1
|
No J, Kim S, Lee H, Kwak T, Lim J, Lee P, Oh K, Lee S. In vitro maturation using porcine follicular fluid-derived exosomes as an alternative to the conventional method. Theriogenology 2024; 230:37-45. [PMID: 39243630 DOI: 10.1016/j.theriogenology.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles, also known as exosomes, influence numerous cellular functions by regulating different signaling pathways. However, their role in animal reproduction remains understudied. This study aimed to evaluate the effects of porcine follicular fluid-derived exosomes (pff-Exos) on porcine oocyte in vitro maturation and parthenogenetic embryo development. We obtained pff-Exos through mixed-method ultracentrifugation and size-exclusion chromatography. Transmission electron microscopy revealed an increase in the expression of exosome markers in the first four of thirteen fractions. The number of pff-Exo was 2.2 × 106 particles per microliter. The highest maturation rate of porcine oocytes treated with pff-Exo was observed with 1.1 × 107 particles of pff-Exo in the absence of porcine follicular fluid (pFF) culture conditions. Moreover, increased expression of Gdf9 and Bmp15 was observed. The developmental rate was the highest upon treatment with 1.1 × 107 particles of pff-Exo, which increased the total cell number in blastocysts. Embryonic development to the 2-cell stage was similar between the control and pff-Exo groups; however, development to the 4-cell stage and blastocyst was significantly increased in the pff-Exo group (61.6 ± 6.08 % and 29.72 ± 1.41 %, respectively; P < 0.05) compared with that in the control group (42.0 ± 5.19 % and 18.14 ± 1.78 %, respectively). The expression levels of Oct4, Sox2, Bcl2, Elf4, and Gcn5 significantly increased at the pff-Exo 2-cell stage, whereas those of Bax, Hdac1, Hdac6, and Sirt6 decreased. Specifically, the Oct4, Sox2, Elf4, Gcn5, and Hdac6 levels remained stable in pff-Exo 4-cell embryos, whereas those of p53 and Hat1 were reduced and increased, respectively. Treatment with pffExos significantly increased H3K9 and H3K14 acetylation levels. These results demonstrate that pff-Exo affects the in vitro maturation of porcine oocytes and early embryonic development by regulating gene expression.
Collapse
Affiliation(s)
- Jingu No
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea
| | - Seokho Kim
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea
| | - Haesun Lee
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea
| | - Taeuk Kwak
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea
| | - Jihyeon Lim
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea
| | - Poongyeon Lee
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea
| | - Keonbong Oh
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea
| | - Seunghoon Lee
- National Institute of Animal Science, Wanju, Jeonbuk, 55365, Republic of Korea.
| |
Collapse
|
2
|
Pathikonda S, Amirmahani F, Mathew D, Muthukrishnan SD. Histone acetyltransferases as promising therapeutic targets in glioblastoma resistance. Cancer Lett 2024; 604:217269. [PMID: 39326554 DOI: 10.1016/j.canlet.2024.217269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is a fatal adult brain tumor with an extremely poor prognosis. GBM poses significant challenges for targeted therapies due to its intra- and inter-tumoral heterogeneity, a highly immunosuppressive microenvironment, diffuse infiltration into normal brain parenchyma, protection by the blood-brain barrier and acquisition of therapeutic resistance. Recent studies have implicated epigenetic modifiers as key players driving tumorigenesis, resistance, and progression of GBM. While the vast majority of GBM research on epigenetic modifiers thus far has focused predominantly on elucidating the functional roles and targeting of DNA methyltransferases and histone deacetylases, emerging evidence indicates that histone acetyltransferases (HATs) also play a key role in mediating plasticity and therapeutic resistance in GBM. Here, we will provide an overview of HATs, their dual roles and functions in cancer as both tumor suppressors and oncogenes and focus specifically on their implications in GBM resistance. We also discuss the technical challenges in developing selective HAT inhibitors and highlight their promise as potential anti-cancer therapeutics for treating intractable cancers such as GBM.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Farzaneh Amirmahani
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Diya Mathew
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Sree Deepthi Muthukrishnan
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| |
Collapse
|
3
|
Miziak P, Baran M, Borkiewicz L, Trombik T, Stepulak A. Acetylation of Histone H3 in Cancer Progression and Prognosis. Int J Mol Sci 2024; 25:10982. [PMID: 39456765 PMCID: PMC11507103 DOI: 10.3390/ijms252010982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is a multifactorial disease resulting from both genetic factors and epigenetic changes. Histone acetylation, a post-translational modification, which alters chromatin architecture and regulates gene expression is associated with cancer initiation, development and progression. Aberrations in global histone acetylation levels are observed in various cancer cells and are also associated with patients' tumor aggressiveness. Therefore, histone acetylation may have prognostic utility and serve as a potential biomarker of cancer progression and patients' prognosis. The reversible modification of histones by an acetyl group is versatile. One particular histone can be acetylated on different lysine residues, subsequently resulting in different biological outcomes. Here, we discuss recent findings on the acetylation of the highly conserved histone protein H3 in the context of cancer biology. Specifically, we review the acetylation of particular H3 residues in various cancer types. We further highlight the significance of H3 acetylation levels as a potential cancer biomarker with prognostic implications.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (L.B.); (T.T.)
| | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (L.B.); (T.T.)
| |
Collapse
|
4
|
Komal S, Gao Y, Wang ZM, Yu QW, Wang P, Zhang LR, Han SN. Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases. Pharmaceuticals (Basel) 2024; 17:1353. [PMID: 39458994 PMCID: PMC11510975 DOI: 10.3390/ph17101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Myocardial fibroblasts play a crucial role in heart structure and function. In recent years, significant progress has been made in understanding the epigenetic regulation of myocardial fibroblasts, which is essential for cardiac development, homeostasis, and disease progression. In healthy hearts, cardiac fibroblasts (CFs) play a crucial role in synthesizing the extracellular matrix (ECM) when in a dormant state. However, under pathological and environmental stress, CFs transform into activated fibroblasts known as myofibroblasts. These myofibroblasts produce an excess of ECM, which promotes cardiac fibrosis. Although multiple molecular mechanisms are associated with CF activation and myocardial dysfunction, emerging evidence highlights the significant involvement of epigenetic regulation in this process. Epigenetics refers to the heritable changes in gene expression that occur without altering the DNA sequence. These mechanisms have emerged as key regulators of myocardial fibroblast function. This review focuses on recent advancements in the understanding of the role of epigenetic regulation and emphasizes the impact of epigenetic modifications on CF activation. Furthermore, we present perspectives and prospects for future research on epigenetic modifications and their implications for myocardial fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.K.); (Y.G.); (Z.-M.W.); (Q.-W.Y.); (P.W.); (L.-R.Z.)
| |
Collapse
|
5
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
6
|
Ye L, Kuang W, Zhang L, Lin Y, Zhang Y, Sun X, Cui R. Functional Characterization of the Histone Acetyltransferase FcElp3 in Lotus Rhizome Rot-Causing Fungus Fusarium commune. PHYTOPATHOLOGY 2024; 114:2300-2309. [PMID: 39007807 DOI: 10.1094/phyto-01-24-0017-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fusarium commune is the main pathogen of lotus rhizome rot, which causes the wilt of many plants. Histone acetyltransferase plays a critical part in the growth and virulence of fungi. In the present study, we identified an FcElp3 in F. commune homologous to histone acetyltransferase Elp3. We further constructed a mutant strain of F. commune to determine the function of FcElp3 in fungal growth and pathogenicity. The results showed that the deletion of FcElp3 resulted in reduced mycelial growth and sporulation. Compared with the wild type, the ΔFcElp3 strain showed more tolerance to osmotic stress and cell wall stress responses but was highly sensitive to oxidative stress. The subcellular localization results indicated that FcElp3 was distributed in both the cytoplasm and nucleus. Western blotting showed that FcElp3 was important for acetylation of H3K14 and H4K8. RNA sequencing analysis showed significant transcriptional changes in the ΔFcElp3 mutant, with 3,098 genes upregulated and 5,770 genes downregulated. Peroxisome was the most significantly enriched metabolic pathway for downregulated genes. This led to a significant decrease in the expression of the core transcription factor Fcap1 involved in the oxidative stress response. Pathogenicity tests revealed that the ΔFcElp3 mutant's pathogenicity on lotus was significantly decreased. Together, these findings clearly demonstrated that FcElp3 was involved in fungal growth, development, stress response, and pathogenicity via the direct regulation of multiple target genes.
