1
|
Bigdeli A, Ghaderi-Zefrehei M, Lesch BJ, Behmanesh M, Arab SS. Bioinformatics analysis of myelin-microbe interactions suggests multiple types of molecular mimicry in the pathogenesis of multiple sclerosis. PLoS One 2024; 19:e0308817. [PMID: 39775333 PMCID: PMC11684644 DOI: 10.1371/journal.pone.0308817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 07/30/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sclerosis (MS) is a devastating autoimmune disease that leads to the destruction of the myelin sheath in the human central nervous system (CNS). Infection by viruses and bacteria has been found to be strongly associated with the onset of MS or its severity. We postulated that the immune system's attack on the myelin sheath could be triggered by viruses and bacteria antigens that resemble myelin sheath components. An in-silico bioinformatics approach was undertaken in order to identify viral and bacterial antigens that resemble myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP). To this end, we simultaneously analyzed both protein structures and amino acid sequences from viral and bacterial proteins and compared them to MOG and MBP. Possible associations between MBP and human parvovirus B19 (HPV-B19) and adeno-associated virus 4 (AAV-4) capsid protein structures were identified. MBP and MOG were associated with antigens from different viruses and bacteria, including Aspergillus species, Lactobacillus, Burkholderia, Clostridium, Schizosaccharomyces, SARS-CoV-2, and some gut flora metabolites. We also identified similarities between MBP and MOG proteins and bile salt hydrolase (BSH), glycosyltransferase (WcfQ), and Wzy enzymes. Identical amino acids between MBP and BSH at the active site, and protected amino acids in MOG aligning with WcfQ and Wzy enzymes were observed. Overall, our results offer valuable insights into the role of different viral and bacterial protein antigens in MS pathogenesis and suggest the possibility of identifying new therapeutic targets using in silico bioinformatics approaches. Our proposed approach could also likely be adapted for other CNS diseases in order to develop new biological insights and treatments.
Collapse
Affiliation(s)
- Ali Bigdeli
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bluma J. Lesch
- Department of Genetics, Department of Obstetrics, Gynecology & Reproductive Sciences, and Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States of America
| | - Mehrdad Behmanesh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - S. Shahriar Arab
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Pinzan CF, Valero C, de Castro PA, da Silva JL, Earle K, Liu H, Horta MAC, Kniemeyer O, Krüger T, Pschibul A, Cömert DN, Heinekamp T, Brakhage AA, Steenwyk JL, Mead ME, Hermsdorf N, Filler SG, da Rosa-Garzon NG, Delbaje E, Bromley MJ, Cabral H, Diehl C, Angeli CB, Palmisano G, Ibrahim AS, Rinker DC, Sauters TJC, Steffen K, Gumilang A, Rokas A, Gago S, Dos Reis TF, Goldman GH. Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation. Nat Microbiol 2024; 9:2710-2726. [PMID: 39191887 PMCID: PMC11699518 DOI: 10.1038/s41564-024-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection.
Collapse
Affiliation(s)
- Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Luiz da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Kayleigh Earle
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hong Liu
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Annica Pschibul
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Derya Nur Cömert
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew E Mead
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Nico Hermsdorf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Antimicrobial Resistance Network, University of Manchester, Manchester, UK
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Claudia B Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David C Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Thomas J C Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
3
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, Dos Reis TF, Gumilang A, Almagro-Molto M, Alanio A, Garcia-Hermoso D, Delbaje E, Pontes L, Pinzan CF, Schreiber AZ, Canóvas D, Sanchez Luperini R, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin and population diversity of a cryptic hybrid pathogen. Nat Commun 2024; 15:8412. [PMID: 39333551 PMCID: PMC11436853 DOI: 10.1038/s41467-024-52639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Cryptic fungal pathogens pose disease management challenges due to their morphological resemblance to known pathogens. Here, we investigated the genomes and phenotypes of 53 globally distributed isolates of Aspergillus section Nidulantes fungi and found 30 clinical isolates-including four isolated from COVID-19 patients-were A. latus, a cryptic pathogen that originated via allodiploid hybridization. Notably, all A. latus isolates were misidentified. A. latus hybrids likely originated via a single hybridization event during the Miocene and harbor substantial genetic diversity. Transcriptome profiling of a clinical isolate revealed that both parental subgenomes are actively expressed and respond to environmental stimuli. Characterizing infection-relevant traits-such as drug resistance and growth under oxidative stress-revealed distinct phenotypic profiles among A. latus hybrids compared to parental and closely related species. Moreover, we identified four features that could aid A. latus taxonomic identification. Together, these findings deepen our understanding of the origin of cryptic pathogens.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Rafael W Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - Matthew E Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
- Ginkgo Bioworks, 27 Drydock Avenue, 8th Floor, Boston, USA
| | - Christopher D Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Adiyantara Gumilang
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA
| | - María Almagro-Molto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Alexandre Alanio
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Paris Cité University, National Reference Center for Invasives Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Laís Pontes
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Clinical Microbiology Unit. Synlab Laboratory at Viamed Sta. Ángela de la Cruz Hospital, Seville, Spain
| | - Rafael Sanchez Luperini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
- National Institute of Science and Technology in Human Pathogenic, Fungi, Brazil.
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, USA.
| |
Collapse
|
4
|
Rinker DC, Sauters TJC, Steffen K, Gumilang A, Raja HA, Rangel-Grimaldo M, Pinzan CF, de Castro PA, Dos Reis TF, Delbaje E, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Strain heterogeneity in a non-pathogenic Aspergillus fungus highlights factors associated with virulence. Commun Biol 2024; 7:1082. [PMID: 39232082 PMCID: PMC11374809 DOI: 10.1038/s42003-024-06756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Thomas J C Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Rangel-Grimaldo M, Earp CE, Raja HA, Wood JS, Mardiana L, Ho KL, Longcake A, Williamson RT, Palatinus L, Hall MJ, Probert MR, Oberlies NH. Wheldone Revisited: Structure Revision Via DFT-GIAO Chemical Shift Calculations, 1,1-HD-ADEQUATE NMR Spectroscopy, and X-ray Crystallography Studies. JOURNAL OF NATURAL PRODUCTS 2024; 87:2095-2100. [PMID: 39039966 PMCID: PMC11348420 DOI: 10.1021/acs.jnatprod.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Wheldone is a fungal metabolite isolated from the coculture of Aspergillus fischeri and Xylaria flabelliformis, displaying cytotoxic activity against breast, melanoma, and ovarian cancer cell lines. Initially, its structure was characterized as an unusual 5-methyl-bicyclo[5.4.0]undeca-3,5-diene scaffold with a 2-hydroxy-1-propanone side chain and a 3-(2-(1-hydroxyethyl)-2-methyl-2,5-dihydrofuran-3-yl)acrylic acid moiety. Upon further examination, minor inconsistencies in the data suggested the need for the structure to be revisited. Thus, the structure of wheldone has been revised using an orthogonal experimental-computational approach, which combines 1,1-HD-ADEQUATE NMR experiments, DFT-GIAO chemical shift calculations, and single-crystal X-ray diffraction (SCXRD) analysis of a semisynthetic p-bromobenzylamide derivative, formed via a Steglich-type reaction. The summation of these data now permits the unequivocal assignment of both the structure and absolute configuration of the natural product.
Collapse
Affiliation(s)
- Manuel Rangel-Grimaldo
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cody E. Earp
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jared S. Wood
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lina Mardiana
- Indicatrix
Crystallography Ltd, Newcastle University, Newcastle NE1 7RU, U.K.
