1
|
Besteman SB, Bogaert D, Bont L, Mejias A, Ramilo O, Weinberger DM, Dagan R. Interactions between respiratory syncytial virus and Streptococcus pneumoniae in the pathogenesis of childhood respiratory infections: a systematic review. THE LANCET. RESPIRATORY MEDICINE 2024; 12:915-932. [PMID: 38991585 DOI: 10.1016/s2213-2600(24)00148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 05/03/2024] [Indexed: 07/13/2024]
Abstract
Lower respiratory tract infections, commonly caused by respiratory syncytial virus (RSV) or Streptococcus pneumoniae (pneumococcus), pose a substantial global health burden, especially in children younger than 5 years of age. A deeper understanding of the relationship between RSV and pneumococcus would aid the development of health-care approaches to disease prevention and management. We completed a systematic review to identify and assess evidence pertaining to the relationship between RSV and pneumococcus in the pathogenesis of childhood respiratory infections. We found mechanistic evidence for direct pathogen-pathogen interactions and for indirect interactions involving host modulation. We found a strong seasonal epidemiological association between these two pathogens, which was recently confirmed by a parallel decrease and a subsequent resurgence of both RSV and pneumococcus-associated disease during the COVID-19 pandemic. Importantly, we found that pneumococcal vaccination was associated with reduced RSV hospitalisations in infants, further supporting the relevance of their interaction in modulating severe disease. Overall evidence supports a broad biological and clinical interaction between pneumococcus and RSV in the pathogenesis of childhood respiratory infections. We hypothesise that the implementation of next-generation pneumococcal and RSV vaccines and monoclonal antibodies targeting RSV will act synergistically to reduce global morbidity and mortality related to childhood respiratory infections.
Collapse
Affiliation(s)
- Sjanna B Besteman
- Department of Pediatrics, Onze Lieve Vrouwe Gasthuis Ziekenhuis, Amsterdam, Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Louis Bont
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asuncion Mejias
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Ron Dagan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Manning J, Manna S, Dunne EM, Bongcaron V, Pell CL, Patterson NL, Kuil SD, Dhar P, Goldblatt D, Kim Mulholland E, Licciardi PV, Robins-Browne RM, Malley R, Wijburg O, Satzke C. Immunization with a whole cell vaccine reduces pneumococcal nasopharyngeal density and shedding, and middle ear infection in mice. Vaccine 2024; 42:1714-1722. [PMID: 38350767 DOI: 10.1016/j.vaccine.2024.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Pneumococcal Conjugate Vaccines (PCVs) have substantially reduced the burden of disease caused by Streptococcus pneumoniae (the pneumococcus). However, protection is limited to vaccine serotypes, and when administered to children who are colonized with pneumococci at the time of vaccination, immune responses to the vaccine are blunted. Here, we investigate the potential of a killed whole cell pneumococcal vaccine (WCV) to reduce existing pneumococcal carriage and mucosal disease when given therapeutically to infant mice colonized with pneumococci. We show that a single dose of WCV reduced pneumococcal carriage density in an antibody-dependent manner. Therapeutic vaccination induced robust immune responses to pneumococcal surface antigens CbpA, PspA (family 1) and PiaA. In a co-infection model of otitis media, a single dose of WCV reduced pneumococcal middle ear infection. Lastly, in a two-dose model, therapeutic administration of WCV reduced nasal shedding of pneumococci. Taken together, our data demonstrate that WCV administered in colonized mice reduced pneumococcal density in the nasopharynx and the middle ear, and decreased shedding. WCVs would be beneficial in low and middle-income settings where pneumococcal carriage in children is high.