Collapse
Affiliation(s)
- Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
7
|
Chen M, Li Y, Zhang M, Ge S, Feng T, Chen R, Shen J, Li R, Wang Z, Xie Y, Wang D, Liu J, Lin Y, Chang F, Chen J, Sun X, Cheng D, Huang X, Wu F, Zhang Q, Cai P, Yin P, Zhang L, Tang P. Histone deacetylase inhibition enhances extracellular vesicles from muscle to promote osteogenesis via miR-873-3p. Signal Transduct Target Ther 2024; 9:256. [PMID: 39343927 PMCID: PMC11439940 DOI: 10.1038/s41392-024-01976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Regular physical activity is widely recognized for reducing the risk of various disorders, with skeletal muscles playing a key role by releasing biomolecules that benefit multiple organs and tissues. However, many individuals, particularly the elderly and those with clinical conditions, are unable to engage in physical exercise, necessitating alternative strategies to stimulate muscle cells to secrete beneficial biomolecules. Histone acetylation and deacetylation significantly influence exercise-induced gene expression, suggesting that targeting histone deacetylases (HDACs) could mimic some exercise responses. In this study, we explored the effects of the HDAC inhibitor Trichostatin A (TSA) on human skeletal muscle myoblasts (HSMMs). Our findings showed that TSA-induced hyperacetylation enhanced myotube fusion and increased the secretion of extracellular vesicles (EVs) enriched with miR-873-3p. These TSA-EVs promoted osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs) by targeting H2 calponin (CNN2). In vivo, systemic administration of TSA-EVs to osteoporosis mice resulted in significant improvements in bone mass. Moreover, TSA-EVs mimicked the osteogenic benefits of exercise-induced EVs, suggesting that HDAC inhibition can replicate exercise-induced bone health benefits. These results demonstrate the potential of TSA-induced muscle-derived EVs as a therapeutic strategy to enhance bone formation and prevent osteoporosis, particularly for individuals unable to exercise. Given the FDA-approved status of various HDAC inhibitors, this approach holds significant promise for rapid clinical translation in osteoporosis treatment.
Collapse
Affiliation(s)
- Ming Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Mingming Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Siliang Ge
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Taojin Feng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ruijing Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Junmin Shen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ran Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Zhongqi Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yong Xie
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Duanyang Wang
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiang Liu
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Lin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feifan Chang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Junyu Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xinyu Sun
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Dongliang Cheng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Fanfeng Wu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Qinxiang Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pingqiang Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
8
|
Guan Y, Gajewska J, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Hartman S, Arasimowicz-Jelonek M. The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109129. [PMID: 39288571 DOI: 10.1016/j.plaphy.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The oomycete Phytophthora infestans is one of the most destructive phytopathogens globally. It has a proven ability to adapt to changing environments rapidly; however, molecular mechanisms responsible for host invasion and adaptation to new environmental conditions still need to be explored. The study aims to understand the epigenetic mechanisms exploited by P. infestans in response to nitrosative stress conditions created by the (micro)environment and the host plant. To characterize reactive nitrogen species (RNS)-dependent acetylation profiles in avirulent/virulent (avr/vr) P. infestans, a transient gene expression, ChIP and immunoblot analyses, and nitric oxide (NO) emission by chemiluminescence were used in combination with the pharmacological approach. Nitrosative stress increased total H3/H4 acetylation and some histone acetylation marks, mainly in sporulating hyphae of diverse (avr/vr) isolates and during potato colonization. These results correlated with transcriptional up-regulation of acetyltransferases PifHAC3 and PifHAM1, catalyzing H3K56 and H4K16 acetylation, respectively. NO or peroxynitrite-mediated changes were also associated with H3K56 and H4K16 mark deposition on the critical pathogenicity-related gene promoters (CesA1, CesA2, CesA3, sPLD-like1, Hmp1, and Avr3a) elevating their expression. Our study highlights RNS-dependent transcriptional reprogramming via histone acetylation of essential gene expression in the sporulating and biotrophic phases of plant colonization by P. infestans as a tool promoting its evolutionary plasticity.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | | | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
9
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
10
|
Gao J, Liu W, Pei J, Li J, Hao N, Yang S, Yang X, Zou D, Xu K, Zhang L. The Role of Histone H2B Acetylation Modification in Aluminum-Induced Cognitive Dysfunction. Biol Trace Elem Res 2024; 202:3731-3739. [PMID: 37979070 DOI: 10.1007/s12011-023-03959-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aluminum (Al) is a low toxic trace element that can accumulate in the nervous system and induce cognitive disorders characterized by reduced learning and memory ability. Neuroepigenetic effects are structural changes in cellular function by the brain in response to environmental stimuli by altering the expression of specific genes and repressing normal cellular transcription, leading to abnormalities in a variety of biological processes within the nervous system and affecting neurobehavioral responses. One of the most important mechanisms of epigenetic control on chromatin shape is histone modification. In the present study, we established an offspring rat model of Al intoxication to investigate the changes in spatial learning and memory retention abilities and the relationship with histone H2B acetylation modification in rats exposed to different doses of Al over a long period of time. The results demonstrated that long-term AlCl3 staining resulted in decreased CBP gene and protein expression, increased HDAC3 gene and protein levels, as well as decreased histone H2B and acH2BK20 protein expression levels in the hippocampus of rats. In conclusion, long-term exposure to Al may vary the expression of histone H2B and acH2BK20 through the regulation of enzymes that specifically regulate histone acetylation, hence hastening the deterioration of the nervous system that impairs cognitive function.
Collapse
Grants
- 2015225025 The Science and Technology Project of Liaoning Providence, China
- F15-139-9-09 The Science and Technology Project of Shenyang, China
- 81673226 National Natural Science Foundation of China
- 201601226 Initiated Research Foundation for the Doctoral Program of Science and Technology Department of Liaoning Province, China
- L2015544, LJKZ1146 Natural Science Foundation of Education Department of Liaoning Province, China
- 201710164000038 Natural Science Foundation for Innovation and Entrepreneurship Training Program of Education Department of Liaoning Province, China
- 17-231-1-44 Natural Science Foundation of Science and Technology Department of Shenyang City, China
- 20153043 Natural Science Foundation of Shenyang Medical College, China
- Y20180512 Natural Science Foundation for graduate students of Shenyang Medical College, China
- 20179028, X202310164036 Natural Science Foundation for undergraduate students of Shenyang Medical College, China
Collapse
Affiliation(s)
- Jie Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Jing Pei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Jing Li
- Department of Shenyang Maternity and Child Health Hospital, No. 41 Shenzhou Road, Shenhe District, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Niping Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Shuo Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Xiaoming Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Danfeng Zou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Kebin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China.
