1
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Independent evolution of highly variable, fragmented mitogenomes of parasitic lice. Commun Biol 2022; 5:677. [PMID: 35804150 PMCID: PMC9270496 DOI: 10.1038/s42003-022-03625-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The mitochondrial genomes (mitogenomes) of bilaterian animals are highly conserved structures that usually consist of a single circular chromosome. However, several species of parasitic lice (Insecta: Phthiraptera) possess fragmented mitogenomes, where the mitochondrial genes are present on separate, circular chromosomes. Nevertheless, the extent, causes, and consequences of this structural variation remain poorly understood. Here, we combined new and existing data to better understand the evolution of mitogenome fragmentation in major groups of parasitic lice. We found strong evidence that fragmented mitogenomes evolved many times within parasitic lice and that the level of fragmentation is highly variable, including examples of heteroplasmic arrangements. We also found a significant association between mitochondrial fragmentation and signatures of relaxed selection. Mitochondrial fragmentation was also associated with changes to a lower AT%, possibly due to differences in mutation biases. Together, our results provide a significant advance in understanding the process of mitogenome fragmentation and provide an important perspective on mitochondrial evolution in eukaryotes.
Collapse
|
3
|
Gong S, Xu Y, Xu S, Liang Y, Tian L, Cai W, Li H, Song F. The Complete Mitochondrial Genome of the Chicken Body Louse, Menacanthus cornutus, and Evolutionary Patterns of Extensive Gene Rearrangements in the Mitochondrial Genomes of Amblycera (Psocodea: Phthiraptera). Genes (Basel) 2022; 13:genes13030522. [PMID: 35328076 PMCID: PMC8950984 DOI: 10.3390/genes13030522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Animal mitochondrial (mt) genomes are typically double-strand circular DNA molecules, but diverse structural variations have been widely found in multiple groups. In parasitic lice (Phthiraptera), the structure of mt genomes varies remarkably across all five suborders. In this study, we reported the complete mt genome of a chicken body louse, Menacanthus cornutus, which has a typical single circular mt chromosome and drastic mt gene rearrangements. This mt genome is 15,693 bp in length, consisting of 13 protein-coding genes, 23 tRNA genes, 2 rRNA genes, and a control region. A comparison with a typical insect mt genome suggested that two highly similar trnM are present in the mt genome of M. cornutus. Moreover, almost every single gene was rearranged, and over half of mt genes were inverted. Phylogenetic analyses inferred from the mt genome sequences supported the monophyly and position of Amblycera. Mapped over the phylogenetic relationships of Amblycera, we identified two inversion events for the conserved gene blocks in Boopidae and Menoponidae. The inverted ND4L-ND4 was likely a synapomorphic rearrangement in Menoponidae. Our study demonstrated the importance of sequencing mt genomes for additional taxa to uncover the mechanism underlying the structural evolution of the mt genome in parasitic lice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fan Song
- Correspondence: ; Tel.: +86-10-62734842
| |
Collapse
|
4
|
Two Complete Mitochondrial Genomes of Mileewinae (Hemiptera: Cicadellidae) and a Phylogenetic Analysis. INSECTS 2021; 12:insects12080668. [PMID: 34442234 PMCID: PMC8396625 DOI: 10.3390/insects12080668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Mileewinae is a small subfamily of Cicadellidae containing about 160 described species, extensively distributed in the Oriental, Ethiopian and Neotropical regions. Some species are potential pests in agriculture and forestry. The classification of this group has been unstable over the past few decades. Currently, some controversies remain on the monophyly of Mileewinae and phylogenetic relationships of Mileewinae with other subfamilies. To provide further evidence toward answering these questions, two newly completed mitochondrial genomes of Mileewinae species (Mileewa rufivena and Ujna puerana) have been sequenced and analyzed. Results show these two mitochondrial genomes have quite similar structures and features. In phylogenetic analyses, Mileewinae formed a monophyletic group in Cicadellidae in all trees derived from maximum likelihood (ML) and Bayesian inference (BI) methods. In addition, Mileewinae has a closer phylogenetic relationship with Typhlocybinae compared to the Cicadellinae. Abstract More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.
Collapse
|
5
|
Sato N. Are Cyanobacteria an Ancestor of Chloroplasts or Just One of the Gene Donors for Plants and Algae? Genes (Basel) 2021; 12:genes12060823. [PMID: 34071987 PMCID: PMC8227023 DOI: 10.3390/genes12060823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Chloroplasts of plants and algae are currently believed to originate from a cyanobacterial endosymbiont, mainly based on the shared proteins involved in the oxygenic photosynthesis and gene expression system. The phylogenetic relationship between the chloroplast and cyanobacterial genomes was important evidence for the notion that chloroplasts originated from cyanobacterial endosymbiosis. However, studies in the post-genomic era revealed that various substances (glycolipids, peptidoglycan, etc.) shared by cyanobacteria and chloroplasts are synthesized by different pathways or phylogenetically unrelated enzymes. Membranes and genomes are essential components of a cell (or an organelle), but the origins of these turned out to be different. Besides, phylogenetic trees of chloroplast-encoded genes suggest an alternative possibility that chloroplast genes could be acquired from at least three different lineages of cyanobacteria. We have to seriously examine that the chloroplast genome might be chimeric due to various independent gene flows from cyanobacteria. Chloroplast formation could be more complex than a single event of cyanobacterial endosymbiosis. I present the “host-directed chloroplast formation” hypothesis, in which the eukaryotic host cell that had acquired glycolipid synthesis genes as an adaptation to phosphate limitation facilitated chloroplast formation by providing glycolipid-based membranes (pre-adaptation). The origins of the membranes and the genome could be different, and the origin of the genome could be complex.
Collapse
Affiliation(s)
- Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
The Origin of Mitochondria and their Role in the Evolution of Life and Human Health. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.5.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Sweet AD, Johnson KP, Cameron SL. Mitochondrial genomes of Columbicola feather lice are highly fragmented, indicating repeated evolution of minicircle-type genomes in parasitic lice. PeerJ 2020; 8:e8759. [PMID: 32231878 PMCID: PMC7098387 DOI: 10.7717/peerj.8759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/16/2020] [Indexed: 01/21/2023] Open
Abstract
Most animals have a conserved mitochondrial genome structure composed of a single chromosome. However, some organisms have their mitochondrial genes separated on several smaller circular or linear chromosomes. Highly fragmented circular chromosomes (“minicircles”) are especially prevalent in parasitic lice (Insecta: Phthiraptera), with 16 species known to have between nine and 20 mitochondrial minicircles per genome. All of these species belong to the same clade (mammalian lice), suggesting a single origin of drastic fragmentation. Nevertheless, other work indicates a lesser degree of fragmentation (2–3 chromosomes/genome) is present in some avian feather lice (Ischnocera: Philopteridae). In this study, we tested for minicircles in four species of the feather louse genus Columbicola (Philopteridae). Using whole genome shotgun sequence data, we applied three different bioinformatic approaches for assembling the Columbicola mitochondrial genome. We further confirmed these approaches by assembling the mitochondrial genome of Pediculus humanus from shotgun sequencing reads, a species known to have minicircles. Columbicola spp. genomes are highly fragmented into 15–17 minicircles between ∼1,100 and ∼3,100 bp in length, with 1–4 genes per minicircle. Subsequent annotation of the minicircles indicated that tRNA arrangements of minicircles varied substantially between species. These mitochondrial minicircles for species of Columbicola represent the first feather lice (Philopteridae) for which minicircles have been found in a full mitochondrial genome assembly. Combined with recent phylogenetic studies of parasitic lice, our results provide strong evidence that highly fragmented mitochondrial genomes, which are otherwise rare across the Tree of Life, evolved multiple times within parasitic lice.
