1
|
Donlan AN, Leslie JL, Simpson ME, Petri WA, Allen JE, Petri WA. IL-13 protects from Clostridioides difficile colitis. Anaerobe 2024; 88:102860. [PMID: 38701912 PMCID: PMC11347079 DOI: 10.1016/j.anaerobe.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is the leading hospital-acquired infection in North America. We have previously discovered that antibiotic disruption of the gut microbiota decreases intestinal IL-33 and IL-25 and increases susceptibility to CDI. We further found that IL-33 promotes protection through type 2 Innate Lymphoid Cells (ILC2s), which produce IL-13. However, the contribution of IL-13 to disease has never been explored. METHODS We used a validated model of CDI in mice, in which we neutralized via blocking antibodies, or administered recombinant protein, IL-13 to assess the role of this cytokine during infection using weight and clinical scores. Fluorescent activated cell sorting (FACS) was used to characterize myeloid cell population changes in response to IL-13 manipulation. RESULTS We found that administration of IL-13 protected, and anti-IL-13 exacerbated CDI. Additionally, we observed alterations to the monocyte/macrophage cells following neutralization of IL-13 as early as day three post infection. We also observed elevated accumulation of myeloid cells by day four post-infection following IL-13 neutralization. Neutralization of the decoy receptor, IL-13Rα2, resulted in protection from disease, likely through increased available endogenous IL-13. CONCLUSIONS Our data highlight the protective role of IL-13 in protecting from more severe CDI and the association of poor responses with a dysregulated monocyte-macrophage compartment. These results increase our understanding of type 2 immunity in CDI and may have implications for treating disease in patients.
Collapse
Affiliation(s)
- A N Donlan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, 98109, USA; Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - J L Leslie
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - M E Simpson
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W A Petri
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA.
| | - J E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PL, United Kingdom
| | - W A Petri
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, 22908, USA; Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA; Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
2
|
Brosse A, Coullon H, Janoir C, Péchiné S. The state of play of rodent models for the study of Clostridioides difficile infection. J Med Microbiol 2024; 73:001857. [PMID: 39028257 PMCID: PMC11316558 DOI: 10.1099/jmm.0.001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhoea and is responsible for a spectrum of diseases characterized by high levels of recurrence and morbidity. In some cases, complications can lead to death. Currently, several types of animal models have been developed to study various aspects of C. difficile infection (CDI), such as colonization, virulence, transmission and recurrence. These models have also been used to test the role of environmental conditions, such as diet, age and microbiome that modulate infection outcome, and to evaluate several therapeutic strategies. Different rodent models have been used successfully, such as the hamster model and the gnotobiotic and conventional mouse models. These models can be applied to study either the initial CDI infectious process or recurrences. The applications of existing rodent models and their advantages and disadvantages are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Héloïse Coullon
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Séverine Péchiné
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
3
|
Li J, Zhang X, Luan F, Duan J, Zou J, Sun J, Shi Y, Guo D, Wang C, Wang X. Therapeutic Potential of Essential Oils Against Ulcerative Colitis: A Review. J Inflamm Res 2024; 17:3527-3549. [PMID: 38836243 PMCID: PMC11149639 DOI: 10.2147/jir.s461466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-sp ecific inflammatory disease of the colorectal mucosa. Researchers have associated UC onset with familial genetics, lifestyle behavior, inflammatory immune factors, intestinal microbiota, and the integrity of the intestinal mucosal barrier. The primary therapeutic interventions for UC consist of pharmacological management to control inflammation and promote mucosal healing and surgical interventions. The available drugs effectively control and decelerate the progression of UC in most patients; nonetheless, their long-term administration can exert adverse effects and influence the therapeutic effect. Plant essential oils (EOs) refer to a group of hydrophobic aromatic volatile substances. EOs have garnered considerable attention in both domestic and international research because of their anti-inflammatory, antibacterial, and antioxidant properties. They include peppermint, peppercorns, rosemary, and lavender, among others. Researchers have investigated the role of EOs in medicine and have elucidated their potential to mitigate the detrimental effects of UC through their anti-inflammatory, antioxidant, antidepressant, and anti-insomnia properties as well as their ability to regulate the intestinal flora. Furthermore, EOs exert minimal toxic adverse effects, further enhancing their appeal for therapeutic applications. However, these speculations are based on theoretical experiments, thereby warranting more clinical studies to confirm their effectiveness and safety. In this article, we aim to provide an overview of the advancements in utilizing natural medicine EOs for UC prevention and treatment. We will explore the potential pathogenesis of UC and examine the role of EOs therapy in basic research, quality stability, and management specification of inadequate EOs for UC treatment. We intend to offer novel insights into the use of EOs in UC prevention and management.
Collapse
Affiliation(s)
- Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Fei Luan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Changli Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
4
|
Kolba N, Tako E. Effective alternatives for dietary interventions for necrotizing enterocolitis: a systematic review of in vivo studies. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37971890 DOI: 10.1080/10408398.2023.2281623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.