Collapse
Affiliation(s)
- Jayne Manning
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sam Manna
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eileen M Dunne
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Viktoria Bongcaron
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Casey L Pell
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Natalie L Patterson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sacha D Kuil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Poshmaal Dhar
- Faculty of Health, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - David Goldblatt
- Institute of Child Health, University College London, London, United Kingdom
| | - E Kim Mulholland
- New Vaccines, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Paul V Licciardi
- Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia; New Vaccines, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Infectious Diseases, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, United States of America
| | - Odilia Wijburg
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Catherine Satzke
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Wada FW, Desta AF, Gebre M, Mihret W, Seyoum T, Melaku K, Alemu A, Howe R, Mulu A, Mihret A. Pneumococcal colonization and coinfecting respiratory viruses in children under 5 years in Addis Ababa, Ethiopia: a prospective case-control study. Sci Rep 2024; 14:4174. [PMID: 38378681 PMCID: PMC10879120 DOI: 10.1038/s41598-024-54256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
A comprehensive understanding of the dynamics of Streptococcus pneumoniae colonization in conjunction with respiratory virus infections is essential for enhancing our knowledge of the pathogenesis and advancing the development of effective preventive strategies. Therefore, a case-control study was carried out in Addis Ababa, Ethiopia to investigate the colonization rate of S. pneumoniae and its coinfection dynamics with respiratory viruses among children under the age of 5 years. Samples from the nasopharyngeal and/or oropharyngeal, along with socio-demographic and clinical information, were collected from 420 children under 5 years old (210 cases with lower respiratory tract infections and 210 controls with conditions other than respiratory infections.). A one-step Multiplex real-time PCR using the Allplex Respiratory Panel Assays 1-4 was performed to identify respiratory viruses and bacteria. Data analysis was conducted using STATA software version 17. The overall colonization rate of S. pneumoniae in children aged less than 5 years was 51.2% (215/420). The colonization rates in cases and controls were 54.8% (115/210) and 47.6% (100/210), respectively (p = 0.14). Colonization rates were observed to commence at an early age in children, with a colonization rate of 48.9% and 52.7% among infants younger than 6 months controls and cases, respectively. The prevalence of AdV (OR, 3.11; 95% CI [1.31-8.19]), RSV B (OR, 2.53; 95% CI [1.01-6.78]) and HRV (OR, 1.7; 95% CI [1.04-2.78]) tends to be higher in children who tested positive for S. pneumoniae compared to those who tested negative for S. pneumoniae. Further longitudinal research is needed to understand and determine interaction mechanisms between pneumococci and viral pathogens and the clinical implications of this coinfection dynamics.
Collapse
Affiliation(s)
- Fiseha Wadilo Wada
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia.
- Department of Biomedical Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Sciences, College of Health Sciences and Medicine, Wolaita Sodo University, Wolaita Soddo, Ethiopia.
| | - Adey Feleke Desta
- Department of Biomedical Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Meseret Gebre
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Wude Mihret
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Tamrayehu Seyoum
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Kalkidan Melaku
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Ashenafi Alemu
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Andargachew Mulu
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Ministry of Health, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Emgård M, Andersson M, Gonzales-Siles L, Msuya SE, Nyombi BM, Nordén R, Muro F, Lindh M, Andersson R, Skovbjerg S. Co-occurrence of bacteria and viruses and serotype distribution of Streptococcus pneumoniae in the nasopharynx of Tanzanian children below 2 years of age following introduction of the PCV13. Front Public Health 2024; 12:1298222. [PMID: 38317802 PMCID: PMC10839969 DOI: 10.3389/fpubh.2024.1298222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Pneumococcal conjugate vaccines have reduced severe disease attributed to vaccine-type pneumococci in children. However, the effect is dependent on serotype distribution in the population and disease development may be influenced by co-occurrence of viral and bacterial pathogens in the nasopharynx. Methods Following introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Tanzania we performed repeated cross-sectional surveys, including 775 children below 2 years of age attending primary healthcare centers. All children were sampled from nasopharynx and pneumococci were detected by single-target PCR. Pneumococcal serotypes/groups and presence of viruses and other bacteria were determined by two multiplex PCR assays. Results The prevalence of PCV13 vaccine-type pneumococci decreased by 50%, but residual vaccine-types were still detected in 21% of the children 2 years after PCV13 introduction. An increase in the non-vaccine-type 15 BC was observed. Pneumococci were often co-occurring with Haemophilus influenzae, and detection of rhino/enterovirus was associated with higher pneumococcal load. Discussion We conclude that presence of residual vaccine-type and emerging non-vaccine-type pneumococci in Tanzanian children demand continued pneumococcal surveillance. High co-occurrence of viral and bacterial pathogens may contribute to the disease burden and indicate the need of multiple public health interventions to improve child health in Tanzania.
Collapse
Affiliation(s)
- Matilda Emgård
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sia E. Msuya
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Balthazar M. Nyombi
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florida Muro
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Department of Community Medicine, Kilimanjaro Christian Medical Center (KCMC), Moshi, Tanzania
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Manna S, Werren JP, Ortika BD, Bellich B, Pell CL, Nikolaou E, Gjuroski I, Lo S, Hinds J, Tundev O, Dunne EM, Gessner BD, Bentley SD, Russell FM, Mulholland EK, Mungun T, von Mollendorf C, Licciardi PV, Cescutti P, Ravenscroft N, Hilty M, Satzke C. Streptococcus pneumoniae serotype 33G: genetic, serological, and structural analysis of a new capsule type. Microbiol Spectr 2024; 12:e0357923. [PMID: 38059623 PMCID: PMC10782959 DOI: 10.1128/spectrum.03579-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.