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China.
| |
Collapse
|
11
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Wang B, Wang J, Yang W, Zhao L, Wei B, Chen J. Unveiling Allosteric Regulation and Binding Mechanism of BRD9 through Molecular Dynamics Simulations and Markov Modeling. Molecules 2024; 29:3496. [PMID: 39124901 PMCID: PMC11314499 DOI: 10.3390/molecules29153496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a key player in chromatin remodeling and gene expression regulation, and it is closely associated with the development of various diseases, including cancers. Recent studies have indicated that inhibition of BRD9 may have potential value in the treatment of certain cancers. Molecular dynamics (MD) simulations, Markov modeling and principal component analysis were performed to investigate the binding mechanisms of allosteric inhibitor POJ and orthosteric inhibitor 82I to BRD9 and its allosteric regulation. Our results indicate that binding of these two types of inhibitors induces significant structural changes in the protein, particularly in the formation and dissolution of α-helical regions. Markov flux analysis reveals notable changes occurring in the α-helicity near the ZA loop during the inhibitor binding process. Calculations of binding free energies reveal that the cooperation of orthosteric and allosteric inhibitors affects binding ability of inhibitors to BRD9 and modifies the active sites of orthosteric and allosteric positions. This research is expected to provide new insights into the inhibitory mechanism of 82I and POJ on BRD9 and offers a theoretical foundation for development of cancer treatment strategies targeting BRD9.
Collapse
Affiliation(s)
- Bin Wang
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| |
Collapse
|
13
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
14
|
Liu Z, Shi X, Wang Z, Qu M, Gao C, Wang C, Wang Y. Acetylation of transcription factor BpTCP20 by acetyltransferase BpPDCE23 modulates salt tolerance in birch. PLANT PHYSIOLOGY 2024; 195:2354-2371. [PMID: 38501602 DOI: 10.1093/plphys/kiae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors function in abiotic stress responses. However, how TCPs confer salt tolerance is unclear. Here, we characterized a TCP transcription factor, BpTCP20, that responds to salt stress in birch (Betula platyphylla Suk). Plants overexpressing BpTCP20 displayed increased salt tolerance, and Bptcp20 knockout mutants displayed reduced salt tolerance relative to the wild-type (WT) birch. BpTCP20 conferred salt tolerance by mediating stomatal closure and reducing reactive oxygen species (ROS) accumulation. Chromatin immunoprecipitation sequencing showed that BpTCP20 binds to NeuroD1, T-box, and two unknown elements (termed TBS1 and TBS2) to regulate target genes. In birch, salt stress led to acetylation of BpTCP20 acetylation at lysine 259. A mutated BpTCP20 variant (abolished for acetylation, termed BpTCP20259) was overexpressed in birch, which led to decreased salt tolerance compared with plants overexpressing BpTCP20. However, BpTCP20259-overexpressing plants still displayed increased salt tolerance relative to untransformed WT plants. BpTCP20259 showed reduced binding to the promoters of target genes and decreased target gene activation, leading to decreased salt tolerance. In addition, we identified dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (BpPDCE23), an acetyltransferase that interacts with and acetylates BpTCP20 to enhance its binding to DNA motifs. Together, these results suggest that BpTCP20 is a transcriptional regulator of salt tolerance, whose activity is modulated by BpPDCE23-mediated acetylation.
Collapse
Affiliation(s)
- Zhujun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinxin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ming Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
Bahman F, Al-Roub A, Akhter N, Al Madhoun A, Wilson A, Almansour N, Al-Rashed F, Sindhu S, Al-Mulla F, Ahmad R. TNF-α/Stearate Induced H3K9/18 Histone Acetylation Amplifies IL-6 Expression in 3T3-L1 Mouse Adipocytes. Int J Mol Sci 2024; 25:6776. [PMID: 38928498 PMCID: PMC11203872 DOI: 10.3390/ijms25126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Extensive evidence supports the connection between obesity-induced inflammation and the heightened expression of IL-6 adipose tissues. However, the mechanism underlying the IL-6 exacerbation in the adipose tissue remains unclear. There is general agreement that TNF-α and stearate concentrations are mildly elevated in adipose tissue in the state of obesity. We hypothesize that TNF-α and stearate co-treatment induce the increased expression of IL-6 in mouse adipocytes. We therefore aimed to determine IL-6 gene expression and protein production by TNF-α/stearate treated adipocytes and investigated the mechanism involved. To test our hypothesis, 3T3-L1 mouse preadipocytes were treated with TNF-α, stearate, or TNF-α/stearate. IL-6 gene expression was assessed by quantitative real-time qPCR. IL-6 protein production secreted in the cell culture media was determined by ELISA. Acetylation of histone was analyzed by Western blotting. Il6 region-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac) was determined by ChIP-qPCR. 3T3-L1 mouse preadipocytes were co-challenged with TNF-α and stearate for 24 h, which led to significantly increased IL-6 gene expression (81 ± 2.1 Fold) compared to controls stimulated with either TNF-α (38 ± 0.5 Fold; p = 0.002) or stearate (56 ± 2.0 Fold; p = 0.013). As expected, co-treatment of adipocytes with TNF-α and stearate significantly increased protein production (338 ± 11 pg/mL) compared to controls stimulated with either TNF-α (28 ± 0.60 pg/mL; p = 0.001) or stearate (53 ± 0.20 pg/mL, p = 0.0015). Inhibition of histone acetyltransferases (HATs) with anacardic acid or curcumin significantly reduced the IL-6 gene expression and protein production by adipocytes. Conversely, TSA-induced acetylation substituted the stimulatory effect of TNF-α or stearate in their synergistic interaction for driving IL-6 gene expression and protein production. Mechanistically, TNF-α/stearate co-stimulation increased the promoter-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac), rendering a transcriptionally permissive state that favored IL-6 expression at the transcriptional and translational levels. Our data represent a TNF-α/stearate cooperativity model driving IL-6 expression in 3T3-L1 cells via the H3K9/18Ac-dependent mechanism, with implications for adipose IL-6 exacerbations in obesity.
Collapse
Affiliation(s)
- Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Ajit Wilson
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Nourah Almansour
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| |
Collapse
|
16
|
Liebner T, Kilic S, Walter J, Aibara H, Narita T, Choudhary C. Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription. Nat Commun 2024; 15:4962. [PMID: 38862536 PMCID: PMC11166988 DOI: 10.1038/s41467-024-49370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.
Collapse
Affiliation(s)
- Tim Liebner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Sinan Kilic
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jonas Walter
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hitoshi Aibara
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
17
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
18
|
Kong X, Yang C, Li B, Yan D, Yang Y, Cao C, Xing B, Ma X. FXR/Menin-mediated epigenetic regulation of E2F3 expression controls β-cell proliferation and is increased in islets from diabetic GK rats after RYGB. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167136. [PMID: 38531483 DOI: 10.1016/j.bbadis.2024.167136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates β-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult β-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and β-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in β-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and β-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and β-cell proliferation, a mechanism possibly underlying RYGB-induced β-cell proliferation.
