTT) treatment of CdeC inclusion bodies released monomeric soluble forms of CdeC. Deletions in different portions of CdeC did not affect CdeC’s ability to aggregate and form oligomers stable under denaturation conditions but affected CdeC’s self-assembly properties. Overall, these observations have important implications in further studies elucidating the role of CdeC in the exosporium assembly of C. difficile spores. IMPORTANCE The endospore of Clostridioides difficile is the vehicle for transmission and persistence of the pathogen, and, specifically, the exosporium is the first contact between the host and the spore. The underlying mechanisms that govern exosporium assembly in C. difficile remain understudied, in part due to difficulties in obtaining pure soluble recombinant proteins of the C. difficile exosporium. Understanding the exosporium assembly’s molecular bases may be essential to developing new therapies against C. difficile infection.
Collapse
|
47
|
Bacillus cereus: Epidemiology, Virulence Factors, and Host-Pathogen Interactions. Trends Microbiol 2020; 29:458-471. [PMID: 33004259 DOI: 10.1016/j.tim.2020.09.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022]
Abstract
The toxin-producing bacterium Bacillus cereus is an important and neglected human pathogen and a common cause of food poisoning. Several toxins have been implicated in disease, including the pore-forming toxins hemolysin BL (HBL) and nonhemolytic enterotoxin (NHE). Recent work revealed that HBL binds to the mammalian surface receptors LITAF and CDIP1 and that both HBL and NHE induce potassium efflux and activate the NLRP3 inflammasome, leading to pyroptosis. These mammalian receptors, in part, contribute to inflammation and pathology. Other putative virulence factors of B. cereus include cytotoxin K, cereulide, metalloproteases, sphingomyelinase, and phospholipases. In this review, we highlight the latest progress in our understanding of B. cereus biology, epidemiology, and pathogenesis, and discuss potential new directions for research in this field.
Collapse
|
48
|
A Bacillus Spore-Based Display System for Bioremediation of Atrazine. Appl Environ Microbiol 2020; 86:AEM.01230-20. [PMID: 32680864 DOI: 10.1128/aem.01230-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Owing to human activities, a large number of organic chemicals, including petroleum products, industrial solvents, pesticides, herbicides (including atrazine [ATR]), and pharmaceuticals, contaminate soil and aquatic environments. Remediation of these pollutants by conventional approaches is both technically and economically challenging. Bacillus endospores are highly resistant to most physical assaults and are capable of long-term persistence in soil. Spores can be engineered to express, on their surface, important enzymes for bioremediation purposes. We have developed a Bacillus thuringiensis spore platform system that can display a high density of proteins on the spore surface. The spore surface-tethered enzymes exhibit enhanced activity and stability relative to free enzymes in soil and water environments. In this study, we evaluated a B. thuringiensis spore display platform as a bioremediation tool against ATR. The Pseudomonas sp. strain ADP atzA determinant, an ATR chlorohydrolase important to the detoxification of ATR, was expressed as a fusion protein linked to the attachment domain of the BclA spore surface nap layer protein and expressed in B. thuringiensis Spores from this strain are decorated with AtzA N-terminally linked on the surface of the spores. The recombinant spores were assayed for ATR detoxification in liquid and soil environments, and enzyme kinetics and stability were assessed. We successfully demonstrated the utility of this spore-based enzyme display system to detoxify ATR in water and laboratory soil samples.IMPORTANCE Atrazine is one of the most widely applied herbicides in the U.S. midwestern states. The long environmental half-life of atrazine has contributed to the contamination of surface water and groundwater by atrazine and its chlorinated metabolites. The toxic properties of ATR have raised public health and ecological concerns. However, remediation of ATR by conventional approaches has proven to be costly and inefficient. We developed a novel B. thuringiensis spore platform system that is capable of long-term persistence in soil and can be engineered to surface express a high density of enzymes useful for bioremediation purposes. The enzymes are stably attached to the surface of the spore exosporium layer. The spore-based system will likely prove useful for remediation of other environmental pollutants as well.
Collapse
|
49
|
Aldrete-Tapia JA, Torres JA. Enhancing the Inactivation of Bacterial Spores during Pressure-Assisted Thermal Processing. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09252-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces Illustrate a General Protective Strategy across Spore Formers. mSphere 2020; 5:5/4/e00424-20. [PMID: 32611700 PMCID: PMC7333573 DOI: 10.1128/msphere.00424-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly. Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures. IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.
Collapse
|