Collapse
Affiliation(s)
- Andrew D Sweet
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, United States of America
| | - Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
8
|
Dubie JJ, Caraway AR, Stout MM, Katju V, Bergthorsson U. The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190174. [PMID: 31787044 DOI: 10.1098/rstb.2019.0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial genomes can sustain mutations that are simultaneously detrimental to individual fitness and yet, can proliferate within individuals owing to a replicative advantage. We analysed the fitness effects and population dynamics of a mitochondrial genome containing a novel 499 bp deletion in the cytochrome b(1) (ctb-1) gene (Δctb-1) encoding the cytochrome b of complex III in Caenorhabditis elegans. Δctb-1 reached a high heteroplasmic frequency of 96% in one experimental line during a mutation accumulation experiment and was linked to additional spontaneous mutations in nd5 and tRNA-Asn. The Δctb-1 mutant mitotype imposed a significant fitness cost including a 65% and 52% reduction in productivity and competitive fitness, respectively, relative to individuals bearing wild-type (WT) mitochondria. Deletion-bearing worms were rapidly purged within a few generations when competed against WT mitochondrial DNA (mtDNA) bearing worms in experimental populations. By contrast, the Δctb-1 mitotype was able to persist in large populations comprising heteroplasmic individuals only, although the average intracellular frequency of Δctb-1 exhibited a slow decline owing to competition among individuals bearing different frequencies of the heteroplasmy. Within experimental lines subjected to severe population bottlenecks (n = 1), the relative intracellular frequency of Δctb-1 increased, which is a hallmark of selfish drive. A positive correlation between Δctb-1 and WT mtDNA copy-number suggests a mechanism that increases total mtDNA per se, and does not discern the Δctb-1 mitotype from the WT mtDNA. This study demonstrates the selfish nature of the Δctb-1 mitotype, given its transmission advantage and substantial fitness load for the host, and highlights the importance of population size for the population dynamics of selfish mtDNA. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Joseph James Dubie
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Avery Robert Caraway
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - McKenna Margaret Stout
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| |
Collapse
|
9
|
Klinger CM, Richardson E. Small Genomes and Big Data: Adaptation of Plastid Genomics to the High-Throughput Era. Biomolecules 2019; 9:E299. [PMID: 31344945 PMCID: PMC6723049 DOI: 10.3390/biom9080299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Plastid genome sequences are becoming more readily available with the increase in high-throughput sequencing, and whole-organelle genetic data is available for algae and plants from across the diversity of photosynthetic eukaryotes. This has provided incredible opportunities for studying species which may not be amenable to in vivo study or genetic manipulation or may not yet have been cultured. Research into plastid genomes has pushed the limits of what can be deduced from genomic information, and in particular genomic information obtained from public databases. In this Review, we discuss how research into plastid genomes has benefitted enormously from the explosion of publicly available genome sequence. We describe two case studies in how using publicly available gene data has supported previously held hypotheses about plastid traits from lineage-restricted experiments across algal and plant diversity. We propose how this approach could be used across disciplines for inferring functional and biological characteristics from genomic approaches, including integration of new computational and bioinformatic approaches such as machine learning. We argue that the techniques developed to gain the maximum possible insight from plastid genomes can be applied across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Elisabeth Richardson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
10
|
Song F, Li H, Liu GH, Wang W, James P, Colwell DD, Tran A, Gong S, Cai W, Shao R. Mitochondrial Genome Fragmentation Unites the Parasitic Lice of Eutherian Mammals. Syst Biol 2019; 68:430-440. [PMID: 30239978 PMCID: PMC6472445 DOI: 10.1093/sysbio/syy062] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Organelle genome fragmentation has been found in a wide range of eukaryotic lineages; however, its use in phylogenetic reconstruction has not been demonstrated. We explored the use of mitochondrial (mt) genome fragmentation in resolving the controversial suborder-level phylogeny of parasitic lice (order Phthiraptera). There are approximately 5000 species of parasitic lice in four suborders (Amblycera, Ischnocera, Rhynchophthirina, and Anoplura), which infest mammals and birds. The phylogenetic relationships among these suborders are unresolved despite decades of studies. We sequenced the mt genomes of eight species of parasitic lice and compared them with 17 other species of parasitic lice sequenced previously. We found that the typical single-chromosome mt genome is retained in the lice of birds but fragmented into many minichromosomes in the lice of eutherian mammals. The shared derived feature of mt genome fragmentation unites the eutherian mammal lice of Ischnocera (family Trichodectidae) with Anoplura and Rhynchophthirina to the exclusion of the bird lice of Ischnocera (family Philopteridae). The novel clade, namely Mitodivisia, is also supported by phylogenetic analysis of mt genome and cox1 gene sequences. Our results demonstrate, for the first time, that organelle genome fragmentation is informative for resolving controversial high-level phylogenies.
Collapse
Affiliation(s)
- Fan Song
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Wei Wang
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Dutton Park, Queensland, Australia
| | - Douglas D Colwell
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Anette Tran
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Siyu Gong
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Renfu Shao
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| |
Collapse
|
11
|
de Araujo LF, Fonseca AS, Muys BR, Plaça JR, Bueno RBL, Lorenzi JCC, Santos ARD, Molfetta GA, Zanette DL, Souza JES, Valente V, Silva WA. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma. Tumour Biol 2015; 36:8869-79. [PMID: 26069104 DOI: 10.1007/s13277-015-3640-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial dysfunction is regarded as a hallmark of cancer progression. In the current study, we evaluated mitochondrial genome instability and copy number in colorectal cancer using Next Generation Sequencing approach and qPCR, respectively. The results revealed higher levels of heteroplasmy and depletion of the relative mtDNA copy number in colorectal adenocarcinoma. Adenocarcinoma samples also presented an increased number of mutations in nuclear genes encoding proteins which functions are related with mitochondria fusion, fission and localization. Moreover, we found a set of mitochondrial and nuclear genes, which cooperate in the same mitochondrial function simultaneously mutated in adenocarcinoma. In summary, these results support an important role for mitochondrial function and genomic instability in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Luiza F de Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Aline S Fonseca
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Bruna R Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Jessica R Plaça
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Rafaela B L Bueno
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Julio C C Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Anemari R D Santos
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Greice A Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil
| | - Dalila L Zanette
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil
| | - Jorge E S Souza
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil
| | - Valeria Valente
- Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Science of Araraquara, University of São Paulo State, Araraquara, Brazil
| | - Wilson A Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Cell-Based Therapy (CEPID/FAPESP); National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil. .,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi - NAP/USP), Ribeirão Preto, Brazil.
