1
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Wang M, Li X, Cavallo FM, Yedavally H, Piersma S, Raineri EJM, Vera Murguia E, Kuipers J, Zhang Z, van Dijl JM, Buist G. Functional profiling of CHAP domain-containing peptidoglycan hydrolases of Staphylococcus aureus USA300 uncovers potential targets for anti-staphylococcal therapies. Int J Med Microbiol 2024; 316:151632. [PMID: 39142057 DOI: 10.1016/j.ijmm.2024.151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus employs a thick cell wall for protection against physical and chemical insults. This wall requires continuous maintenance to ensure strength and barrier integrity, but also to permit bacterial growth and division. The main cell wall component is peptidoglycan. Accordingly, the bacteria produce so-called peptidoglycan hydrolases (PGHs) that cleave glycan strands to facilitate growth, cell wall remodelling, separation of divided cells and release of exported proteins into the extracellular milieu. A special class of PGHs contains so-called 'cysteine, histidine-dependent amidohydrolase/peptidase' (CHAP) domains. In the present study, we profiled the roles of 11 CHAP PGHs encoded by the core genome of S. aureus USA300 LAC. Mutant strains lacking individual CHAP PGHs were analysed for growth, cell morphology, autolysis, and invasion and replication inside human lung epithelial cells. The results show that several investigated CHAP PGHs contribute to different extents to extracellular and intracellular growth and replication of S. aureus, septation of dividing cells, daughter cell separation once the division process is completed, autolysis and biofilm formation. In particular, the CHAP PGHs Sle1 and SAUSA300_2253 control intracellular staphylococcal replication and the resistance to β-lactam antibiotics like oxacillin. This makes the S. aureus PGHs in general, and the Sle1 and SAUSA300_2253 proteins in particular, attractive targets for future prophylactic or therapeutic anti-staphylococcal interventions. Alternatively, these cell surface-exposed enzymes, or particular domains of these enzymes, could be applied in innovative anti-staphylococcal therapies.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Xiaofang Li
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Francis M Cavallo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Harita Yedavally
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Sjouke Piersma
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zhenhua Zhang
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands.
| |
Collapse
|
3
|
Mukim Y, Sonia K, Jain C, Birhman N, Kaur IR. Prevalence and Antimicrobial Susceptibility Pattern of MRSA amongst Patients from an Indian Tertiary Care Hospital: An Eye Opener. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:1700-1707. [DOI: 10.22207/jpam.18.3.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a very common human pathogenic microorganism that can cause a variety of infectious diseases, including skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. About one-third of the common population is colonized with S. aureus. MRSA is a formidable pathogen known to cause high mortality & morbidity, that poses a significant threat to public health worldwide. Presence of MRSA strains, resistant to multiple antibiotics especially in hospital stay, has complicated the management of infections caused by this bacterium. The aim of this study was to shed light on the prevalence and antimicrobial sensitivity pattern of MRSA among patients in a tertiary care center located in Faridabad, Haryana. This cross-sectional observational study was conducted in the Department of Microbiology, ESIC Medical College & Hospital, a 510 bedded tertiary care teaching hospital in Faridabad, Haryana, India. All wound samples including pus, exudates, wound swab and tissue samples received for aerobic culture and antimicrobial sensitivity from various clinical departments from January 2019 to July 2019 were included in this study. A total of 747 samples were received from January 2019-July 2019. Mean age of this study population was found to be 50.7 ± 14.8 years. Out of 747 samples, 226 (30.25%) were culture positive. Among the S. aureus isolates, methicillin resistance was seen amongst 39 (58.2%). Antibiotic Susceptibility results of S. aureus showed 100% resistance to Penicillin along with 100% resistance to Fluoroquinolones in both MRSA and MSSA. High prevalence of MRSA amongst patients highlights the importance of continued surveillance and implementation of antimicrobial stewardship program to control the menace of antimicrobial resistance. Strict adherence to Infection Control practices its regular follow up to assess the effectiveness of any hospital infection control measures taken is the key.
Collapse
|
4
|
Liberini E, Fan SH, Bayer AS, Beck C, Biboy J, François P, Gray J, Hipp K, Koch I, Peschel A, Sailer B, Vollmer D, Vollmer W, Götz F. Staphylococcus aureus Stress Response to Bicarbonate Depletion. Int J Mol Sci 2024; 25:9251. [PMID: 39273203 PMCID: PMC11394868 DOI: 10.3390/ijms25179251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Bicarbonate and CO2 are essential substrates for carboxylation reactions in bacterial central metabolism. In Staphylococcus aureus, the bicarbonate transporter, MpsABC (membrane potential-generating system) is the only carbon concentrating system. An mpsABC deletion mutant can hardly grow in ambient air. In this study, we investigated the changes that occur in S. aureus when it suffers from CO2/bicarbonate deficiency. Electron microscopy revealed that ΔmpsABC has a twofold thicker cell wall thickness compared to the parent strain. The mutant was also substantially inert to cell lysis induced by lysostaphin and the non-ionic surfactant Triton X-100. Mass spectrometry analysis of muropeptides revealed the incorporation of alanine into the pentaglycine interpeptide bridge, which explains the mutant's lysostaphin resistance. Flow cytometry analysis of wall teichoic acid (WTA) glycosylation patterns revealed a significantly lower α-glycosylated and higher ß-glycosylated WTA, explaining the mutant's increased resistance towards Triton X-100. Comparative transcriptome analysis showed altered gene expression profiles. Autolysin-encoding genes such as sceD, a lytic transglycosylase encoding gene, were upregulated, like in vancomycin-intermediate S. aureus mutants (VISA). Genes related to cell wall-anchored proteins, secreted proteins, transporters, and toxins were downregulated. Overall, we demonstrate that bicarbonate deficiency is a stress response that causes changes in cell wall composition and global gene expression resulting in increased resilience to cell wall lytic enzymes and detergents.
Collapse
Affiliation(s)
- Elisa Liberini
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Sook-Ha Fan
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
- The Lundquist Institute, Torrance, CA 90502, USA
| | - Arnold S Bayer
- The Lundquist Institute, Torrance, CA 90502, USA
- David Geffen School of Medicine at UCLA-University of California, Los Angeles, CA 90095, USA
| | - Christian Beck
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Jacob Biboy
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Patrice François
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Joe Gray
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Katharina Hipp
- Electron Microscopy Facility, Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Iris Koch
- Electron Microscopy Facility, Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
- Excellence Cluster 2124 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, 72076 Tübingen, Germany
| | - Brigitte Sailer
- Electron Microscopy Facility, Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Daniela Vollmer
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Waldemar Vollmer
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
- Excellence Cluster 2124 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
He Q, Meneely J, Grant IR, Chin J, Fanning S, Situ C. Phytotherapeutic potential against MRSA: mechanisms, synergy, and therapeutic prospects. Chin Med 2024; 19:89. [PMID: 38909250 PMCID: PMC11193263 DOI: 10.1186/s13020-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Rising resistance to antimicrobials, particularly in the case of methicillin-resistant Staphylococcus aureus (MRSA), represents a formidable global health challenge. Consequently, it is imperative to develop new antimicrobial solutions. This study evaluated 68 Chinese medicinal plants renowned for their historical applications in treating infectious diseases. METHODS The antimicrobial efficacy of medicinal plants were evaluated by determining their minimum inhibitory concentration (MIC) against MRSA. Safety profiles were assessed on human colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (HepG2) cells. Mechanistic insights were obtained through fluorescence and transmission electron microscopy (FM and TEM). Synergistic effects with vancomycin were investigated using the Fractional Inhibitory Concentration Index (FICI). RESULTS Rheum palmatum L., Arctium lappa L. and Paeonia suffructicosaas Andr. have emerged as potential candidates with potent anti-MRSA properties, with an impressive low MIC of 7.8 µg/mL, comparable to the 2 µg/mL MIC of vancomycin served as the antibiotic control. Crucially, these candidates demonstrated significant safety profiles when evaluated on Caco-2 and HepG2 cells. Even at 16 times the MIC, the cell viability ranged from 83.3% to 95.7%, highlighting their potential safety. FM and TEM revealed a diverse array of actions against MRSA, such as disrupting the cell wall and membrane, interference with nucleoids, and inducing morphological alterations resembling pseudo-multicellular structures in MRSA. Additionally, the synergy between vancomycin and these three plant extracts was evident against MRSA (FICI < 0.5). Notably, aqueous extract of R. palmatum at 1/4 MIC significantly reduced the vancomycin MIC from 2 µg/mL to 0.03 µg/mL, making a remarkable 67-fold decrease. CONCLUSIONS This study unveil new insights into the mechanistic actions and pleiotropic antibacterial effectiveness of these medicinal plants against resistant bacteria, providing robust evidence for their potential use as standalone or in conjunction with antibiotics, to effectively combat antimicrobial resistance, particularly against MRSA.