Collapse
Affiliation(s)
- Sam Manna
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joel P. Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Belinda D. Ortika
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Casey L. Pell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Elissavet Nikolaou
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ilche Gjuroski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Stephanie Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
- BUGS Bioscience, London Bioscience Innovation Center, London, United Kingdom
| | - Odgerel Tundev
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | | | | | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona M. Russell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - E. Kim Mulholland
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tuya Mungun
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Claire von Mollendorf
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paul V. Licciardi
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Catherine Satzke
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
6
|
Ahmadi M, Shahbahrami R, Khajeh F, Khodaeivandi S, Kakavandi E, Raziabad RH, Ghanati K. Aflatoxin B1 and viruses' combined pathogenesis: A mini systematics review of invitro and invivo studies. Acta Histochem 2024; 126:152116. [PMID: 38101290 DOI: 10.1016/j.acthis.2023.152116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The combined pathogenesis of Aflatoxin B1 (AFB1) and several viruses such as HBV, EBV and influenza virus have been investigated yet the molecular mechanism of their interaction and possible synergistic effects is not fully understood. OBJECTIVES The aim of the current systematic review was to review in-vitro and in-vivo studies investigating the combined pathogenesis of aflatoxins and viruses. METHODS This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. PECO (Population, Exposure, Comparator, and Outcome) criteria for invitro and invivo studies were used to evaluate the eligibility of the studies for systematic review. RESULTS 21 studies were eligible for qualitative analysis based on the inclusion criteria. Of all the included studies, 9 (42.9 %) were invivo, 7 (33.3 %) were invitro-invivo and 5(23.8) articles conducted only invitro assay. Furthermore 14 (66.6 %) article explored hepatitis B virus (HBV) combination with AFB1, 4 (19 %) studied influenza A virus (SIV), 2 (9.7 %) were about Epstein-Barr virus (EBV) and only 1 (4.7 %) included hepatitis C virus (HCV). CONCLUSION The limited collected evidence suggests that AFB1 enhanced EBV and influenza virus pathogenesis. AFB1 also operated as a cofactor for HBV and EBV-mediated carcinogenesis. On the other hand HBV and HCV also induced AFB-1 carcinogenesis. Due to the limited amount of included studies and the inconsistency of their results further studies especially on HBV and SIV are essential for better understanding of their combined mechanisms.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Medical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khajeh
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Khodaeivandi
- Department of Food Science and Technology, Afagh Higher Education institute, Urmia, Iran
| | - Ehsan Kakavandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiandokht Ghanati
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Self A, Van Buskirk J, Clark J, Cochrane JE, Knibbs L, Cass-Verco J, Gupta L. Respiratory syncytial virus disease morbidity in Australian infants aged 0 to 6 months: a systematic review with narrative synthesis. BMC Public Health 2023; 23:2560. [PMID: 38129854 PMCID: PMC10740277 DOI: 10.1186/s12889-023-17474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A significant proportion of the global respiratory syncytial virus (RSV) associated morbidity is accounted for by infants aged 0 to 6 months, who are particularly vulnerable to severe disease. In 2015, 44% of global hospitalisations in infants in this age group were secondary to RSV. The objective of this systematic review is to appraise and synthesise the local evidence of RSV infection morbidity among Australian infants aged 0 to 6 months and to assess the implications for future immunisation strategies. METHODS Electronic databases (Medline, Embase, Pubmed and Global Health) were searched for full-text articles published between 2000 and 2023 in English language. Studies that examined markers of RSV disease morbidity in infants aged 0 to 6 months in Australia who had laboratory confirmed RSV infection were eligible for inclusion. The outcomes of interest were incidence, prevalence, testing rate, positivity rate, mortality, emergency department visits, community health visits, hospitalisation, intensive care unit admission, supplementary oxygen use, mechanical ventilation, risk factors for disease severity and monoclonal antibody use. RESULTS The database search identified 469 studies. After removal of duplicates and full-text review, 17 articles were eligible for inclusion. This review was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Synthesis without meta-analysis guidelines. CONCLUSIONS Qualitative analysis of the included studies showed that Australian infants aged 0 to 6 months have higher rates of RSV testing, positivity and incidence; and more likely to develop severe disease that requires hospitalisation, intensive care unit admission or respiratory support, compared to children and adults of all ages. Aboriginal and Torres Strait Islander infants aged 0 to 6 months demonstrated higher rates of RSV infection and hospitalisation, compared to non-Indigenous infants. Age-related trends persisted in geographic areas with varying seasonal transmission of RSV, and during the SARS-CoV-2 pandemic. Passive immunisation strategies targeting infants in their first 6 months of life, either via vaccination of pregnant women or administration of long-acting monoclonal antibody during infancy, could effectively reduce RSV disease burden in Australia.