Collapse
Affiliation(s)
- Xiangchen Kong
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Chenxi Yang
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Bingfeng Li
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Dan Yan
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Yanhui Yang
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Cuihua Cao
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Bowen Xing
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, School of Medicine, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
19
|
Forouzanfar F, Plassard D, Furst A, Moreno D, Oliveira KA, Reina-San-Martin B, Tora L, Molina N, Mendoza M. Gene-specific RNA homeostasis revealed by perturbation of coactivator complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577960. [PMID: 38352321 PMCID: PMC10862879 DOI: 10.1101/2024.01.30.577960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Transcript buffering entails the reciprocal modulation of mRNA synthesis and degradation rates to maintain stable RNA levels under varying cellular conditions. Current research supports a global, non-sequence-specific connection between mRNA synthesis and degradation, but the underlying mechanisms are still unclear. In this study, we investigated changes in RNA metabolism following acute depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, in mouse embryonic stem cells. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesised transcript fractions with biophysical modelling, we demonstrate that TIP60 predominantly enhances transcription of numerous genes, while a smaller set of genes undergoes TIP60-dependent transcriptional repression. Surprisingly, transcription changes caused by TIP60 depletion were offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering mechanisms. Similarly, disruption of the unrelated ATAC coactivator complex also resulted in gene-specific transcript buffering. These findings reveal that transcript buffering functions at a gene-specific level and suggest that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.
Collapse
|
20
|
Pinto TS, Feltran GDS, Fernandes CJDC, de Camargo Andrade AF, Coque ADC, Silva SL, Abuderman AA, Zambuzzi WF, Foganholi da Silva RA. Epigenetic changes in shear-stressed endothelial cells. Cell Biol Int 2024; 48:665-681. [PMID: 38420868 DOI: 10.1002/cbin.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.
Collapse
Affiliation(s)
- Thaís Silva Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Célio Júnior da C Fernandes
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Amanda Fantini de Camargo Andrade
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Alex de Camargo Coque
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Simone L Silva
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Abdulwahab A Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, Paulista State University-UNESP, Botucatu, São Paulo, Brazil
| | - Rodrigo A Foganholi da Silva
- Epigenetic Study Center and Gene Regulation-CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
- School of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| |
Collapse
|
21
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
22
|
Wu W, Arunagiri V, Do-Umehara HC, Chen C, Gu S, Biswas I, Ridge KM, Budinger GRS, Liu S, Liu J. Miz1 represses type I interferon production and limits viral clearance during influenza A virus infection. Sci Signal 2024; 17:eadg7867. [PMID: 38593156 PMCID: PMC11182629 DOI: 10.1126/scisignal.adg7867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of Ifna and Ifnb. Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo. IAV infection induced Miz1 accumulation by promoting the cullin-4B (CUL4B)-mediated ubiquitylation and degradation of the E3 ubiquitin ligase Mule (Mcl-1 ubiquitin ligase E3; also known as Huwe1 or Arf-BP1), which targets Miz1 for degradation. As a result, Miz1 accumulation limited type I IFN production and favored viral replication. This study reveals a previously unrecognized function of Miz1 in regulating antiviral defense and a potential mechanism for influenza viruses to evade host immune defense.
Collapse
Affiliation(s)
- Wenjiao Wu
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou, 510317, Guangdong, China
| | - Vinothini Arunagiri
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hanh Chi Do-Umehara
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cong Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shuyin Gu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Indrani Biswas
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Jing Liu
- Department of Surgery, College of Medicine; Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Qian P, Wang S, Zhang T, Wu J. Transcriptional Expression of Histone Acetyltransferases and Deacetylases During the Recovery of Acute Exercise in Mouse Hippocampus. J Mol Neurosci 2024; 74:34. [PMID: 38565829 DOI: 10.1007/s12031-024-02215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, β-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.
Collapse
Affiliation(s)
- Ping Qian
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Department of Internal Medicine, Affiliated Children Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
24
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
25
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
26
|
Yolcu S, Skorupa M, Uras ME, Mazur J, Ozyiğit II. Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress. PLANTA 2024; 259:85. [PMID: 38448714 PMCID: PMC10917867 DOI: 10.1007/s00425-024-04361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
MAIN CONCLUSION This study identified seven histone acetyltransferase-encoding genes (HATs) from Beta vulgaris L. (sugar beet) genome through bioinformatics tools and analyzed their expression profiles under salt stress. Sugar beet HATs are phylogenetically divided into four families: GNAT, MYST, CBP, and TAFII250. The BvHAT genes were differentially transcribed in leaves, stems, and roots of B. vulgaris salt-resistant (Casino) and -sensitive (Bravo) cultivars under salt stress. Histone acetylation is regulated by histone acetyltransferases (HATs), which catalyze ɛ-amino bond formation between lysine residues and acetyl groups with a cofactor, acetyl-CoA. Even though the HATs are known to participate in stress response and development in model plants, little is known about the functions of HATs in crops. In sugar beet (Beta vulgaris L.), they have not yet been identified and characterized. Here, an in silico analysis of the HAT gene family in sugar beet was performed, and their expression patterns in leaves, stems, and roots of B. vulgaris were analyzed under salt stress. Salt-resistant (Casino) and -sensitive (Bravo) beet cultivars were used for gene expression assays. Seven HATs were identified from sugar beet genome, and named BvHAG1, BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2, and BvHAF1. The HAT proteins were divided into 4 groups including MYST, GNAT (GCN5, HAT1, ELP3), CBP and TAFII250. Analysis of cis-acting elements indicated that the BvHAT genes might be involved in hormonal regulation, light response, plant development, and abiotic stress response. The BvHAT genes were differentially expressed in leaves, stems, and roots under control and 300 mM NaCl. In roots of B. vulgaris cv. Bravo, the BvHAG1, BvHAG2, BvHAG4, BvHAF1, and BvHAC1 genes were dramatically expressed after 7 and 14 days of salt stress. Interestingly, the BvHAC2 gene was not expressed under both control and stress conditions. However, the expression of BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2 genes showed a significant increase in response to salt stress in the roots of cv. Casino. This study provides new insights into the potential roles of histone acetyltransferases in sugar beet.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Türkiye.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Mehmet Emin Uras
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Haliç University, 34060, Istanbul, Türkiye
| | - Justyna Mazur
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Ibrahim Ilker Ozyiğit
- Faculty of Science, Department of Biology, Marmara University, 34722, Istanbul, Türkiye
| |
Collapse
|
27
|
Wang C, Cui W, Yu B, Zhou H, Cui Z, Guo P, Yu T, Feng Y. Role of succinylation modification in central nervous system diseases. Ageing Res Rev 2024; 95:102242. [PMID: 38387517 DOI: 10.1016/j.arr.2024.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Diseases of the central nervous system (CNS), including stroke, brain tumors, and neurodegenerative diseases, have a serious impact on human health worldwide, especially in elderly patients. The brain, which is one of the body's most metabolically dynamic organs, lacks fuel stores and therefore requires a continuous supply of energy substrates. Metabolic abnormalities are closely associated with the pathogenesis of CNS disorders. Post-translational modifications (PTMs) are essential regulatory mechanisms that affect the functions of almost all proteins. Succinylation, a broad-spectrum dynamic PTM, primarily occurs in mitochondria and plays a crucial regulatory role in various diseases. In addition to directly affecting various metabolic cycle pathways, succinylation serves as an efficient and rapid biological regulatory mechanism that establishes a connection between metabolism and proteins, thereby influencing cellular functions in CNS diseases. This review offers a comprehensive analysis of succinylation and its implications in the pathological mechanisms of CNS diseases. The objective is to outline novel strategies and targets for the prevention and treatment of CNS conditions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, Rizhao 276800, People's Republic of China
| | - Bing Yu
- Qingdao University, Qingdao 266000, People's Republic of China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Zhenwen Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
28
|
Tu A, Wu M, Jiang Y, Guo L, Guo Y, Wang J, Xu G, Shi J, Chen J, Yang J, Zhong K. Regulation of Disease-Resistance Genes against CWMV Infection by NbHAG1-Mediated H3K36ac. Int J Mol Sci 2024; 25:2800. [PMID: 38474046 DOI: 10.3390/ijms25052800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Post-translational modification of proteins plays a critical role in plant-pathogen interactions. Here, we demonstrate in Nicotiana benthamiana that knockout of NbHAG1 promotes Chinese wheat mosaic virus (CWMV) infection, whereas NbHAG1 overexpression inhibits infection. Transcriptome sequencing indicated that a series of disease resistance-related genes were up-regulated after overexpression of NbHAG1. In addition, cleavage under targets and tagmentation (Cut&Tag)-qPCR results demonstrated that NbHAG1 may activate the transcription of its downstream disease-resistance genes by facilitating the acetylation level of H3K36ac. Therefore, we suggest that NbHAG1 is an important positive regulator of resistance to CWMV infestation.