Collapse
Affiliation(s)
- Qiqi He
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jason Chin
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Séamus Fanning
- University College Dublin Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
6
|
Shi YJ, Che YN, Zhao YM, Ran RX, Zhao YQ, Yu SS, Chen MY, Dong LY, Zhao ZY, Wang XH. High-efficient separation of deoxyribonucleic acid from pathogenic bacteria by hedgehog-inspired magnetic nanoparticles microextraction. J Chromatogr A 2024; 1724:464923. [PMID: 38653039 DOI: 10.1016/j.chroma.2024.464923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Efficient separation of deoxyribonucleic acid (DNA) through magnetic nanoparticles (MN) is a widely used biotechnology. Hedgehog-inspired MNs (HMN) possess a high-surface-area due to the distinct burr-like structure of hedgehog, but there is no report about the usage of HMN for DNA extraction. Herein, to improve the selection of MN and illustrate the performance of HMN for DNA separation, HMN and silica-coated Fe3O4 nanoparticles (Fe3O4@SiO2) were fabricated and compared for the high-efficient separation of pathogenic bacteria of DNA. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical Gram-negative and Gram-positive bacteria and are selected as model pathogenic bacteria. To enhance the extraction efficiency of two kinds of MNs, various parameters, including pretreatment, lysis, binding and elution conditions, have been optimized in detail. In most separation experiments, the DNA yield of HMN was higher than that of Fe3O4@SiO2. Therefore, a HMN-based magnetic solid-phase microextraction (MSPE) and quantitative real-time PCR (qPCR) were integrated and used to detect pathogenic bacteria in real samples. Interestingly, the HMN-based MSPE combined qPCR strategy exhibited high sensitivity with a limit of detection of 2.0 × 101 CFU mL-1 for E. coli and 4.0 × 101 CFU mL-1 for S. aureus in orange juice, and 2.8 × 102 CFU mL-1 for E. coli and 1.1 × 102 CFU mL-1 for S. aureus in milk, respectively. The performance of the proposed strategy was significantly better than that of commercial kit. This work could prove that the novel HMN could be applicable for the efficient separation of DNA from complex biological samples.
Collapse
Affiliation(s)
- Yu-Jun Shi
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ya-Ning Che
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yi-Mei Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Rui-Xue Ran
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ya-Qi Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Meng-Ying Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Zhen-Yu Zhao
- NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
7
|
Yamauchi S, Shimoda S, Kawahara A, Sugahara T, Yamamoto S, Kitabayashi M, Sogabe A, Jansen CA, Tobe R, Hirakawa R, Islam J, Furukawa M, Yoneyama H, Nochi T. Identification of four genes responsible for antimicrobial resistance of MEL-B against S. aureus. Biochem Biophys Res Commun 2024; 699:149566. [PMID: 38290176 DOI: 10.1016/j.bbrc.2024.149566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
There is increasing interest in the antimicrobial activity of mannosylerythritol lipids-B (MEL-B) against Gram-positive bacteria such as Staphylococcus aureus (S. aureus). However, the specific molecules involved in MEL-B's antimicrobial action against S. aureus have not been identified. This study utilized the Nebraska transposon mutant library (NTML), which contains 1920 mutants, each lacking three-quarters of the genes found in S. aureus. The NTML was screened to identify mutants resistant to MEL-B. Four mutants (Accession Number: SAUSA300_0904, SAUSA300_0752, SAUSA300_0387, and SAUSA300_2311) largely unaffected by incubation with MEL-B, indicating MEL-B resistance. Despite the strong binding of MEL-B to these mutants, the four molecules encoded by the deleted genes (yjbI, clpP, pbuX, or brpS) in each mutant were not directly recognized by MEL-B. Given that these molecules are not localized on the outer surface of S. aureus and that the antibacterial activity of MEL-B against S. aureus is facilitated by the effective transfer of two antibacterial fatty acids (caprylic acid and myristoleic acid) to S. aureus via ME, the deletion of each of the four molecules may alter the peptidoglycan structure, potentially inhibiting the effective transfer of these antimicrobial fatty acids into S. aureus.
Collapse
Affiliation(s)
- Shinya Yamauchi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - So Shimoda
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Akio Kawahara
- Toyobo Co., Ltd. Biotechnology Research Laboratory, Fukui, 914-8550, Japan
| | - Tomohiro Sugahara
- Toyobo Co., Ltd. Biotechnology Research Laboratory, Fukui, 914-8550, Japan
| | - Shuhei Yamamoto
- Toyobo Co., Ltd. Biotechnology Research Laboratory, Fukui, 914-8550, Japan; Toyobo Co., Ltd. Biotechnology Operating Department, Osaka, 530-0001, Japan
| | - Masao Kitabayashi
- Toyobo Co., Ltd. Biotechnology Research Laboratory, Fukui, 914-8550, Japan; Toyobo Co., Ltd. Biotechnology Operating Department, Osaka, 530-0001, Japan
| | - Atsushi Sogabe
- Toyobo Co., Ltd. Biotechnology Research Laboratory, Fukui, 914-8550, Japan; Toyobo Co., Ltd. Biotechnology Operating Department, Osaka, 530-0001, Japan
| | - Christine A Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, 6708 WD, the Netherlands
| | - Ryuta Tobe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Ryota Hirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Jahidul Islam
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Hiroshi Yoneyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Animal Bioscience, University of Guelph, Ontario, N1G 2W1, Canada; Center for Professional Development, Institute for Excellence in Higher Education, Tohoku University, Miyagi, 980-8576, Japan.
| |
Collapse
|
8
|
Valiei A, Bryche JF, Canva M, Charette PG, Moraes C, Hill RJ, Tufenkji N. Effects of Surface Topography and Cellular Biomechanics on Nanopillar-Induced Bactericidal Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9614-9625. [PMID: 38378485 DOI: 10.1021/acsami.3c09552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bacteria are mechanically resistant biological structures that can sustain physical stress. Experimental data, however, have shown that high-aspect-ratio nanopillars deform bacterial cells upon contact. If the deformation is sufficiently large, it lyses the bacterial cell wall, ultimately leading to cell death. This has prompted a novel strategy, known as mechano-bactericide technology, to fabricate antibacterial surfaces. Although adhesion forces were originally proposed as the driving force for mechano-bactericidal action, it has been recently shown that external forces, such as capillary forces arising from an air-water interface at bacterial surfaces, produce sufficient loads to rapidly kill bacteria on nanopillars. This discovery highlights the need to theoretically examine how bacteria respond to external loads and to ascertain the key factors. In this study, we developed a finite element model approximating bacteria as elastic shells filled with cytoplasmic fluid brought into contact with an individual nanopillar or nanopillar array. This model elucidates that bacterial killing caused by external forces on nanopillars is influenced by surface topography and cell biomechanical variables, including the density and arrangement of nanopillars, in addition to the cell wall thickness and elastic modulus. Considering that surface topography is an important design parameter, we performed experiments using nanopillar arrays with precisely controlled nanopillar diameters and spacing. Consistent with model predictions, these demonstrate that nanopillars with a larger spacing increase bacterial susceptibility to mechanical puncture. The results provide salient insights into mechano-bactericidal activity and identify key design parameters for implementing this technology.
Collapse
Affiliation(s)
- Amin Valiei
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Jean-François Bryche
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| |
Collapse
|
9
|
Bai Y, Wang Y, Kang M, Gabe CM, Srirangapatanam S, Edwards A, Stoller M, Green SJ, Aloni S, Tamura N, Beniash E, Hardt M, Ho SP. Organic Matrix Derived from Host-Microbe Interplay Contributes to Pathological Renal Biomineralization. ACS NANOSCIENCE AU 2023; 3:335-346. [PMID: 37601921 PMCID: PMC10436370 DOI: 10.1021/acsnanoscienceau.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
Matrix stones are a rare form of kidney stones. They feature a high percentage of hydrogel-like organic matter, and their formation is closely associated with urinary tract infections. Herein, comprehensive materials and biochemical approaches were taken to map the organic-inorganic interface and gather insights into the host-microbe interplay in pathological renal biomineralization. Surgically extracted soft and slimy matrix stones were examined using micro-X-ray computed tomography and various microspectroscopy techniques. Higher-mineral-density laminae were positive for calcium-bound Alizarin red. Lower-mineral-density laminae revealed periodic acid-Schiff-positive organic filamentous networks of varied thickness. These organic filamentous networks, which featured a high polysaccharide content, were enriched with zinc, carbon, and sulfur elements. Neutrophil extracellular traps (NETs) along with immune response-related proteins, including calprotectin, myeloperoxidase, CD63, and CD86, also were identified in the filamentous networks. Expressions of NETs and upregulation of polysaccharide-rich mucin secretion are proposed as a part of the host immune defense to "trap" pathogens. These host-microbe derived organic matrices can facilitate heterogeneous nucleation and precipitation of inorganic particulates, resulting in macroscale aggregates known as "matrix stones". These insights into the plausible aggregation of constituents through host-microbe interplay underscore the unique "double-edged sword" effect of the host immune response to pathogens and the resulting renal biominerals.