Collapse
Affiliation(s)
- Alice Self
- Sydney Local Health District, Sydney, NSW, Australia.
| | - Joseph Van Buskirk
- School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Sydney, NSW, Australia
| | - Jayden Clark
- Sydney Local Health District, Sydney, NSW, Australia
| | | | - Luke Knibbs
- School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Sydney, NSW, Australia
| | - John Cass-Verco
- Department of Paediatrics, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Leena Gupta
- Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
8
|
Langedijk AC, Bont LJ. Respiratory syncytial virus infection and novel interventions. Nat Rev Microbiol 2023; 21:734-749. [PMID: 37438492 DOI: 10.1038/s41579-023-00919-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
The large global burden of respiratory syncytial virus (RSV) respiratory tract infections in young children and older adults has gained increased recognition in recent years. Recent discoveries regarding the neutralization-specific viral epitopes of the pre-fusion RSV glycoprotein have led to a shift from empirical to structure-based design of RSV therapeutics, and controlled human infection model studies have provided early-stage proof of concept for novel RSV monoclonal antibodies, vaccines and antiviral drugs. The world's first vaccines and first monoclonal antibody to prevent RSV among older adults and all infants, respectively, have recently been approved. Large-scale introduction of RSV prophylactics emphasizes the need for active surveillance to understand the global impact of these interventions over time and to timely identify viral mutants that are able to escape novel prophylactics. In this Review, we provide an overview of RSV interventions in clinical development, highlighting global disease burden, seasonality, pathogenesis, and host and viral factors related to RSV immunity.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
9
|
|
10
|
The Infection Dynamics of Experimental Edwardsiella ictaluri and Flavobacterium covae Coinfection in Channel Catfish (Ictalurus punctatus). Pathogens 2023; 12:pathogens12030462. [PMID: 36986384 PMCID: PMC10051119 DOI: 10.3390/pathogens12030462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Edwardsiella ictaluri and Flavobacterium covae are pervasive bacterial pathogens associated with significant losses in catfish aquaculture. Bacterial coinfections have the potential to increase outbreak severity and can worsen on-farm mortality. A preliminary assessment of in vivo bacterial coinfection with E. ictaluri (S97-773) and F. covae (ALG-00-530) was conducted using juvenile channel catfish (Ictalurus punctatus). Catfish were divided into five treatment groups: (1) mock control; (2) E. ictaluri full dose (immersion; 5.4 × 105 CFU mL−1); (3) F. covae full dose (immersion; 3.6 × 106 CFU mL−1); (4) E. ictaluri half dose (immersion; 2.7 × 105 CFU mL−1) followed by half dose F. covae (immersion; 1.8 × 106 CFU mL−1); and (5) F. covae half dose followed by half dose E. ictaluri. In the coinfection challenges, the second inoculum was delivered 48 h after the initial exposure. At 21 days post-challenge (DPC), the single dose E. ictaluri infection yielded a cumulative percent mortality (CPM) of 90.0 ± 4.1%, compared with 13.3 ± 5.9% in the F. covae group. Mortality patterns in coinfection challenges mimicked the single dose E. ictaluri challenge, with CPM of 93.3 ± 5.4% for fish initially challenged with E. ictaluri followed by F. covae, and 93.3 ± 2.7% for fish exposed to F. covae and subsequently challenged with E. ictaluri. Despite similarities in the final CPM within the coinfection groups, the onset of peak mortality was delayed in fish exposed to F. covae first but was congruent with mortality trends in the E. ictaluri challenge. Catfish exposed to E. ictaluri in both the single and coinfected treatments displayed increased serum lysozyme activity at 4-DPC (p < 0.001). Three pro-inflammatory cytokines (il8, tnfα, il1β) were evaluated for gene expression, revealing an increase in expression at 7-DPC in all E. ictaluri exposed treatments (p < 0.05). These data enhance our understanding of the dynamics of E. ictaluri and F. covae coinfections in US farm-raised catfish.