Collapse
Affiliation(s)
- Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Diluted Fecal Community Transplant Restores Clostridioides difficile Colonization Resistance to Antibiotic-Perturbed Murine Communities. mBio 2022; 13:e0136422. [PMID: 35913161 PMCID: PMC9426422 DOI: 10.1128/mbio.01364-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fecal communities transplanted into individuals can eliminate recurrent Clostridioides difficile infection (CDI) with high efficacy. However, this treatment is only used once CDI becomes resistant to antibiotics or has recurred multiple times. We sought to investigate whether a fecal community transplant (FCT) pretreatment could be used to prevent CDI altogether. We treated male C57BL/6 mice with either clindamycin, cefoperazone, or streptomycin and then inoculated them with the microbial community from untreated mice before challenge with C. difficile. We measured colonization and sequenced the V4 region of the 16S rRNA gene to understand the dynamics of the murine fecal community in response to the FCT and C. difficile challenge. Clindamycin-treated mice became colonized with C. difficile but cleared it naturally and did not benefit from the FCT. Cefoperazone-treated mice became colonized by C. difficile, but the FCT enabled clearance of C. difficile. In streptomycin-treated mice, the FCT was able to prevent C. difficile from colonizing. We then diluted the FCT and repeated the experiments. Cefoperazone-treated mice no longer cleared C. difficile. However, streptomycin-treated mice colonized with 1:102 dilutions resisted C. difficile colonization. Streptomycin-treated mice that received an FCT diluted 1:103 became colonized with C. difficile but later cleared the infection. In streptomycin-treated mice, inhibition of C. difficile was associated with increased relative abundance of a group of bacteria related to Porphyromonadaceae and Lachnospiraceae. These data demonstrate that C. difficile colonization resistance can be restored to a susceptible community with an FCT as long as it complements the missing populations.
Collapse
|
7
|
Monaghan TM, Duggal NA, Rosati E, Griffin R, Hughes J, Roach B, Yang DY, Wang C, Wong K, Saxinger L, Pučić-Baković M, Vučković F, Klicek F, Lauc G, Tighe P, Mullish BH, Blanco JM, McDonald JAK, Marchesi JR, Xue N, Dottorini T, Acharjee A, Franke A, Li Y, Wong GKS, Polytarchou C, Yau TO, Christodoulou N, Hatziapostolou M, Wang M, Russell LA, Kao DH. A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection. Cells 2021; 10:cells10113234. [PMID: 34831456 PMCID: PMC8624539 DOI: 10.3390/cells10113234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies.
Collapse
Affiliation(s)
- Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
- Correspondence: (T.M.M.); (M.W.); (L.A.R.); (D.H.K.); Tel.: +115-8231090 (T.M.M.)
| | - Niharika A. Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Christian-Albrecht University of Kiel, 24105 Kiel, Germany; (E.R.); (A.F.)
| | - Ruth Griffin
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jamie Hughes
- Synthetic Biology Research Centre, The University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Brandi Roach
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - David Y. Yang
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Christopher Wang
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
| | - Lynora Saxinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada;
| | - Maja Pučić-Baković
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Frano Vučković
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Filip Klicek
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (M.P.-B.); (F.V.); (F.K.); (G.L.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Jesus Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Julie A. K. McDonald
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.H.M.); (J.M.B.); (J.A.K.M.); (J.R.M.)
| | - Ning Xue
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2UH, UK; (N.X.); (T.D.)
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2UH, UK; (N.X.); (T.D.)
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK;
| | - Andre Franke
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Christian-Albrecht University of Kiel, 24105 Kiel, Germany; (E.R.); (A.F.)
| | - Yingrui Li
- Shenzhen Digital Life Institute, Shenzhen 518016, China;
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Tung On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Niki Christodoulou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Maria Hatziapostolou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (C.P.); (T.O.Y.); (N.C.); (M.H.)
| | - Minkun Wang
- Shenzhen Digital Life Institute, Shenzhen 518016, China;
- Innovation Lab, Innovent Biologics, Inc., Suzhou 215011, China
- Correspondence: (T.M.M.); (M.W.); (L.A.R.); (D.H.K.); Tel.: +115-8231090 (T.M.M.)
| | - Lindsey A. Russell
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Correspondence: (T.M.M.); (M.W.); (L.A.R.); (D.H.K.); Tel.: +115-8231090 (T.M.M.)
| | - Dina H. Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta; Edmonton, Alberta, AB T6G 2G3, Canada; (B.R.); (D.Y.Y.); (C.W.); (K.W.)