Collapse
Affiliation(s)
- Aizhu Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mila Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lidan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yunfei Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jinnan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gecheng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
29
|
Vargas-López V, Prada LF, Alméciga-Díaz CJ. Evidence of epigenetic landscape shifts in mucopolysaccharidosis IIIB and IVA. Sci Rep 2024; 14:3961. [PMID: 38368436 PMCID: PMC10874391 DOI: 10.1038/s41598-024-54626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of monogenic diseases characterized by mutations in genes coding for proteins associated with the lysosomal function. Despite the monogenic nature, LSDs patients exhibit variable and heterogeneous clinical manifestations, prompting investigations into epigenetic factors underlying this phenotypic diversity. In this study, we focused on the potential role of epigenetic mechanisms in the pathogenesis of mucopolysaccharidosis IIIB (MPS IIIB) and mucopolysaccharidosis IVA (MPS IVA). We analyzed DNA methylation (5mC) and histone modifications (H3K14 acetylation and H3K9 trimethylation) in MPS IIIB and MPS IVA patients' fibroblasts and healthy controls. The findings revealed that global DNA hypomethylation is present in cell lines for both diseases. At the same time, histone acetylation was increased in MPS IIIB and MPS IVA cells in a donor-dependent way, further indicating a shift towards relaxed open chromatin in these MPS. Finally, the constitutive heterochromatin marker, histone H3K9 trimethylation, only showed reduced clustering in MPS IIIB cells, suggesting limited alterations in heterochromatin organization. These findings collectively emphasize the significance of epigenetic mechanisms in modulating the phenotypic variations observed in LSDs. While global DNA hypomethylation could contribute to the MPS pathogenesis, the study also highlights individual-specific epigenetic responses that might contribute to phenotypic heterogeneity. Further research into the specific genes and pathways affected by these epigenetic changes could provide insights into potential therapeutic interventions for these MPS and other LSDs.
Collapse
Affiliation(s)
- Viviana Vargas-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Luisa F Prada
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia.
| |
Collapse
|
30
|
Yagci ZB, Kelkar GR, Johnson TJ, Sen D, Keung AJ. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities. Methods Mol Biol 2024; 2842:23-55. [PMID: 39012589 DOI: 10.1007/978-1-0716-4051-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors (EEs) enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus-specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here, we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to: account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus-specificity by considering concentration, affinity, avidity, and sequestration effects.
Collapse
Affiliation(s)
- Z Begum Yagci
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Gautami R Kelkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tyler J Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Dilara Sen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
31
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
32
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
33
|
An HM, Dai YF, Zhu J, Liu W, Wang XP. MYST family histone acetyltransferases regulate reproductive diapause initiation. Int J Biol Macromol 2024; 256:128269. [PMID: 38029912 DOI: 10.1016/j.ijbiomac.2023.128269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Histone acetylation, a crucial epigenetic mechanism, has been suggested to play a role in diapause regulation, but this has not been confirmed through gene loss-of-function studies. In this work, we investigated the involvement of MYST family genes, which are key writers of histone acetylation, in initiating reproductive diapause using the cabbage beetle Colaphellus bowringi as a model. We identified C. bowringi orthologs of MYST, including Tip60, KAT6A, KAT7, and KAT8, from previous transcriptomes. Analyses of phylogenetic trees and protein domains indicated that these MYST proteins are structurally conserved across animal species. Expression of these MYST genes was found to be enriched in heads and ovaries of C. bowringi. Under reproductive photoperiod conditions, RNAi targeting MYST genes, especially KAT8, suppressed ovarian growth and yolk deposition, resembling the characteristics of diapausing ovaries. Additionally, KAT8 knockdown led to the upregulation of diapause-related genes, such as heat shock proteins and diapause protein 1, and the emergence of diapause-like guts. Moreover, KAT8 knockdown reduced the expression of a crucial enzyme involved in juvenile hormone (JH) biosynthesis, likely due to decreased H4K16ac levels. Consequently, our findings suggest that MYST family genes, specifically KAT8, influence the JH signal, thereby regulating the initiation of reproductive diapause.
Collapse
Affiliation(s)
- Hao-Min An
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Fei Dai
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Adiga D, Eswaran S, Sriharikrishnaa S, Khan NG, Prasada Kabekkodu S, Kumar D. Epigenetics of Alzheimer’s Disease: Past, Present and Future. ENZYMATIC TARGETS FOR DRUG DISCOVERY AGAINST ALZHEIMER'S DISEASE 2023:27-72. [DOI: 10.2174/9789815136142123010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Alzheimer’s disease (AD) exemplifies a looming epidemic lacking effective
treatment and manifests with the accumulation of neurofibrillary tangles, amyloid-β
plaques, neuroinflammation, behavioral changes, and acute cognitive impairments. It is
a complex, multifactorial disorder that arises from the intricate interaction between
environment and genetic factors, restrained via epigenetic machinery. Though the
research progress has improved the understanding of clinical manifestations and
disease advancement, the causal mechanism of detrimental consequences remains
undefined. Despite the substantial improvement in recent diagnostic modalities, it is
challenging to distinguish AD from other forms of dementia. Accurate diagnosis is a
major glitch in AD as it banks on the symptoms and clinical criteria. Several studies are
underway in exploring novel and reliable biomarkers for AD. In this direction,
epigenetic alterations have transpired as key modulators in AD pathogenesis with the
impeding inferences for the management of this neurological disorder. The present
chapter aims to discuss the significance of epigenetic modifications reported in the
pathophysiology of AD such as DNA methylation, hydroxy-methylation, methylation
of mtDNA, histone modifications, and noncoding RNAs. Additionally, the chapter also
describes the possible therapeutic avenues that target epigenetic modifications in AD.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - S. Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Nadeem G. Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy
of Higher Education (MAHE), Manipal – 576104, Karnataka, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth
(Deemed to be University), Erandwane, Pune – 411038, Maharashtra, India
| |
Collapse
|
35
|
Caparon M, Xu W, Bradstreet T, Zou Z, Hickerson S, Zhou Y, He H, Edelson B. Reprogramming Short-Chain Fatty Acid Metabolism Mitigates Tissue Damage for Streptococcus pyogenes Necrotizing Skin Infection. RESEARCH SQUARE 2023:rs.3.rs-3689163. [PMID: 38196634 PMCID: PMC10775361 DOI: 10.21203/rs.3.rs-3689163/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Disease Tolerance (DT) is a host response to infection that limits collateral damage to host tissues while having a neutral effect on pathogen fitness. Previously, we found that the pathogenic lactic acid bacterium Streptococcus pyogenes manipulates DT using its aerobic mixed-acid fermentation (ARMAF) pathway via the enzyme pyruvate dehydrogenase (PDH) to alter expression of the immunosuppressive cytokine IL-10. However, the microbe-derived molecules that mediate communication with the host's DT pathways remain elusive. Here, we show that ARMAF inhibits accumulation of IL-10-producing inflammatory cells including neutrophils and macrophages, leading to delayed bacterial clearance and wound healing. Expression of IL-10 is inhibited through streptococcal production of the short chain fermentation end-products acetate and formate, via manipulation of host acetyl-CoA metabolism, altering non-histone regulatory lysine acetylation. A bacterial-specific PDH inhibitor reduced tissue damage during murine infection, suggesting that reprogramming carbon flow provides a novel therapeutic strategy to mitigate tissue damage during infection.