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
- Department
of Chemistry, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Kin Lok Ho
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Alexandra Longcake
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lukáš Palatinus
- Department
of Structure Analysis, Institute of Physics
of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
| | - Michael J. Hall
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Michael R. Probert
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
6
|
Brown A, Steenwyk JL, Rokas A. Genome-wide patterns of noncoding and protein-coding sequence variation in the major fungal pathogen Aspergillus fumigatus. G3 (BETHESDA, MD.) 2024; 14:jkae091. [PMID: 38696662 PMCID: PMC11228837 DOI: 10.1093/g3journal/jkae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Aspergillus fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related nonpathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the noncoding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. In general, A. fumigatus noncoding regions showed higher levels of sequence variation compared with their corresponding protein-coding regions. Focusing on 2,482 genes whose protein-coding sequence identity scores ranged between 75 and 99%, we identified 478 total genes with signatures of positive selection only in their noncoding regions and 65 total genes with signatures only in their protein-coding regions. Twenty-eight of the 478 noncoding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Noncoding region variation between A. fumigatus strains included single-nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that noncoding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Molecular and Cell Biology, Howards Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Ma Y, Li M, Ahmad T, Deng Y, Zhuang M, Tan G, Liu Y. Impact of OTAbZIP on Ochratoxin A production, mycelium growth and pathogenicity of Aspergillus westerdijkiae under water activity stress. Mycology 2024; 15:620-630. [PMID: 39678641 PMCID: PMC11636139 DOI: 10.1080/21501203.2024.2355333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/09/2024] [Indexed: 12/17/2024] Open
Abstract
Aspergillus westerdijkiae is a major producer of ochratoxin A (OTA), a highly toxic and carcinogenic mycotoxin found in various food and feed products. A. westerdijkiae produces excessive amount of OTA under various water activity (aw) conditions that occur during food and feed storage. The biosynthetic gene clusters associated with OTA production include OTAbZIP, which plays a key role in controlling mycotoxin production in response to environmental conditions. This study explored the regulation of OTA biosynthesis in A. westerdijkiae fc-1, focusing on the OTAbZIP gene's influence under aw stress. The mycelium growth of A. westerdijkiae fc-1 wild type and OTAbZIP mutant strains increased by 40.7% and 50.5% under high water activity (0.96 aw) respectively, at 6 days post-inoculation (dpi), indicating a stress on A. westerdijkiae fc-1. While OTAbZIP mutant did not produce OTA under both high and moderate aW conditions. The wild type produced OTA and OTA biosynthetic gene expression levels were downregulated under high (0.96 aw) and moderate (0.91 aw) water activity. The expression level of hog1 gene in OTAbZIP mutant was significantly lower than in the wild type. Pathogenicity tests revealed that deletion of OTAbZIP did not significantly affect disease infection. This study shows that deleting OTAbZIP gene greatly reduces OTA production, affecting the strain's adaptability to water activity stress.
Collapse
Affiliation(s)
- Yanling Ma
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, China
| | - Mingxuan Li
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Tanvir Ahmad
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, China
| | - Yingyao Deng
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, China
| | - Muyuan Zhuang
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, China
| | - Guangyou Tan
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, China
| |
Collapse
|
8
|
Rinker DC, Sauters TJC, Steffen K, Gumilang A, Raja HA, Rangel-Grimaldo M, Pinzan CF, de Castro PA, dos Reis TF, Delbaje E, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Strain heterogeneity in a non-pathogenic fungus highlights factors contributing to virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583994. [PMID: 38496489 PMCID: PMC10942418 DOI: 10.1101/2024.03.08.583994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolomic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.
Collapse
Affiliation(s)
- David C. Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas J. C. Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Brown A, Steenwyk JL, Rokas A. Genome-wide patterns of non-coding sequence variation in the major fungal pathogen Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574724. [PMID: 38260267 PMCID: PMC10802510 DOI: 10.1101/2024.01.08.574724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A.fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related non-pathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the non-coding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. A. fumigatus non-coding regions showed higher levels of sequence variation compared to their corresponding protein-coding regions. Specifically, we found that 1,274 non-coding regions exhibited <75% nucleotide sequence similarity (compared to 928 protein-coding regions) and 3,721 non-coding regions exhibited between 75% and 99% similarity (compared to 2,482 protein-coding regions) across strains. Only 817 non-coding regions exhibited ≥99% sequence similarity compared to 2,402 protein-coding regions. By examining 2,482 genes whose protein-coding sequence identity scores ranged between 75% and 99%, we identified 478 total genes with signatures of positive selection only in their non-coding regions and 65 total genes with signatures only in their protein-coding regions. 28 of the 478 non-coding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Non-coding region variation between A. fumigatus strains included single nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that non-coding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Zhang Z, Li B, Chai Z, Yang Z, Zhang F, Kang F, Ren H, Jin Y, Yue J. Evolution of the ability to evade host innate immune defense by Talaromyces marneffei. Int J Biol Macromol 2023; 253:127597. [PMID: 37884245 DOI: 10.1016/j.ijbiomac.2023.127597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Talaromyces (Penicillium) marneffei is an intracellular pathogenic fungus. Some strains of this fungus have been misidentified due to the similarity between Talaromyces and Penicillium. T. marneffei has mainly been found to afflict immunocompromised individuals, causing respiratory, skin, and systemic mycosis. Mp1p is a key virulence factor that can help T. marneffei evade clearance by the normally functioning immune system. Understanding how novel functions arise is an intriguing question in many fields of biology. Mp1p has two homologous domains (Mp1p-LBD1 and Mp1p-LBD2). Sequence similarity searches with Mp1p-LBD sequences revealed Mp1p homologs in many other pathogenic fungi. Integrated information on the taxonomic distribution, phylogenetic relationships, and sequence similarity of Mp1p domains revealed that the ancestor of Mp1p-LBDs was acquired through horizontal gene transfer (HGT). Additional evidence revealed that Mp1p homologs have undergone extensive gene duplications in T. marneffei. Mp1p might be a result of gene fusion following gene duplication. Furthermore, we propose a new method for identifying Talaromyces and identify 4 strains with misclassification errors. Our results characterize the evolutionary mechanism of T. marneffei evasion of host innate immune defense and clearly demonstrate the role of gene duplication and HGT in the evolution of host immune escape by T. marneffei.
Collapse
Affiliation(s)
- Zehan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Beiping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zili Chai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zilong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Fengwei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Fuqiang Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hongguang Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Yuan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Yue
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
11
|
Elalouf A, Elalouf H, Rosenfeld A. Modulatory immune responses in fungal infection associated with organ transplant - advancements, management, and challenges. Front Immunol 2023; 14:1292625. [PMID: 38143753 PMCID: PMC10748506 DOI: 10.3389/fimmu.2023.1292625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Organ transplantation stands as a pivotal achievement in modern medicine, offering hope to individuals with end-stage organ diseases. Advancements in immunology led to improved organ transplant survival through the development of immunosuppressants, but this heightened susceptibility to fungal infections with nonspecific symptoms in recipients. This review aims to establish an intricate balance between immune responses and fungal infections in organ transplant recipients. It explores the fundamental immune mechanisms, recent advances in immune response dynamics, and strategies for immune modulation, encompassing responses to fungal infections, immunomodulatory approaches, diagnostics, treatment challenges, and management. Early diagnosis of fungal infections in transplant patients is emphasized with the understanding that innate immune responses could potentially reduce immunosuppression and promise efficient and safe immuno-modulating treatments. Advances in fungal research and genetic influences on immune-fungal interactions are underscored, as well as the potential of single-cell technologies integrated with machine learning for biomarker discovery. This review provides a snapshot of the complex interplay between immune responses and fungal infections in organ transplantation and underscores key research directions.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, Israel
| | - Hadas Elalouf
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Valero C, Pinzan CF, de Castro PA, van Rhijn N, Earle K, Liu H, Horta MAC, Kniemeyer O, Krüger T, Pschibul A, Coemert DN, Heinekamp T, Brakhage AA, Steenwyk JL, Mead ME, Rokas A, Filler SG, da Rosa-Garzon NG, Cabral H, Deljabe E, Bromley MJ, Angeli CB, Palmisano G, Ibrahim AS, Gago S, Dos Reis TF, Goldman GH. A phylogenetic approach to explore the Aspergillus fumigatus conidial surface-associated proteome and its role in pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.553365. [PMID: 37662192 PMCID: PMC10473670 DOI: 10.1101/2023.08.22.553365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Aspergillus fumigatus , an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores or conidia for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus , two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis , and the cryptic pathogen Aspergillus lentulus . After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we deleted 42 genes encoding conidial proteins. We found deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.