- Correspondence: (T.M.M.); (M.W.); (L.A.R.); (D.H.K.); Tel.: +115-8231090 (T.M.M.)
| |
Collapse
|
8
|
Girinathan BP, DiBenedetto N, Worley JN, Peltier J, Arrieta-Ortiz ML, Immanuel SRC, Lavin R, Delaney ML, Cummins CK, Hoffman M, Luo Y, Gonzalez-Escalona N, Allard M, Onderdonk AB, Gerber GK, Sonenshein AL, Baliga NS, Dupuy B, Bry L. In vivo commensal control of Clostridioides difficile virulence. Cell Host Microbe 2021; 29:1693-1708.e7. [PMID: 34637781 DOI: 10.1016/j.chom.2021.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.
Collapse
Affiliation(s)
- Brintha P Girinathan
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay N Worley
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; National Center of Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-yvette Cedex, France
| | | | | | - Richard Lavin
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary L Delaney
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Christopher K Cummins
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Hoffman
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA
| | - Andrew B Onderdonk
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Georg K Gerber
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of "brain-gut-bone" axis. Food Funct 2021; 12:5703-5718. [PMID: 34048514 DOI: 10.1039/d0fo03468a] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoporosis (OP) is a kind of systemic metabolic disease characterized by decreased bone mass and destruction of the bone microstructure. In recent years, it has become an expected research trend to explore the cross-linking relationship in the pathogenesis process of OP so as to develop reasonable and effective intervention strategies. With the further development of intestinal microbiology and the profound exploration of the gut microbiota (GM), it has been further revealed that the "brain-gut" axis may be a potential target for the bone, thereby affecting the occurrence and progression of OP. Hence, based on the concept of "brain-gut-bone" axis, we look forward to deeply discussing and summarizing the cross-linking relationship of OP in the next three parts, including the "brain-bone" connection, "gut-bone" connection, and "brain-gut" connection, so as to provide an emerging thought for the prevention strategies and mechanism researches of OP.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang-Xu Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China. and Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China and School of Medicine, Southeast University, Nanjing, Jiangsu, China and Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, China and Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Leslie JL, Jenior ML, Vendrov KC, Standke AK, Barron MR, O'Brien TJ, Unverdorben L, Thaprawat P, Bergin IL, Schloss PD, Young VB. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant. mBio 2021; 12:e00522-21. [PMID: 33785619 PMCID: PMC8092246 DOI: 10.1128/mbio.00522-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile, a Gram-positive, spore-forming bacterium, is the primary cause of infectious nosocomial diarrhea. Antibiotics are a major risk factor for C. difficile infection (CDI), as they disrupt the gut microbial community, enabling increased germination of spores and growth of vegetative C. difficile To date, the only single-species bacterial preparation that has demonstrated efficacy in reducing recurrent CDI in humans is nontoxigenic C. difficile Using multiple infection models, we determined that precolonization with a less virulent strain is sufficient to protect from challenge with a lethal strain of C. difficile, surprisingly even in the absence of adaptive immunity. Additionally, we showed that protection is dependent on high levels of colonization by the less virulent strain and that it is mediated by exclusion of the invading strain. Our results suggest that reduction of amino acids, specifically glycine following colonization by the first strain of C. difficile, is sufficient to decrease germination of the second strain, thereby limiting colonization by the lethal strain.IMPORTANCE Antibiotic-associated colitis is often caused by infection with the bacterium Clostridioides difficile In this study, we found that reduction of the amino acid glycine by precolonization with a less virulent strain of C. difficile is sufficient to decrease germination of a second strain. This finding demonstrates that the axis of competition for nutrients can include multiple life stages. This work is important, as it is the first to identify a possible mechanism through which precolonization with C. difficile, a current clinical therapy, provides protection from reinfection. Furthermore, our work suggests that targeting nutrients utilized by all life stages could be an improved strategy for bacterial therapeutics that aim to restore colonization resistance in the gut.