| |
Collapse
|
12
|
Jayaprakash AD, Benson EK, Gone S, Liang R, Shim J, Lambertini L, Toloue MM, Wigler M, Aaronson SA, Sachidanandam R. Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res 2015; 43:2177-87. [PMID: 25653158 PMCID: PMC4344500 DOI: 10.1093/nar/gkv052] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inheritance. It is increasingly appreciated that heteroplasmy, the occurrence of multiple mtDNA haplotypes in a cell, plays an important biological role, but its features are not well understood. Accurately determining the diversity of mtDNA has been difficult, due to the relatively small amount of mtDNA in each cell (<1% of the total DNA), the intercellular variability of mtDNA content and mtDNA pseudogenes (Numts) in nDNA. To understand the nature of heteroplasmy, we developed Mseek, a novel technique to purify and sequence mtDNA. Mseek yields high purity (>90%) mtDNA and its ability to detect rare variants is limited only by sequencing depth, providing unprecedented sensitivity and specificity. Using Mseek, we confirmed the ubiquity of heteroplasmy by analyzing mtDNA from a diverse set of cell lines and human samples. Applying Mseek to colonies derived from single cells, we find heteroplasmy is stably maintained in individual daughter cells over multiple cell divisions. We hypothesized that the stability of heteroplasmy could be facilitated by intercellular exchange of mtDNA. We explicitly demonstrate this exchange by co-culturing cell lines with distinct mtDNA haplotypes. Our results shed new light on the maintenance of heteroplasmy and provide a novel platform to investigate features of heteroplasmy in normal and diseased states.
Collapse
Affiliation(s)
- Anitha D Jayaprakash
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Erica K Benson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Swapna Gone
- Bioo Scientific Corporation, 7050 Burleson Road, Austin, TX 78744, USA
| | - Raymond Liang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Jaehee Shim
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Luca Lambertini
- Department of Preventive Medicine and Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Masoud M Toloue
- Bioo Scientific Corporation, 7050 Burleson Road, Austin, TX 78744, USA
| | - Mike Wigler
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY 10029, USA
| |
Collapse
|
13
|
Characterization of inverted repeat sequences and ribosomal RNA genes of chloroplast DNA from Chlorella ellipsoidea. Curr Genet 2013; 7:481-7. [PMID: 24173455 DOI: 10.1007/bf00377614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1983] [Indexed: 10/26/2022]
Abstract
Chloroplast DNA isolated from a green alga Chlorella was shown by agarose gel electrophoresis and electron microscopy to contain a pair of large inverted repeat sequences of ca. 23 kbp. Electron microscopy revealed that the repeats were separated from each other by a small single strand loop of 29.5 kbp and a large single strand region of 98.5 kbp.Digestion with the restriction endonucleases Kpnl, Sstl, and Xhol, and hybridization with (32)P-labelled tobacco rDNAs revealed that the genes for 16S and 23S rRNAs are present in the repeated sequences. From the hybridization pattern, a restriction map around the sequences were constructed, and the rRNA genes were found to be on the 10.8 kbp SstI fragment. This location was supported by electron microscopy (R-loop formation).Unlike Chlamydomonas reinhardii, Chlorella lacks a large intron in its 23S rRNA gene, and the 16S-23S spacer region is considerably long; the organization of rRNA operon is similar to that of higher plants.
Collapse
|
14
|
Mitochondrial DNA from Podospora anserina : IV. The large ribosomal RNA gene contains two long intervening sequences. Curr Genet 2013; 7:151-7. [PMID: 24173158 DOI: 10.1007/bf00365641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1982] [Indexed: 10/26/2022]
Abstract
We have examined the structure of the rRNA genes from the mitochondrial genome of Podospora anserina. Using R-loop analysis, nuclease protection experiments, and Southern blot hybridization analysis we have observed two intervening sequences (IVS) in the large rRNA gene, and none in the small rRNA gene. the IVS sequences are 1.65 kbp and 2.73 kbp long, and the larger of the two is in the position of the conserved IVS found in the mitochondrial genomes of other fungi. We have detected precursor transcripts for the large rRNA, and these data support the observation of two IVS in this gene. We also note that the large and small rRNA genes are separated by approximately 6 kbp of DNA.
Collapse
|
15
|
Wallace DC. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120267. [PMID: 23754818 PMCID: PMC3685467 DOI: 10.1098/rstb.2012.0267] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist-selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA.
| |
Collapse
|
16
|
Abstract
Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis--the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell--has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it.
Collapse
|
17
|
Perales-Clemente E, Fernández-Silva P, Acín-Pérez R, Pérez-Martos A, Enríquez JA. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res 2010; 39:225-34. [PMID: 20823090 PMCID: PMC3017613 DOI: 10.1093/nar/gkq769] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial-DNA diseases have no effective treatments. Allotopic expression—synthesis of a wild-type version of the mutated protein in the nuclear-cytosolic compartment and its importation into mitochondria—has been proposed as a gene-therapy approach. Allotopic expression has been successfully demonstrated in yeast, but in mammalian mitochondria results are contradictory. The evidence available is based on partial phenotype rescue, not on the incorporation of a functional protein into mitochondria. Here, we show that reliance on partial rescue alone can lead to a false conclusion of successful allotopic expression. We recoded mitochondrial mt-Nd6 to the universal genetic code, and added the N-terminal mitochondrial-targeting sequence of cytochrome c oxidase VIII (C8) and the HA epitope (C8Nd6HA). The protein apparently co-localized with mitochondria, but a significant part of it seemed to be located outside mitochondria. Complex I activity and assembly was restored, suggesting successful allotopic expression. However, careful examination of transfected cells showed that the allotopically-expressed protein was not internalized in mitochondria and that the selected clones were in fact revertants for the mt-Nd6 mutation. These findings demonstrate the need for extreme caution in the interpretation of functional rescue experiments and for clear-cut controls to demonstrate true rescue of mitochondrial function by allotopic expression.
Collapse
Affiliation(s)
- Ester Perales-Clemente
- Centro Nacional de Investigaciónes Cardiovasculares Carlos III, Melchor Fernández Almagro, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Ohnishi ST, Shinzawa-Itoh K, Ohta K, Yoshikawa S, Ohnishi T. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1901-9. [PMID: 20513438 DOI: 10.1016/j.bbabio.2010.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/27/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
Considerable disagreement still exists concerning the superoxide generation sites in the purified bovine heart NADH-ubiquinone oxidoreductase (complex I). Majority of investigators agree that superoxide is generated at the flavin site. Here we present a new hypothesis that the generation of superoxide reflects a dynamic balance between the flavosemiquinone (semiflavin or SF) and the semiquinone (SQ), like a "tug-of-war" through electrons. All preparations of bovine heart complex I, which have been isolated at Yoshikawa's laboratory, have one protein-bound endogenous ubiquinone per complex I (Shinzawa-Itoh et al., Biochemistry, 49 (2010) 487-492). Using these preparations, we measured (i) EPR signals of the SF, the SQ and iron-sulfur cluster N2 simultaneously with cryogenic EPR and (ii) superoxide production with both the room temperature spin-trapping technique and the partially acetylated cytochrome c method. Our experimental evidence was (1) without added decylubiquinone (DBQ), no catalytic oxidation of NADH occurs. The NADH addition produced mostly SF and it generated superoxide as reported by Kussmaul and Hirst (PNAS, 103 (2006) 7607-7612). (2) During catalytic electron transfer from NADH to DBQ, the superoxide generation site was mostly shifted to the SQ. (3) A quinone-pocket binding inhibitor (rotenone or piericidin A) inhibits the catalytic formation of the SQ, and it enhances the formation of SF and increases the overall superoxide generation. This suggests that if electron transfer was inhibited under pathological conditions, superoxide generation from the SF would be increased.
