1
|
Dickey TH, McAleese H, Salinas ND, Lambert LE, Tolia NH. Structure-based design of a Plasmodium vivax Duffy-binding protein immunogen focuses the antibody response to functional epitopes. Protein Sci 2024; 33:e5095. [PMID: 38988315 PMCID: PMC11237555 DOI: 10.1002/pro.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024]
Abstract
The Duffy-binding protein (DBP) is a promising antigen for a malaria vaccine that would protect against clinical symptoms caused by Plasmodium vivax infection. Region II of DBP (DBP-II) contains the receptor-binding domain that engages host red blood cells, but DBP-II vaccines elicit many non-neutralizing antibodies that bind distal to the receptor-binding surface. Here, we engineered a truncated DBP-II immunogen that focuses the immune response to the receptor-binding surface. This immunogen contains the receptor-binding subdomain S1S2 and lacks the immunodominant subdomain S3. Structure-based computational design of S1S2 identified combinatorial amino acid changes that stabilized the isolated S1S2 without perturbing neutralizing epitopes. This immunogen elicited DBP-II-specific antibodies in immunized mice that were significantly enriched for blocking activity compared to the native DBP-II antigen. This generalizable design process successfully stabilized an integral core fragment of a protein and focused the immune response to desired epitopes to create a promising new antigen for malaria vaccine development.
Collapse
MESH Headings
- Protozoan Proteins/immunology
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Plasmodium vivax/immunology
- Animals
- Malaria Vaccines/immunology
- Malaria Vaccines/chemistry
- Epitopes/immunology
- Epitopes/chemistry
- Mice
- Antibodies, Protozoan/immunology
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Models, Molecular
- Malaria, Vivax/immunology
- Malaria, Vivax/prevention & control
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Thayne H. Dickey
- Host‐Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Holly McAleese
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Nichole D. Salinas
- Host‐Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Lynn E. Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| | - Niraj H. Tolia
- Host‐Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
2
|
Hernández-Zambrano LJ, Alfonso-González H, Buitrago SP, Castro-Cavadía CJ, Garzón-Ospina D. Exploring the genetic diversity pattern of PvEBP/DBP2: A promising candidate for an effective Plasmodium vivax vaccine. Acta Trop 2024; 255:107231. [PMID: 38685340 DOI: 10.1016/j.actatropica.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Malaria remains a public health challenge. Since many control strategies have proven ineffective in eradicating this disease, new strategies are required, among which the design of a multivalent vaccine stands out. However, the effectiveness of this strategy has been hindered, among other reasons, by the genetic diversity observed in parasite antigens. In Plasmodium vivax, the Erythrocyte Binding Protein (PvEBP, also known as DBP2) is an alternate ligand to Duffy Binding Protein (DBP); given its structural resemblance to DBP, EBP/DBP2 is proposed as a promising antigen for inclusion in vaccine design. However, the extent of genetic diversity within the locus encoding this protein has not been comprehensively assessed. Thus, this study aimed to characterize the genetic diversity of the locus encoding the P. vivax EBP/DBP2 protein and to determine the evolutionary mechanisms modulating this diversity. Several intrapopulation genetic variation parameters were estimated using 36 gene sequences of PvEBP/DBP2 from Colombian P. vivax clinical isolates and 186 sequences available in databases. The study then evaluated the worldwide genetic structure and the evolutionary forces that may influence the observed patterns of genetic variation. It was found that the PvEBP/DBP2 gene exhibits one of the lowest levels of genetic diversity compared to other vaccine-candidate antigens. Four major haplotypes were shared worldwide. Analysis of the protein's 3D structure and epitope prediction identified five regions with potential antigenic properties. The results suggest that the PvEBP/DBP2 protein possesses ideal characteristics to be considered when designing a multivalent effective antimalarial vaccine against P. vivax.