Collapse
Affiliation(s)
- Jhansi L Leslie
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew L Jenior
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexandra K Standke
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Madeline R Barron
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tricia J O'Brien
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lavinia Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- The Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Jean-Pierre F, Henson MA, O’Toole GA. Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Front Mol Biosci 2021; 8:634479. [PMID: 33681294 PMCID: PMC7930556 DOI: 10.3389/fmolb.2021.634479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The explosion of microbiome analyses has helped identify individual microorganisms and microbial communities driving human health and disease, but how these communities function is still an open question. For example, the role for the incredibly complex metabolic interactions among microbial species cannot easily be resolved by current experimental approaches such as 16S rRNA gene sequencing, metagenomics and/or metabolomics. Resolving such metabolic interactions is particularly challenging in the context of polymicrobial communities where metabolite exchange has been reported to impact key bacterial traits such as virulence and antibiotic treatment efficacy. As novel approaches are needed to pinpoint microbial determinants responsible for impacting community function in the context of human health and to facilitate the development of novel anti-infective and antimicrobial drugs, here we review, from the viewpoint of experimentalists, the latest advances in metabolic modeling, a computational method capable of predicting metabolic capabilities and interactions from individual microorganisms to complex ecological systems. We use selected examples from the literature to illustrate how metabolic modeling has been utilized, in combination with experiments, to better understand microbial community function. Finally, we propose how such combined, cross-disciplinary efforts can be utilized to drive laboratory work and drug discovery moving forward.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
12
|
Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. Int J Mol Sci 2021; 22:ijms22041942. [PMID: 33669290 PMCID: PMC7920074 DOI: 10.3390/ijms22041942] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
The use of inorganic nanoparticles (NPs) has expanded into various industries including food manufacturing, agriculture, cosmetics, and construction. This has allowed NPs access to the human gastrointestinal tract, yet little is known about how they may impact human health. As the gut microbiome continues to be increasingly implicated in various diseases of unknown etiology, researchers have begun studying the potentially toxic effects of these NPs on the gut microbiome. Unfortunately, conflicting results have limited researcher’s ability to evaluate the true impact of NPs on the gut microbiome in relation to health. This review focuses on the impact of five inorganic NPs (silver, iron oxide, zinc oxide, titanium dioxide, and silicon dioxide) on the gut microbiome and gastrointestinal tract with consideration for various methodological differences within the literature. This is important as NP-induced changes to the gut could lead to various gut-related diseases. These include irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), celiac disease, and colorectal cancer. Research in this area is necessary as the use of NPs in various industries continues to grow along with the number of people suffering from chronic gastrointestinal diseases.
Collapse
|
13
|
Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun 2021; 12:755. [PMID: 33531483 PMCID: PMC7854624 DOI: 10.1038/s41467-020-20793-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a successful therapeutic strategy for treating recurrent Clostridioides difficile infection. Despite remarkable efficacy, implementation of FMT therapy is limited and the mechanism of action remains poorly understood. Here, we demonstrate a critical role for the immune system in supporting FMT using a murine C. difficile infection system. Following FMT, Rag1 heterozygote mice resolve C. difficile while littermate Rag1-/- mice fail to clear the infection. Targeted ablation of adaptive immune cell subsets reveal a necessary role for CD4+ Foxp3+ T-regulatory cells, but not B cells or CD8+ T cells, in FMT-mediated resolution of C. difficile infection. FMT non-responsive mice exhibit exacerbated inflammation, impaired engraftment of the FMT bacterial community and failed restoration of commensal bacteria-derived secondary bile acid metabolites in the large intestine. These data demonstrate that the host's inflammatory immune status can limit the efficacy of microbiota-based therapeutics to treat C. difficile infection.
Collapse
|
14
|
Henson MA. Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection. PLoS Comput Biol 2021; 17:e1008782. [PMID: 33617526 PMCID: PMC7932513 DOI: 10.1371/journal.pcbi.1008782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/04/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Approximately 30% of patients who have Clostridioides difficile infection (CDI) will suffer at least one incident of reinfection. While the underlying causes of CDI recurrence are poorly understood, interactions between C. difficile and commensal gut bacteria are thought to play an important role. In this study, an in silico pipeline was used to process 16S rRNA gene amplicon sequence data of 225 stool samples from 93 CDI patients into sample-specific models of bacterial community metabolism. Clustered metabolite production rates generated from post-diagnosis samples generated a high Enterobacteriaceae abundance cluster containing disproportionately large numbers of recurrent samples and patients. This cluster was predicted to have significantly reduced capabilities for secondary bile acid synthesis but elevated capabilities for aromatic amino acid catabolism. When applied to 16S sequence data of 40 samples from fecal microbiota transplantation (FMT) patients suffering from recurrent CDI and their stool donors, the community modeling method generated a high Enterobacteriaceae abundance cluster with a disproportionate large number of pre-FMT samples. This cluster also was predicted to exhibit reduced secondary bile acid synthesis and elevated aromatic amino acid catabolism. Collectively, these in silico predictions suggest that Enterobacteriaceae may create a gut environment favorable for C. difficile spore germination and/or toxin synthesis.
Collapse
Affiliation(s)
- Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
15
|
Yip C, Okada NC, Howerton A, Amei A, Abel-Santos E. Pharmacokinetics of CamSA, a potential prophylactic compound against Clostridioides difficile infections. Biochem Pharmacol 2021; 183:114314. [PMID: 33152344 PMCID: PMC7770080 DOI: 10.1016/j.bcp.2020.114314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
Clostridioides difficile infections (CDI) are the leading cause of nosocomial antibiotic-associated diarrhea. C. difficile produces dormant spores that serve as infectious agents. Bile salts in the gastrointestinal tract signal spores to germinate into toxin-producing cells. As spore germination is required for CDI onset, anti-germination compounds may serve as prophylactics. CamSA, a synthetic bile salt, was previously shown to inhibit C. difficile spore germination in vitro and in vivo. Unexpectedly, a single dose of CamSA was sufficient to offer multi-day protection from CDI in mice without any observable toxicity. To study this intriguing protection pattern, we examined the pharmacokinetic parameters of CamSA. CamSA was stable to the gut of antibiotic-treated mice but was extensively degraded by the microbiota of non-antibiotic-treated animals. Our data also suggest that CamSA's systemic absorption is minimal since it is retained primarily in the intestinal lumen and liver. CamSA shows weak interactions with CYP3A4, a P450 hepatic isozyme involved in drug metabolism and bile salt modification. Like other bile salts, CamSA seems to undergo enterohepatic circulation. We hypothesize that the cycling of CamSA between the liver and intestines serves as a slow-release mechanism that allows CamSA to be retained in the gastrointestinal tract for days. This model explains how a single CamSA dose can prevent murine CDI even though spores are present in the animal's intestine for up to four days post-challenge.