Collapse
|
13
|
Nji QN, Babalola OO, Mwanza M. Soil Aspergillus Species, Pathogenicity and Control Perspectives. J Fungi (Basel) 2023; 9:766. [PMID: 37504754 PMCID: PMC10381279 DOI: 10.3390/jof9070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Five Aspergillus sections have members that are established agricultural pests and producers of different metabolites, threatening global food safety. Most of these pathogenic Aspergillus species have been isolated from almost all major biomes. The soil remains the primary habitat for most of these cryptic fungi. This review explored some of the ecological attributes that have contributed immensely to the success of the pathogenicity of some members of the genus Aspergillus over time. Hence, the virulence factors of the genus Aspergillus, their ecology and others were reviewed. Furthermore, some biological control techniques were recommended. Pathogenic effects of Aspergillus species are entirely accidental; therefore, the virulence evolution prediction model in such species becomes a challenge, unlike their obligate parasite counterparts. In all, differences in virulence among organisms involved both conserved and species-specific genetic factors. If the impacts of climate change continue, new cryptic Aspergillus species will emerge and mycotoxin contamination risks will increase in all ecosystems, as these species can metabolically adjust to nutritional and biophysical challenges. As most of their gene clusters are silent, fungi continue to be a source of underexplored bioactive compounds. The World Soil Charter recognizes the relevance of soil biodiversity in supporting healthy soil functions. The question of how a balance may be struck between supporting healthy soil biodiversity and the control of toxic fungi species in the field to ensure food security is therefore pertinent. Numerous advanced strategies and biocontrol methods so far remain the most environmentally sustainable solution to the control of toxigenic fungi in the field.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
14
|
Steenwyk JL, Knowles S, Bastos RW, Balamurugan C, Rinker D, Mead ME, Roberts CD, Raja HA, Li Y, Colabardini AC, de Castro PA, dos Reis TF, Canóvas D, Sanchez RL, Lagrou K, Torrado E, Rodrigues F, Oberlies NH, Zhou X, Goldman GH, Rokas A. Evolutionary origin, population diversity, and diagnostics for a cryptic hybrid pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547508. [PMID: 37461539 PMCID: PMC10350022 DOI: 10.1101/2023.07.03.547508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cryptic fungal pathogens pose significant identification and disease management challenges due to their morphological resemblance to known pathogenic species while harboring genetic and (often) infectionrelevant trait differences. The cryptic fungal pathogen Aspergillus latus, an allodiploid hybrid originating from Aspergillus spinulosporus and an unknown close relative of Aspergillus quadrilineatus within section Nidulantes, remains poorly understood. The absence of accurate diagnostics for A. latus has led to misidentifications, hindering epidemiological studies and the design of effective treatment plans. We conducted an in-depth investigation of the genomes and phenotypes of 44 globally distributed isolates (41 clinical isolates and three type strains) from Aspergillus section Nidulantes. We found that 21 clinical isolates were A. latus; notably, standard methods of pathogen identification misidentified all A. latus isolates. The remaining isolates were identified as A. spinulosporus (8), A. quadrilineatus (1), or A. nidulans (11). Phylogenomic analyses shed light on the origin of A. latus, indicating one or two hybridization events gave rise to the species during the Miocene, approximately 15.4 to 8.8 million years ago. Characterizing the A. latus pangenome uncovered substantial genetic diversity within gene families and biosynthetic gene clusters. Transcriptomic analysis revealed that both parental genomes are actively expressed in nearly equal proportions and respond to environmental stimuli. Further investigation into infection-relevant chemical and physiological traits, including drug resistance profiles, growth under oxidative stress conditions, and secondary metabolite biosynthesis, highlight distinct phenotypic profiles of the hybrid A. latus compared to its parental and closely related species. Leveraging our comprehensive genomic and phenotypic analyses, we propose five genomic and phenotypic markers as diagnostics for A. latus species identification. These findings provide valuable insights into the evolutionary origin, genomic outcome, and phenotypic implications of hybridization in a cryptic fungal pathogen, thus enhancing our understanding of the underlying processes contributing to fungal pathogenesis. Furthermore, our study underscores the effectiveness of extensive genomic and phenotypic analyses as a promising approach for developing diagnostics applicable to future investigations of cryptic and emerging pathogens.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sonja Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Rafael W. Bastos
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - David Rinker
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew E. Mead
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher D. Roberts
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Ana Cristina Colabardini
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David Canóvas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Rafael Luperini Sanchez
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4715-495 Braga, Portugal; ICVS/3B’s-PT Government Associate Laboratory, 4715-495 Braga, Portugal
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35–1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
15
|
Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. MASS SPECTROMETRY REVIEWS 2023; 42:1221-1243. [PMID: 34854486 DOI: 10.1002/mas.21755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/07/2023]
Abstract
Infection metallomics is a mass spectrometry (MS) platform we established based on the central concept that microbial metallophores are specific, sensitive, noninvasive, and promising biomarkers of invasive infectious diseases. Here we review the in vitro, in vivo, and clinical applications of metallophores from historical and functional perspectives, and identify under-studied and emerging application areas with high diagnostic potential for the post-COVID era. MS with isotope data filtering is fundamental to infection metallomics; it has been used to study the interplay between "frenemies" in hosts and to monitor the dynamic response of the microbiome to antibiotic and antimycotic therapies. During infection in critically ill patients, the hostile environment of the host's body activates secondary bacterial, mycobacterial, and fungal metabolism, leading to the production of metallophores that increase the pathogen's chance of survival in the host. MS can reveal the structures, stability, and threshold concentrations of these metal-containing microbial biomarkers of infection in humans and model organisms, and can discriminate invasive disease from benign colonization based on well-defined thresholds distinguishing proliferation from the colonization steady state.
Collapse
Affiliation(s)
- Rutuja H Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
16
|
Alanzi A, Elhawary EA, Ashour ML, Moussa AY. Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions. Arch Pharm Res 2023; 46:273-298. [PMID: 37032397 DOI: 10.1007/s12272-023-01442-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is Aspergillus microbial cocultures. The genome of Aspergillus species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of Aspergillus cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several Aspergillus species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in Aspergillus cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from Aspergillus cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.
Collapse
Affiliation(s)
- Abdullah Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Science, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt.
| |
Collapse
|
17
|
Maj W, Pertile G, Frąc M. Soil-Borne Neosartorya spp.: A Heat-Resistant Fungal Threat to Horticulture and Food Production-An Important Component of the Root-Associated Microbial Community. Int J Mol Sci 2023; 24:1543. [PMID: 36675060 PMCID: PMC9867472 DOI: 10.3390/ijms24021543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Soil-borne Neosartorya spp. are the highly resilient sexual reproductive stage (teleomorph) of Aspergillus spp. Fungi of this genus are relevant components of root-associated microbial community, but they can also excrete mycotoxins and exhibit great resistance to high temperatures. Their ascospores easily transfer between soil and crops; thus, Neosartorya poses a danger to horticulture and food production, especially to the postharvest quality of fruits and vegetables. The spores are known to cause spoilage, mainly in raw fruit produce, juices, and pulps, despite undergoing pasteurization. However, these fungi can also participate in carbon transformation and sequestration, as well as plant protection in drought conditions. Many species have been identified and included in the genus, and yet some of them create taxonomical controversy due to their high similarity. This also contributes to Neosartorya spp. being easily mistaken for its anamorph, resulting in uncertain data within many studies. The review discusses also the factors shaping Neosartorya spp.'s resistance to temperature, preservatives, chemicals, and natural plant extracts, as well as presenting novel solutions to problems created by its resilient nature.