Collapse
Affiliation(s)
- Yushi Bai
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Yongmei Wang
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Misun Kang
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Claire M. Gabe
- Department
of Oral and Craniofacial Sciences, School of Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Sudarshan Srirangapatanam
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
- College
of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Austin Edwards
- Biological
Imaging Development Center, University of
California San Francisco, San Francisco, California 94143, United States
| | - Marshall Stoller
- Department
of Urology, School of Medicine, University
of California San Francisco, San Francisco, California 94143, United States
| | - Stefan J. Green
- Department
of Internal Medicine, Division of Infectious Diseases, Rush Medical
College, Rush University, Chicago, Illinois 60612, United States
| | - Shaul Aloni
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Nobumichi Tamura
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Elia Beniash
- Department
of Oral and Craniofacial Sciences, School of Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Hardt
- Center
for Salivary Diagnostics, The Forsyth Institute, Cambridge, Massachusetts 02142, United States
- Department
of Developmental Biology, Harvard School
of Dental Medicine, Boston, Massachusetts 02115, United States
| | - Sunita P. Ho
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
- Department
of Urology, School of Medicine, University
of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
10
|
Rahman S, Nath S, Mohan U, Das AK. Targeting Staphylococcal Cell-Wall Biosynthesis Protein FemX Through Steered Molecular Dynamics and Drug-Repurposing Approach. ACS OMEGA 2023; 8:29292-29301. [PMID: 37599983 PMCID: PMC10433341 DOI: 10.1021/acsomega.3c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Staphylococcus aureus-mediated infection is a serious threat in this antimicrobial-resistant world. S. aureus has become a "superbug" by challenging conventional as well as modern treatment strategies. Nowadays, drug repurposing has become a new trend for the discovery of new drug molecules. This study focuses on evaluating FDA-approved drugs that can be repurposed against S. aureus infection. Steered molecular dynamics (SMD) has been performed for Lumacaftor and Olaparib against staphylococcal FemX to understand their binding to the active site. A time-dependent external force or rupture force has been applied to the ligands to calculate the force required to dislocate the ligand from the binding pocket. SMD analysis indicates that Lumacaftor has a high affinity for the substrate binding pocket in comparison to Olaparib. Umbrella sampling exhibits that Lumacaftor possesses a higher free energy barrier to displace it from the ligand-binding site. The bactericidal activity of Lumacaftor and Olaparib has been tested, and it shows that Lumacaftor has moderate activity along with biofilm inhibition potential (MIC value with conc. 128 μg/mL). Pharmacokinetic and toxicology evaluations indicate that Lumacaftor has higher pharmacokinetic potential with lower toxicity. This is the first experimental report where staphylococcal FemX has been targeted for the discovery of new drugs. It is suggested that Lumacaftor may be a potential lead molecule against S. aureus.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department
of Biotechnology, Indian Institute of Technology
Kharagpur, Kharagpur, West Bengal 721302, India
| | - Subham Nath
- National
Institute of Pharmaceutical Education and Research Kolkata, Kolkata, West Bengal 700054, India
| | - Utpal Mohan
- National
Institute of Pharmaceutical Education and Research Kolkata, Kolkata, West Bengal 700054, India
| | - Amit Kumar Das
- Department
of Biotechnology, Indian Institute of Technology
Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
11
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
12
|
Schurig S, Kobialka R, Wende A, Ashfaq Khan MA, Lübcke P, Eger E, Schaufler K, Daugschies A, Truyen U, Abd El Wahed A. Rapid Reverse Purification DNA Extraction Approaches to Identify Microbial Pathogens in Wastewater. Microorganisms 2023; 11:813. [PMID: 36985386 PMCID: PMC10056086 DOI: 10.3390/microorganisms11030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Wastewater monitoring became a promising solution in the early detection of outbreaks. Despite the achievements in the identification of pathogens in wastewater using real-time PCR, there is still a lack of reliable rapid nucleic acid extraction protocols. Therefore, in this study, samples were subjected to alkali, proteinase K and/or bead-beating followed by reverse purification magnetic beads-based separation. Wastewater samples spiked with S. aureus, E. coli and C. parvum were used as examples for Gram-positive and -negative bacteria and protozoa, respectively. All results were compared with a spin column technology as a reference method. Proteinase K with bead beating (vortexing with 0.1 mm glass beads for three minutes) was particularly successful for bacterial DNA extraction (three- to five-fold increase). The most useful extraction protocol for protozoa was pre-treatment with proteinase K (eight-fold increase). The selected methods were sensitive as far as detecting one bacterial cell per reaction for S. aureus, ten bacterial cells for E. coli and two oocysts for C. parvum. The extraction reagents are cold chain independent and no centrifuge or other large laboratory equipment is required to perform DNA extraction. A controlled validation trial is needed to test the effectiveness at field levels.
Collapse
Affiliation(s)
- Sarah Schurig
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
- Xpedite Diagnostics GmbH, 80687 Munich, Germany
| | - Rea Kobialka
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Andy Wende
- Xpedite Diagnostics GmbH, 80687 Munich, Germany
| | - Md Anik Ashfaq Khan
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Phillip Lübcke
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Elias Eger
- Institute of Infection Medicine, Christian-Albrecht University Kiel, 24105 Kiel, Germany
- University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Katharina Schaufler
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel, 24105 Kiel, Germany
- University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infectious Disease, Leipzig University, 04103 Leipzig, Germany
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Ma Q, Wang G, Li N, Wang X, Kang X, Mao Y, Wang G. Insights into the Effects and Mechanism of Andrographolide-Mediated Recovery of Susceptibility of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Microbiol Spectr 2023; 11:e0297822. [PMID: 36602386 PMCID: PMC9927479 DOI: 10.1128/spectrum.02978-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
The frequent resistance associated with β-lactam antibiotics and the high frequency of mutations in β-lactamases constitute a major clinical challenge that can no longer be ignored. Andrographolide (AP), a natural active compound, has been shown to restore susceptibility to β-lactam antibiotics. Fluorescence quenching and molecular simulation showed that AP quenched the intrinsic fluorescence of β-lactamase BlaZ and stably bound to the residues in the catalytic cavity of BlaZ. Of note, AP was found to reduce the stability of the cell wall (CW) in methicillin-resistant Staphylococcus aureus (MRSA), and in combination with penicillin G (PEN), it significantly induced CW roughness and dispersion and even caused its disintegration, while the same concentration of PEN did not. In addition, transcriptome sequencing revealed that AP induced a significant stress response and increased peptidoglycan (PG) synthesis but disrupted its cross-linking, and it repressed the expression of critical genes such as mecA, blaZ, and sarA. We also validated these findings by quantitative reverse transcription-PCR (qRT-PCR). Association analysis using the GEO database showed that the alterations caused by AP were similar to those caused by mutations in the sarA gene. In summary, AP was able to restore the susceptibility of MRSA to β-lactam antibiotics, mainly by inhibiting the β-lactamase BlaZ, by downregulating the expression of critical resistance genes such as mecA and blaZ, and by disrupting CW homeostasis. In addition, restoration of susceptibility to antibiotics could be achieved by inhibiting the global regulator SarA, providing an effective solution to alleviate the problem of bacterial resistance. IMPORTANCE Increasingly, alternatives to antibiotics are being used to mitigate the rapid onset and development of bacterial resistance, and the combination of natural compounds with traditional antibiotics has become an effective therapeutic strategy. Therefore, we attempted to discover more mechanisms to restore susceptibility and effective dosing strategies. Andrographolide (AP), as a natural active ingredient, can mediate recovery of susceptibility of MRSA to β-lactam antibiotics. AP bound stably to the β-lactamase BlaZ and impaired its hydrolytic activity. Notably, AP was able to downregulate the expression of critical resistance genes such as mecA, blaZ, and sarA. Meanwhile, it disrupted the CW cross-linking and homeostasis, while the same concentration of penicillin could not. The multiple inhibitory effect of AP resensitizes intrinsically resistant bacteria to β-lactam antibiotics, effectively prolonging the use cycle of these antibiotics and providing an effective solution to reduce the dosage of antibiotics and providing a theoretical reference for the prevention and control of MRSA.