Collapse
Affiliation(s)
- Laura J Hernández-Zambrano
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Heliairis Alfonso-González
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Sindy P Buitrago
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Carlos J Castro-Cavadía
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), School of Health Sciences, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Diego Garzón-Ospina
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia.
| |
Collapse
|
3
|
Dickey TH, Tolia NH. Designing an effective malaria vaccine targeting Plasmodium vivax Duffy-binding protein. Trends Parasitol 2023; 39:850-858. [PMID: 37481347 PMCID: PMC11099547 DOI: 10.1016/j.pt.2023.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023]
Abstract
Malaria caused by the Plasmodium vivax parasite is a major global health burden. Immunity against blood-stage infection reduces parasitemia and disease severity. Duffy-binding protein (DBP) is the primary parasite protein responsible for the invasion of red blood cells and it is a leading subunit vaccine candidate. An effective vaccine, however, is still lacking despite decades of interest in DBP as a vaccine candidate. This review discusses the reasons for targeting DBP, the challenges associated with developing a vaccine, and modern structural vaccinology methods that could be used to create an effective DBP vaccine. Next-generation DBP vaccines have the potential to elicit a broadly protective immune response and provide durable and potent protection from P. vivax malaria.
Collapse
Affiliation(s)
- Thayne H Dickey
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
4
|
Ren Z, Shi Q, Xu S, Xu J, Yin Y, Lin Z, Xu S, Ma X, Liu Y, Zhu G, He X, Lu J, Li Y, Zhang W, Liu J, Yang Y, Han ET, Cao J, Lu F. Elicitation of T-cell-derived IFN-γ-dependent immunity by highly conserved Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII). Parasit Vectors 2023; 16:269. [PMID: 37553591 PMCID: PMC10410920 DOI: 10.1186/s13071-023-05897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease has been underestimated. Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII) is an essential ligand for reticulocyte recognition and host cell invasion by P. ovale curtisi. However, the genomic variation, antigenicity and immunogenicity of PocDBP-RII remain major knowledge gaps. METHODS A total of 93 P. ovale curtisi samples were collected from migrant workers who returned to China from 17 countries in Africa between 2012 and 2016. The genetic polymorphism, natural selection and copy number variation (CNV) were investigated by sequencing and real-time PCR. The antigenicity and immunogenicity of the recombinant PocDBP-RII (rPocDBP-RII) protein were further examined, and the humoral and cellular responses of immunized mice were assessed using protein microarrays and flow cytometry. RESULTS Efficiently expressed and purified rPocDBP-RII (39 kDa) was successfully used as an antigen for immunization in mice. The haplotype diversity (Hd) of PocDBP-RII gene was 0.105, and the nucleotide diversity index (π) was 0.00011. No increased copy number was found among the collected isolates of P. ovale curtisi. Furthermore, rPocDBP-RII induced persistent antigen-specific antibody production with a serum IgG antibody titer of 1: 16,000. IFN-γ-producing T cells, rather than IL-10-producing cells, were activated in response to the stimulation of rPocDBP-RII. Compared to PBS-immunized mice (negative control), there was a higher percentage of CD4+CD44highCD62L- T cells (effector memory T cells) and CD8+CD44highCD62L+ T cells (central memory T cells) in rPocDBP-RII‑immunized mice. CONCLUSIONS PocDBP-RII sequences were highly conserved in clinical isolates of P. ovale curtisi. rPocDBP-RII protein could mediate protective blood-stage immunity through IFN-γ-producing CD4+ and CD8+ T cells and memory T cells, in addition to inducing specific antibodies. Our results suggested that rPocDBP-RII protein has potential as a vaccine candidate to provide assessment and guidance for malaria control and elimination activities.
Collapse
Affiliation(s)
- Zhenyu Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiyang Shi
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Simin Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Changshu Second People's Hospital, Suzhou, 215500, Jiangsu, People's Republic of China
| | - Jiahui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yi Yin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhijie Lin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Sui Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xiaoqin Ma
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xinlong He
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jingyuan Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yinyue Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Wenwen Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiali Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yun Yang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.