Collapse
|
11
|
CALABRÒ GIOVANNAELISA, VITALE FRANCESCO, RIZZO CATERINA, PUGLIESE ANDREA, BOCCALINI SARA, BECHINI ANGELA, PANATTO DONATELLA, AMICIZIA DANIELA, DOMNICH ALEXANDER, AMODIO EMANUELE, COSTANTINO CLAUDIO, DI PIETRO MARIALUISA, SALVATI CRISTINA, D’AMBROSIO FLORIANA, ORSINI FRANCESCA, MAIDA ADA, DOMINICI ANNA, CLEMENTE DANIA, CECCI MARINA, PELLACCHIA ANDREA, DI SERAFINO FRANCESCA, BAKKER KEVIN, MALIK TUFAILMOHAMMAD, SHAROMI OLUWASEUN, BELLUZZO MIRIAM, LEONFORTE FRANCESCO, ZAGRA LUIGI, LA GATTA EMANUELE, PETRELLA LUIGI, BONANNI PAOLO, DE WAURE CHIARA. [The new 15-valent pneumococcal conjugate vaccine for the prevention of S. pneumoniae infections in pediatric age: a Health Technology Assessment]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2023; 64:E1-E160. [PMID: 37655211 PMCID: PMC10468156 DOI: 10.15167/2421-4248/jpmh2023.64.1s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- VIHTALI (Value In Health Technology and Academy for Leadership & Innovation), Spin-off dell’Università Cattolica del Sacro Cuore, Roma, Italia
| | - FRANCESCO VITALE
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - CATERINA RIZZO
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università degli Studi di Pisa, Pisa, Italia
| | - ANDREA PUGLIESE
- Dipartimento di Matematica, Università di Trento, Trento, Italia
| | - SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli di Studi di Firenze, Firenze, Italia
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli di Studi di Firenze, Firenze, Italia
| | - DONATELLA PANATTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
- Centro Interuniversitario di Ricerca sull’Influenza e le altre Infezioni Trasmissibili (CIRI-IT), Genova, Italia
| | - DANIELA AMICIZIA
- Dipartimento di Scienze della Salute, Università degli Studi di Genova, Genova, Italia
- Centro Interuniversitario di Ricerca sull’Influenza e le altre Infezioni Trasmissibili (CIRI-IT), Genova, Italia
| | | | - EMANUELE AMODIO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - CLAUDIO COSTANTINO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - MARIA LUISA DI PIETRO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - CRISTINA SALVATI
- Dipartimento di Scienze della Salute, Università degli di Studi di Firenze, Firenze, Italia
| | - FLORIANA D’AMBROSIO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - FRANCESCA ORSINI
- Alta Scuola di Economia e Management dei Sistemi Sanitari (ALTEMS), Università Cattolica del Sacro Cuore, Roma, Italia
| | - ADA MAIDA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - ANNA DOMINICI
- Dipartimento di Medicina e Chirurgia, Università degli di Studi di Perugia, Italia
| | - DANIA CLEMENTE
- Dipartimento di Medicina e Chirurgia, Università degli di Studi di Perugia, Italia
| | - MARINA CECCI
- Dipartimento di Medicina e Chirurgia, Università degli di Studi di Perugia, Italia
| | - ANDREA PELLACCHIA
- Dipartimento di Medicina e Chirurgia, Università degli di Studi di Perugia, Italia
| | - FRANCESCA DI SERAFINO
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università degli Studi di Pisa, Pisa, Italia
| | - KEVIN BAKKER
- Health Economic and Decision Sciences (HEDS), Biostatistics & Research Decision Sciences (BARDS), Merck Research Laboratories, West Point, Pennsylvania
| | - TUFAIL MOHAMMAD MALIK
- Health Economic and Decision Sciences (HEDS), Biostatistics & Research Decision Sciences (BARDS), Merck Research Laboratories, West Point, Pennsylvania
| | - OLUWASEUN SHAROMI
- Health Economic and Decision Sciences (HEDS), Biostatistics & Research Decision Sciences (BARDS), Merck Research Laboratories, West Point, Pennsylvania
| | - MIRIAM BELLUZZO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - FRANCESCO LEONFORTE
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - LUIGI ZAGRA
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - EMANUELE LA GATTA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - LUIGI PETRELLA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli di Studi di Firenze, Firenze, Italia
| | - CHIARA DE WAURE
- Dipartimento di Medicina e Chirurgia, Università degli di Studi di Perugia, Italia
| |
Collapse
|
12
|
Wong A, Barrero Guevara LA, Goult E, Briga M, Kramer SC, Kovacevic A, Opatowski L, Domenech de Cellès M. The interactions of SARS-CoV-2 with cocirculating pathogens: Epidemiological implications and current knowledge gaps. PLoS Pathog 2023; 19:e1011167. [PMID: 36888684 PMCID: PMC9994710 DOI: 10.1371/journal.ppat.1011167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Despite the availability of effective vaccines, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that cocirculation with other pathogens and resulting multiepidemics (of, for example, COVID-19 and influenza) may become increasingly frequent. To better forecast and control the risk of such multiepidemics, it is essential to elucidate the potential interactions of SARS-CoV-2 with other pathogens; these interactions, however, remain poorly defined. Here, we aimed to review the current body of evidence about SARS-CoV-2 interactions. Our review is structured in four parts. To study pathogen interactions in a systematic and comprehensive way, we first developed a general framework to capture their major components: sign (either negative for antagonistic interactions or positive for synergistic interactions), strength (i.e., magnitude of the interaction), symmetry (describing whether the interaction depends on the order of infection of interacting pathogens), duration (describing whether the interaction is short-lived or long-lived), and mechanism (e.g., whether interaction modifies susceptibility to infection, transmissibility of infection, or severity of disease). Second, we reviewed the experimental evidence from animal models about SARS-CoV-2 interactions. Of the 14 studies identified, 11 focused on the outcomes of coinfection with nonattenuated influenza A viruses (IAVs), and 3 with other pathogens. The 11 studies on IAV used different designs and animal models (ferrets, hamsters, and mice) but generally demonstrated that coinfection increased disease severity compared with either monoinfection. By contrast, the effect of coinfection on the viral load of either virus was variable and inconsistent across studies. Third, we reviewed the epidemiological evidence about SARS-CoV-2 interactions in human populations. Although numerous studies were identified, only a few were specifically designed to infer interaction, and many were prone to multiple biases, including confounding. Nevertheless, their results suggested that influenza and pneumococcal conjugate vaccinations were associated with a reduced risk of SARS-CoV-2 infection. Finally, fourth, we formulated simple transmission models of SARS-CoV-2 cocirculation with an epidemic viral pathogen or an endemic bacterial pathogen, showing how they can naturally incorporate the proposed framework. More generally, we argue that such models, when designed with an integrative and multidisciplinary perspective, will be invaluable tools to resolve the substantial uncertainties that remain about SARS-CoV-2 interactions.
Collapse
Affiliation(s)
- Anabelle Wong
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Public Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Laura Andrea Barrero Guevara
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Public Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth Goult
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Briga
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sarah C. Kramer
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aleksandra Kovacevic
- Epidemiology and Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris Cité, Paris, France
- Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1018 Montigny-le-Bretonneux, France
| | - Lulla Opatowski
- Epidemiology and Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris Cité, Paris, France
- Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1018 Montigny-le-Bretonneux, France
| | | |
Collapse
|
13
|
Nation ML, Manna S, Tran HP, Nguyen CD, Vy LTT, Uyen DY, Phuong TL, Dai VTT, Ortika BD, Wee-Hee AC, Beissbarth J, Hinds J, Bright K, Smith-Vaughan H, Nguyen TV, Mulholland K, Temple B, Satzke C. Impact of COVID-19 Nonpharmaceutical Interventions on Pneumococcal Carriage Prevalence and Density in Vietnam. Microbiol Spectr 2023; 11:e0361522. [PMID: 36645282 PMCID: PMC9927266 DOI: 10.1128/spectrum.03615-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 01/17/2023] Open
Abstract
Nonpharmaceutical interventions (NPIs) implemented to contain SARS-CoV-2 have decreased invasive pneumococcal disease. Previous studies have proposed the decline is due to reduced pneumococcal transmission or suppression of respiratory viruses, but the mechanism remains unclear. We undertook a secondary analysis of data collected from a clinical trial to evaluate the impact of NPIs on pneumococcal carriage and density, drivers of transmission and disease, during the COVID-19 pandemic in Ho Chi Minh City, Vietnam. Nasopharyngeal samples from children aged 24 months were assessed in three periods - one pre-COVID-19 period (n = 1,537) and two periods where NPIs were implemented with increasing stringency (NPI period 1 [NPI-1, n = 307], and NPI period 2 [NPI-2, n = 262]). Pneumococci were quantified using lytA quantitative PCR and serotyped by DNA microarray. Overall, capsular, and nonencapsulated pneumococcal carriage and density were assessed in each NPI period compared with the pre-COVID-19 period using unadjusted log-binomial and linear regression. Pneumococcal carriage was generally stable after the implementation of NPIs. In contrast, overall pneumococcal carriage density decreased by 0.44 log10 genome equivalents/mL (95% confidence interval [CI]: 0.19 to 0.69) in NPI-1 and by 0.84 log10 genome equivalents/mL (95% CI: 0.55 to 1.13) in NPI-2 compared with the pre-COVID-19 period. Reductions in overall pneumococcal density were driven by reductions in capsular pneumococci, with no corresponding reduction in nonencapsulated density. As higher pneumococcal density is a risk factor for disease, the decline in density provides a plausible explanation for the reductions in invasive pneumococcal disease that have been observed in many countries in the absence of a substantive reduction in pneumococcal carriage. IMPORTANCE The pneumococcus is a major cause of mortality globally. Implementation of NPIs during the COVID-19 pandemic led to reductions in invasive pneumococcal disease in many countries. However, no studies have conducted a fully quantitative assessment on the impact of NPIs on pneumococcal carriage density, which could explain this reduction. We evaluated the impact of COVID-19 NPIs on pneumococcal carriage prevalence and density in 2,106 children aged 24 months in Vietnam and found pneumococcal carriage density decreased up to 91.5% after NPI introduction compared with the pre-COVID-19 period, which was mainly attributed to capsular pneumococci. Only a minor effect on carriage prevalence was observed. As respiratory viruses are known to increase pneumococcal carriage density, transmission, and disease, this work suggests that interventions targeting respiratory viruses may have the added benefit of reducing invasive pneumococcal disease and explain the reductions observed following NPI implementation.