Collapse
Affiliation(s)
- Christopher Yip
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Naomi C Okada
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Amber Howerton
- Department of Physical and Life Sciences, Nevada State College, 1300 Nevada State Drive, Henderson, Nevada, 89002, United States
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States.
| |
Collapse
|
16
|
Nguyen CL, Docampo MD, van den Brink MR, Markey KA. The role of the intestinal microbiota in allogeneic HCT: clinical associations and preclinical mechanisms. Curr Opin Genet Dev 2020; 66:25-35. [PMID: 33388483 DOI: 10.1016/j.gde.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative-intent therapy for patients with hematological malignancies, but despite advances in the field in recent years, there is still a significant risk of post-transplant mortality. In addition to relapse of the underlying malignancy, the key contributors to this high mortality are graft-versus-host disease (GVHD) and infection. The intestinal microbiota is the collective term describing the community of bacteria, fungi, viruses and protozoa that resides in the human gastrointestinal tract. Bacterial communities have been studied most comprehensively, and disruption of these communities has been associated with the development of a variety of medical conditions in large clinical associative studies. Preclinical studies suggest a mechanistic role for the intestinal microbiota in the instruction and maintenance of both intestinal and systemic immune cell function. This review outlines our current understanding of the relationship between gut bacteria and allo-HCT outcomes, including infection, immune reconstitution, GVHD and relapse, drawing on evidence from both clinical associative studies and preclinical mechanistic studies.
Collapse
Affiliation(s)
- Chi L Nguyen
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa D Docampo
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel Rm van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Division of Medicine, Weill Cornell Medical College, New York, NY, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kate A Markey
- Division of Medicine, Weill Cornell Medical College, New York, NY, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Donlan AN, Simpson ME, Petri WA. Type 2 cytokines IL-4 and IL-5 reduce severe outcomes from Clostridiodes difficile infection. Anaerobe 2020; 66:102275. [PMID: 32971206 DOI: 10.1016/j.anaerobe.2020.102275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/21/2023]
Abstract
Clostridiodes difficile infection (CDI) is the leading cause of hospital-acquired gastrointestinal infections in the U.S. While the immune response to C. difficile is not well understood, it has been shown that severe disease is accompanied by high levels of infiltrating immune cells and pro-inflammatory cytokine production. This study tests the roles of two type 2 cytokines, IL-4 and IL-5, in mediating protection in a murine model of disease. Administration of IL-5 protected from mortality due to CDI, and both IL-4 and IL-5 were protective against severe disease symptoms. Together, the results from this study increase our understanding of how type 2 immune signaling processes are protective from severe C. difficile infection.
Collapse
Affiliation(s)
- Alexandra N Donlan
- Department of Medicine, University of Virginia, VA, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia, VA, USA.
| | - Morgan E Simpson
- Department of Medicine, University of Virginia, VA, USA; Department of Pathology, University of Virginia, VA, USA
| | - William A Petri
- Department of Medicine, University of Virginia, VA, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia, VA, USA; Department of Pathology, University of Virginia, VA, USA.