| | - Feng Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Affiliated Hospital of Yangzhou University, Yangzhou, 225000, People's Republic of China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
5
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
6
|
Thawornpan P, Changrob S, Kochayoo P, Wangriatisak K, Ntumngia FB, De SL, Han ET, Adams JH, Chootong P. Cross-reactive inhibitory antibody and memory B cell responses to variant strains of Duffy binding protein II at post-Plasmodium vivax infection. PLoS One 2022; 17:e0276335. [PMID: 36256619 PMCID: PMC9578595 DOI: 10.1371/journal.pone.0276335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Duffy binding protein region II (DBPII) is considered a strong potential vaccine candidate of blood-stage P. vivax. However, the highly polymorphic nature of this protein often misdirects immune responses, leading them to be strain-specific. Details of cross-reactive humoral immunity to DBPII variants have therefore become an important focus for the development of broadly protective vaccines. Here, cross-reactive humoral immunity against a panel of Thai DBPII variants (DBL-THs) was demonstrated in immunized BALB/c mice and P. vivax patients, by in vitro erythrocyte-binding inhibition assay. Sera from immunized animals showed both strain-transcending (anti-DBL-TH2 and -TH4) and strain-specific (anti-DBL-TH5, -TH6 and -TH9) binding to DBL-TH variants. Using anti-DBL-TH sera at 50% inhibitory concentration (IC50) of the homologous strain, anti-DBL-TH2 sera showed cross inhibition to heterologous DBL-TH strains, whereas anti-DBL-TH5 sera exhibited only strain-specific inhibition. In P. vivax patients, 6 of 15 subjects produced and maintained cross-reactive anti-DBL-TH inhibitory antibodies through the 1-year post-infection timepoint. Cross-reactive memory B cell (MBC) responses to DBL-TH variants were analyzed in subjects recovered from P. vivax infection (RC). The plasma samples from 5 RC subjects showed broad inhibition. However, MBC-derived antibodies of these patients did not reveal cross-inhibition. Altogether, broadly anti-DBP variant inhibitory antibodies developed and persisted in P. vivax infections. However, the presence of cross-reactive anti-DBL-TH inhibitory function post-infection was not related with MBC responses to these variants. More detailed investigation of long-lasting, broadly protective antibodies to DBPII will guide the design of vivax malaria vaccines.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Siriruk Changrob
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Sai Lata De
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
7
|
Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. NANOSCALE 2022; 14:5942-5959. [PMID: 35389413 DOI: 10.1039/d1nr08064d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamentous bacteriophages are natural nanoparticles formed by the self-assembly of structural proteins that have the capability of replication and infection. They are used as a highly efficient vaccine platform to enhance immunogenicity and effectively stimulate the innate and adaptive immune response. Compared with traditional vaccines, phage-based vaccines offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. This review summarizes recent research on phage-based vaccines in virus prevention. In addition, the expression systems of filamentous phage-based virus vaccines and their application principles are discussed. Moreover, the prospect of the prevention of emerging infectious diseases, such as coronavirus 2019 (COVID-19), is also discussed.
Collapse
Affiliation(s)
- Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun 130024, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| |
Collapse
|
8
|
New highly antigenic linear B cell epitope peptides from PvAMA-1 as potential vaccine candidates. PLoS One 2021; 16:e0258637. [PMID: 34727117 PMCID: PMC8562794 DOI: 10.1371/journal.pone.0258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.
Collapse
|
9
|
Ndegwa DN, Kundu P, Hostetler JB, Marin-Menendez A, Sanderson T, Mwikali K, Verzier LH, Coyle R, Adjalley S, Rayner JC. Using Plasmodium knowlesi as a model for screening Plasmodium vivax blood-stage malaria vaccine targets reveals new candidates. PLoS Pathog 2021; 17:e1008864. [PMID: 34197567 PMCID: PMC8279373 DOI: 10.1371/journal.ppat.1008864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 07/14/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.
Collapse
Affiliation(s)
- Duncan N. Ndegwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| | - Jessica B. Hostetler
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lisa H. Verzier
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sophie Adjalley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| |
Collapse
|
10
|
De SL, May S, Shah K, Slawinski M, Changrob S, Xu S, Barnes SJ, Chootong P, Ntumngia FB, Adams JH. Variable immunogenicity of a vivax malaria blood-stage vaccine candidate. Vaccine 2021; 39:2668-2675. [PMID: 33840564 DOI: 10.1016/j.vaccine.2021.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/25/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Relapsing malaria caused by Plasmodium vivax is a neglected tropical disease and an important cause of malaria worldwide. Vaccines to prevent clinical disease and mosquito transmission of vivax malaria are needed to overcome the distinct challenges of this important public health problem. In this vaccine immunogenicity study in mice, we examined key variables of responses to a P. vivax Duffy binding protein vaccine, a leading candidate to prevent the disease-causing blood-stages. Significant sex-dependent differences were observed in B cell (CD80+) and T cell (CD8+) central memory subsets, resulting in significant differences in functional immunogenicity and durability of anti-DBP protective efficacy. These significant sex-dependent differences in inbred mice were in the CD73+CD80+ memory B cell, H2KhiCD38hi/lo, and effector memory subsets. This study highlights sex and immune genes as critical variables that can impact host responses to P. vivax antigens and must be taken into consideration when designing clinical vaccine studies.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Samuel May
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Keshav Shah
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Michelle Slawinski
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Siriruk Changrob
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Shulin Xu
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States.