Collapse
Affiliation(s)
- Monica Larissa Nation
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sam Manna
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Hau Phuc Tran
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Cattram Duong Nguyen
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Le Thi Tuong Vy
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Doan Y. Uyen
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tran Linh Phuong
- Clinical Research Center, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vo Thi Trang Dai
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Belinda Daniela Ortika
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's University of London, London, England, United Kingdom
- BUGS Bioscience, London Bioscience Innovation Centre, London, England, United Kingdom
| | - Kathryn Bright
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Heidi Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Thuong Vu Nguyen
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, England, United Kingdom
| | - Beth Temple
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023; 205:e0029522. [PMID: 36409130 PMCID: PMC9879096 DOI: 10.1128/jb.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral-bacterial coinfections of the respiratory tract have long been associated with worsened disease outcomes. Clinical and basic research studies demonstrate that these infections are driven via complex interactions between the infecting pathogens, microbiome, and host immune response, although how these interactions contribute to disease progression is still not fully understood. Research over the last decade shows that the gut has a significant role in mediating respiratory outcomes, in a phenomenon known as the "gut-lung axis." Emerging literature demonstrates that acute respiratory viruses can modulate the gut-lung axis, suggesting that dysregulation of gut-lung cross talk may be a contributing factor during respiratory coinfection. This review will summarize the current literature regarding modulation of the gut-lung axis during acute respiratory infection, with a focus on the role of the microbiome, secondary infections, and the host immune response.
Collapse
Affiliation(s)
- Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Manna S, Weinberger DM, Satzke C. Editorial: Thematic issue on bacterial-viral co-infections. FEMS MICROBES 2023; 4:xtac031. [PMID: 37333434 PMCID: PMC10117831 DOI: 10.1093/femsmc/xtac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/15/2023] [Indexed: 09/06/2024] Open
Affiliation(s)
- Sam Manna
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven 06510, United States
| | - Catherine Satzke
- Translational Microbiology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
16
|
Integrative Analysis of the Nasal Microbiota and Serum Metabolites in Bovines with Respiratory Disease by 16S rRNA Sequencing and Gas Chromatography/Mass Selective Detector-Based Metabolomics. Int J Mol Sci 2022; 23:ijms231912028. [PMID: 36233330 PMCID: PMC9569885 DOI: 10.3390/ijms231912028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) continues to pose a serious threat to the cattle industry, resulting in substantial economic losses. As a multifactorial disease, pathogen infection and respiratory microbial imbalance are important causative factors in the occurrence and development of BRD. Integrative analyses of 16S rRNA sequencing and metabolomics allow comprehensive identification of the changes in microbiota and metabolism associated with BRD, making it possible to determine which pathogens are responsible for the disease and to develop new therapeutic strategies. In our study, 16S rRNA sequencing and metagenomic analysis were used to describe and compare the composition and diversity of nasal microbes in healthy cattle and cattle with BRD from different farms in Yinchuan, Ningxia, China. We found a significant difference in nasal microbial diversity between diseased and healthy bovines; notably, the relative abundance of Mycoplasma bovis and Pasteurella increased. This indicated that the composition of the microbial community had changed in diseased bovines compared with healthy ones. The data also strongly suggested that the reduced relative abundance of probiotics, including Pasteurellales and Lactobacillales, in diseased samples contributes to the susceptibility to bovine respiratory disease. Furthermore, serum metabolomic analysis showed altered concentrations of metabolites in BRD and that a significant decrease in lactic acid and sarcosine may impair the ability of bovines to generate energy and an immune response to pathogenic bacteria. Based on the correlation analysis between microbial diversity and the metabolome, lactic acid (2TMS) was positively correlated with Gammaproteobacteria and Bacilli and negatively correlated with Mollicutes. In summary, microbial communities and serum metabolites in BRD were characterized by integrative analysis. This study provides a reference for monitoring biomarkers of BRD, which will be critical for the prevention and treatment of BRD in the future.