| |
Collapse
|
18
|
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Front Immunol 2020; 11:1755. [PMID: 32849627 PMCID: PMC7419648 DOI: 10.3389/fimmu.2020.01755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in bacteria causing endogenous infections has entailed a need for innovative approaches to therapy and prophylaxis of these infections and raised a new interest in vaccines for prevention of colonization and infection by typically antibiotic resistant pathogens. Nevertheless, there has been a long history of failures in late stage clinical development of this type of vaccines, which remains not fully understood. This article provides an overview on present and past vaccine developments targeting nosocomial bacterial pathogens; it further highlights the specific challenges associated with demonstrating clinical efficacy of these vaccines and the facts to be considered in future study designs. Notably, these vaccines are mainly applied to subjects with preexistent immunity to the target pathogen, transient or chronic immunosuppression and ill-defined microbiome status. Unpredictable attack rates and changing epidemiology as well as highly variable genetic and immunological strain characteristics complicate the development. In views of the clinical need, re-thinking of the study designs and expectations seems warranted: first of all, vaccine development needs to be footed on a clear rationale for choosing the immunological mechanism of action and the optimal time point for vaccination, e.g., (1) prevention (or reduction) of colonization vs. prevention of infection and (2) boosting of a preexistent immune response vs. altering the quality of the immune response. Furthermore, there are different, probably redundant, immunological and microbiological defense mechanisms that provide protection from infection. Their interplay is not well-understood but as a consequence their effect might superimpose vaccine-mediated resolution of infection and lead to failure to demonstrate efficacy. This implies that improved characterization of patient subpopulations within the trial population should be obtained by pro- and retrospective analyses of trial data on subject level. Statistical and systems biology approaches could help to define immune and microbiological biomarkers that discern populations that benefit from vaccination from those where vaccines might not be effective.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Division of Microbiology, Langen, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
19
|
Hermes GDA, Eckermann HA, de Vos WM, de Weerth C. Does entry to center-based childcare affect gut microbial colonization in young infants? Sci Rep 2020; 10:10235. [PMID: 32581284 PMCID: PMC7314774 DOI: 10.1038/s41598-020-66404-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Entry to center-based childcare (CC) at three months of life can be an important challenge for infants as it includes major stressors such as long maternal separations and frequently changing caregivers. Stress and the new environment may in turn alter the composition of the gut microbiota with possible implications for future health outcomes. As part of an ongoing longitudinal study, we investigated whether CC, as compared to being cared for by the parents at home, alters the composition of the gut microbiota, while accounting for known covariates of the infant gut microbiota. Stool samples of infants who entered CC (n = 49) and control infants (n = 49) were obtained before and four weeks after CC entrance. Using Redundancy analysis, Random Forests and Bayesian linear models we found that infant gut microbiota was not affected in a uniform way by entry to CC. In line with the literature, breastfeeding, birth mode, age, and the presence of siblings were shown to significantly impact the microbial composition.
Collapse
Affiliation(s)
- Gerben D A Hermes
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Henrik A Eckermann
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Lopez CA, McNeely TP, Nurmakova K, Beavers WN, Skaar EP. Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe 2020; 63:102210. [PMID: 32422411 DOI: 10.1016/j.anaerobe.2020.102210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Clostridioides difficile colonizes the intestines of susceptible individuals and releases toxins that mediate disease. To replicate and expand in the intestines, C. difficile ferments proline, and this activity is influenced by the availability of proline and trace nutrients. C. difficile must also compete with the commensal microbiota for these limited nutrients. The specific microbes present in the intestines that may shape the ability of C. difficile to benefit from proline fermentation are unknown. In this study we developed a panel of commensal Clostridia to test the hypothesis that the microbiota influences C. difficile growth through proline fermentation. The experimental panel of Clostridia was composed of murine and human isolates that ranged in their capacity to ferment proline in different media. Competition between wild type C. difficile and a mutant strain unable to ferment proline (prdB:CT) in the presence of these Clostridia revealed that bacteria closely related to Paraclostridium benzoelyticum and Paeniclostridium spp. decreased the benefit to C. difficile provided by proline fermentation. Conversely, Clostridium xylanolyticum drove C. difficile towards an increased reliance on proline fermentation for growth. Overall, the ability of C. difficile to benefit from proline fermentation is contextual and in part dependent on the microbiota.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, USA.
| | | | | | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Systemic Inflammatory Mediators Are Effective Biomarkers for Predicting Adverse Outcomes in Clostridioides difficile Infection. mBio 2020; 11:mBio.00180-20. [PMID: 32371595 PMCID: PMC7403776 DOI: 10.1128/mbio.00180-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Each year in the United States, Clostridioides difficile causes nearly 500,000 gastrointestinal infections that range from mild diarrhea to severe colitis and death. The ability to identify patients at increased risk for severe disease or mortality at the time of diagnosis of C. difficile infection (CDI) would allow clinicians to effectively allocate disease modifying therapies. In this study, we developed models consisting of only a small number of serum biomarkers that are capable of predicting both 30-day all-cause mortality and adverse outcomes of patients at time of CDI diagnosis. We were able to validate these models through experimental mouse infection. This provides evidence that the biomarkers reflect the underlying pathophysiology and that our mouse model of CDI reflects the pathogenesis of human infection. Predictive models can not only assist clinicians in identifying patients at risk for severe CDI but also be utilized for targeted enrollment in clinical trials aimed at reduction of adverse outcomes from severe CDI. Clostridioides difficile infection (CDI) can result in severe disease and death, with no accurate models that allow for early prediction of adverse outcomes. To address this need, we sought to develop serum-based biomarker models to predict CDI outcomes. We prospectively collected sera ≤48 h after diagnosis of CDI in two cohorts. Biomarkers were measured with a custom multiplex bead array assay. Patients were classified using IDSA severity criteria and the development of disease-related complications (DRCs), which were defined as ICU admission, colectomy, and/or death attributed to CDI. Unadjusted and adjusted models were built using logistic and elastic net modeling. The best model for severity included procalcitonin (PCT) and hepatocyte growth factor (HGF) with an area (AUC) under the receiver operating characteristic (ROC) curve of 0.74 (95% confidence interval, 0.67 to 0.81). The best model for 30-day mortality included interleukin-8 (IL-8), PCT, CXCL-5, IP-10, and IL-2Rα with an AUC of 0.89 (0.84 to 0.95). The best model for DRCs included IL-8, procalcitonin, HGF, and IL-2Rα with an AUC of 0.84 (0.73 to 0.94). To validate our models, we employed experimental infection of mice with C. difficile. Antibiotic-treated mice were challenged with C. difficile and a similar panel of serum biomarkers was measured. Applying each model to the mouse cohort of severe and nonsevere CDI revealed AUCs of 0.59 (0.44 to 0.74), 0.96 (0.90 to 1.0), and 0.89 (0.81 to 0.97). In both human and murine CDI, models based on serum biomarkers predicted adverse CDI outcomes. Our results support the use of serum-based biomarker panels to inform Clostridioides difficile infection treatment.