| |
Collapse
|
11
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
12
|
Almeida-de-Oliveira NK, de Abreu-Fernandes R, Lima-Cury L, de Lavigne AR, de Pina-Costa A, Perce-da-Silva DDS, Catanho M, Rossi AD, Brasil P, Tadeu Daniel-Ribeiro C, Ferreira-da-Cruz MDF. Balancing selection and high genetic diversity of Plasmodium vivax circumsporozoite central region in parasites from Brazilian Amazon and Rio de Janeiro Atlantic Forest. PLoS One 2020; 15:e0241426. [PMID: 33166298 PMCID: PMC7652573 DOI: 10.1371/journal.pone.0241426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/14/2020] [Indexed: 11/19/2022] Open
Abstract
Circumsporozoite protein (CSP) is the primary pre-erythrocytic vaccine target in Plasmodium species. Knowledge about their genetic diversity can help predict vaccine efficacy and the spread of novel parasite variants. Thus, we investigated pvcsp gene polymorphisms in 219 isolates (136 from Brazilian Amazon [BA], 71 from Rio de Janeiro Atlantic Forest [AF], and 12 from non-Brazilian countries [NB]). Forty-eight polymorphic sites were detected, 46 in the central repeat region (CR), and two in the C-terminal region. Also, the CR presents InDels and a variable number of repeats. All samples correspond to the VK210 variant, and 24 VK210 subtypes based on CR. Nucleotide diversity (π = 0.0135) generated a significant number of haplotypes (168) with low genetic differentiation between the Brazilian regions (Fst = 0.208). The haplotype network revealed similar distances among the BA and AF regions. The linkage disequilibrium indicates that recombination does not seem to be acting in diversity, reinforcing natural selection's role in accelerating adaptive evolution. The high diversity (low Fst) and polymorphism frequencies could be indicators of balancing selection. Although malaria in BA and AF have distinct vector species and different host immune pressures, consistent genetic signature was found in two regions. The immunodominant B-cell epitope mapped in the CR varies from seven to 19 repeats. The CR T-cell epitope is conserved only in 39 samples. Concerning to C-terminal region, the Th2R epitope presented nonsynonymous SNP only in 6% of Brazilian samples, and the Th3R epitope remained conserved in all studied regions. We conclude that, although the uneven distribution of alleles may jeopardize the deployment of vaccines directed to a specific variable locus, a unique vaccine formulation could protect populations in all Brazilian regions.