Collapse
Affiliation(s)
| | | | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
18
|
Hatmaker EA, Rangel-Grimaldo M, Raja HA, Pourhadi H, Knowles SL, Fuller K, Adams EM, Lightfoot JD, Bastos RW, Goldman GH, Oberlies NH, Rokas A. Genomic and Phenotypic Trait Variation of the Opportunistic Human Pathogen Aspergillus flavus and Its Close Relatives. Microbiol Spectr 2022; 10:e0306922. [PMID: 36318036 PMCID: PMC9769809 DOI: 10.1128/spectrum.03069-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal diseases affect millions of humans annually, yet fungal pathogens remain understudied. The mold Aspergillus flavus can cause both aspergillosis and fungal keratitis infections, but closely related species are not considered clinically relevant. To study the evolution of A. flavus pathogenicity, we examined genomic and phenotypic traits of two strains of A. flavus and three closely related species, Aspergillus arachidicola (two strains), Aspergillus parasiticus (two strains), and Aspergillus nomiae (one strain). We identified >3,000 orthologous proteins unique to A. flavus, including seven biosynthetic gene clusters present in A. flavus strains and absent in the three nonpathogens. We characterized secondary metabolite production for all seven strains under two clinically relevant conditions, temperature and salt concentration. Temperature impacted metabolite production in all species, whereas salinity did not affect production of any species. Strains of the same species produced different metabolites. Growth under stress conditions revealed additional heterogeneity within species. Using the invertebrate fungal disease model Galleria mellonella, we found virulence of strains of the same species varied widely; A. flavus strains were not more virulent than strains of the nonpathogens. In a murine model of fungal keratitis, we observed significantly lower disease severity and corneal thickness for A. arachidicola compared to other species at 48 h postinfection, but not at 72 h. Our work identifies variations in key phenotypic, chemical, and genomic attributes between A. flavus and its nonpathogenic relatives and reveals extensive strain heterogeneity in virulence that does not correspond to the currently established clinical relevance of these species. IMPORTANCE Aspergillus flavus is a filamentous fungus that causes opportunistic human infections, such as aspergillosis and fungal keratitis, but its close relatives are considered nonpathogenic. To begin understanding how this difference in pathogenicity evolved, we characterized variation in infection-relevant genomic, chemical, and phenotypic traits between strains of A. flavus and its relatives. We found extensive variation (or strain heterogeneity) within the pathogenic A. flavus as well as within its close relatives, suggesting that strain-level differences may play a major role in the ability of these fungi to cause disease. Surprisingly, we also found that the virulence of strains from species not considered to be pathogens was similar to that of A. flavus in both invertebrate and murine models of disease. These results contrast with previous studies on Aspergillus fumigatus, another major pathogen in the genus, for which significant differences in infection-relevant chemical and phenotypic traits are observed between closely related pathogenic and nonpathogenic species.
Collapse
Affiliation(s)
- E. Anne Hatmaker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Huzefa A. Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Hadi Pourhadi
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Sonja L. Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Kevin Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Emily M. Adams
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Jorge D. Lightfoot
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Rafael W. Bastos
- Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Knowles SL, Raja HA, Roberts CD, Oberlies NH. Fungal-fungal co-culture: a primer for generating chemical diversity. Nat Prod Rep 2022; 39:1557-1573. [PMID: 35137758 PMCID: PMC9384855 DOI: 10.1039/d1np00070e] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 01/25/2023]
Abstract
Covering: 2002 to 2020In their natural environment, fungi must compete for resources. It has been hypothesized that this competition likely induces the biosynthesis of secondary metabolites for defence. In a quest to discover new chemical diversity from fungal cultures, a growing trend has been to recapitulate this competitive environment in the laboratory, essentially growing fungi in co-culture. This review covers fungal-fungal co-culture studies beginning with the first literature report in 2002. Since then, there has been a growing number of new secondary metabolites reported as a result of fungal co-culture studies. Specifically, this review discusses and provides insights into (1) rationale for pairing fungal strains, (2) ways to grow fungi for co-culture, (3) different approaches to screening fungal co-cultures for chemical diversity, (4) determining the secondary metabolite-producing strain, and (5) final thoughts regarding the fungal-fungal co-culture approach. Our goal is to provide a set of practical strategies for fungal co-culture studies to generate unique chemical diversity that the natural products research community can utilize.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
20
|
Brown A, Mead ME, Steenwyk JL, Goldman GH, Rokas A. Extensive non-coding sequence divergence between the major human pathogen Aspergillus fumigatus and its relatives. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:802494. [PMID: 36866034 PMCID: PMC9977105 DOI: 10.3389/ffunb.2022.802494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022]
Abstract
Invasive aspergillosis is a deadly fungal disease; more than 400,000 patients are infected worldwide each year and the mortality rate can be as high as 50-95%. Of the ~450 species in the genus Aspergillus only a few are known to be clinically relevant, with the major pathogen Aspergillus fumigatus being responsible for ~50% of all invasive mold infections. Genomic comparisons between A. fumigatus and other Aspergillus species have historically focused on protein-coding regions. However, most A. fumigatus genes, including those that modulate its virulence, are also present in other pathogenic and non-pathogenic closely related species. Our hypothesis is that differential gene regulation - mediated through the non-coding regions upstream of genes' first codon - contributes to A. fumigatus pathogenicity. To begin testing this, we compared non-coding regions upstream of the first codon of single-copy orthologous genes from the two A. fumigatus reference strains Af293 and A1163 and eight closely related Aspergillus section Fumigati species. We found that these non-coding regions showed extensive sequence variation and lack of homology across species. By examining the evolutionary rates of both protein-coding and non-coding regions in a subset of orthologous genes with highly conserved non-coding regions across the phylogeny, we identified 418 genes, including 25 genes known to modulate A. fumigatus virulence, whose non-coding regions exhibit a different rate of evolution in A. fumigatus. Examination of sequence alignments of these non-coding regions revealed numerous instances of insertions, deletions, and other types of mutations of at least a few nucleotides in A. fumigatus compared to its close relatives. These results show that closely related Aspergillus species that vary greatly in their pathogenicity exhibit extensive non-coding sequence variation and identify numerous changes in non-coding regions of A. fumigatus genes known to contribute to virulence.
Collapse
Affiliation(s)
- Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
21
|
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7:607-619. [PMID: 35508719 PMCID: PMC9097544 DOI: 10.1038/s41564-022-01112-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
Redrado S, Esteban P, Domingo MP, Lopez C, Rezusta A, Ramirez-Labrada A, Arias M, Pardo J, Galvez EM. Integration of In Silico and In Vitro Analysis of Gliotoxin Production Reveals a Narrow Range of Producing Fungal Species. J Fungi (Basel) 2022; 8:jof8040361. [PMID: 35448592 PMCID: PMC9030297 DOI: 10.3390/jof8040361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Gliotoxin is a fungal secondary metabolite with impact on health and agriculture since it might act as virulence factor and contaminate human and animal food. Homologous gliotoxin (GT) gene clusters are spread across a number of fungal species although if they produce GT or other related epipolythiodioxopiperazines (ETPs) remains obscure. Using bioinformatic tools, we have identified homologous gli gene clusters similar to the A. fumigatus GT gene cluster in several fungal species. In silico study led to in vitro confirmation of GT and Bisdethiobis(methylthio)gliotoxin (bmGT) production in fungal strain cultures by HPLC detection. Despite we selected most similar homologous gli gene cluster in 20 different species, GT and bmGT were only detected in section Fumigati species and in a Trichoderma virens Q strain. Our results suggest that in silico gli homology analyses in different fungal strains to predict GT production might be only informative when accompanied by analysis about mycotoxin production in cell cultures.