Collapse
Affiliation(s)
| | - Wei Xu
- Washington University School of Medicine
| | | | | | | | | | | | | |
Collapse
|
36
|
Huang L, Wen X, Jin L, Han H, Guo H. HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote autophagy during nutrient starvation in Arabidopsis. THE PLANT CELL 2023; 36:136-157. [PMID: 37823521 PMCID: PMC10734606 DOI: 10.1093/plcell/koad252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Acetylation is an important posttranslational modification (PTM) that regulates almost all core processes of autophagy in yeast and mammals. However, the role of protein acetylation in plant autophagy and the underlying regulatory mechanisms remain unclear. Here, we show the essential role of the putative acetyltransferase HOOKLESS1 (HLS1) in acetylation of the autophagy-related protein ATG18a, a key autophagy component that regulates autophagosome formation in Arabidopsis (Arabidopsis thaliana). Loss of HLS1 function suppressed starvation-induced autophagy and increased plant susceptibility to nutrient deprivation. We discovered that HLS1 physically interacts with and directly acetylates ATG18a both in vitro and in vivo. In contrast, mutating putative active sites in HLS1 inhibited ATG18a acetylation and suppressed autophagy upon nutrient deprivation. Accordingly, overexpression of ATG18a mutant variants with lower acetylation levels inhibited the binding activity of ATG18a to PtdIns(3)P and autophagosome formation under starvation conditions. Moreover, HLS1-modulated autophagy was uncoupled from its function in hook development. Taken together, these findings shed light on a key regulator of autophagy and further elucidate the importance of PTMs in modulating autophagy in plants.
Collapse
Affiliation(s)
- Li Huang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lian Jin
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Huihui Han
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
37
|
Fueyo-González F, Vilanova G, Ningoo M, Marjanovic N, González-Vera JA, Orte Á, Fribourg M. Small-molecule TIP60 inhibitors enhance regulatory T cell induction through TIP60-P300 acetylation crosstalk. iScience 2023; 26:108491. [PMID: 38094248 PMCID: PMC10716589 DOI: 10.1016/j.isci.2023.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/12/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Foxp3 acetylation is essential to regulatory T (Treg) cell stability and function, but pharmacologically increasing it remains an unmet challenge. Here, we report that small-molecule compounds that inhibit TIP60, an acetyltransferase known to acetylate Foxp3, unexpectedly increase Foxp3 acetylation and Treg induction. Utilizing a dual experimental/computational approach combined with a newly developed FRET-based methodology compatible with flow cytometry to measure Foxp3 acetylation, we unraveled the mechanism of action of these small-molecule compounds in murine and human Treg induction cell cultures. We demonstrate that at low-mid concentrations they activate TIP60 to acetylate P300, a different acetyltransferase, which in turn increases Foxp3 acetylation, thereby enhancing Treg cell induction. These results reveal a potential therapeutic target relevant to autoimmunity and transplant.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guillermo Vilanova
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona Spain
| | - Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nada Marjanovic
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan A. González-Vera
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ángel Orte
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
38
|
Itoh Y, Zhan P, Tojo T, Jaikhan P, Ota Y, Suzuki M, Li Y, Hui Z, Moriyama Y, Takada Y, Yamashita Y, Oba M, Uchida S, Masuda M, Ito S, Sowa Y, Sakai T, Suzuki T. Discovery of Selective Histone Deacetylase 1 and 2 Inhibitors: Screening of a Focused Library Constructed by Click Chemistry, Kinetic Binding Analysis, and Biological Evaluation. J Med Chem 2023; 66:15171-15188. [PMID: 37847303 DOI: 10.1021/acs.jmedchem.3c01095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone deacetylase 1 and 2 (HDAC1/2) inhibitors are potentially useful as tools for probing the biological functions of the isoforms and as therapeutic agents for cancer and neurodegenerative disorders. To discover potent and selective inhibitors, we screened a focused library synthesized by using click chemistry and obtained KPZ560 as an HDAC1/2-selective inhibitor. Kinetic binding analysis revealed that KPZ560 inhibits HDAC2 through a two-step slow-binding mechanism. In cellular assays, KPZ560 induced a dose- and time-dependent increase of histone acetylation and showed potent breast cancer cell growth-inhibitory activity. In addition, gene expression analyses suggested that the two-step slow-binding inhibition by KPZ560 regulated the expression of genes associated with cell proliferation and DNA damage. KPZ560 also induced neurite outgrowth of Neuro-2a cells and an increase in the spine density of granule neuron dendrites of mice. The unique two-step slow-binding character of o-aminoanilides such as KPZ560 makes them interesting candidates as therapeutic agents.
Collapse
Affiliation(s)
- Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Peng Zhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Toshifumi Tojo
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Pattaporn Jaikhan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yosuke Ota
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Miki Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Ying Li
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Zi Hui
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yukiko Moriyama
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuri Takada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | - Makoto Oba
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitsuharu Masuda
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
39
|
Kwon JY, Choi YH, Lee MW, Yu JH, Shin KS. The MYST Family Histone Acetyltransferase SasC Governs Diverse Biological Processes in Aspergillus fumigatus. Cells 2023; 12:2642. [PMID: 37998377 PMCID: PMC10670148 DOI: 10.3390/cells12222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The conserved MYST proteins form the largest family of histone acetyltransferases (HATs) that acetylate lysines within the N-terminal tails of histone, enabling active gene transcription. Here, we have investigated the biological and regulatory functions of the MYST family HAT SasC in the opportunistic human pathogenic fungus Aspergillus fumigatus using a series of genetic, biochemical, pathogenic, and transcriptomic analyses. The deletion (Δ) of sasC results in a drastically reduced colony growth, asexual development, spore germination, response to stresses, and the fungal virulence. Genome-wide expression analyses have revealed that the ΔsasC mutant showed 2402 significant differentially expressed genes: 1147 upregulated and 1255 downregulated. The representative upregulated gene resulting from ΔsasC is hacA, predicted to encode a bZIP transcription factor, whereas the UV-endonuclease UVE-1 was significantly downregulated by ΔsasC. Furthermore, our Western blot analyses suggest that SasC likely catalyzes the acetylation of H3K9, K3K14, and H3K29 in A. fumigatus. In conclusion, SasC is associated with diverse biological processes and can be a potential target for controlling pathogenic fungi.