Collapse
Affiliation(s)
- Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Lidiane Lima-Cury
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Aline Rosa de Lavigne
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
- Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, Rio de Janeiro, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Marcos Catanho
- Laboratório de Genética Molecular de Microrganismos, IOC, Fiocruz, Rio de Janeiro, Brazil
| | - Atila Duque Rossi
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Kanjee U, Grüring C, Babar P, Meyers A, Dash R, Pereira L, Mascarenhas A, Chaand M, Rangel GW, Clark MA, Chery L, Gomes E, Rathod PK, Duraisingh MT. Plasmodium vivax Strains Use Alternative Pathways for Invasion. J Infect Dis 2020; 223:1817-1821. [PMID: 32941614 DOI: 10.1093/infdis/jiaa592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Plasmodium vivax has 2 invasion ligand/host receptor pathways (P. vivax Duffy-binding protein/Duffy antigen receptor for chemokines [DARC] and P. vivax reticulocyte binding protein 2b/transferrin receptor [TfR1]) that are promising targets for therapeutic intervention. We optimized invasion assays with isogenic cultured reticulocytes. Using a receptor blockade approach with multiple P. vivax isolates, we found that all strains utilized both DARC and TfR1, but with significant variation in receptor usage. This suggests that P. vivax, like Plasmodium falciparum, uses alternative invasion pathways, with implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Usheer Kanjee
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Christof Grüring
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Prasad Babar
- University of Washington, Seattle, Washington, USA.,Department of Medicine, Goa Medical College Hospital, Bambolim, Goa, India
| | - Anosha Meyers
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rashmi Dash
- University of Washington, Seattle, Washington, USA.,Department of Medicine, Goa Medical College Hospital, Bambolim, Goa, India
| | - Ligia Pereira
- University of Washington, Seattle, Washington, USA.,Department of Medicine, Goa Medical College Hospital, Bambolim, Goa, India
| | - Anjali Mascarenhas
- University of Washington, Seattle, Washington, USA.,Department of Medicine, Goa Medical College Hospital, Bambolim, Goa, India
| | - Mudit Chaand
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gabriel W Rangel
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Martha A Clark
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura Chery
- University of Washington, Seattle, Washington, USA
| | - Edwin Gomes
- Department of Medicine, Goa Medical College Hospital, Bambolim, Goa, India
| | | | | |
Collapse
|
14
|
Generation of a Peptide Vaccine Candidate against Falciparum Placental Malaria Based on a Discontinuous Epitope. Vaccines (Basel) 2020; 8:vaccines8030392. [PMID: 32708370 PMCID: PMC7564767 DOI: 10.3390/vaccines8030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
In pregnant women, Plasmodium falciparum-infected red blood cells adhere to the placenta via the parasite protein VAR2CSA. Two vaccine candidates based on VAR2CSA are currently in clinical trials; however, these candidates failed to elicit strain-transcending antibody responses. We previously showed that a cross-reactive monoclonal antibody (3D10) raised against the P. vivax antigen PvDBP targets epitopes in VAR2CSA. We now aim to design a peptide vaccine against VAR2CSA based on the epitope that generated 3D10. We mapped the epitope to subdomain 1 (SD1) of PvDBP and identified a peptide that contained the minimal sequence. However, this peptide did not elicit cross-reactive VAR2CSA antibodies in mice. When tested against a broader, overlapping peptide array spanning SD1, 3D10 in fact recognized a discontinuous epitope consisting of three segments of SD1. These findings presented the challenge to generate this larger structural epitope as a synthetic peptide since it is stabilized by two pairs of disulfide bonds. We overcame this using a synthetic scaffold to conformationally constrain the SD1 peptide and coupled it to keyhole limpet hemocyanin (KLH). The SD1-KLH conjugate elicited antibodies in mice that cross-reacted with VAR2CSA. This strategy successfully recapitulated a discontinuous epitope with a synthetic peptide and represents the first heterologous vaccine candidate against VAR2CSA.
Collapse
|
15
|
Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci 2020; 21:ijms21134729. [PMID: 32630804 PMCID: PMC7370042 DOI: 10.3390/ijms21134729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022] Open
Abstract
Protein-protein interactions (IPP) play an essential role in practically all biological processes, including those related to microorganism invasion of their host cells. It has been found that a broad repertoire of receptor-ligand interactions takes place in the binding interphase with host cells in malaria, these being vital interactions for successful parasite invasion. Several trials have been conducted for elucidating the molecular interface of interactions between some Plasmodium falciparum and Plasmodium vivax antigens with receptors on erythrocytes and/or reticulocytes. Structural information concerning these complexes is available; however, deeper analysis is required for correlating structural, functional (binding, invasion, and inhibition), and polymorphism data for elucidating new interaction hotspots to which malaria control methods can be directed. This review describes and discusses recent structural and functional details regarding three relevant interactions during erythrocyte invasion: Duffy-binding protein 1 (DBP1)–Duffy antigen receptor for chemokines (DARC); reticulocyte-binding protein homolog 5 (PfRh5)-basigin, and erythrocyte binding antigen 175 (EBA175)-glycophorin A (GPA).