Collapse
Affiliation(s)
- S Tsuyoshi Ohnishi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
19
|
Kaczmarzyk D, Fulda M. Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. PLANT PHYSIOLOGY 2010; 152:1598-610. [PMID: 20061450 PMCID: PMC2832271 DOI: 10.1104/pp.109.148007] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/30/2009] [Indexed: 05/21/2023]
Abstract
In cyanobacteria fatty acids destined for lipid synthesis can be synthesized de novo, but also exogenous free fatty acids from the culture medium can be directly incorporated into lipids. Activation of exogenous fatty acids is likely required prior to their utilization. To identify the enzymatic activity responsible for activation we cloned candidate genes from Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 and identified the encoded proteins as acyl-acyl carrier protein synthetases (Aas). The enzymes catalyze the ATP-dependent esterification of fatty acids to the thiol of acyl carrier protein. The two protein sequences are only distantly related to known prokaryotic Aas proteins but they display strong similarity to sequences that can be found in almost all organisms that perform oxygenic photosynthesis. To investigate the biological role of Aas activity in cyanobacteria, aas knockout mutants were generated in the background of Synechocystis sp. PCC 6803 and S. elongatus PCC 7942. The mutant strains showed two phenotypes characterized by the inability to utilize exogenous fatty acids and by the secretion of endogenous fatty acids into the culture medium. The analyses of extracellular and intracellular fatty acid profiles of aas mutant strains as well as labeling experiments indicated that the detected free fatty acids are released from membrane lipids. The data suggest a considerable turnover of lipid molecules and a role for Aas activity in recycling the released fatty acids. In this model, lipid degradation represents a third supply of fatty acids for lipid synthesis in cyanobacteria.
Collapse
|
20
|
Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2009; 10:12-31. [PMID: 19796712 DOI: 10.1016/j.mito.2009.09.006] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 12/15/2022]
Abstract
The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism's energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), s-adenosyl-methionine (SAM), and reduced NAD(+). When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylation via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California, Irvine, CA 92697-3940, USA.
| | | |
Collapse
|
21
|
Gao L, Laude K, Cai H. Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 2008; 38:137-55, vi. [PMID: 18249246 DOI: 10.1016/j.cvsm.2007.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article discusses mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Mitochondrial respiratory chains are responsible for energy metabolism/ATP production through the tricyclic antidepressant cycle, coupling of oxidative phosphorylation, and electron transfer. The mitochondrion produces reactive oxygen species as "side products" of respiration. The mitochondrial derived reactive oxygen species is involved in the pathogenesis of various clinical disorders including heart failure, hypoxia, ischemia/reperfusion injury, diabetes, neurodegenerative diseases, and the physiologic process of aging. Observational and mechanistical studies of these pathologic roles of mitochondria are discussed in depth in this article.
Collapse
Affiliation(s)
- Ling Gao
- Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
22
|
HENEEN WAHEEBK. Molecular biology and plant breeding. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1985.tb00756.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Abstract
The human cell is a symbiosis of two life forms, the nucleus-cytosol and the mitochondrion. The nucleus-cytosol emphasizes structure and its genes are Mendelian, whereas the mitochondrion specializes in energy and its mitochondrial DNA (mtDNA) genes are maternal. Mitochondria oxidize calories via oxidative phosphorylation (OXPHOS) to generate a mitochondrial inner membrane proton gradient (DeltaP). DeltaP then acts as a source of potential energy to produce ATP, generate heat, regulate reactive oxygen species (ROS), and control apoptosis, etc. Interspecific comparisons of mtDNAs have revealed that the mtDNA retains a core set of electron and proton carrier genes for the proton-translocating OXPHOS complexes I, III, IV, and V. Human mtDNA analysis has revealed these genes frequently contain region-specific adaptive polymorphisms. Therefore, the mtDNA with its energy controlling genes may have been retained to permit rapid adaptation to new environments.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics, Department of Biological Chemistry, University of California, Irvine, California 92697-3940, USA.
| |
Collapse
|
24
|
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2006; 39:359-407. [PMID: 16285865 PMCID: PMC2821041 DOI: 10.1146/annurev.genet.39.110304.095751] [Citation(s) in RCA: 2353] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the age-related diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics, Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-3940, USA.
| |
Collapse
|
25
|
Abstract
ABSTRACT. Oxidative phosphorylation, i.e., ATP synthesis by the oxygen-consuming respiratory chain (RC), supplies most organs and tissues with a readily usable energy source, being functional before birth. Consequently, RC deficiencies can theoretically give rise to any symptom, in any organ or tissue, at any age and with any mode of inheritance, because of the twofold genetic origin of RC components (nuclear DNA and mitochondrial DNA). It was long wrongly considered that RC disorders originate from mutations of mitochondrial DNA, because for a long time only mutations or deletions of mitochondrial DNA were identified. However, the number of known disease-causing mutations in nuclear genes is steadily growing. These genes encode the various subunits of each complex, ancillary proteins functioning at different stages of holoenzyme biogenesis, including transcription, translation, chaperoning, addition of prosthetic groups, and protein assembly, and various enzymes involved in mitochondrial DNA metabolism.
Collapse
Affiliation(s)
- Agnès Rötig
- INSERM U393 and Service de Génétique, Hôpital Necker-Enfants Malades, Paris, France.
| | | |
Collapse
|
26
|
Lee SY, Raha S, Nagar B, Robinson BH. The functional role of conserved acidic residues of the Qcr7 protein of the cytochrome bc(1) complex in Saccharomyces cerevisiae. Arch Biochem Biophys 2001; 393:207-14. [PMID: 11556807 DOI: 10.1006/abbi.2001.2497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 14-kDa Qcr7 protein represents one of the 10 subunits that are components of a functional cytochrome bc(1) complex in Sacharomyces cerevisiae. Previous studies have shown that the N-terminus of the Qcr7 protein may be involved in the assembly of the cytochrome bc(1) complex and its C-terminus by interacting with cytochrome b and QCR8 proteins. It has also been suggested that Qcr7 protein may be involved in proton pumping. The coding sequence for two highly conserved aspartate residues, D46 and D47, in the QCR7 gene was altered by site-directed mutagenesis and the mutated genes expressed in cells lacking a functional QCR7 gene. Mutants D46E, D46G, D46N, and D47E were comparable to wild type in growth phenotype on nonfermentable carbon sources. Mutants D47G and D47N were respiratory deficient and analysis of complex components by immunoblotting and spectral analysis of cytochrome b suggests defective assembly. Despite being respiratory competent and having normal electron transport rates in broken mitochondria, the mutant D46G had markedly reduced ATP synthesis from electron transport reactions catalyzed by complexes II plus III of the respiratory chain. This suggests that the geometry of proton uptake by the bc(1) complex is disturbed by the mutation in D46.