Collapse
Affiliation(s)
- Qiang Ma
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Guilai Wang
- Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, Ningxia, China
| | - Na Li
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xin Wang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xinyun Kang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yanni Mao
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Guiqin Wang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
14
|
Farhan MM, Guma MA, Rabeea MA, Ahmad I, Patel H. Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Akunuri R, Unnissa T, Vadakattu M, Bujji S, Mahammad Ghouse S, Madhavi Yaddanapudi V, Chopra S, Nanduri S. Bacterial Pyruvate Kinase: A New Potential Target to Combat Drug‐Resistant
Staphylococcus aureus
Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202201403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravikumar Akunuri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Tanveer Unnissa
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Manasa Vadakattu
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sushmitha Bujji
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute (CDRI) Sitapur Road, Sector 10, Janakipuram Extension Lucknow 226 031, Uttar Pradesh India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037, Telangana State India
| |
Collapse
|
16
|
Mira P, Lozano‐Huntelman N, Johnson A, Savage VM, Yeh P. Evolution of antibiotic resistance impacts optimal temperature and growth rate in
Escherichia coli
and
Staphylococcus epidermidis. J Appl Microbiol 2022; 133:2655-2667. [DOI: 10.1111/jam.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Portia Mira
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | | | - Adrienne Johnson
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
| | - Van M. Savage
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Department of Computational Medicine, David Geffen School of Medicine University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology University of California Los Angeles U.S.A
- Santa Fe Institute Santa Fe New Mexico U.S.A
| |
Collapse
|
17
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
18
|
Lattwein KR, Beekers I, Kouijzer JJP, Leon-Grooters M, Langeveld SAG, van Rooij T, van der Steen AFW, de Jong N, van Wamel WJB, Kooiman K. Dispersing and Sonoporating Biofilm-Associated Bacteria with Sonobactericide. Pharmaceutics 2022; 14:1164. [PMID: 35745739 PMCID: PMC9227517 DOI: 10.3390/pharmaceutics14061164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria encased in a biofilm poses significant challenges to successful treatment, since both the immune system and antibiotics are ineffective. Sonobactericide, which uses ultrasound and microbubbles, is a potential new strategy for increasing antimicrobial effectiveness or directly killing bacteria. Several studies suggest that sonobactericide can lead to bacterial dispersion or sonoporation (i.e., cell membrane permeabilization); however, real-time observations distinguishing individual bacteria during and directly after insonification are missing. Therefore, in this study, we investigated, in real-time and at high-resolution, the effects of ultrasound-induced microbubble oscillation on Staphylococcus aureus biofilms, without or with an antibiotic (oxacillin, 1 μg/mL). Biofilms were exposed to ultrasound (2 MHz, 100-400 kPa, 100-1000 cycles, every second for 30 s) during time-lapse confocal microscopy recordings of 10 min. Bacterial responses were quantified using post hoc image analysis with particle counting. Bacterial dispersion was observed as the dominant effect over sonoporation, resulting from oscillating microbubbles. Increasing pressure and cycles both led to significantly more dispersion, with the highest pressure leading to the most biofilm removal (up to 83.7%). Antibiotic presence led to more variable treatment responses, yet did not significantly impact the therapeutic efficacy of sonobactericide, suggesting synergism is not an immediate effect. These findings elucidate the direct effects induced by sonobactericide to best utilize its potential as a biofilm treatment strategy.
Collapse
Affiliation(s)
- Kirby R. Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Joop J. P. Kouijzer
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Mariël Leon-Grooters
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Simone A. G. Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Antonius F. W. van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Building 22, Room D218, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Building 22, Room D218, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Office Na9182, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| |
Collapse
|
19
|
Hayashi-Nishino M, Aoki K, Kishimoto A, Takeuchi Y, Fukushima A, Uchida K, Echigo T, Yagi Y, Hirose M, Iwasaki K, Shin'ya E, Washio T, Furusawa C, Nishino K. Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images. Front Microbiol 2022; 13:839718. [PMID: 35369486 PMCID: PMC8965347 DOI: 10.3389/fmicb.2022.839718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of bacteria that are resistant to antibiotics is common in areas where antibiotics are used widely. The current standard procedure for detecting bacterial drug resistance is based on bacterial growth under antibiotic treatments. Here we describe the morphological changes in enoxacin-resistant Escherichia coli cells and the computational method used to identify these resistant cells in transmission electron microscopy (TEM) images without using antibiotics. Our approach was to create patches from TEM images of enoxacin-sensitive and enoxacin-resistant E. coli strains, use a convolutional neural network for patch classification, and identify the strains on the basis of the classification results. The proposed method was highly accurate in classifying cells, achieving an accuracy rate of 0.94. Using a gradient-weighted class activation mapping to visualize the region of interest, enoxacin-resistant and enoxacin-sensitive cells were characterized by comparing differences in the envelope. Moreover, Pearson's correlation coefficients suggested that four genes, including lpp, the gene encoding the major outer membrane lipoprotein, were strongly associated with the image features of enoxacin-resistant cells.
Collapse
Affiliation(s)
- Mitsuko Hayashi-Nishino
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Artificial Intelligence Research Center (AIRC-ISIR), Osaka University, Ibaraki, Japan
| | - Kota Aoki
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Akihiro Kishimoto
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Yuna Takeuchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Aiko Fukushima
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Kazushi Uchida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tomio Echigo
- Department of Engineering Informatics, Osaka Electro-Communication University, Neyagawa, Japan
| | - Yasushi Yagi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Eitaro Shin'ya
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Takashi Washio
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Chikara Furusawa
- RIKEN, Center for Biosystems Dynamics Research, Suita, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Nishino
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
20
|
Hou H, Li Y, Jin Y, Chen S, Long J, Duan G, Yang H. The crafty opponent: the defense systems of Staphylococcus aureus and response measures. Folia Microbiol (Praha) 2022; 67:233-243. [PMID: 35149955 DOI: 10.1007/s12223-022-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a serious threat to public health. S. aureus infection can cause acute or long-term persistent infections that are often resistant to antibiotics and are associated with high morbidity and death. Understanding the defensive systems of S. aureus can help clinicians make the best use of antimicrobial drugs and can also help with antimicrobial stewardship. The mechanisms and clinical implications of S. aureus defense systems, as well as potential response systems, were discussed in this study. Because resistance to all currently available antibiotics is unavoidable, new medicines are always being developed. Alternative techniques, such as anti-virulence and bacteriophage therapies, are being researched and may become major tools in the fight against staphylococcal infections in the future, in addition to the development of new small compounds that affect cell viability.
Collapse
Affiliation(s)
- Hongjie Hou
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1473. [PMID: 34943685 PMCID: PMC8698349 DOI: 10.3390/antibiotics10121473] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Aunza Nayab Ansar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Adaptive responses of Pseudomonas aeruginosa to treatment with antibiotics. Antimicrob Agents Chemother 2021; 66:e0087821. [PMID: 34748386 DOI: 10.1128/aac.00878-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is among the highest priority pathogens for drug development, because of its resistance to antibiotics, extraordinary adaptability, and persistence. Anti-pseudomonal research is strongly encouraged to address the acute scarcity of innovative antimicrobial lead structures. In an effort to understand the physiological response of P. aeruginosa to clinically relevant antibiotics, we investigated the proteome after exposure to ciprofloxacin, levofloxacin, rifampicin, gentamicin, tobramycin, azithromycin, tigecycline, polymyxin B, colistin, ceftazidime, meropenem, and piperacillin/tazobactam. We further investigated the response to CHIR-90, which represents a promising class of lipopolysaccharide biosynthesis inhibitors currently under evaluation. Radioactive pulse-labeling of newly synthesized proteins followed by 2D-PAGE was used to monitor the acute response of P. aeruginosa to antibiotic treatment. The proteomic profiles provide insights into the cellular defense strategies for each antibiotic. A mathematical comparison of these response profiles based on upregulated marker proteins revealed similarities of responses to antibiotics acting on the same target area. This study provides insights into the effects of commonly used antibiotics on P. aeruginosa and lays the foundation for the comparative analysis of the impact of novel compounds with precedented and unprecedented modes of action.
Collapse
|
24
|
Demonstration of the role of cell wall homeostasis in Staphylococcus aureus growth and the action of bactericidal antibiotics. Proc Natl Acad Sci U S A 2021; 118:2106022118. [PMID: 34716264 PMCID: PMC8612353 DOI: 10.1073/pnas.2106022118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.
Collapse
|
25
|
Structural, molecular docking computational studies and in-vitro evidence for antibacterial activity of mixed ligand complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130481] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Nichita I, Lupa L, Visa A, Popa A. One-pot synthesis, characterization and in vitro antibacterial evaluation of bioactive “aminophosphinic acid” groups grafted onto polymeric-support. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Straniero V, Sebastián-Pérez V, Suigo L, Margolin W, Casiraghi A, Hrast M, Zanotto C, Zdovc I, Radaelli A, Valoti E. Computational Design and Development of Benzodioxane-Benzamides as Potent Inhibitors of FtsZ by Exploring the Hydrophobic Subpocket. Antibiotics (Basel) 2021; 10:antibiotics10040442. [PMID: 33920895 PMCID: PMC8071314 DOI: 10.3390/antibiotics10040442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistant Staphylococcus aureus is a severe threat, responsible for most of the nosocomial infections globally. This resistant strain is associated with a 64% increase in death compared to the antibiotic-susceptible strain. The prokaryotic protein FtsZ and the cell division cycle have been validated as potential targets to exploit in the general battle against antibiotic resistance. Despite the discovery and development of several anti-FtsZ compounds, no FtsZ inhibitors are currently used in therapy. This work further develops benzodioxane-benzamide FtsZ inhibitors. We seek to find more potent compounds using computational studies, with encouraging predicted drug-like profiles. We report the synthesis and the characterization of novel promising derivatives that exhibit very low MICs towards both methicillin-susceptible and -resistant S. aureus, as well as another Gram positive species, Bacillus subtilis, while possessing good predicted physical-chemical properties in terms of solubility, permeability, and chemical and physical stability. In addition, we demonstrate by fluorescence microscopy that Z ring formation and FtsZ localization are strongly perturbed by our derivatives, thus validating the target.