Collapse
|
16
|
Medeiros CMP, Moreira EUM, Pires CV, Torres LM, Guimarães LFF, Alves JRS, Lima BAS, Fontes CJF, Costa HL, Brito CFA, Sousa TN, Ntumngia FB, Adams JH, Kano FS, Carvalho LH. Dynamics of IgM and IgG responses to the next generation of engineered Duffy binding protein II immunogen: Strain-specific and strain-transcending immune responses over a nine-year period. PLoS One 2020; 15:e0232786. [PMID: 32379804 PMCID: PMC7205269 DOI: 10.1371/journal.pone.0232786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A low proportion of P. vivax-exposed individuals acquire protective strain-transcending neutralizing IgG antibodies that are able to block the interaction between the Duffy binding protein II (DBPII) and its erythrocyte-specific invasion receptor. In a recent study, a novel surface-engineered DBPII-based vaccine termed DEKnull-2, whose antibody response target conserved DBPII epitopes, was able to induce broadly binding-inhibitory IgG antibodies (BIAbs) that inhibit P. vivax reticulocyte invasion. Toward the development of DEKnull-2 as an effective P. vivax blood-stage vaccine, we investigate the relationship between naturally acquired DBPII-specific IgM response and the profile of IgG antibodies/BIAbs activity over time. METHODOLOGY/PRINCIPAL FINDINGS A nine-year follow-up study was carried-out among long-term P. vivax-exposed Amazonian individuals and included six cross-sectional surveys at periods of high and low malaria transmission. DBPII immune responses associated with either strain-specific (Sal1, natural DBPII variant circulating in the study area) or conserved epitopes (DEKnull-2) were monitored by conventional serology (ELISA-detected IgM and IgG antibodies), with IgG BIAbs activity evaluated by functional assays (in vitro inhibition of DBPII-erythrocyte binding). The results showed a tendency of IgM antibodies toward Sal1-specific response; the profile of Sal1 over DEKnull-2 was not associated with acute malaria and sustained throughout the observation period. The low malaria incidence in two consecutive years allowed us to demonstrate that variant-specific IgG (but not IgM) antibodies waned over time, which resulted in IgG skewed to the DEKnull-2 response. A persistent DBPII-specific IgM response was not associated with the presence (or absence) of broadly neutralizing IgG antibody response. CONCLUSIONS/SIGNIFICANCE The current study demonstrates that long-term exposure to low and unstable levels of P. vivax transmission led to a sustained DBPII-specific IgM response against variant-specific epitopes, while sustained IgG responses are skewed to conserved epitopes. Further studies should investigate on the role of a stable and persistent IgM antibody response in the immune response mediated by DBPII.
Collapse
Affiliation(s)
- Camila M. P. Medeiros
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Camilla V. Pires
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Letícia M. Torres
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Bárbara A. S. Lima
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Cor J. F. Fontes
- Hospital Júlio Muller, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Helena L. Costa
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | | | - Tais N. Sousa
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Flora S. Kano
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- * E-mail: (LHC); (FSK)
| | - Luzia H. Carvalho
- Centro de Pesquisas René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail: (LHC); (FSK)
| |
Collapse
|
17
|
Almeida-de-Oliveira NK, Lima-Cury L, de Abreu-Fernandes R, de Rosa Lavigne A, de Pina-Costa A, de Souza Perce-da-Silva D, Catanho M, Brasil P, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Extensive genetic diversity of Plasmodium vivax dbp-II in Rio de Janeiro Atlantic Forest and Brazilian Amazon Basin: evidence of positive selection. Malar J 2020; 19:81. [PMID: 32075659 PMCID: PMC7031913 DOI: 10.1186/s12936-020-03159-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium vivax is the most widespread human malaria parasite outside Africa and is the predominant parasite in the Americas. Increasing reports of P. vivax disease severity, together with the emergence of drug-resistant strains, underscore the urgency of the development of vaccines against P. vivax. Polymorphisms on DBP-II-gene could act as an immune evasion mechanism and, consequently, limited the vaccine efficacy. This study aimed to investigate the pvdbp-II genetic diversity in two Brazilian regions with different epidemiological patterns: the unstable transmission area in the Atlantic Forest (AF) of Rio de Janeiro and; the fixed malaria-endemic area in Brazilian Amazon (BA). Methods 216 Brazilian P. vivax infected blood samples, diagnosed by microscopic examination and PCR, were investigated. The region flanking pvdbp-II was amplified by