Collapse
Affiliation(s)
- Jae-Yoon Kwon
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Young-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea; (J.-Y.K.); (Y.-H.C.)
| |
Collapse
|
40
|
Malhi NK, Southerland KW, Lai L, Chen ZB. Epigenetic Regulation of Angiogenesis in Peripheral Artery Disease. Methodist Debakey Cardiovasc J 2023; 19:47-57. [PMID: 38028966 PMCID: PMC10655766 DOI: 10.14797/mdcvj.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Peripheral arterial disease (PAD) represents a global health concern with a rising prevalence attributed to factors such as obesity, diabetes, aging, and smoking. Among patients with PAD, chronic limb-threatening ischemia (CLTI) is the most severe manifestation, associated with substantial morbidity and mortality. While revascularization remains the primary therapy for CLTI, not all patients are candidates for such interventions, highlighting the need for alternative approaches. Impaired angiogenesis, the growth of new blood vessels, is a central feature of PAD, and despite decades of research, effective clinical treatments remain elusive. Epigenetics, the study of heritable changes in gene expression, has gained prominence in understanding PAD pathogenesis. Here, we explore the role of epigenetic regulation in angiogenesis within the context of PAD, with a focus on long non-coding RNAs and fibroblast-endothelial cell transdifferentiation. Additionally, we discuss the interplay between metabolic control and epigenetic regulation, providing insights into potential novel therapeutic avenues for improving PAD treatments. This review aims to offer a concise update on the application of epigenetics in angiogenesis and PAD research, inspiring further investigations in this promising field.
Collapse
Affiliation(s)
| | | | - Li Lai
- Houston Methodist Research Institute, Houston, Texas, US
| | | |
Collapse
|
41
|
Dhawi F. Utilizing In Silico Approaches to Investigate the Signaling Pathway's Crucial Function in Pennisetum glaucum Under Thermal Stress. Evol Bioinform Online 2023; 19:11769343231211072. [PMID: 38020532 PMCID: PMC10655657 DOI: 10.1177/11769343231211072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pearl millet (Pennisetum glaucum (L.)) is a remarkable cereal crop known for its ability to thrive in challenging environmental conditions. Despite its resilience, the intricate molecular mechanisms behind its toughness remain a mystery. To address this knowledge gap, we conducted advanced next-generation RNA sequencing. This approach allowed us to compare the gene expression profiles of pearl millet seedlings exposed to heat stress with those grown under standard conditions. Our main focus was on the shoots of 13-day-old pearl millet plants, which we subjected to a brief heat stress episode at 50°C for 60 seconds. Within the vast genomic landscape comprising 36 041 genes, we successfully identified a set of 10 genes that exhibited significant fold changes, ranging from 11 to 14-fold compared to the control conditions. These 10 genes were previously unknown to have such substantial changes in expression compared to the control. To uncover the functional significance hidden within these transcriptomic findings, we utilized computational tools such as MEME, String, and phylogenetic tree analysis. These efforts collectively revealed conserved domains within the transcriptomic landscape, hinting at potential functions associated with these genetic sequences. Of particular note, the distinct transcriptomic patterns specific to pearl millet leaves under thermal stress shed light on intricate connections to fundamental biological processes. These processes included the Ethylene-activated signaling pathway, Regulation of intracellular signal transduction, Negative regulation of signal transduction, Protein autophosphorylation, and Intracellular signal transduction. Together, these processes provide insight into the molecular strategies employed by pearl millet to overcome thermal stress challenges. By integrating cutting-edge RNA sequencing techniques and computational analyses, we have embarked on unraveling the genetic components and pathways that empower pearl millet's resilience in the face of adversity. This newfound understanding has the potential to not only advance our knowledge of plant stress responses but also contribute to enhancing crop resilience in challenging environmental conditions.
Collapse
Affiliation(s)
- Faten Dhawi
- Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
42
|
Suarez-Fernandez M, Álvarez-Aragón R, Pastor-Mediavilla A, Maestre-Guillén A, del Olmo I, De Francesco A, Meile L, Sánchez-Vallet A. Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen. mBio 2023; 14:e0138623. [PMID: 37642412 PMCID: PMC10653901 DOI: 10.1128/mbio.01386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Pathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that the KAT Sas3 is involved in leaf symptom development and pycnidia formation. Importantly, our results indicate that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
| | - Rocio Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Pastor-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alejandro Maestre-Guillén
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ivan del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lukas Meile
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
43
|
Han JH, Lee HJ, Kim TH. Characterization of transcriptional enhancers in the chicken genome using CRISPR-mediated activation. Front Genome Ed 2023; 5:1269115. [PMID: 37953873 PMCID: PMC10634339 DOI: 10.3389/fgeed.2023.1269115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
DNA regulatory elements intricately control when, where, and how genes are activated. Therefore, understanding the function of these elements could unveil the complexity of the genetic regulation network. Genome-wide significant variants are predominantly found in non-coding regions of DNA, so comprehending the predicted functional regulatory elements is crucial for understanding the biological context of these genomic markers, which can be incorporated into breeding programs. The emergence of CRISPR technology has provided a powerful tool for studying non-coding regulatory elements in genomes. In this study, we leveraged epigenetic data from the Functional Annotation of Animal Genomes project to identify promoter and putative enhancer regions associated with three genes (HBBA, IRF7, and PPARG) in the chicken genome. To identify the enhancer regions, we designed guide RNAs targeting the promoter and candidate enhancer regions and utilized CRISPR activation (CRISPRa) with dCas9-p300 and dCas9-VPR as transcriptional activators in chicken DF-1 cells. By comparing the expression levels of target genes between the promoter activation and the co-activation of the promoter and putative enhancers, we were able to identify functional enhancers that exhibited augmented upregulation. In conclusion, our findings demonstrate the remarkable efficiency of CRISPRa in precisely manipulating the expression of endogenous genes by targeting regulatory elements in the chicken genome, highlighting its potential for functional validation of non-coding regions.
Collapse
Affiliation(s)
- Jeong Hoon Han
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Hong Jo Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Tae Hyun Kim
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
44
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
45
|
Srivastava A, Srivastava A, Singh RK. Insight into the Epigenetics of Kaposi's Sarcoma-Associated Herpesvirus. Int J Mol Sci 2023; 24:14955. [PMID: 37834404 PMCID: PMC10573522 DOI: 10.3390/ijms241914955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetic reprogramming represents a series of essential events during many cellular processes including oncogenesis. The genome of Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic herpesvirus, is predetermined for a well-orchestrated epigenetic reprogramming once it enters into the host cell. The initial epigenetic reprogramming of the KSHV genome allows restricted expression of encoded genes and helps to hide from host immune recognition. Infection with KSHV is associated with Kaposi's sarcoma, multicentric Castleman's disease, KSHV inflammatory cytokine syndrome, and primary effusion lymphoma. The major epigenetic modifications associated with KSHV can be labeled under three broad categories: DNA methylation, histone modifications, and the role of noncoding RNAs. These epigenetic modifications significantly contribute toward the latent-lytic switch of the KSHV lifecycle. This review gives a brief account of the major epigenetic modifications affiliated with the KSHV genome in infected cells and their impact on pathogenesis.