Collapse
Affiliation(s)
- Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
- Correspondence: ; Tel.: +39-0250319361
| | - Victor Sebastián-Pérez
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain;
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| | - Lorenzo Suigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Andrea Casiraghi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta, 7, 1000 Ljubljana, Slovenia;
| | - Carlo Zanotto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli, 32, 20129 Milano, Italy; (C.Z.); (A.R.)
| | - Irena Zdovc
- Veterinary Faculty, University of Ljubljana, Gerbičeva, 60, 1000 Ljubljana, Slovenia;
| | - Antonia Radaelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli, 32, 20129 Milano, Italy; (C.Z.); (A.R.)
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
| |
Collapse
|
28
|
Tumuluri VS, Rajgor V, Xu SY, Chouhan OP, Saikrishnan K. Mechanism of DNA cleavage by the endonuclease SauUSI: a major barrier to horizontal gene transfer and antibiotic resistance in Staphylococcus aureus. Nucleic Acids Res 2021; 49:2161-2178. [PMID: 33533920 PMCID: PMC7913695 DOI: 10.1093/nar/gkab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Acquisition of foreign DNA by Staphylococcus aureus, including vancomycin resistance genes, is thwarted by the ATP-dependent endonuclease SauUSI. Deciphering the mechanism of action of SauUSI could unravel the reason how it singularly plays a major role in preventing horizontal gene transfer (HGT) in S. aureus. Here, we report a detailed biochemical and structural characterization of SauUSI, which reveals that in the presence of ATP, the enzyme can cleave DNA having a single or multiple target site/s. Remarkably, in the case of multiple target sites, the entire region of DNA flanked by two target sites is shred into smaller fragments by SauUSI. Crystal structure of SauUSI reveals a stable dimer held together by the nuclease domains, which are spatially arranged to hydrolyze the phosphodiester bonds of both strands of the duplex. Thus, the architecture of the dimeric SauUSI facilitates cleavage of either single-site or multi-site DNA. The structure also provides insights into the molecular basis of target recognition by SauUSI. We show that target recognition activates ATP hydrolysis by the helicase-like ATPase domain, which powers active directional movement (translocation) of SauUSI along the DNA. We propose that a pile-up of multiple translocating SauUSI molecules against a stationary SauUSI bound to a target site catalyzes random double-stranded breaks causing shredding of the DNA between two target sites. The extensive and irreparable damage of the foreign DNA by shredding makes SauUSI a potent barrier against HGT.
Collapse
Affiliation(s)
| | - Vrunda Rajgor
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Shuang-Yong Xu
- New England Biolabs Inc., Research Department, Ipswich, MA 01938, USA
| | - Om Prakash Chouhan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
29
|
Development of a Benzalkonium Chloride Based Antibacterial Paper for Health and Food Applications. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pathogenic bacteria and other microorganisms pose a potent threat to humans by causing various infectious diseases. To control the spread of infection, different antibacterial products have been developed. However, most of them are known to be associated with health hazards, environmental pollution, complex fabrication, and/or higher cost. To address these issues, in this study, a low cost, biodegradable and human skin compatible antibacterial paper has been developed. A quaternary ammonium compound, benzalkonium chloride (BKC) has been used for paper surface treatment. The concentration of aqueous solution of BKC coated on paper was varied from 0.1 wt% to 0.2 wt%. No external binder was required for coating BKC onto paper. The efficacy of the coated paper was investigated against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 8739 bacterial strains. This antibacterial paper is highly effective against both strains with the concentrations of BKC being within the allowable limit for cytotoxic effects. The optimum concentration of BKC coated on paper can be considered as 0.15 wt%, as nearly 100% inhibition was achieved with it against both strains. The developed antibacterial paper is suitable for being used in the industry for disinfection and food packaging purposes, and also by the public for hand sanitization.
Collapse
|
30
|
Janvier X, Alexandre S, Boukerb AM, Souak D, Maillot O, Barreau M, Gouriou F, Grillon C, Feuilloley MGJ, Groboillot A. Deleterious Effects of an Air Pollutant (NO 2) on a Selection of Commensal Skin Bacterial Strains, Potential Contributor to Dysbiosis? Front Microbiol 2020; 11:591839. [PMID: 33363523 PMCID: PMC7752777 DOI: 10.3389/fmicb.2020.591839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The skin constitutes with its microbiota the first line of body defense against exogenous stress including air pollution. Especially in urban or sub-urban areas, it is continuously exposed to many environmental pollutants including gaseous nitrogen dioxide (gNO2). Nowadays, it is well established that air pollution has major effects on the human skin, inducing various diseases often associated with microbial dysbiosis. However, very few is known about the impact of pollutants on skin microbiota. In this study, a new approach was adopted, by considering the alteration of the cutaneous microbiota by air pollutants as an indirect action of the harmful molecules on the skin. The effects of gNO2 on this bacterial skin microbiota was investigated using a device developed to mimic the real-life contact of the gNO2 with bacteria on the surface of the skin. Five strains of human skin commensal bacteria were considered, namely Staphylococcus aureus MFP03, Staphylococcus epidermidis MFP04, Staphylococcus capitis MFP08, Pseudomonas fluorescens MFP05, and Corynebacterium tuberculostearicum CIP102622. Bacteria were exposed to high concentration of gNO2 (10 or 80 ppm) over a short period of 2 h inside the gas exposure device. The physiological, morphological, and molecular responses of the bacteria after the gas exposure were assessed and compared between the different strains and the two gNO2 concentrations. A highly significant deleterious effect of gNO2 was highlighted, particularly for S. capitis MFP08 and C. tuberculostearicum CIP102622, while S. aureus MFP03 seems to be the less sensitive strain. It appeared that the impact of this nitrosative stress differs according to the bacterial species and the gNO2 concentration. Thus the exposition to gNO2 as an air pollutant could contribute to dysbiosis, which would affect skin homeostasis. The response of the microbiota to the nitrosative stress could be involved in some pathologies such as atopic dermatitis.
Collapse
Affiliation(s)
- Xavier Janvier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen-Normandy, Normandy-University, Evreux, France
| | - Stéphane Alexandre
- Laboratory of Polymers, Biopolymers and Surfaces UMR CNRS 6270, University of Rouen-Normandy, Normandy-University, Mont-Saint-Aignan, France
| | - Amine M Boukerb
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen-Normandy, Normandy-University, Evreux, France
| | - Djouhar Souak
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen-Normandy, Normandy-University, Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen-Normandy, Normandy-University, Evreux, France
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen-Normandy, Normandy-University, Evreux, France
| | - Frantz Gouriou
- Aerothermic and Internal Combustion Engine Technological Research Center, Saint-Etienne-du-Rouvray, France
| | | | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen-Normandy, Normandy-University, Evreux, France
| | - Anne Groboillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen-Normandy, Normandy-University, Evreux, France
| |
Collapse
|
31
|
Changes in the Ultrastructure of Staphylococcus aureus Treated with Cationic Peptides and Chlorhexidine. Microorganisms 2020; 8:microorganisms8121991. [PMID: 33327493 PMCID: PMC7764955 DOI: 10.3390/microorganisms8121991] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial peptides, including synthetic ones, are becoming increasingly important as a promising tool to fight multidrug-resistant bacteria. We examined the effect of cationic peptides H2N-Arg9-Phe2-C(O)NH2 and H2N-(Lys-Phe-Phe)3-Lys-C(O)NH2 on Staphylococcus aureus, which remains one of the most harmful pathogens. Antiseptic chlorhexidine served as reference preparation. We studied viability of S. aureus and examined its ultrastructure under treatment with 100 µM of R9F2 or (KFF)3K peptides or chlorhexidine using transmission electron microscopy of ultrathin sections. Bacterial cells were sampled as kinetic series starting from 1 min up to 4 h of treatment with preparations. Both peptides caused clearly visible damage of bacteria cell membrane within 1 min. Incubation of S. aureus with R9F2 or (KFF)3K peptides led to cell wall thinning, loss of cytoplasm structure, formation of mesosome-derived multimembrane structures and "decorated fibers" derived from DNA chains. The effect of R9F2 peptides on S. aureus was more severe than the effect of (KFF)3K peptides. Chlorhexidine heavily damaged the bacteria cell wall, in particular in areas of septa formation, while cytoplasm kept its structure within the observation time. Our study showed that cell membrane damage is critical for S. aureus viability; however, we believe that cell wall disorders should also be taken into account when analyzing the effects of the mechanisms of action of antimicrobial peptides (AMPs).