Collapse
Affiliation(s)
- S Y Lee
- Metabolism Research Programme, The Research Institute, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | |
Collapse
|
27
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Abstract
Over the past 10 years, mitochondrial defects have been implicated in a wide variety of degenerative diseases, aging, and cancer. Studies on patients with these diseases have revealed much about the complexities of mitochondrial genetics, which involves an interplay between mutations in the mitochondrial and nuclear genomes. However, the pathophysiology of mitochondrial diseases has remained perplexing. The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology. The importance and interrelationship of these functions are now being studied in mouse models of mitochondrial disease.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University, 1462 Clifton Road, Suite 420, Atlanta, GA 30322, USA.
| |
Collapse
|
29
|
Nosek J, Tomáska L, Fukuhara H, Suyama Y, Kovác L. Linear mitochondrial genomes: 30 years down the line. Trends Genet 1998; 14:184-8. [PMID: 9613202 DOI: 10.1016/s0168-9525(98)01443-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At variance with the earlier belief that mitochondrial genomes are represented by circular DNA molecules, a large number of organisms have been found to carry linear mitochondrial DNA. Studies of linear mitochondrial genomes might provide a novel view on the evolutionary history of organelle genomes and contribute to delineating mechanisms of maintenance and functioning of telomeres. Because linear mitochondrial DNA is present in a number of human pathogens, its replication mechanisms might become a target for drugs that would not interfere with replication of human circular mitochondrial DNA.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
30
|
Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD. Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci U S A 1997; 94:14900-5. [PMID: 9405711 PMCID: PMC25135 DOI: 10.1073/pnas.94.26.14900] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/1997] [Indexed: 02/05/2023] Open
Abstract
Nuclear-localized mtDNA pseudogenes might explain a recent report describing a heteroplasmic mtDNA molecule containing five linked missense mutations dispersed over the contiguous mtDNA CO1 and CO2 genes in Alzheimer's disease (AD) patients. To test this hypothesis, we have used the PCR primers utilized in the original report to amplify CO1 and CO2 sequences from two independent rho degrees (mtDNA-less) cell lines. CO1 and CO2 sequences amplified from both of the rho degrees cells, demonstrating that these sequences are also present in the human nuclear DNA. The nuclear pseudogene CO1 and CO2 sequences were then tested for each of the five "AD" missense mutations by restriction endonuclease site variant assays. All five mutations were found in the nuclear CO1 and CO2 PCR products from rho degrees cells, but none were found in the PCR products obtained from cells with normal mtDNA. Moreover, when the overlapping nuclear CO1 and CO2 PCR products were cloned and sequenced, all five missense mutations were found, as well as a linked synonymous mutation. Unlike the findings in the original report, an additional 32 base substitutions were found, including two in adjacent tRNAs and a two base pair deletion in the CO2 gene. Phylogenetic analysis of the nuclear CO1 and CO2 sequences revealed that they diverged from modern human mtDNAs early in hominid evolution about 770,000 years before present. These data would be consistent with the interpretation that the missense mutations proposed to cause AD may be the product of ancient mtDNA variants preserved as nuclear pseudogenes.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
31
|
Belloch C, Barrio E, Uruburu F, Garcia MD, Querol A. Characterisation of Four Species of the Genus Kluyveromyces by Mitochondrial DNA Restriction Analysis. Syst Appl Microbiol 1997. [DOI: 10.1016/s0723-2020(97)80008-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Malaney S, Trumpower BL, Deber CM, Robinson BH. The N terminus of the Qcr7 protein of the cytochrome bc1 complex is not essential for import into mitochondria in Saccharomyces cerevisiae but is essential for assembly of the complex. J Biol Chem 1997; 272:17495-501. [PMID: 9211895 DOI: 10.1074/jbc.272.28.17495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Subunit 7 of the yeast cytochrome bc1 complex is encoded by the nuclear QCR7 gene and is essential for respiration. This protein does not contain a cleavable N-terminal mitochondrial targeting sequence, and it is not understood how the Qcr7 protein is imported into mitochondria and assembled into the complex. To test the role of the N terminus of the Qcr7 protein in mitochondrial import, assembly of the complex, and proton translocation, we inactivated the endogenous QCR7 gene and expressed mutated qcr7 genes capable of synthesizing proteins truncated by 7, 10, 14, and 20 residues (Qcr7p-delta7, Qcr7p-delta10, Qcr7p-delta14, and Qcr7p-delta20, respectively) from the N terminus. In addition, we studied two mutants containing Qcr7 proteins with point mutations in addition to a delta7 truncation, Qcr7p-delta7(D13V) and Qcr7p-delta7(R10K). All the mutant proteins with the exception of Qcr7p-delta10 were present in the mitochondria at 30 degrees C, although most at lower steady-state levels than the Qcr7p from the strain overexpressing wild type QCR7. The absence of the Qcr7p-delta10 may be the result of an unstable protein or a decrease in the efficiency of mitochondrial import due to its compromised amphipathic alpha-helix and the presence of a negative charge exposed at the N terminus. Cytochrome c reductase activities and the amounts of ATP synthesized were comparable with the wild type in the strain expressing Qcr7p-delta7. The strain expressing Qcr7p-delta7(R10K) had an identical phenotype to the one containing the Qcr7p-delta7, whereas strains expressing the Qcr7p-delta10, Qcr7p-delta14, Qcr7p-delta20, and Qcr7p-delta7(D13V) were all respiration-deficient. Examination of the steady-state levels of complex III subunits showed that core protein 2, cytochrome c1, the iron-sulfur protein, and the 11-kDa subunit are reduced in respiration-deficient mutant strains. Results from deletion analyses indicate that the N-terminal 20 residues (after Met-1) of the Qcr7 protein are not essential for import into mitochondria and that the N-terminal seven residues (after Met-1) are not involved in proton translocation. The results of this work show, however, that the N terminus of the Qcr7 protein is essential for the biosynthesis of ubiquinol-cytochrome c reductase.