Collapse
Affiliation(s)
- Sergio Redrado
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
| | - Patricia Esteban
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | | | - Concepción Lopez
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Ariel Ramirez-Labrada
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Maykel Arias
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
| | - Eva M. Galvez
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
- Correspondence:
| |
Collapse
|
23
|
de Castro PA, Colabardini AC, Moraes M, Horta MAC, Knowles SL, Raja HA, Oberlies NH, Koyama Y, Ogawa M, Gomi K, Steenwyk JL, Rokas A, Gonçales RA, Duarte-Oliveira C, Carvalho A, Ries LNA, Goldman GH. Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genet 2022; 18:e1009965. [PMID: 35041649 PMCID: PMC8797188 DOI: 10.1371/journal.pgen.1009965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species. A. fumigatus secretes mycotoxins that are essential for its virulence and pathogenicity. Gliotoxin (GT) is a sulfur-containing mycotoxin, which is known to impair several aspects of the human immune response. GT is also toxic to different fungal species, which have evolved several GT protection strategies. To further decipher these responses, we used transcriptional profiling aiming to compare the response to GT in the GT producer A. fumigatus and the GT non-producer A. nidulans. This analysis allowed us to identify additional genes with a potential role in GT protection. We also identified 15 transcription factors (TFs) encoded in the A. fumigatus genome that are important for conferring resistance to exogenous gliotoxin. One of these TFs, KojR, which is essential for A. oryzae kojic acid production, is also important for virulence in A. fumigatus and GT protection in A. fumigatus, A. nidulans and A. oryzae. KojR regulates the expression of genes important for gliotoxin biosynthesis and protection, and sulfur metabolism. Together, this work identified conserved components required for gliotoxin protection in Aspergillus species.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maísa Moraes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Masahiro Ogawa
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Relber A. Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- * E-mail: (LNAR); (GHG)
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- * E-mail: (LNAR); (GHG)
| |
Collapse
|
24
|
Hassanien AA, Shaker EM, El-Sharkawy EE, Elsherif WM. Antifungal and antitoxin effects of propolis and its nanoemulsion formulation against Aspergillus flavus isolated from human sputum and milk powder samples. Vet World 2021; 14:2306-2312. [PMID: 34840447 PMCID: PMC8613795 DOI: 10.14202/vetworld.2021.2306-2312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Aspergillus flavus causes human and animal diseases through either inhalation of fungal spores or ingestion of mycotoxins as aflatoxins produced in human and animal feed as secondary metabolites. This study was aimed to detect the incidence of A. flavus and its aflatoxins in human sputum and milk powder samples and explore the efficacy of pure propolis (PP) and propolis nanoemulsion (PNE) as natural decontaminants against fungal growth and its released aflatoxins. Materials and Methods: A. flavus was isolated by mycological culture and identified macroscopically and microscopically. Coconut agar medium and thin-layer chromatography (TLC) were used to qualitatively detect aflatoxins in the isolated strains. Toxins were extracted from toxigenic strains by the fast extraction technique. The quantitative detection of toxin types was explored by high-performance liquid chromatography (HPLC). PNE was prepared by a novel method using natural components and characterized by Fourier-transform infrared spectroscopy, Zetasizer, and transmission electron microscopy. The effects of PP and PNE on A. flavus growth and its toxin were determined by the well-diffusion method and HPLC. Results: The mycological culture showed that 30.9% and 29.2% of sputum and milk powder samples were positive for A. flavus, respectively. TLC confirmed the production of 61.8% and 63.2% aflatoxin by the isolated strains in sputum and milk powder, respectively. PP and PNE showed antifungal activity on A. flavus growth with mean±standard error (SE) inhibition zones of 27.55±3.98 and 39.133±5.32 mm, respectively. HPLC revealed positive contamination of toxin extracts with AFB1, AFB2, and AFG2 at 0.57±0.026, 0.28±0.043, and 0.1±0.05 mg/L, respectively. After treatment with PP and PNE, a significant decrease in AFB1, AFB2, and AFG2 concentrations was observed. Conclusion: This study suggested using propolis and its nanoformulation as antifungal and antitoxins in human medicine and the food industry to increase the food safety level and stop food spoilage.
Collapse
Affiliation(s)
- Alshimaa A Hassanien
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, 82511, Egypt
| | - Eman M Shaker
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, 82511, Egypt
| | - Eman E El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, 71515, Egypt
| | - Walaa M Elsherif
- Nanotechnology Research Unit, Animal Health Research Institute, Agriculture Research Centre, 12618, Egypt
| |
Collapse
|
25
|
Aspergillus fumigatus versus Genus Aspergillus: Conservation, Adaptive Evolution and Specific Virulence Genes. Microorganisms 2021; 9:microorganisms9102014. [PMID: 34683335 PMCID: PMC8539515 DOI: 10.3390/microorganisms9102014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.
Collapse
|
26
|
Kay A, Boland L, Kidd SE, Beatty JA, Talbot JJ, Barrs VR. Complete clinical response to combined antifungal therapy in two cats with invasive fungal rhinosinusitis caused by cryptic Aspergillus species in section Fumigati. Med Mycol Case Rep 2021; 34:13-17. [PMID: 34540573 PMCID: PMC8437771 DOI: 10.1016/j.mmcr.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptic species in Aspergillus section Fumigati are increasingly reported to cause invasive aspergillosis in humans and animals. These infections are often refractory to treatment because of intrinsic antifungal resistance. We report two cases of invasive fungal rhinosinusitis in domestic cats caused by A. udagawae and A. felis. Clinical signs resolved after combined therapy including posaconazole, caspofungin and terbinafine. Both cases remained asymptomatic more than 2 years from initial presentation.
Collapse
Affiliation(s)
- Alexandra Kay
- Brunswick Central Vet Clinic, 210 Lygon Street, Brunswick East, VIC, 3055, Australia
| | - Lara Boland
- University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, NSW, 2006, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, Microbiology & Infectious Diseases, SA Pathology, Frome Rd, Adelaide, South Australia, 5000, Australia
| | - Julia A Beatty
- University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, NSW, 2006, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Jessica J Talbot
- University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, NSW, 2006, Australia
| | - Vanessa R Barrs
- University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, NSW, 2006, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
27
|
Steenwyk JL, Mead ME, de Castro PA, Valero C, Damasio A, dos Santos RAC, Labella AL, Li Y, Knowles SL, Raja HA, Oberlies NH, Zhou X, Cornely OA, Fuchs F, Koehler P, Goldman GH, Rokas A. Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiol Spectr 2021; 9:e0001021. [PMID: 34106569 PMCID: PMC8552514 DOI: 10.1128/spectrum.00010-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), first described in Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as opportunistic fungal pathogens from the genus Aspergillus. To gain insight into COVID-19-associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit significant differences from the genome of the Af293 reference strain. By examining a number of factors, including virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, secondary metabolite biosynthesis, and the MIC of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss-of-function mutations in genes known to increase virulence when deleted. Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains Af293 and CEA17, but similarly virulent to two other clinical strains of A. fumigatus. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA. IMPORTANCE The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has already killed millions of people. COVID-19 patient outcome can be further complicated by secondary infections, such as COVID-19-associated pulmonary aspergillosis (CAPA). CAPA is caused by Aspergillus fungal pathogens, but there is little information about the genomic and phenotypic characteristics of CAPA isolates. We conducted genome sequencing and extensive phenotyping of four CAPA isolates of Aspergillus fumigatus from Germany. We found that CAPA isolates were often, but not always, similar to other reference strains of A. fumigatus across 206 genetic determinants of infection-relevant phenotypes, including virulence. For example, CAPA isolate D was more virulent than other CAPA isolates and reference strains in an invertebrate model of fungal disease, but similarly virulent to two other clinical strains. These results expand our understanding of COVID-19-associated pulmonary aspergillosis.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Renato A. C. dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail L. Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Oliver A. Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- ZKS Köln, Clinical Trials Centre Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn‐Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Mead ME, Steenwyk JL, Silva LP, de Castro PA, Saeed N, Hillmann F, Goldman GH, Rokas A. An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi. Genetics 2021; 218:6263860. [PMID: 33944921 DOI: 10.1093/genetics/iyab066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