Collapse
|
32
|
Bottagisio M, Barbacini P, Bidossi A, Torretta E, deLancey-Pulcini E, Gelfi C, James GA, Lovati AB, Capitanio D. Phenotypic Modulation of Biofilm Formation in a Staphylococcus epidermidis Orthopedic Clinical Isolate Grown Under Different Mechanical Stimuli: Contribution From a Combined Proteomic Study. Front Microbiol 2020; 11:565914. [PMID: 33013797 PMCID: PMC7505995 DOI: 10.3389/fmicb.2020.565914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
One of the major causes of prosthetic joint failure is infection. Recently, coagulase negative Staphylococcus epidermidis has been identified as an emergent, nosocomial pathogen involved in subclinical prosthetic joint infections (PJIs). The diagnosis of PJIs mediated by S. epidermidis is usually complex and difficult due to the absence of acute clinical signs derived from the host immune system response. Therefore, analysis of protein patterns in biofilm-producing S. epidermidis allows for the examination of the molecular basis of biofilm formation. Thus, in the present study, the proteome of a clinical isolate S. epidermidis was analyzed when cultured in its planktonic or sessile form to examine protein expression changes depending on culture conditions. After 24 h of culture, sessile bacteria exhibited increased gene expression for ribosomal activity and for production of proteins related to the initial attachment phase, involved in the capsular polysaccharide/adhesin, surface associated proteins and peptidoglycan biosynthesis. Likewise, planktonic S. epidermidis was able to aggregate after 24 h, synthesizing the accumulation associate protein and cell-wall molecules through the activation of the YycFG and ArlRS, two component regulatory pathways. Prolonged culture under vigorous agitation generated a stressful growing environment triggering aggregation in a biofilm-like matrix as a mechanism to survive harsh conditions. Further studies will be essential to support these findings in order to further delineate the complex mechanisms of biofilm formation of S. epidermidis and they could provide the groundwork for the development of new drugs against biofilm-related infections, as well as the identification of novel biomarkers of subclinical or chronic infections mediated by these emerging, low virulence pathogens.
Collapse
Affiliation(s)
- Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Alessandro Bidossi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | | | - Elinor deLancey-Pulcini
- Medical Biofilm Laboratory, Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Garth A James
- Medical Biofilm Laboratory, Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
33
|
Bose S, Aggarwal S, Singh DV, Acharya N. Extracellular vesicles: An emerging platform in gram-positive bacteria. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:312-322. [PMID: 33335921 PMCID: PMC7713254 DOI: 10.15698/mic2020.12.737] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EV), also known as membrane vesicles, are produced as an end product of secretion by both pathogenic and non-pathogenic bacteria. Several reports suggest that archaea, gram-negative bacteria, and eukaryotic cells secrete membrane vesicles as a means for cell-free intercellular communication. EVs influence intercellular communication by transferring a myriad of biomolecules including genetic information. Also, EVs have been implicated in many phenomena such as stress response, intercellular competition, lateral gene transfer, and pathogenicity. However, the cellular process of secreting EVs in gram-positive bacteria is less studied. A notion with the thick cell-walled microbes such as gram-positive bacteria is that the EV release is impossible among them. The role of gram-positive EVs in health and diseases is being studied gradually. Being nano-sized, the EVs from gram-positive bacteria carry a diversity of cargo compounds that have a role in bacterial competition, survival, invasion, host immune evasion, and infection. In this review, we summarise the current understanding of the EVs produced by gram-positive bacteria. Also, we discuss the functional aspects of these components while comparing them with gram-negative bacteria.
Collapse
Affiliation(s)
- Swagata Bose
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India
| | - Shifu Aggarwal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824236, India
| | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India
| |
Collapse
|
34
|
Willing S, Dyer E, Schneewind O, Missiakas D. FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan cross-bridges. J Biol Chem 2020; 295:13664-13676. [PMID: 32759309 PMCID: PMC7521636 DOI: 10.1074/jbc.ra120.014371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.
Collapse
Affiliation(s)
- Stephanie Willing
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Emma Dyer
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA; Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA.
| |
Collapse
|
35
|
Su HN, Li K, Zhao LS, Yuan XX, Zhang MY, Liu SM, Chen XL, Liu LN, Zhang YZ. Structural Visualization of Septum Formation in Staphylococcus warneri Using Atomic Force Microscopy. J Bacteriol 2020; 202:e00294-20. [PMID: 32900866 PMCID: PMC7484183 DOI: 10.1128/jb.00294-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Cell division of Staphylococcus adopts a "popping" mechanism that mediates extremely rapid separation of the septum. Elucidating the structure of the septum is crucial for understanding this exceptional bacterial cell division mechanism. Here, the septum structure of Staphylococcus warneri was extensively characterized using high-speed time-lapse confocal microscopy, atomic force microscopy, and electron microscopy. The cells of S. warneri divide in a fast popping manner on a millisecond timescale. Our results show that the septum is composed of two separable layers, providing a structural basis for the ultrafast daughter cell separation. The septum is formed progressively toward the center with nonuniform thickness of the septal disk in radial directions. The peptidoglycan on the inner surface of double-layered septa is organized into concentric rings, which are generated along with septum formation. Moreover, this study signifies the importance of new septum formation in initiating new cell cycles. This work unravels the structural basis underlying the popping mechanism that drives S. warneri cell division and reveals a generic structure of the bacterial cell.IMPORTANCE This work shows that the septum of Staphylococcus warneri is composed of two layers and that the peptidoglycan on the inner surface of the double-layered septum is organized into concentric rings. Moreover, new cell cycles of S. warneri can be initiated before the previous cell cycle is complete. This work advances our knowledge about a basic structure of bacterial cell and provides information on the double-layered structure of the septum for bacteria that divide with the "popping" mechanism.
Collapse
Affiliation(s)
- Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Kang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Xue Yuan
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Meng-Yao Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Si-Min Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Zhang T, Wang T, Mejia-Tickner B, Kissel J, Xie X, Huang CH. Inactivation of Bacteria by Peracetic Acid Combined with Ultraviolet Irradiation: Mechanism and Optimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9652-9661. [PMID: 32643925 DOI: 10.1021/acs.est.0c02424] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peracetic acid (PAA) is an emerging disinfectant for municipal wastewater treatment owing to good biocidal effects and limited harmful by-product formation. This study investigated the inactivation of Gram-negative Escherichia coli (E. coli) and Gram-positive Enterococcus durans (E. durans) and Staphylococcus epidermidis (S. epidermidis) by PAA combined with UV concurrently (UV/PAA) or sequentially (PAA-UV/PAA) for enhanced disinfection. Under UV/PAA, the contributions of different mechanisms (UV, PAA, reactive radicals (mainly •OH and CH3C(O)OO•), and the synergistic effect of all mechanisms involved) to the overall inactivation were quantitatively assessed. Results revealed that radicals played a moderate role in the enhanced disinfection, while the synergistic effect presented a greater contribution, which could be partially linked to the diffusion of PAA into the cells as evidenced for the first time by a fluorescence microscopic method. Taking advantage of PAA diffusion into bacteria, pre-exposure of PAA followed by UV/PAA was demonstrated to yield the highest disinfection efficiency. Indeed, compared to UV/PAA, PAA-UV/PAA could achieve additional 4.7-5.4, 4.1-5.3, and 2.9-3.4 log inactivation of E. coli, E. durans, and S. epidermidis, respectively, in clean water and secondary/tertiary wastewater effluents when the same amounts of PAA and UV doses were applied in both approaches. Bacterial regrowth tests confirmed minimal regrowth potential after the disinfection.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin Mejia-Tickner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jessica Kissel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
37
|
Khan F, Yu H, Kim YM. Bactericidal Activity of Usnic Acid-Chitosan Nanoparticles against Persister Cells of Biofilm-Forming Pathogenic Bacteria. Mar Drugs 2020; 18:E270. [PMID: 32443816 PMCID: PMC7281555 DOI: 10.3390/md18050270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to prepare usnic acid (UA)-loaded chitosan (CS) nanoparticles (UA-CS NPs) and evaluate its antibacterial activity against biofilm-forming pathogenic bacteria. UA-CS NPs were prepared through simple ionic gelification of UA with CS, and further characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and field-emission transmission electron microscopy. The UA-CS NPs presented a loading capacity (LC) of 5.2%, encapsulation efficiency (EE) of 24%, and a spherical shape and rough surface. The maximum release of UA was higher in pH 1.2 buffer solution as compared to that in pH 6.8 and 7.4 buffer solution. The average size and zeta potential of the UA-CS NPs was 311.5 ± 49.9 nm in diameter and +27.3 ± 0.8 mV, respectively. The newly prepared UA-CS NPs exhibited antibacterial activity against persister cells obtained from the stationary phase in batch culture, mature biofilms, and antibiotic-induced gram-positive and gram-negative pathogenic bacteria. Exposure of sub-inhibitory concentrations of UA-CS NPs to the bacterial cells resulted in a change in morphology. The present study suggests an alternative method for the application of UA into nanoparticles. Furthermore, the anti-persister activity of UA-CS NPs may be another possible strategy for the treatment of infections caused by biofilm-forming pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
| | - Hongsik Yu
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
38
|
Shalaby MAW, Dokla EME, Serya RAT, Abouzid KAM. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur J Med Chem 2020; 199:112312. [PMID: 32442851 DOI: 10.1016/j.ejmech.2020.112312] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most β-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.