Collapse
Affiliation(s)
- S Malaney
- Department of Genetics, the Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
33
|
Gach MH, Brown WM. Characteristics and distribution of large tandem duplications in brook stickleback (Culaea inconstans) mitochondrial DNA. Genetics 1997; 145:383-94. [PMID: 9071592 PMCID: PMC1207803 DOI: 10.1093/genetics/145.2.383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most animal mitochondrial DNAs (mtDNAs) range in size from 15 to 18 kb, but increased sizes up to approximately 40 kb are occasionally found. We investigated large size variation in mtDNA of the brook stickleback fish, Culaea inconstans, and characterized four large (2.7-5.8 kb) tandem duplications. Duplications differ in size, frequency of occurrence, and degree of associated heteroplasmy, but each includes the control region and one or more adjacent genes. Duplications are correlated with two mtDNA lineages sampled from 31 populations. L1 duplications (3.2-4.8 kb) were present in all lineage I individuals (n = 121, 19 populations); 53 fish were heteroplasmic due to variation in the copy number of a tandemly repeated 270-bp sequence within the duplicated region. In contrast, duplications, L2, L3, and L4 (2.7-5.8 kb) occurred in only 117 of 174 lineage II fish, in eight of 14 populations. Nine fish with L3 or L4 duplications were heteroplasmic, possessing some mtDNAs that lacked duplications (normal-length mtDNAs). Heteroplasmy in L2 was associated with a small variable region near the ND5 gene. Phylogenetic analysis of restriction sites in Culaea mtDNAs and haplotype-defining sequence differences present in both copies argue for multiple independent events that gave rise to three of the four duplications.
Collapse
Affiliation(s)
- M H Gach
- Department of Biology and Museum of Zoology, University of Michigan, Ann Arbor 48109-1079, USA.
| | | |
Collapse
|
34
|
Broughton RE, Dowling TE. Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera. Genetics 1994; 138:179-90. [PMID: 8001785 PMCID: PMC1206129 DOI: 10.1093/genetics/138.1.179] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation.
Collapse
Affiliation(s)
- R E Broughton
- Department of Zoology, Arizona State University, Tempe 85287-1501
| | | |
Collapse
|
35
|
Abstract
The patterns of mitochondrial genome-size variation were investigated in endothermic and ectothermic species to examine the role that thermal habit might play in the evolution of animal mitochondrial DNA (mtDNA). Data on mtDNA size (the modal, largest, and smallest mtDNA reported within a species), the percent variation in mtDNA size (the difference in size between the largest and smallest mtDNAs divided by the model genome size for a given species), and the frequency of heteroplasmic individuals (those carrying more than one mtDNA length variant) were tabulated from the literature. Endotherms showed significantly less variation in mtDNA size and tended to have smaller mtDNAs than ectotherms. Further comparisons between endothermic and ectothermic vertebrates revealed that the largest genome and the percent variation in genome size were significantly smaller in the former than the latter. There was no difference between endotherms and ectotherms in the frequency of heteroplasmy. These data are discussed in light of two hypotheses: (1) more intense directional and purifying selection for small genome size in the cytoplasms of species with higher metabolic rates and (2) reduced mutation pressures generating mtDNA size variants in endotherms relative to those in ectotherms. The general trends are consistent with the selection hypothesis but in certain species mtDNA size variation appears to be governed by mutational pressures. To test these competing hypotheses further, comparative studies are proposed where mitochondrial genome size is quantified in sister taxa and tissue types with very different metabolic rates.
Collapse
Affiliation(s)
- D M Rand
- Graduate Program in Ecology and Evolution, Brown University, Providence, RI 02912
| |
Collapse
|
36
|
Fukatsu T, Ishikawa H. Occurrence of chaperonin 60 and chaperonin 10 in primary and secondary bacterial symbionts of aphids: implications for the evolution of an endosymbiotic system in aphids. J Mol Evol 1993; 36:568-77. [PMID: 8102406 DOI: 10.1007/bf00556361] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
All aphids harbor symbiotrophic prokaryotes ("primary symbionts") in a specialized-abdominal cell, the bacteriocyte. Chaperonin 60 (Cpn60, symbionin) and chaperonin 10 (Cpn10), which are high and low molecular weight heatshock proteins, were sought in tissues of more than 60 aphid species. The endosymbionts were compared immunologically and histologically. It was demonstrated that (1) there are two types of aphids in terms of the endosymbiotic system: some with only primary symbionts and others with, in addition, secondary symbionts; (2) the primary symbionts of various aphids are quite similar in morphology whereas the secondary symbionts vary; and (3) irrespective of the aphid species, Cpn60 is abundant in both the primary and secondary symbionts, while Cpn10 is abundant in the secondary symbionts but present in small amounts in the primary ones. Based on these results, we suggest that the primary symbionts have been derived from a prokaryote that was acquired by the common ancestor of aphids whereas the secondary symbionts have been acquired by various aphids independently after divergence of the aphid species. In addition, we point out the possibility that the prokaryotes under intracellular conditions have been subject to some common evolutionary pressures, and as a result, have come to resemble cell organelles.
Collapse
Affiliation(s)
- T Fukatsu
- Zoological Institute, Faculty of Science, University of Tokyo, Japan
| | | |
Collapse
|
37
|
Azevedo JL, Hyman BC. Molecular characterization of lengthy mitochondrial DNA duplications from the parasitic nematode Romanomermis culicivorax. Genetics 1993; 133:933-42. [PMID: 8462851 PMCID: PMC1205410 DOI: 10.1093/genetics/133.4.933] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Complete nucleotide sequences, precise endpoints and coding potential of several 3.0-kilobase mitochondrial DNA (mtDNA) repeating units derived from two isofemale lineages of the mermithid nematode Romanomermis culicivorax have been determined. Endpoint analysis has allowed us to infer deletion and inversion events that most likely generated the present day repeat configuration. Each amplified unit contains the genes for NADH dehydrogenase subunits 3 and 6 (ND3 and ND6), an open reading frame (ORF 1) that represents a cytochrome P450-like gene, and three additional unidentified open reading frames. The primary nucleotide sequences of the R. culicivorax mt-repeat copies within individual haplotypes are highly conserved; three nearly complete copies of the repeat unit vary by 0.01% at the nucleotide level. These observations suggest that concerted evolution mechanisms may be active, resulting in sequence homogenation of these lengthy duplications.
Collapse
Affiliation(s)
- J L Azevedo
- Department of Biology, University of California, Riverside 92521
| | | |
Collapse
|
38
|
Moritz C. Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic geckos, Heteronotia binoei. Genetics 1991; 129:221-30. [PMID: 1682212 PMCID: PMC1204569 DOI: 10.1093/genetics/129.1.221] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial DNA (mtDNA) from triploid parthenogenetic geckos of the Heteronotia binoei complex varies in size from 17.2 to 27.6 kilobases (kb). Comparisons of long vs. short genomes using restriction endonucleases revealed a series of tandem direct duplications ranging in size from 1.2 to 10.4 kb. This interpretation was supported by transfer-hybridization experiments which also demonstrated that coding sequences were involved. Some of the duplications have been modified by deletion and restriction site changes, but no other rearrangements were detected. Analysis of the phylogenetic and geographic distribution of length variation suggests that duplications have arisen repeatedly within the parthenogenetic form of H. binoei. The parthenogens, and thus the duplications, are of recent origin; modifications of the duplicated sequences, particularly by deletion, has therefore been rapid. The absence of duplications from the mtDNA of the diploid sexual populations of H. binoei reinforces the correlation between nuclear polyploidy and duplication of mtDNA sequences reported for other lizards. In comparison to the genomes of sexual H. binoei and of most other animals, the mtDNA of these parthenogenetic geckos is extraordinarily variable in length and organization.