Aspergillosis is an important opportunistic human disease caused by filamentous fungi in the genus Aspergillus. Roughly 70% of infections are caused by Aspergillus fumigatus, with the rest stemming from approximately a dozen other Aspergillus species. Several of these pathogens are closely related to A. fumigatus and belong in the same taxonomic section, section Fumigati. Pathogenic species are frequently most closely related to nonpathogenic ones, suggesting Aspergillus pathogenicity evolved multiple times independently. To understand the repeated evolution of Aspergillus pathogenicity, we performed comparative genomic analyses on 18 strains from 13 species, including 8 species in section Fumigati, which aimed to identify genes, both ones previously connected to virulence as well as ones never before implicated, whose evolution differs between pathogens and nonpathogens. We found that most genes were present in all species, including approximately half of those previously connected to virulence, but a few genes were section- or species-specific. Evolutionary rate analyses identified over 1700 genes whose evolutionary rate differed between pathogens and nonpathogens and dozens of genes whose rates differed between specific pathogens and the rest of the taxa. Functional testing of deletion mutants of 17 transcription factor-encoding genes whose evolution differed between pathogens and nonpathogens identified eight genes that affect either fungal survival in a model of phagocytic killing, host survival in an animal model of fungal disease, or both. These results suggest that the evolution of pathogenicity in Aspergillus involved both conserved and species-specific genetic elements, illustrating how an evolutionary genomic approach informs the study of fungal disease.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lilian P Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nauman Saeed
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
29
|
Warner EF, Bohálová N, Brázda V, Waller ZAE, Bidula S. Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets? Microb Genom 2021; 7:000570. [PMID: 33956596 PMCID: PMC8209732 DOI: 10.1099/mgen.0.000570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/26/2022] Open
Abstract
Fungal infections cause >1 million deaths annually and the emergence of antifungal resistance has prompted the exploration for novel antifungal targets. Quadruplexes are four-stranded nucleic acid secondary structures, which can regulate processes such as transcription, translation, replication and recombination. They are also found in genes linked to virulence in microbes, and ligands that bind to quadruplexes can eliminate drug-resistant pathogens. Using a computational approach, we quantified putative quadruplex-forming sequences (PQS) in 1359 genomes across the fungal kingdom and explored their presence in genes related to virulence, drug resistance and biological processes associated with pathogenicity in Aspergillus fumigatus. Here we present the largest analysis of PQS in fungi and identify significant heterogeneity of these sequences throughout phyla, genera and species. PQS were genetically conserved in Aspergillus spp. and frequently pathogenic species appeared to contain fewer PQS than their lesser/non-pathogenic counterparts. GO-term analysis identified that PQS-containing genes were involved in processes linked with virulence such as zinc ion binding, the biosynthesis of secondary metabolites and regulation of transcription in A. fumigatus. Although the genome frequency of PQS was lower in A. fumigatus, PQS could be found enriched in genes involved in virulence, and genes upregulated during germination and hypoxia. Moreover, PQS were found in genes involved in drug resistance. Quadruplexes could have important roles within fungal biology and virulence, but their roles require further elucidation.
Collapse
Affiliation(s)
- Emily F. Warner
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Present address: Ikarovec Limited, Norwich Research Park Innovation Centre, Norwich, UK
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | | | - Stefan Bidula
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
30
|
El-Elimat T, Raja HA, Figueroa M, Al Sharie AH, Bunch RL, Oberlies NH. Freshwater Fungi as a Source of Chemical Diversity: A Review. JOURNAL OF NATURAL PRODUCTS 2021; 84:898-916. [PMID: 33662206 PMCID: PMC8127292 DOI: 10.1021/acs.jnatprod.0c01340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As their name indicates, freshwater fungi occur on submerged substrates in fresh water habitats. This review brings together the chemical diversity and biological activity of 199 of the 280 known freshwater fungal metabolites published from 1992 to 2020, representing at least seven structural classes, including polyketides, phenylpropanoids, terpenoids, meroterpenoids, alkaloids, polypeptides, and monosaccharides. In addition to describing what they are, where they are found, and what they do, we also discuss strategies for the collection, isolation, and identification of fungi from freshwater habitats, with the goal of enhancing chemists' knowledge of several mycological principles. We anticipate that this review will provide a springboard for future natural products studies from this fascinating but underexplored group of Ascomycota.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ahmed H. Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rick L. Bunch
- Department of Geography, Environment, and Sustainability, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
31
|
Gu X, Hua YH, Zhang YD, Bao DI, Lv J, Hu HF. The Pathogenesis of Aspergillus fumigatus, Host Defense Mechanisms, and the Development of AFMP4 Antigen as a Vaccine. Pol J Microbiol 2021; 70:3-11. [PMID: 33815522 PMCID: PMC8008755 DOI: 10.33073/pjm-2021-003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines' current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.
Collapse
Affiliation(s)
- Xiang Gu
- College of Law and Political Science, Nanjing University of Information Science and Technology, Nanjing, China.,The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yan-Hong Hua
- The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yang-Dong Zhang
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - D I Bao
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jin Lv
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hong-Fang Hu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
32
|
Pennerman KK, Yin G, Glenn AE, Bennett JW. Identifying candidate Aspergillus pathogenicity factors by annotation frequency. BMC Microbiol 2020; 20:342. [PMID: 33176679 PMCID: PMC7661267 DOI: 10.1186/s12866-020-02031-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Members of the genus Aspergillus display a variety of lifestyles, ranging from saprobic to pathogenic on plants and/or animals. Increased genome sequencing of economically important members of the genus permits effective use of "-omics" comparisons between closely related species and strains to identify candidate genes that may contribute to phenotypes of interest, especially relating to pathogenicity. Protein-coding genes were predicted from 216 genomes of 12 Aspergillus species, and the frequencies of various structural aspects (exon count and length, intron count and length, GC content, and codon usage) and functional annotations (InterPro, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes terms) were compared. RESULTS Using principal component analyses, the three sets of functional annotations for each strain were clustered by species. The species clusters appeared to separate by pathogenicity on plants along the first dimensions, which accounted for over 20% of the variance. More annotations for genes encoding pectinases and secondary metabolite biosynthetic enzymes were assigned to phytopathogenic strains from species such as Aspergillus flavus. In contrast, Aspergillus fumigatus strains, which are pathogenic to animals but not plants, were assigned relatively more terms related to phosphate transferases, and carbohydrate and amino-sugar metabolism. Analyses of publicly available RNA-Seq data indicated that one A. fumigatus protein among 17 amino-sugar processing candidates, a hexokinase, was up-regulated during co-culturing with human immune system cells. CONCLUSION Genes encoding hexokinases and other proteins of interest may be subject to future manipulations to further refine understanding of Aspergillus pathogenicity factors.
Collapse
Affiliation(s)
- Kayla K Pennerman
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA, 30605, USA.