Collapse
Affiliation(s)
- Menna-Allah W Shalaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
39
|
Mlynek KD, Bulock LL, Stone CJ, Curran LJ, Sadykov MR, Bayles KW, Brinsmade SR. Genetic and Biochemical Analysis of CodY-Mediated Cell Aggregation in Staphylococcus aureus Reveals an Interaction between Extracellular DNA and Polysaccharide in the Extracellular Matrix. J Bacteriol 2020; 202:e00593-19. [PMID: 32015143 PMCID: PMC7099133 DOI: 10.1128/jb.00593-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
The global regulator CodY links nutrient availability to the regulation of virulence factor gene expression in Staphylococcus aureus, including many genes whose products affect biofilm formation. Antithetical phenotypes of both biofilm deficiency and accumulation have been reported for codY-null mutants; thus, the role of CodY in biofilm development remains unclear. codY mutant cells of a strain producing a robust biofilm elaborate proaggregation surface-associated features not present on codY mutant cells that do not produce a robust biofilm. Biochemical analysis of the clinical isolate SA564, which aggregates when deficient for CodY, revealed that these features are sensitive to nuclease treatment and are resistant to protease exposure. Genetic analyses revealed that disrupting lgt (the diacylglycerol transferase gene) in codY mutant cells severely weakened aggregation, indicating a role for lipoproteins in the attachment of the biofilm matrix to the cell surface. An additional and critical role of IcaB in producing functional poly-N-acetylglucosamine (PIA) polysaccharide in extracellular DNA (eDNA)-dependent biofilm formation was shown. Moreover, overproducing PIA is sufficient to promote aggregation in a DNA-dependent manner regardless of source of nucleic acids. Taken together, our results point to PIA synthesis as the primary determinant of biofilm formation when CodY activity is reduced and suggest a modified electrostatic net model for matrix attachment whereby PIA associates with eDNA, which interacts with the cell surface via covalently attached membrane lipoproteins. This work counters the prevailing view that polysaccharide- and eDNA/protein-based biofilms are mutually exclusive. Rather, we demonstrate that eDNA and PIA can work synergistically to form a biofilm.IMPORTANCEStaphylococcus aureus remains a global health concern and exemplifies the ability of an opportunistic pathogen to adapt and persist within multiple environments, including host tissue. Not only does biofilm contribute to persistence and immune evasion in the host environment, it also may aid in the transition to invasive disease. Thus, understanding how biofilms form is critical for developing strategies for dispersing biofilms and improving biofilm disease-related outcomes. Using biochemical, genetic, and cell biology approaches, we reveal a synergistic interaction between PIA and eDNA that promotes cell aggregation and biofilm formation in a CodY-dependent manner in S. aureus We also reveal that envelope-associated lipoproteins mediate attachment of the biofilm matrix to the cell surface.
Collapse
Affiliation(s)
- Kevin D Mlynek
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Logan L Bulock
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Carl J Stone
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Luke J Curran
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Marat R Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
40
|
The Sle1 Cell Wall Amidase Is Essential for β-Lactam Resistance in Community-Acquired Methicillin-Resistant Staphylococcus aureus USA300. Antimicrob Agents Chemother 2019; 64:AAC.01931-19. [PMID: 31685469 PMCID: PMC7187620 DOI: 10.1128/aac.01931-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/27/2019] [Indexed: 11/20/2022] Open
Abstract
Most clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strains have become resistant to β-lactams antibiotics through horizontal acquisition of the mecA gene encoding PBP2a, a peptidoglycan transpeptidase with low affinity for β-lactams. The level of resistance conferred by mecA is, however, strain dependent, and the mechanisms underlying this phenomenon remain poorly understood. We show here that β-lactam resistance correlates to expression of the Sle1 cell wall amidase in the fast-spreading and highly virulent community-acquired MRSA USA300 clone. Sle1 is a substrate of the ClpXP protease, and while the high Sle1 levels in cells lacking ClpXP activity confer β-lactam hyper-resistance, USA300 cells lacking Sle1 are as susceptible to β-lactams as cells lacking mecA This finding prompted us to assess the cellular roles of Sle1 in more detail, and we demonstrate that high Sle1 levels accelerate the onset of daughter cells splitting and decrease cell size. Vice versa, oxacillin decreases the Sle1 level and imposes a cell separation defect that is antagonized by high Sle1 levels, suggesting that high Sle1 levels increase tolerance to oxacillin by promoting cell separation. In contrast, increased oxacillin sensitivity of sle1 cells appears linked to a synthetic lethal effect on septum synthesis. In conclusion, this study demonstrates that Sle1 is a key factor in resistance to β-lactam antibiotics in the JE2 USA300 model strain and that PBP2a is required for the expression of Sle1 in JE2 cells exposed to oxacillin.
Collapse
|
41
|
Jensen C, Bæk KT, Gallay C, Thalsø-Madsen I, Xu L, Jousselin A, Ruiz Torrubia F, Paulander W, Pereira AR, Veening JW, Pinho MG, Frees D. The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathog 2019; 15:e1008044. [PMID: 31518377 PMCID: PMC6760813 DOI: 10.1371/journal.ppat.1008044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 08/26/2019] [Indexed: 12/02/2022] Open
Abstract
β-lactam antibiotics interfere with cross-linking of the bacterial cell wall, but the killing mechanism of this important class of antibiotics is not fully understood. Serendipitously we found that sub-lethal doses of β-lactams rescue growth and prevent spontaneous lysis of Staphylococcus aureus mutants lacking the widely conserved chaperone ClpX, and we reasoned that a better understanding of the clpX phenotypes could provide novel insights into the downstream effects of β-lactam binding to the PBP targets. Super-resolution imaging revealed that clpX cells display aberrant septum synthesis, and initiate daughter cell separation prior to septum completion at 30°C, but not at 37°C, demonstrating that ClpX becomes critical for coordinating the S. aureus cell cycle as the temperature decreases. FtsZ localization and dynamics were not affected in the absence of ClpX, suggesting that ClpX affects septum formation and autolytic activation downstream of Z-ring formation. Interestingly, oxacillin antagonized the septum progression defects of clpX cells and prevented lysis of prematurely splitting clpX cells. Strikingly, inhibitors of wall teichoic acid (WTA) biosynthesis that work synergistically with β-lactams to kill MRSA synthesis also rescued growth of the clpX mutant, as did genetic inactivation of the gene encoding the septal autolysin, Sle1. Taken together, our data support a model in which Sle1 causes premature splitting and lysis of clpX daughter cells unless Sle1-dependent lysis is antagonized by β-lactams or by inhibiting an early step in WTA biosynthesis. The finding that β-lactams and inhibitors of WTA biosynthesis specifically prevent lysis of a mutant with dysregulated autolytic activity lends support to the idea that PBPs and WTA biosynthesis play an important role in coordinating cell division with autolytic splitting of daughter cells, and that β-lactams do not kill S. aureus simply by weakening the cell wall. The bacterium Staphylococcus aureus is a major cause of human disease, and the rapid spread of S. aureus strains that are resistant to almost all β-lactam antibiotics has made treatment increasingly difficult. β-lactams interfere with cross-linking of the bacterial cell wall but the killing mechanism of this important class of antibiotics is not fully understood. Here we provide novel insight into this topic by examining a defined S. aureus mutant that has the unusual property of growing markedly better in the presence of β-lactams. Without β-lactams this mutant dies spontaneously at a high frequency due to premature separation of daughter cells during cell division. Cell death of the mutant can, however, be prevented either by exposure to β-lactam antibiotics or by inhibiting synthesis of wall teichoic acid, a major component of the cell wall in Gram-positive bacteria with a conserved role in activation of autolytic splitting of daughter cells. The finding that β-lactam antibiotics can prevent lysis of a mutant with deregulated activity of autolytic enzymes involved in daughter cell splitting, emphasizes the idea that β-lactams interfere with the coordination between cell division and daughter cell splitting, and do not kill S. aureus simply by weakening the cell wall.
Collapse
Affiliation(s)
- Camilla Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer T. Bæk
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clement Gallay
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ida Thalsø-Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lijuan Xu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ambre Jousselin
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Fernando Ruiz Torrubia
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wilhelm Paulander
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana R. Pereira
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mariana G. Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
42
|
Helal AM, Sayed AM, Omara M, Elsebaei MM, Mayhoub AS. Peptidoglycan pathways: there are still more! RSC Adv 2019; 9:28171-28185. [PMID: 35530449 PMCID: PMC9071014 DOI: 10.1039/c9ra04518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022] Open
Abstract
The discovery of 3rd and 4th generations of currently existing classes of antibiotics has not hindered bacterial resistance, which is escalating at an alarming global level. This review follows WHO recommendations through implementing new criteria for newly discovered antibiotics. These recommendations focus on abandoning old scaffolds and hitting new targets. In light of these recommendations, this review discusses seven bacterial proteins that no commercial antibiotics have targeted yet, alongside their reported chemical scaffolds.