Collapse
|
22
|
Guo XY, Liu XJ, Hao JY. Gut microbiota in ulcerative colitis: insights on pathogenesis and treatment. J Dig Dis 2020; 21:147-159. [PMID: 32040250 DOI: 10.1111/1751-2980.12849] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Gut microbiota constitute the largest reservoir of the human microbiome and are an abundant and stable ecosystem-based on its diversity, complexity, redundancy, and host interactions This ecosystem is indispensable for human development and health. The integrity of the intestinal mucosal barrier depends on its interactions with gut microbiota. The commensal bacterial community is implicated in the pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC). The dysbiosis of microbes is characterized by reduced biodiversity, abnormal composition of gut microbiota, altered spatial distribution, as well as interactions among microbiota, between different strains of microbiota, and with the host. The defects in microecology, with the related metabolic pathways and molecular mechanisms, play a critical role in the innate immunity of the intestinal mucosa in UC. Fecal microbiota transplantation (FMT) has been used to treat many diseases related to gut microbiota, with the most promising outcome reported in antibiotic-associated diarrhea, followed by IBD. This review evaluated the results of various reports of FMT in UC. The efficacy of FMT remains highly controversial, and needs to be regularized by integrated management, standardization of procedures, and individualization of treatment.
Collapse
Affiliation(s)
- Xiao Yan Guo
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin Juan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Yu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Singhvi N, Gupta V, Gaur M, Sharma V, Puri A, Singh Y, Dubey GP, Lal R. Interplay of Human Gut Microbiome in Health and Wellness. Indian J Microbiol 2020; 60:26-36. [PMID: 32089571 PMCID: PMC7000599 DOI: 10.1007/s12088-019-00825-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome analysis, with specific interest on their direct impact towards the human health, is currently revolutionizing the unexplored frontiers of the pathogenesis and wellness. Although in-depth investigations of gut microbiome, 'the Black Boxes', complexities and functionalities are yet at its infancy, profound evidences are being reported for their concurrent involvement in disease etiology and its treatment. Interestingly, studies from the 'minimal murine' (Oligo-MM12), 'humanized' microbiota gnotobiotic mice models and patient samples, combined with multi-omics and cell biology approaches, have been revealing the implications of these findings in the treatment of gut dysbiosis associated diseases. Nonetheless, due to the inherent heterogeneity of the gut commensals and their unified co-existence with opportunistic pathobionts, it is utmost essential to highlight their functionalities in 'good or bad' gut in human wellness. We have specifically reviewed dietary lifestyle and infectious diseases linked with the gut bacterial consortia to delineate the ecobiotic approaches towards their treatment. This notably includes gut mucosal immunity mediated diseases such as Tuberculosis, IBD, CDI, Type 2 Diabetes, etc. Alongside of each dysbiosis, we have described the current therapeutic advancements of the pre- and probiotics derived from human microbiome studies to restore gut microbial homeostasis. With a continuous running debate on the role of microbiota in above mentioned diseases, we have collected numerous scientific evidences highlighting a previously unanticipated complex involvement of gut microbiome in the potential of human health.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Mohita Gaur
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vishal Sharma
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Akshita Puri
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Gyanendra P. Dubey
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75015 Paris, France
| | - Rup Lal
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
24
|
Harris C, Kim PT, Waterhouse D, Feng Z, Niergarth J, Lee CH. Precision medicine and gut dysbiosis. Healthc Manage Forum 2020; 33:107-110. [PMID: 31934800 DOI: 10.1177/0840470419899426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clostridioides difficile Infection (CDI) is a leading cause of healthcare-associated infections in Canada, affecting the gastrointestinal tract which can lead to fever, abdominal pain, and diarrhea. Effective treatment for patients with Recurrent CDI (rCDI) can be achieved by Fecal Microbiota Transplantation (FMT) by introducing the gut micro-organisms of a healthy person (donor) into the bowel of the affected individual. Research has shown that an increase in the specific bacterial phyla post-FMT may be partly responsible for this gut restoration and elimination of disease. Furthermore, in understanding the key bacteria associated with successful FMT, full treatment plans can be developed for the individual needs of the patient by matching an infected individual with a donor possessing ideal microbiota for the specific patient. This development of precision medicine and more systematic adoption of FMT can be the next step toward more rapid resolution of rCDI.