| | - Guohua Yin
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Anthony E Glenn
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA, 30605, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
33
|
Steenwyk JL, Mead ME, de Castro PA, Valero C, Damasio A, dos Santos RAC, Labella AL, Li Y, Knowles SL, Raja HA, Oberlies NH, Zhou X, Cornely OA, Fuchs F, Koehler P, Goldman GH, Rokas A. Genomic and phenotypic analysis of COVID-19-associated pulmonary aspergillosis isolates of Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.06.371971. [PMID: 33173866 PMCID: PMC7654854 DOI: 10.1101/2020.11.06.371971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) first described from Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as fungal opportunistic pathogens from the genus Aspergillus . To gain insight into COVID-19 associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit major differences from the genome of the Af293 reference strain. By examining virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, and the minimum inhibitory concentration of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss of function mutations in genes known to increase virulence when deleted (e.g., in the FLEA gene, which encodes a lectin recognized by macrophages). Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains tested. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Renato A. C. dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail L. Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Oliver A. Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- ZKS Köln, Clinical Trials Centre Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Steenwyk JL, Mead ME, Knowles SL, Raja HA, Roberts CD, Bader O, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Variation Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of Virulence Across Aspergillus Species. Genetics 2020; 216:481-497. [PMID: 32817009 PMCID: PMC7536862 DOI: 10.1534/genetics.120.303549] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is a major human pathogen. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the genetic determinants of virulence (or "cards of virulence") that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. To examine whether secondary metabolism-associated cards of virulence vary between these species, we conducted extensive genomic and secondary metabolite profiling analyses of multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains. We identified two cards of virulence (gliotoxin and fumitremorgin) shared by all three species and three cards of virulence (trypacidin, pseurotin, and fumagillin) that are variable. For example, we found that all species and strains examined biosynthesized gliotoxin, which is known to contribute to virulence, consistent with the conservation of the gliotoxin biosynthetic gene cluster (BGC) across genomes. For other secondary metabolites, such as fumitremorgin, a modulator of host biology, we found that all species produced the metabolite but that there was strain heterogeneity in its production within species. Finally, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis. A. fumigatus biosynthesized fumagillin and pseurotin, while A. oerlinghausenensis biosynthesized fumagillin and A. fischeri biosynthesized neither. These biochemical differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075, Germany
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-900 Brazil
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
35
|
Dos Santos RAC, Steenwyk JL, Rivero-Menendez O, Mead ME, Silva LP, Bastos RW, Alastruey-Izquierdo A, Goldman GH, Rokas A. Genomic and Phenotypic Heterogeneity of Clinical Isolates of the Human Pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front Genet 2020; 11:459. [PMID: 32477406 PMCID: PMC7236307 DOI: 10.3389/fgene.2020.00459] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal pathogens are a global threat to human health. For example, fungi from the genus Aspergillus cause a spectrum of diseases collectively known as aspergillosis. Most of the >200,000 life-threatening aspergillosis infections per year worldwide are caused by Aspergillus fumigatus. Recently, molecular typing techniques have revealed that aspergillosis can also be caused by organisms that are phenotypically similar to A. fumigatus but genetically distinct, such as Aspergillus lentulus and Aspergillus fumigatiaffinis. Importantly, some of these so-called cryptic species are thought to exhibit different virulence and drug susceptibility profiles than A. fumigatus, however, our understanding of their biology and pathogenic potential has been stymied by the lack of genome sequences and phenotypic profiling of multiple clinical strains. To fill this gap, we phenotypically characterized the virulence and drug susceptibility of 15 clinical strains of A. fumigatus, A. lentulus, and A. fumigatiaffinis from Spain and sequenced their genomes. We found heterogeneity in drug susceptibility across species and strains. We further found heterogeneity in virulence within each species but no significant differences in the virulence profiles between the three species. Genes known to influence drug susceptibility (cyp51A and fks1) vary in paralog number and sequence among these species and strains and correlate with differences in drug susceptibility. Similarly, genes known to be important for virulence in A. fumigatus showed variability in number of paralogs across strains and across species. Characterization of the genomic similarities and differences of clinical strains of A. lentulus, A. fumigatiaffinis, and A. fumigatus that vary in disease-relevant traits will advance our understanding of the variance in pathogenicity between Aspergillus species and strains that are collectively responsible for the vast majority of aspergillosis infections in humans.
Collapse
Affiliation(s)
- Renato A C Dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Lilian P Silva
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael W Bastos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
36
|
Rokas A, Mead ME, Steenwyk JL, Oberlies NH, Goldman GH. Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity. PLoS Pathog 2020; 16:e1008315. [PMID: 32106242 PMCID: PMC7046185 DOI: 10.1371/journal.ppat.1008315] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Knowles SL, Raja HA, Isawi IH, Flores-Bocanegra L, Reggio PH, Pearce CJ, Burdette JE, Rokas A, Oberlies NH. Wheldone: Characterization of a Unique Scaffold from the Coculture of Aspergillus fischeri and Xylaria flabelliformis. Org Lett 2020; 22:1878-1882. [PMID: 32096649 PMCID: PMC7153779 DOI: 10.1021/acs.orglett.0c00219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Wheldone (1) was isolated and elucidated from a coculture of Aspergillus
fischeri (NRRL 181) and Xylaria flabelliformis (G536), where secondary metabolite biosynthesis was stimulated by
antagonism between these fungi. First observed via in situ analysis between these competing fungal cultures, the conditions
were scaled to reproducibly generate 1, whose novel structure
was elucidated by one- and two-dimensional NMR and mass spectrometry.
Compound 1 displayed cytotoxic activity against breast,
ovarian, and melanoma cancer cell lines.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Israa H Isawi
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Patricia H Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
38
|
Perlatti B, Lan N, Jiang Y, An Z, Bills G. Identification of Secondary Metabolites from Aspergillus pachycristatus by Untargeted UPLC-ESI-HRMS/MS and Genome Mining. Molecules 2020; 25:molecules25040913. [PMID: 32085602 PMCID: PMC7071103 DOI: 10.3390/molecules25040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
Aspergillus pachycristatus is an industrially important fungus for the production of the antifungal echinocandin B and is closely related to model organism A. nidulans. Its secondary metabolism is largely unknown except for the production of echinocandin B and sterigmatocystin. We constructed mutants for three genes that regulate secondary metabolism in A. pachycristatus NRRL 11440, and evaluated the secondary metabolites produced by wild type and mutants strains. The secondary metabolism was explored by metabolic networking of UPLC-HRMS/MS data. The genes and metabolites of A. pachycristatus were compared to those of A.nidulans FGSC A4 as a reference to identify compounds and link them to their encoding genes. Major differences in chromatographic profiles were observable among the mutants. At least 28 molecules were identified in crude extracts that corresponded to nine characterized gene clusters. Moreover, metabolic networking revealed the presence of a yet unexplored array of secondary metabolites, including several undescribed fellutamides derivatives. Comparative reference to its sister species, A. nidulans, was an efficient way to dereplicate known compounds, whereas metabolic networking provided information that allowed prioritization of unknown compounds for further metabolic exploration. The mutation of global regulator genes proved to be a useful tool for expanding the expression of metabolic diversity in A. pachycristatus.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
- Correspondence:
| | - Nan Lan
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
| | - Yongying Jiang
- Institute for Applied Cancer Science, M.D. Anderson Cancer Center, Houston, TX 77054, USA;
| | - Zhiqiang An
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
| | - Gerald Bills
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.L.); (Z.A.); (G.B.)
| |
Collapse
|
39
|
Knowles SL, Mead ME, Silva LP, Raja HA, Steenwyk JL, Goldman GH, Oberlies NH, Rokas A. Gliotoxin, a Known Virulence Factor in the Major Human Pathogen Aspergillus fumigatus, Is Also Biosynthesized by Its Nonpathogenic Relative Aspergillus fischeri. mBio 2020; 11:e03361-19. [PMID: 32047138 PMCID: PMC7018655 DOI: 10.1128/mbio.03361-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a major opportunistic human pathogen. Multiple traits contribute to A. fumigatus pathogenicity, including its ability to produce specific secondary metabolites, such as gliotoxin. Gliotoxin is known to inhibit the host immune response, and genetic mutants that inactivate gliotoxin biosynthesis (or secondary metabolism in general) attenuate A. fumigatus virulence. The genome of Aspergillus fischeri, a very close nonpathogenic relative of A. fumigatus, contains a biosynthetic gene cluster that is homologous to the A. fumigatus gliotoxin cluster. However, A. fischeri is not known to produce gliotoxin. To gain further insight into the similarities and differences between the major pathogen A. fumigatus and the nonpathogen A. fischeri, we examined whether A. fischeri strain NRRL 181 biosynthesizes gliotoxin and whether the production of secondary metabolites influences the virulence profile of A. fischeri We found that A. fischeri biosynthesizes gliotoxin under the same conditions as A. fumigatus However, whereas loss of laeA, a master regulator of secondary metabolite production (including gliotoxin biosynthesis), has previously been shown to reduce A. fumigatus virulence, we found that laeA loss (and loss of secondary metabolite production) in A. fischeri does not influence its virulence. These results suggest that LaeA-regulated secondary metabolites are virulence factors in the genomic and phenotypic background of the major pathogen A. fumigatus but are much less important in the background of the nonpathogen A. fischeri Understanding the observed spectrum of pathogenicity across closely related pathogenic and nonpathogenic Aspergillus species will require detailed characterization of their biological, chemical, and genomic similarities and differences.IMPORTANCEAspergillus fumigatus is a major opportunistic fungal pathogen of humans, but most of its close relatives are nonpathogenic. Why is that so? This important, yet largely unanswered, question can be addressed by examining how A. fumigatus and its close nonpathogenic relatives are similar or different with respect to virulence-associated traits. We investigated whether Aspergillus fischeri, a nonpathogenic close relative of A. fumigatus, can produce gliotoxin, a mycotoxin known to contribute to A. fumigatus virulence. We discovered that the nonpathogenic A. fischeri produces gliotoxin under the same conditions as those of the major pathogen A. fumigatus However, we also discovered that, in contrast to what has previously been observed in A. fumigatus, the loss of secondary metabolite production in A. fischeri does not alter its virulence. Our results are consistent with the "cards of virulence" model of opportunistic fungal disease, in which the ability to cause disease stems from the combination ("hand") of virulence factors ("cards") but not from individual factors per se.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lilian Pereira Silva
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Knowles SL, Vu N, Todd DA, Raja HA, Rokas A, Zhang Q, Oberlies NH. Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS). JOURNAL OF NATURAL PRODUCTS 2019; 82:3421-3431. [PMID: 31823607 PMCID: PMC7004233 DOI: 10.1021/acs.jnatprod.9b00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.