Collapse
Affiliation(s)
- C Moritz
- Department of Zoology, University of Queensland, Brisbane, Australia
| |
Collapse
|
39
|
Zeviani M, Bresolin N, Gellera C, Bordoni A, Pannacci M, Amati P, Moggio M, Servidei S, Scarlato G, DiDonato S. Nucleus-driven multiple large-scale deletions of the human mitochondrial genome: a new autosomal dominant disease. Am J Hum Genet 1990; 47:904-14. [PMID: 1978558 PMCID: PMC1683915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We studied several affected and one nonaffected individuals belonging to three unrelated pedigrees. The pathological trait was an autosomal dominant mitochondrial myopathy due to large-scale multiple deletions of the mitochondrial genome. Clinically, symptomatic patients had progressive external ophthalmoplegia, muscle weakness and wasting, sensorineural hypoacusia, and, in some cases, vestibular areflexia and tremor. The muscle biopsies of all patients examined showed ragged-red fibers, neurogenic changes, and a partially decreased histochemical reaction to cytochrome c oxidase. Multiple mtDNA heteroplasmy was detected in the patients by both Southern blot analysis and PCR amplification, whereas the unaffected individual had the normal homoplasmic hybridization pattern. These findings confirm and add further details to the existence of a new human disease--defined clinically as a mitochondrial myopathy, genetically as a Mendelian autosomal dominant trait, and molecularly by the accumulation of multiple, large-scale deletions of the mitochondrial genome--that is due to impaired nuclear control during mtDNA replication.
Collapse
|
40
|
Abstract
The universal genetic code is used without changes in chloroplasts and in mitochondria of green plants. Non-plant mitochondria use codes that include changes from the universal code. Chloroplasts use 31 anticodons in translating the code; a number smaller than that used by bacteria, because chloroplasts have eliminated 10 CNN anticodons that are found in bacteria. Green plant mitochondria (mt) obtain some tRNAs from the cytosol, and genes for some other tRNAs have been acquired from chloroplast DNA. The code in non-plant mt differs from the universal code in the following usages found in various organisms: UGA for Trp, AUA for Met, AGR for Ser and stop, AAA for Asn, CUN for Thr, and possibly UAA for Tyr. CGN codons are not used by Torulopsis yeast mt. Non-plant mt, e.g. in vertebrates, may use a minimum of 22 anticodons for complete translation of mRNA sequences. The following possible causes are regarded as contributing to changes in the non-plant mt: directional mutation pressure, genomic economization, changes in charging specificity of tRNAs, loss of release factor RF2, changes in RF1, changes in anticodons, loss of lysidine-forming enzyme system, and disappearance of codons from coding sequences.
Collapse
Affiliation(s)
- T H Jukes
- Space Sciences Laboratory, University of California/Berkeley, Oakland 94608
| | | |
Collapse
|
41
|
Lin HJ, Cannon GC, Heinhorst S. Purification and characterization of a DNA polymerase from the cyanobacterium Anacystis nidulans R2. Nucleic Acids Res 1990; 18:6659-63. [PMID: 2123541 PMCID: PMC332625 DOI: 10.1093/nar/18.22.6659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A DNA polymerase has been highly purified from Anacystis nidulans R2. Electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gels revealed that the final fraction contains three bands of Mr 107,000, 93,000, and 51,000, respectively. Analysis of purified DNA polymerase activity in situ indicates that of the three polypeptides the Mr 107,000 species has the catalytic activities. The native molecular weight of the enzyme was estimated by glycerol gradient sedimentation to be 100,000. The enzyme has an absolute requirement for a divalent cation. Mg2+ can be replaced with Mn2+, but the DNA polymerase is less active. Potassium chloride stimulates the enzyme, while potassium phosphate has no apparent effect. The enzyme is active over a pH range from 7.5 to 9.5 in 50mM Tris-HCl buffer. The ability of the cyanobacterial DNA polymerase to use activated DNA as a template, its associated 3'----5' and 5'----3' exonuclease activities, as well as its resistance to N-ethylmaleimide, dideoxynucleotides, arabinosyl-CTP and aphidicolin suggest a similarity between this enzyme and E. coli DNA polymerase I. This is the first characterization of a DNA polymerase from a cyanobacterium.
Collapse
Affiliation(s)
- H J Lin
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg 39406
| | | | | |
Collapse
|
42
|
Shaw JA, Troutman WB, Lasker BA, Mason MM, Riggsby WS. Characterization of the inverted duplication in the mitochondrial DNA of Candida albicans. J Bacteriol 1989; 171:6353-6. [PMID: 2681166 PMCID: PMC210511 DOI: 10.1128/jb.171.11.6353-6356.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial DNA (mtDNA) of Candida albicans contains a large inverted duplication. As is the case with most chloroplast DNAs and one other mtDNA, the nonduplicated regions of the molecule occur in two orientations with respect to each other, indicating that internal recombination occurs. Like some other mtDNAs, the C. albicans mtDNA contains a single SalI restriction site located near one end of the large rRNA gene. In contrast to other cases, however, the inverted duplication does not appear to contain any sequences coding for rRNA.
Collapse
Affiliation(s)
- J A Shaw
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845
| | | | | | | | | |
Collapse
|
43
|
Andachi Y, Yamao F, Muto A, Osawa S. Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. J Mol Biol 1989; 209:37-54. [PMID: 2478713 DOI: 10.1016/0022-2836(89)90168-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleotide sequences of the complete set of tRNA species in Mycoplasma capricolum, a derivative of Gram-positive eubacteria, have been determined. This bacterium represents the first genetic system in which the sequences of all the tRNA species have been determined at the RNA level. There are 29 tRNA species: three for Leu, two each for Arg, Ile, Lys, Met, Ser, Thr and Trp, and one each for the other 12 amino acids as judged from aminoacylation and the anticodon nucleotide sequences. The number of tRNA species is the smallest among all known genetic systems except for mitochondria. The tRNA anticodon sequences have revealed several features characteristic of M. capricolum. (1) There is only one tRNA species each for Ala, Gly, Leu, Pro, Ser and Val family boxes (4-codon boxes), and these tRNAs all have an unmodified U residue at the first position of the anticodon. (2) There are two tRNAThr species having anticodons UGU and AGU; the first positions of these anticodons are unmodified. (3) There is only one tRNA with anticodon ICG in the Arg family box (CGN); this tRNA can translate codons CGU, CGC and CGA. No tRNA capable of translating codon CGG has been detected, suggesting that CGG is an unassigned codon in this bacterium. (4) A tRNATrp with anticodon UCA is present, and reads codon UGA as Trp. On the basis of these and other observations, novel codon recognition patterns in M. capricolum are proposed. A comparatively small total, 13, of modified nucleosides is contained in all M. capricolum tRNAs. The 5' end nucleoside of the T psi C-loop (position 54) of all tRNAs is uridine, not modified to ribothymidine. The anticodon composition, and hence codon recognition patterns, of M. capricolum tRNAs resemble those of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Y Andachi
- Department of Biology, Faculty of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
The genetic code, once thought to be "frozen," shows variations from the universal code. Variations are found in mitochondria, Mycoplasma, and ciliated protozoa. The variations result from reassignment of codons, especially stop codons. The reassignments take place by disappearance of a codon from coding sequences, followed by its reappearance in a new role. Simultaneously, a changed anticodon must appear. We discuss the role of directional mutation pressure in the events, and we also describe the possibility that such events have taken place during early evolution of the genetic code and can occur during its present evolution.