Collapse
|
17
|
Fratty IS, Reznik-Balter S, Nemet I, Atari N, Kliker L, Sherbany H, Keller N, Stein M, Mendelson E, Mandelboim M. Outbreak of Influenza and Other Respiratory Viruses in Hospitalized Patients Alongside the SARS-CoV-2 Pandemic. Front Microbiol 2022; 13:902476. [PMID: 35770154 PMCID: PMC9235518 DOI: 10.3389/fmicb.2022.902476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A and other respiratory viruses, circulate each winter and cause respiratory illness that can lead to severe complications in hospitalized patients. During the COVID-19 pandemic, only a few cases of respiratory viruses were detected in Israel. Our study applied RT-PCR to examine 13,674 samples collected from patients hospitalized with respiratory symptoms in 2019, 2020, and 2021 and the first half of the 2022 winter. A sharp increase in influenza A(H3N2) cases was observed in winter 2021-2022 as compared to 2020, followed by a sudden decrease in influenza cases after the detection of the SARS-CoV-2 omicron variant in Israel. Comparison of the area under the curve (AUC) of influenza infection rates during 7 consecutive winter seasons found that the minimal AUC between 2015 and 2020 was 281.1, while in 2021-2022, it was significantly lower (162.6 AUC; p = 0.0017), although the percentage of positive influenza cases was similar to those of previous years. The presented findings show how the dominance of influenza A(H3N2) abruptly ended upon circulation of the SARS-CoV-2 omicron variant. However, a post-COVID-19 influenza outbreak is possible, hence the planning of the next influenza vaccine is critical to ensure lower influenza-related hospitalization rates.
Collapse
Affiliation(s)
- Ilana S. Fratty
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Shira Reznik-Balter
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
| | - Ital Nemet
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
| | - Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
| | - Limor Kliker
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hilda Sherbany
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
| | - Nathan Keller
- School of Health Sciences, Ariel University, Ariel, Israel
- Pediatric Infectious Disease Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Michal Stein
- Pediatric Infectious Disease Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Michal Mandelboim,
| |
Collapse
|
18
|
Stein RA, Bianchini EC. Bacterial-Viral Interactions: A Factor That Facilitates Transmission Heterogeneities. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The transmission of infectious diseases is characterized by heterogeneities that are shaped by the host, the pathogen, and the environment. Extreme forms of these heterogeneities are called super-spreading events. Transmission heterogeneities are usually identified retrospectively, but their contribution to the dynamics of outbreaks makes the ability to predict them valuable for science, medicine, and public health. Previous studies identified several factors that facilitate super-spreading; one of them is the interaction between bacteria and viruses within a host. The heightened dispersal of bacteria colonizing the nasal cavity during an upper respiratory viral infection, and the increased shedding of HIV-1 from the urogenital tract during a sexually transmitted bacterial infection, are among the most extensively studied examples of transmission heterogeneities that result from bacterial-viral interactions. Interrogating these transmission heterogeneities, and elucidating the underlying cellular and molecular mechanisms, are part of much-needed efforts to guide public health interventions, in areas that range from predicting or controlling the population transmission of respiratory pathogens, to limiting the spread of sexually transmitted infections, and tailoring vaccination initiatives with live attenuated vaccines.
Collapse
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| | - Emilia Claire Bianchini
- NYU Tandon School of Engineering Department of Chemical and Biomolecular Engineering 6 MetroTech Center Brooklyn , NY 11201 USA
| |
Collapse
|