Collapse
Affiliation(s)
- Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| |
Collapse
|
41
|
Genome Sequences of Two Strains of the Food Spoilage Mold Aspergillus fischeri. Microbiol Resour Announc 2019; 8:8/50/e01328-19. [PMID: 31831615 PMCID: PMC6908800 DOI: 10.1128/mra.01328-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fischeri is a common food spoilage fungus and a close relative of the opportunistic human pathogen Aspergillus fumigatus. Here, we sequenced the genomes of two isolates of A. fischeri to build resources for comparative genomics and to aid in differentiation between A. fischeri subspecies. Aspergillus fischeri is a common food spoilage fungus and a close relative of the opportunistic human pathogen Aspergillus fumigatus. Here, we sequenced the genomes of two isolates of A. fischeri to build resources for comparative genomics and to aid in differentiation between A. fischeri subspecies.
Collapse
|
42
|
A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera Aspergillus and Penicillium. mBio 2019; 10:mBio.00925-19. [PMID: 31289177 PMCID: PMC6747717 DOI: 10.1128/mbio.00925-19] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Understanding the evolution of traits across technologically and medically significant fungi requires a robust phylogeny. Even though species in the Aspergillus and Penicillium genera (family Aspergillaceae, class Eurotiomycetes) are some of the most significant technologically and medically relevant fungi, we still lack a genome-scale phylogeny of the lineage or knowledge of the parts of the phylogeny that exhibit conflict among analyses. Here, we used a phylogenomic approach to infer evolutionary relationships among 81 genomes that span the diversity of Aspergillus and Penicillium species, to identify conflicts in the phylogeny, and to determine the likely underlying factors of the observed conflicts. Using a data matrix comprised of 1,668 genes, we found that while most branches of the phylogeny of the Aspergillaceae are robustly supported and recovered irrespective of method of analysis, a few exhibit various degrees of conflict among our analyses. Further examination of the observed conflict revealed that it largely stems from incomplete lineage sorting and hybridization or introgression. Our analyses provide a robust and comprehensive evolutionary genomic roadmap for this important lineage, which will facilitate the examination of the diverse technologically and medically relevant traits of these fungi in an evolutionary context. The filamentous fungal family Aspergillaceae contains >1,000 known species, mostly in the genera Aspergillus and Penicillium. Several species are used in the food, biotechnology, and drug industries (e.g., Aspergillus oryzae and Penicillium camemberti), while others are dangerous human and plant pathogens (e.g., Aspergillus fumigatus and Penicillium digitatum). To infer a robust phylogeny and pinpoint poorly resolved branches and their likely underlying contributors, we used 81 genomes spanning the diversity of Aspergillus and Penicillium to construct a 1,668-gene data matrix. Phylogenies of the nucleotide and amino acid versions of this full data matrix as well as of several additional data matrices were generated using three different maximum likelihood schemes (i.e., gene-partitioned, unpartitioned, and coalescence) and using both site-homogenous and site-heterogeneous models (total of 64 species-level phylogenies). Examination of the topological agreement among these phylogenies and measures of internode certainty identified 11/78 (14.1%) bipartitions that were incongruent and pinpointed the likely underlying contributing factors, which included incomplete lineage sorting, hidden paralogy, hybridization or introgression, and reconstruction artifacts associated with poor taxon sampling. Relaxed molecular clock analyses suggest that Aspergillaceae likely originated in the lower Cretaceous and that the Aspergillus and Penicillium genera originated in the upper Cretaceous. Our results shed light on the ongoing debate on Aspergillus systematics and taxonomy and provide a robust evolutionary and temporal framework for comparative genomic analyses in Aspergillaceae. More broadly, our approach provides a general template for phylogenomic identification of resolved and contentious branches in densely genome-sequenced lineages across the tree of life.
Collapse
|
43
|
Knowles SL, Raja HA, Wright AJ, Lee AML, Caesar LK, Cech NB, Mead ME, Steenwyk JL, Ries LNA, Goldman GH, Rokas A, Oberlies NH. Mapping the Fungal Battlefield: Using in situ Chemistry and Deletion Mutants to Monitor Interspecific Chemical Interactions Between Fungi. Front Microbiol 2019; 10:285. [PMID: 30837981 PMCID: PMC6389630 DOI: 10.3389/fmicb.2019.00285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Fungi grow in competitive environments, and to cope, they have evolved strategies, such as the ability to produce a wide range of secondary metabolites. This begs two related questions. First, how do secondary metabolites influence fungal ecology and interspecific interactions? Second, can these interspecific interactions provide a way to “see” how fungi respond, chemically, within a competitive environment? To evaluate these, and to gain insight into the secondary metabolic arsenal fungi possess, we co-cultured Aspergillus fischeri, a genetically tractable fungus that produces a suite of mycotoxins, with Xylaria cubensis, a fungus that produces the fungistatic compound and FDA-approved drug, griseofulvin. To monitor and characterize fungal chemistry in situ, we used the droplet-liquid microjunction-surface sampling probe (droplet probe). The droplet probe makes a microextraction at defined locations on the surface of the co-culture, followed by analysis of the secondary metabolite profile via liquid chromatography-mass spectrometry. Using this, we mapped and compared the spatial profiles of secondary metabolites from both fungi in monoculture versus co-culture. X. cubensis predominantly biosynthesized griseofulvin and dechlorogriseofulvin in monoculture. In contrast, under co-culture conditions a deadlock was formed between the two fungi, and X. cubensis biosynthesized the same two secondary metabolites, along with dechloro-5′-hydroxygriseofulvin and 5′-hydroxygriseofulvin, all of which have fungistatic properties, as well as mycotoxins like cytochalasin D and cytochalasin C. In contrast, in co-culture, A. fischeri increased the production of the mycotoxins fumitremorgin B and verruculogen, but otherwise remained unchanged relative to its monoculture. To evaluate that secondary metabolites play an important role in defense and territory establishment, we co-cultured A. fischeri lacking the master regulator of secondary metabolism laeA with X. cubensis. We found that the reduced secondary metabolite biosynthesis of the ΔlaeA strain of A. fischeri eliminated the organism’s ability to compete in co-culture and led to its displacement by X. cubensis. These results demonstrate the potential of in situ chemical analysis and deletion mutant approaches for shedding light on the ecological roles of secondary metabolites and how they influence fungal ecological strategies; co-culturing may also stimulate the biosynthesis of secondary metabolites that are not produced in monoculture in the laboratory.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Allison J Wright
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Ann Marie L Lee
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay K Caesar
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Laure N A Ries
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|