Collapse
Affiliation(s)
- S Osawa
- Nagoya University, Department of Biology, Japan
| | | |
Collapse
|
45
|
Abstract
Nucleotide sequence analysis of a region of cricket (Gryllus firmus) mtDNA showing discrete length variation revealed tandemly repeated sequences 220 base pairs (bp) in length. The repeats consist of 206 bp sequences bounded by the dyad symmetric sequence 5'GGGGGCATGCCCCC3'. The sequence data showed that mtDNA size variation in this species is due to variation in the number of copies of tandem repeats. Southern blot analysis was used to document the frequency of crickets heteroplasmic for two or more different-sized mtDNAs. In New England populations of G. firmus and a close relative Gryllus pennsylvanicus approximately 60% of the former and 45% of the latter were heteroplasmic. From densitometry of autoradiographs the frequencies of mtDNA size classes were determined for the population samples and are shown to very different in the two species. However, in populations where hybridization between the two species has occurred, the frequencies of size classes and cytoplasmic genotypes in each species' distinct mtDNA lineage were shifted in a manner suggesting nuclear-cytoplasmic interactions. The data were applied to reported diversity indices and hierarchical statistics. The hierarchical statistics indicated that the greatest proportion of variation for mtDNA size was due to variation among individuals in their cytoplasmic genotypes (heteroplasmic or homoplasmic state). The diversity indices were used to estimate a per-generation mutation rate for size variants of 10(-4). The data are discussed in light of the relationship between genetic drift and mutation in maintaining variation for mtDNA size.
Collapse
Affiliation(s)
- D M Rand
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
46
|
Moon E, Wu R. Organization and nucleotide sequence of genes at both junctions between the two inverted repeats and the large single-copy region in the rice chloroplast genome. Gene 1988; 70:1-12. [PMID: 3240862 DOI: 10.1016/0378-1119(88)90099-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe the isolation and organization, at the nucleotide sequence level, of genes located at the two junctions of the large single-copy region (LSCR) and the two inverted repeats (IRA and IRB) in the rice chloroplast genome. This is the first example where the two junctions are precisely located in a monocot. In rice, a ribosomal protein gene cluster, rpl23-rpl2-rps19, which codes for the ribosomal proteins L23 (rpl23), L2 (rpl2) and S19 (rps19), lies at the ends of the two IRs near the LSCR. The inverted repeats end 45 bp from the translation stop codon of rps19. The gene for the 32-kDa photosystem II protein, psbA, is located at the extremity of the LSCR near IRA, and transcribed towards IRA. The translation stop codon of psbA is 68 bp from the right-hand junction (JLA). Thus, JLA is located within the intergenic sequence of the two genes, rps19 and psbA. Around the left-hand junction (JLB), there is a typical ribosomal protein gene cluster, rpl23-rpl2-rps19-rpl22 (rpl22 for the ribosomal protein L22). The translation start codon of rpl22 is located in the LSCR 25 bp from JLB. Therefore, JLB is located within the intergenic sequence between rps19 and rpl22.
Collapse
Affiliation(s)
- E Moon
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
47
|
Batuecas B, Garesse R, Calleja M, Valverde JR, Marco R. Genome organization of Artemia mitochondrial DNA. Nucleic Acids Res 1988; 16:6515-29. [PMID: 3135541 PMCID: PMC338311 DOI: 10.1093/nar/16.14.6515] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To extend to the crustacean class the information concerning the genomic organization of the mitochondrial DNA (mtDNA) a double strategy has been used: Southern blot analysis with cloned Drosophila mtDNA probes and sequence comparison to the Drosophila mtDNA of the sequenced termini of different subclones along the Artemia mitochondrial genome, probably the smallest mtDNA studied at this level to date. These approaches have allowed us to localize the 16S rRNA gene, two tRNA genes and eleven protein genes. The genome organization is surprisingly similar to the Drosophila mtDNA, with the 16S rRNA and the protein genes located in the same positions and orientations as their Drosophila counterparts. The only changes detected are at the level of tRNA genes, although the position and orientation of some of these are also conserved. These results contrast with the important rearrangements detected among other invertebrates mtDNAs and suggest that the genome organization of the mitochondrial DNA may be more conserved in the arthropods than in other invertebrate phyla.
Collapse
Affiliation(s)
- B Batuecas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
48
|
BERLYN M, SPARKS R, DALE R, BOWERS-JOHNSON S. Characterization of the 26s Ribosomal RNA Gene of Tobacco Mitochondria. Ann N Y Acad Sci 1987. [DOI: 10.1111/j.1749-6632.1987.tb29518.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Koerner T, Myers A, Lee S, Tzagoloff A. Isolation and characterization of the yeast gene coding for the alpha subunit of mitochondrial phenylalanyl-tRNA synthetase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61410-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Brunner A, Mendoza V, Tuena de Cobos A. Extrachromosomal genetics in the yeast Kluyveromyces lactis. Isolation and characterization of antimycin-resistant mutants. Curr Genet 1987; 11:475-82. [PMID: 3450410 DOI: 10.1007/bf00384609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antimycin-resistant (AR) mutants of the yeast Kluyveromyces lactis, obtained either spontaneously or after manganese treatment, were isolated and genetically characterized. Most of the mutants obtained after manganese mutagenesis and two spontaneous mutants, tolerated high antimycin concentrations (more than 10 micrograms/ml) and were extrachromosomal. One mutant which grew only in low antimycin (1 microgram/ml) showed a Mendelian type of inheritance. The extrachromosomal mutants could be assigned to at least two genetic loci (ARI and ARII). Mutants representative of these two groups showed increased resistance to the antibiotic when the respiration of whole cells or mitochondria was studied. Extrachromosomal mutants of Saccharomyces cerevisiae resistant to antimycin were also induced with manganese, isolated and characterized. Comparative studies of the antimycin-resistant mutants of K. lactis and S. cerevisiae permitted the following observations: a) K. lactis is more resistant to antimycin, funiculosin, mucidin and diuron than S. cerevisiae, as are the AR mutants; b) K. lactis shows correlated sensitivity to funiculosin differing in this aspect from S. cerevisiae; c) the antimycin-resistant mutants of K. lactis belonging to group II (ARII) were also resistant to diuron, tolerating concentrations of more than 200 micrograms/ml; d) all extrachromosomal antimycin-resistant-mutants of S. cerevisiae and some of the AR mutants of K. lactis were more sensitive to mucidin than the wild type.
Collapse
Affiliation(s)
- A Brunner
- Departamento de Microbiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F
| | | | | |
Collapse
|