Collapse
Affiliation(s)
- Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ankit Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Faculty of Medical Sciences, Charotar University of Science and Technology, Changa 388421, Gujarat, India
| |
Collapse
|
46
|
Park GT, Moon JK, Park S, Park SK, Baek J, Seo MS. Genome-wide analysis of KIX gene family for organ size regulation in soybean ( Glycine max L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1252016. [PMID: 37828927 PMCID: PMC10565003 DOI: 10.3389/fpls.2023.1252016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
The KIX domain, conserved among various nuclear and co-activator factors, acts as a binding site that interacts with other transcriptional activators and co-activators, playing a crucial role in gene expression regulation. In plants, the KIX domain is involved in plant hormone signaling, stress response regulation, cell cycle control, and differentiation, indicating its potential relevance to crop productivity. This study aims to identify and characterize KIX domains within the soybean (Glycine max L.) genome to predict their potential role in improving crop productivity. The conservation and evolutionary history of the KIX domains were explored in 59 plant species, confirming the presence of the KIX domains in diverse plants. Specifically, 13 KIX domains were identified within the soybean genome and classified into four main groups, namely GmKIX8/9, GmMED15, GmHAC, and GmRECQL, through sequence alignment, structural analysis, and phylogenetic tree construction. Association analysis was performed between KIX domain haplotypes and soybean seed-related agronomic traits using re-sequencing data from a core collection of 422 accessions. The results revealed correlations between SNP variations observed in GmKIX8-3 and GmMED15-4 and soybean seed phenotypic traits. Additionally, transcriptome analysis confirmed significant expression of the KIX domains during the early stages of soybean seed development. This study provides the first characterization of the structural, expression, genomic haplotype, and molecular features of the KIX domain in soybean, offering a foundation for functional analysis of the KIX domain in soybean and other plants.
Collapse
Affiliation(s)
- Gyu Tae Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Jung-Kyung Moon
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Sewon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Soo-Kwon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - JeongHo Baek
- Gene Engineering Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, Republic of Korea
| | - Mi-Suk Seo
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| |
Collapse
|
47
|
Di Pietrantonio N, Cappellacci I, Mandatori D, Baldassarre MPA, Pandolfi A, Pipino C. Role of Epigenetics and Metabolomics in Predicting Endothelial Dysfunction in Type 2 Diabetes. Adv Biol (Weinh) 2023; 7:e2300172. [PMID: 37616517 DOI: 10.1002/adbi.202300172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Indexed: 08/26/2023]
Abstract
Type 2 diabetes (T2D) is a worldwide health problem and cardiovascular disease (CVD) is a leading cause of morbidity and mortality in T2D patients, making the prevention of CVD onset a major priority. It is therefore crucial to optimize diagnosis and treatment to reduce this burden. Endothelial dysfunction is one of the most important prognostic factors for CVD progression, thus novel approaches to identify the early phase of endothelial dysfunction may lead to specific preventive measures to reduce the occurrence of CVD. Nowadays, multiomics approaches have provided unprecedented opportunities to stratify T2D patients into endotypes, improve therapeutic treatment and outcome and amend the survival prediction. Among omics strategies, epigenetics and metabolomics are gaining increasing interest. Recently, a dynamic correlation between metabolic pathways and gene expression through chromatin remodeling, such as DNA methylation, has emerged, indicating new perspectives on the regulatory networks impacting cellular processes. Thus, a better understanding of epigenetic-metabolite relationships can provide insight into the physiological processes altered early in the endothelium that ultimately head to disease development. Here, recent studies on epigenetics and metabolomics related to CVD prevention potentially useful to identify disease biomarkers, as well as new therapies hopefully targeting the early phase of endothelial dysfunction are highlighted.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Ilaria Cappellacci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
48
|
Rehman UU, Ghafoor D, Ullah A, Ahmad R, Hanif S. Epigenetics regulation during virus-host interaction and their effects on the virus and host cell. Microb Pathog 2023; 182:106271. [PMID: 37517745 DOI: 10.1016/j.micpath.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Epigenetics, a field of study focused on cellular gene regulation independent of DNA sequence alterations, encompasses DNA methylation, histone modification and microRNA modification. Epigenetics processes play a pivotal role in governing the life cycles of viruses, enabling their transmission, persistence, and maintenance with in host organisms. This review examines the epigenetics regulation of diverse virus including orthomoxyviruses, coronavirus, retroviridae, mononegavirales, and poxviruses among others. The investigation encompasses ten representative viruses from these families. Detailed exploration of the epigenetic mechanisms underlying each virus type, involving miRNA modification, histone modification and DNA methylation, sheds light on the intricate and multifaceted epigenetic interplay between viruses and their hosts. Furthermore, this review investigates the influence of these epigenetic processes on infection cycles, emphasizing the utilization of epigenetics by viruses such as Epstein-Barr virus and Human immunodeficiency virus (HIV) to regulate gene expression during chronic or latent infections, control latency, and transition to lytic infection. Finally, the paper explores the novel treatments possibilities stemming from this epigenetic understanding.
Collapse
Affiliation(s)
- Ubaid Ur Rehman
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Dawood Ghafoor
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430064, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Asad Ullah
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riaz Ahmad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sumaira Hanif
- Department of Biological Sciences, International Islamic University, Islamabad, 45320, Pakistan
| |
Collapse
|
49
|
Xiao HT, Jin J, Zheng ZG. Emerging role of GCN5 in human diseases and its therapeutic potential. Biomed Pharmacother 2023; 165:114835. [PMID: 37352700 DOI: 10.1016/j.biopha.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
As the first histone acetyltransferase to be cloned and identified in yeast, general control non-depressible 5 (GCN5) plays a crucial role in epigenetic and chromatin modifications. It has been extensively studied for its essential role in regulating and causing various diseases. There is mounting evidence to suggest that GCN5 plays an emerging role in human diseases and its therapeutic potential is promising. In this paper, we begin by providing an introduction GCN5 including its structure, catalytic mechanism, and regulation, followed by a review of the current research progress on the role of GCN5 in regulating various diseases, such as cancer, diabetes, osteoporosis. Thus, we delve into the various aspects of GCN5 inhibitors, including their types, characteristics, means of discovery, activities, and limitations from a medicinal chemistry perspective. Our analysis highlights the importance of identifying and creating inhibitors that are both highly selective and effective inhibitors, for the future development of novel therapeutic agents aimed at treating GCN5-related diseases.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Jing Jin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
50
|
Verma A, Tiwari H, Singh S, Gupta P, Rai N, Kumar Singh S, Singh BP, Rao S, Gautam V. Epigenetic manipulation for secondary metabolite activation in endophytic fungi: current progress and future directions. Mycology 2023; 14:275-291. [PMID: 38187885 PMCID: PMC10769123 DOI: 10.1080/21501203.2023.2241486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Fungal endophytes have emerged as a promising source of secondary metabolites with significant potential for various applications in the field of biomedicine. The biosynthetic gene clusters of endophytic fungi are responsible for encoding several enzymes and transcriptional factors that are involved in the biosynthesis of secondary metabolites. The investigation of fungal metabolic potential at genetic level faces certain challenges, including the synthesis of appropriate amounts of chemicals, and loss of the ability of fungal endophytes to produce secondary metabolites in an artificial culture medium. Therefore, there is a need to delve deeper into the field of fungal genomics and transcriptomics to explore the potential of fungal endophytes in generating secondary metabolites governed by biosynthetic gene clusters. The silent biosynthetic gene clusters can be activated by modulating the chromatin structure using chemical compounds. Epigenetic modification plays a significant role by inducing cryptic gene responsible for the production of secondary metabolites using DNA methyl transferase and histone deacetylase. CRISPR-Cas9-based genome editing emerges an effective tool to enhance the production of desired metabolites by modulating gene expression. This review primarily focuses on the significance of epigenetic elicitors and their capacity to boost the production of secondary metabolites from endophytes. This article holds the potential to rejuvenate the drug discovery pipeline by introducing new chemical compounds.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, India
| | - Sombir Rao
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|