Collapse
Affiliation(s)
| | - Peter T Kim
- University of Guelph, Guelph, Ontario, Canada.,Vancouver Island Health Authority, Victoria, British Columbia, Canada
| | - Dawn Waterhouse
- Vancouver Island Health Authority, Victoria, British Columbia, Canada
| | - Zeny Feng
- University of Guelph, Guelph, Ontario, Canada
| | | | - Christine H Lee
- Vancouver Island Health Authority, Victoria, British Columbia, Canada
| |
Collapse
|
25
|
Schnizlein MK, Vendrov KC, Edwards SJ, Martens EC, Young VB. Dietary Xanthan Gum Alters Antibiotic Efficacy against the Murine Gut Microbiota and Attenuates Clostridioides difficile Colonization. mSphere 2020; 5:e00708-19. [PMID: 31915217 PMCID: PMC6952194 DOI: 10.1128/msphere.00708-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023] Open
Abstract
Dietary fiber provides a variety of microbiota-mediated benefits ranging from anti-inflammatory metabolites to pathogen colonization resistance. A healthy gut microbiota protects against Clostridioides difficile colonization. Manipulation of these microbes through diet may increase colonization resistance to improve clinical outcomes. The primary objective of this study was to identify how the dietary fiber xanthan gum affects the microbiota and C. difficile colonization. We added 5% xanthan gum to the diet of C57BL/6 mice and examined its effect on the microbiota through 16S rRNA gene amplicon sequencing and short-chain fatty acid analysis. Following either cefoperazone or an antibiotic cocktail administration, we challenged mice with C. difficile and measured colonization by monitoring the CFU. Xanthan gum administration is associated with increases in fiber-degrading taxa and short-chain fatty acid concentrations. However, by maintaining both the diversity and absolute abundance of the microbiota during antibiotic treatment, the protective effects of xanthan gum administration on the microbiota were more prominent than the enrichment of these fiber-degrading taxa. As a result, mice that were on the xanthan gum diet experienced limited to no C. difficile colonization. Xanthan gum administration alters mouse susceptibility to C. difficile colonization by maintaining the microbiota during antibiotic treatment. While antibiotic-xanthan gum interactions are not well understood, xanthan gum has previously been used to bind drugs and alter their pharmacokinetics. Thus, xanthan gum may alter the activity of the oral antibiotics used to make the microbiota susceptible. Future research should further characterize how this and other common dietary fibers interact with drugs.IMPORTANCE A healthy gut bacterial community benefits the host by breaking down dietary nutrients and protecting against pathogens. Clostridioides difficile capitalizes on the absence of this community to cause diarrhea and inflammation. Thus, a major clinical goal is to find ways to increase resistance to C. difficile colonization by either supplementing with bacteria that promote resistance or a diet to enrich for those already present in the gut. In this study, we describe an interaction between xanthan gum, a human dietary additive, and the microbiota resulting in an altered gut environment that is protective against C. difficile colonization.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Summer J Edwards
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Type 3 Immunity during Clostridioides difficile Infection: Too Much of a Good Thing? Infect Immun 2019; 88:IAI.00306-19. [PMID: 31570564 DOI: 10.1128/iai.00306-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clostridioides (formerly known as Clostridium) difficile is the leading cause of hospital-acquired gastrointestinal infections in the United States and one of three urgent health care threats identified by the Centers for Disease Control and Prevention. C. difficile disease is mediated by the production of toxins that disrupt the epithelial barrier and cause a robust host inflammatory response. Studies in humans as well as animal models of disease have shown that the type of immune response generated against the infection dictates the outcome of disease, often irrespective of bacterial burden. Much of the focus on immunity during C. difficile infection (CDI) has been on type 3 immunity because of the established role for this arm of the immune system in other gastrointestinal inflammatory conditions such as inflammatory bowel disease (IBD). For example, interleukin-22 (IL-22) production by group 3 innate lymphoid cells (ILC3s) protects against pathobionts translocating across the epithelium during CDI. On the other hand, interleukin-17 (IL-17) production by Th17 cells increases CDI-associated mortality. Additionally, neutropenia has been associated with increased susceptibility to CDI in humans, but increased neutrophilia in mouse models correlates with host pathology. Taking the data together, these findings suggest dual roles for type 3 immune responses during infection. Here, we review the complex role of type 3 immunity during CDI and delineate what is known about innate and adaptive cellular immunity as well as the downstream effector cytokines known to be important during this infection.
Collapse
|