PCR and sequenced. Genetic polymorphisms of pvdbp-II were estimated based on the number of segregating sites and nucleotide and haplotype diversities; the degree of differentiation between-regions was evaluated applying Wright’s statistics. Natural selection was calculated using the rate of nonsynonymous per synonymous substitutions with the Z-test, and the evolutionary distance was estimated based on the reconstructed tree. Results 79 samples from AF and 137 from BA were successfully sequenced. The analyses showed 28 polymorphic sites distributed in 21 codons, with only 5% of the samples Salvador 1 type. The highest rates of polymorphic sites were found in B- and T cell epitopes. Unexpectedly, the nucleotide diversity in pvdbp-II was higher in AF (0.01) than in BA (0.008). Among the 28 SNPs detected, 18 are shared between P. vivax isolates from AF and BA regions, but 8 SNPs were exclusively detected in AF—I322S, K371N, E385Q, E385T, K386T, K411N, I419L and I419R—and 2 (N375D and I419M) arose exclusively in BA. These findings could suggest the potential of these geographical clusters as population-specific-signatures that may be useful to track the origin of infections. The sample size should be increased in order to confirm this possibility. Conclusions The results highlight that the pvdbp-II polymorphisms are positively selected by host’s immune pressure. The characterization of pvdbp-II polymorphisms might be useful for designing effective DBP-II-based vaccines.
Collapse
Affiliation(s)
- Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Lidiane Lima-Cury
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Aline de Rosa Lavigne
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Anielle de Pina-Costa
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil.,Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, Rio de Janeiro, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Marcos Catanho
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Patrícia Brasil
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Antibodies to Cryptic Epitopes in Distant Homologues Underpin a Mechanism of Heterologous Immunity between Plasmodium vivax PvDBP and Plasmodium falciparum VAR2CSA. mBio 2019; 10:mBio.02343-19. [PMID: 31594821 PMCID: PMC6786876 DOI: 10.1128/mbio.02343-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this work, we describe a molecular mechanism of heterologous immunity between two distant species of Plasmodium. Our results suggest a mechanism that subverts the classic parasite strategy of presenting highly polymorphic epitopes in surface antigens to evade immunity to that parasite. This alternative immune pathway can be exploited to protect pregnant women from falciparum placental malaria by designing vaccines to cryptic epitopes that elicit broadly inhibitory antibodies against variant parasite strains. Many pathogens evolve extensive genetic variation in virulence proteins as a strategy to evade host immunity. This poses a significant challenge for the host to develop broadly neutralizing antibodies. In Plasmodium falciparum, we show that a mechanism to circumvent this challenge is to elicit antibodies to cryptic epitopes that are not under immune pressure. We previously discovered that antibodies to the Plasmodium vivax invasion protein, PvDBP, cross-react with P. falciparum VAR2CSA, a distantly related virulence factor that mediates placental malaria. Here, we describe the molecular mechanism underlying this cross-species immunity. We identified an epitope in subdomain 1 (SD1) within the Duffy binding-like (DBL) domain of PvDBP that gives rise to cross-reactive antibodies to VAR2CSA and show that human antibodies affinity purified against a synthetic SD1 peptide block parasite adhesion to chondroitin sulfate A (CSA) in vitro. The epitope in SD1 is subdominant and highly conserved in PvDBP, and in turn, SD1 antibodies target cryptic epitopes in P. falciparum VAR2CSA. The epitopes in VAR2CSA recognized by vivax-derived SD1 antibodies (of human and mouse origin) are distinct from those recognized by VAR2CSA immune serum. We mapped two peptides in the DBL5ε domain of VAR2CSA that are recognized by SD1 antibodies. Both peptides map to regions outside the immunodominant sites, and antibodies to these peptides are not elicited following immunization with VAR2CSA or natural infection with P. falciparum in pregnancy, consistent with the cryptic nature of these target epitopes.
Collapse
|
20
|
|
21
|
Salinas ND, Tang WK, Tolia NH. Blood-Stage Malaria Parasite Antigens: Structure, Function, and Vaccine Potential. J Mol Biol 2019; 431:4259-4280. [PMID: 31103771 DOI: 10.1016/j.jmb.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.
Collapse
Affiliation(s)
- Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Wai Kwan Tang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA.
| |
Collapse
|