Collapse
Affiliation(s)
- Ahmed M Helal
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ahmed M Sayed
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mariam Omara
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
43
|
Aresti Sanz J, El Aidy S. Microbiota and gut neuropeptides: a dual action of antimicrobial activity and neuroimmune response. Psychopharmacology (Berl) 2019; 236:1597-1609. [PMID: 30997526 PMCID: PMC6598950 DOI: 10.1007/s00213-019-05224-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/10/2019] [Indexed: 12/22/2022]
Abstract
The gut microbiota is comprised of a vast variety of microbes that colonize the gastrointestinal tract and exert crucial roles for the host health. These microorganisms, partially via their breakdown of dietary components, are able to modulate immune response, mood, and behavior, establishing a chemical dialogue in the microbiota-gut-brain interphase. Changes in the gut microbiota composition and functionality are associated with multiple diseases, in which altered levels of gut-associated neuropeptides are also detected. Gut neuropeptides are strong neuroimmune modulators; they mediate the communication between the gut microbiota and the host (including gut-brain axis) and have also recently been found to exert antimicrobial properties. This highlights the importance of understanding the interplay between gut neuropeptides and microbiota and their implications on host health. Here, we will discuss how gut neuropeptides help to maintain a balanced microbiota and we will point at the missing gaps that need to be further investigated in order to elucidate whether these molecules are related to neuropsychiatric disorders, which are often associated with gut dysbiosis and altered gut neuropeptide levels.
Collapse
Affiliation(s)
- Julia Aresti Sanz
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
44
|
Boudjemaa R, Steenkeste K, Canette A, Briandet R, Fontaine-Aupart MP, Marlière C. Direct observation of the cell-wall remodeling in adhering Staphylococcus aureus 27217: An AFM study supported by SEM and TEM. Cell Surf 2019; 5:100018. [PMID: 32743135 PMCID: PMC7389151 DOI: 10.1016/j.tcsw.2019.100018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 01/28/2023] Open
Abstract
We took benefit from Atomic Force Microscopy (AFM) in the force spectroscopy mode to describe the time evolution – over 24 h – of the surface nanotopography and mechanical properties of the strain Staphylococcus aureus 27217 from bacterial adhesion to the first stage of biofilm genesis. In addition, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) experiments allowed identifying two types of self-adhering subpopulations (the so-called “bald” and “hairy” cells) and revealed changes in their relative populations with the bacterial culture age and the protocol of preparation. We indeed observed a dramatic evanescing of the “hairy” subpopulation for samples that underwent centrifugation and resuspension processes. When examined by AFM, the “hairy” cell surface resembled to a herringbone structure characterized by upper structural units with lateral dimensions of ∼70 nm and a high Young modulus value (∼2.3 MPa), a mean depth of the trough between them of ∼15 nm and a resulting roughness of ∼5 nm. By contrast, the “bald” cells appeared much softer (∼0.35 MPa) with a roughness one order of magnitude lower. We observed too the gradual detachment of the herringbone patterns from the “hairy” bacterial envelope of cell harvested from a 16 h old culture and their progressive accumulation between the bacteria in the form of globular clusters. The secretion of a soft extracellular polymeric substance was also identified that, in addition to the globular clusters, may contribute to the initiation of the biofilm spatial organization.
Collapse
Affiliation(s)
- Rym Boudjemaa
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut de Biologie Paris-Seine (FR 3631), Unité Mixte de Service (UMS 30) d'Imagerie et de Cytométrie (LUMIC), Sorbonne Université, CNRS, Paris, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Pierre Fontaine-Aupart
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Christian Marlière
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
45
|
Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0057-2018. [PMID: 30900543 PMCID: PMC11590431 DOI: 10.1128/microbiolspec.gpp3-0057-2018] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
46
|
Ultrastructure and X-ray Microanalysis of the Antibacterial Effects of Stem Bark Ethanol Extract of Acacia mearnsii De Wild Against Some Selected Bacteria. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Zhang D, Gao X, Song X, Zhou W, Hong W, Tian C, Liu Y, Liu M. Luteolin Showed a Resistance Elimination Effect on Gentamicin by Decreasing MATE mRNA Expression in Trueperella pyogenes. Microb Drug Resist 2018; 25:619-626. [PMID: 30431396 DOI: 10.1089/mdr.2018.0097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Trueperella pyogenes is a common inhabitant of mucosal surfaces in animals and causes a variety of infections, including endometritis, mastitis, and liver abscessation, in dairy cows. Many antimicrobial agents are used for treatment of infections caused by T. pyogenes; however, antibiotic resistance has recently become a serious problem. The objective of this study was to characterize the effect of the efflux pump-encoding multidrug and toxic compound extrusion (MATE) gene on antibiotic resistance in T. pyogenes isolates from cows with signs of endometritis. As a compound from plants, luteolin showed antimicrobial activities in Escherichia coli and Staphylococcus aureus; therefore, we also investigated whether luteolin can eliminate antibiotic resistance. We constructed a MATE deletion mutant in BM-H06-3 to identify the function of MATE in antibiotic resistance. MATE mRNA expression was measured to identify the mechanism of luteolin in gentamicin resistance elimination effect in T. pyogenes. The T. pyogenes isolate BM-H06-3 became susceptible to gentamicin, amikacin, streptomycin, erythromycin, and roxithromycin after MATE deletion. No synergistic effect between luteolin and gentamicin was observed in eight isolates, which were randomly selected from 34 T. pyogenes isolates, but the isolates became susceptible to gentamicin after luteolin treatment at a subinhibitory concentration (1/4 minimum inhibitory concentration [MIC]) for 36 hr. Furthermore, luteolin can decrease MATE mRNA expression after luteolin treatment at a subinhibitory concentration (1/4 MIC). We found that the MATE gene was involved in antibiotic resistance and that luteolin induces a resistance elimination effect in T. pyogenes. Therefore, luteolin may be a potential agent to inhibit efflux pumps in multidrug-resistant T. pyogenes.
Collapse
Affiliation(s)
- Dexian Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xiang Gao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xuejiao Song
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Wei Zhou
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Wei Hong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Chunlian Tian
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yaochuan Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Mingchun Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
48
|
Steiner EM, Lyngsø J, Guy JE, Bourenkov G, Lindqvist Y, Schneider TR, Pedersen JS, Schneider G, Schnell R. The structure of the N-terminal module of the cell wall hydrolase RipA and its role in regulating catalytic activity. Proteins 2018; 86:912-923. [DOI: 10.1002/prot.25523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Eva Maria Steiner
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm S-17 177 Sweden
| | - Jeppe Lyngsø
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO); Aarhus University, Gustav Wieds Vej 14; Aarhus DK-8000 Denmark
| | - Jodie E. Guy
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm S-17 177 Sweden
| | - Gleb Bourenkov
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85; Hamburg 22603 Germany
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm S-17 177 Sweden
| | - Thomas R. Schneider
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85; Hamburg 22603 Germany
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO); Aarhus University, Gustav Wieds Vej 14; Aarhus DK-8000 Denmark
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm S-17 177 Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm S-17 177 Sweden
| |
Collapse
|
49
|
Lund VA, Wacnik K, Turner RD, Cotterell BE, Walther CG, Fenn SJ, Grein F, Wollman AJ, Leake MC, Olivier N, Cadby A, Mesnage S, Jones S, Foster SJ. Molecular coordination of Staphylococcus aureus cell division. eLife 2018; 7:32057. [PMID: 29465397 PMCID: PMC5821461 DOI: 10.7554/elife.32057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components.
Collapse
Affiliation(s)
- Victoria A Lund
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Wacnik
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert D Turner
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Bryony E Cotterell
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Christa G Walther
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Samuel J Fenn
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, German Center for Infection Research (DZIF), University of Bonn, Bonn, Germany
| | - Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Nicolas Olivier
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Ashley Cadby
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
50
|
Zhan XY, Zhu QY. Evolution of methicillin-resistant Staphylococcus aureus: Evidence of positive selection in a penicillin-binding protein (PBP) 2a coding gene mecA. INFECTION GENETICS AND EVOLUTION 2018; 59:16-22. [PMID: 29413881 DOI: 10.1016/j.meegid.2018.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/15/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) represents more and more S. aureus infections. MecA, the novel coding gene of penicillin-binding protein (PBP) 2a of MRSA, is the key resistance factor of β-lactam, but little is known about the evolution of this gene. Given the crucial role of mecA in S. aureus physiology and β-lactam resistance, the selective forces may contribute to adaptation of the bacteria to the special environments such as its host or antibiotics. To understand the evolution of this gene, we screened GenBank database and analyzed mecA of 249 S. aureus strains. Twenty-nine unique alleles with 26 unique amino acid sequences were identified. Phylogenetic analysis showed three main groups of mecA in the global S. aureus strains. Analysis of these alleles using codon-substitution models (M8, M3, and M2a) and likelihood ratio tests (LRTs) of the codeML package and a random-effects likelihood (REL) method of HyPhy package for the site-specific ratio of nonsynonymous to synonymous substitution rates suggested that fourteen sites in the allosteric domain of PBP2a have been subjected to strong positive selection pressure. Mutations of two positive selection sites (N146K and E239K) were reported to be essential for ceftaroline- or L-695, 256-resistant. Further study indicated that the positive selection pressure might be more likely related to the host's inflammatory or immune response during S. aureus infection. Our studies provide the first evidence of positive Darwinian selection in the mecA of S. aureus, contributing to a better understanding of the adaptive mechanism of this bacterium.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- Guangzhou KingMed Center for Clinical Laboratory, Guangzhou 510300, China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510300, China; The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qing-Yi Zhu
- Guangzhou KingMed Center for Clinical Laboratory, Guangzhou 510300, China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510300, China
| |
Collapse
|