1
|
Borton MA, McGivern BB, Willi KR, Woodcroft BJ, Mosier AC, Singleton DM, Bambakidis T, Pelly A, Daly RA, Liu F, Freiburger A, Edirisinghe JN, Faria JP, Danczak R, Leleiwi I, Goldman AE, Wilkins MJ, Hall EK, Pennacchio C, Roux S, Eloe-Fadrosh EA, Good SP, Sullivan MB, Wood-Charlson EM, Miller CS, Ross MRV, Henry CS, Crump BC, Stegen JC, Wrighton KC. A functional microbiome catalogue crowdsourced from North American rivers. Nature 2025; 637:103-112. [PMID: 39567690 DOI: 10.1038/s41586-024-08240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires knowledge of the spatial drivers of river microbiomes. However, understanding of the core microbial processes governing river biogeochemistry is hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we used a community science effort to accelerate the sampling, sequencing and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). GROWdb profiles the identity, distribution, function and expression of microbial genomes across river surface waters covering 90% of United States watersheds. Specifically, GROWdb encompasses microbial lineages from 27 phyla, including novel members from 10 families and 128 genera, and defines the core river microbiome at the genome level. GROWdb analyses coupled to extensive geospatial information reveals local and regional drivers of microbial community structuring, while also presenting foundational hypotheses about ecosystem function. Building on the previously conceived River Continuum Concept1, we layer on microbial functional trait expression, which suggests that the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures2,3, so that it can be widely accessed across disciplines for watershed predictive modelling and microbiome-based management practices.
Collapse
Affiliation(s)
- Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Bridget B McGivern
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kathryn R Willi
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Annika C Mosier
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Derick M Singleton
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Ted Bambakidis
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Aaron Pelly
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Filipe Liu
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Andrew Freiburger
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Janaka N Edirisinghe
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - José P Faria
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Robert Danczak
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ikaia Leleiwi
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy E Goldman
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ed K Hall
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Christa Pennacchio
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen P Good
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher S Miller
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Matthew R V Ross
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Christopher S Henry
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Byron C Crump
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - James C Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- School of the Environment, Washington State University, Pullman, WA, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Yao K, Wang G, Zhang W, Liu Q, Hu J, Ye M, Jiang X. Saline soil improvement promotes the transformation of microbial salt tolerance mechanisms and microbial-plant-animal ecological interactions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123360. [PMID: 39566212 DOI: 10.1016/j.jenvman.2024.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The improvement of coastal saline land would alleviate the problem of insufficient arable land and provide new solutions for guaranteeing food security and ecological environment modification. In this study, five typical soil samples were collected from Tongzhou Bay, China. The changes in bacterial, animal and plant community composition before and after improvement were comprehensively investigated by a combination of high-throughput sequencing and macro-barcode sequencing analysis of eDNA. The study aimed (1) to characterize the species composition and diversity of the bacterial communities in saline soils, (2) to elucidate the mechanisms of salt tolerance of the bacterial communities, and (3) to investigate the impacts of the microbial salt tolerance mechanisms on the regional bacteria and fauna. The results showed that over 15 years of improvement, the composition of the bacteria in the saline-alkaline plots evolved significantly, changing from Desulfovibrio (10.60%) and Campylobacter (11.20%), to Acidobacter (12.91%). After the improvement, salt stress on the bacterial phyla gradually decreased. The functional differentiation of the bacterial phyla became more pronounced. As ion concentrations decreased, the main mechanism of salt tolerance of the bacterial bacteria changed from mainly mechanism of inorganic ion accumulation (55.56%), supplemented by flexible halophilic enzymes (31.77%), to mainly mechanism of compatible solute (44.80%). The mechanism of microbial salt tolerance directly affected micro-diversity and indirectly influenced the diversity of environmental species (R = 0.54). The results of this study provide a scientific basis for coastal saline land as a microbiodiversity marker and for the exploration of microbial improvement of saline land.
Collapse
Affiliation(s)
- Keyu Yao
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China
| | - Guanghao Wang
- Soil Ecology Lab, Jiangsu Provincial Key LaboratoryofCoastal Saline Soil Resources Utilizationand Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic WasteResource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, NanjingAgricultural, University,Nanjing, 210095, China
| | - Wen Zhang
- Soil Ecology Lab, Jiangsu Provincial Key LaboratoryofCoastal Saline Soil Resources Utilizationand Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic WasteResource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, NanjingAgricultural, University,Nanjing, 210095, China
| | - Qiang Liu
- Marine Geological Survey of Jiangsu Province, Nanjing, 210007, China
| | - Jian Hu
- Marine Geological Survey of Jiangsu Province, Nanjing, 210007, China.
| | - Mao Ye
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China.
| | - Xin Jiang
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy Sciences, Nanjing, 211135, China
| |
Collapse
|
3
|
Liu L, Lian ZH, Lv AP, Salam N, Zhang JC, Li MM, Sun WM, Tan S, Luo ZH, Gao L, Yuan Y, Ming YZ, OuYang YT, Li YX, Liu ZT, Hu CJ, Chen Y, Hua ZS, Shu WS, Hedlund BP, Li WJ, Jiao JY. Insights into chemoautotrophic traits of a prevalent bacterial phylum CSP1-3, herein Sysuimicrobiota. Natl Sci Rev 2024; 11:nwae378. [PMID: 39611041 PMCID: PMC11604079 DOI: 10.1093/nsr/nwae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Candidate bacterial phylum CSP1-3 has not been cultivated and is poorly understood. Here, we analyzed 112 CSP1-3 metagenome-assembled genomes and showed they are likely facultative anaerobes, with 3 of 5 families encoding autotrophy through the reductive glycine pathway (RGP), Wood-Ljungdahl pathway (WLP) or Calvin-Benson-Bassham (CBB), with hydrogen or sulfide as electron donors. Chemoautotrophic enrichments from hot spring sediments and fluorescence in situ hybridization revealed enrichment of six CSP1-3 genera, and both transcribed genes and DNA-stable isotope probing were consistent with proposed chemoautotrophic metabolisms. Ancestral state reconstructions showed that the ancestors of phylum CSP1-3 may have been acetogens that were autotrophic via the RGP, whereas the WLP and CBB were acquired by horizontal gene transfer. Our results reveal that CSP1-3 is a widely distributed phylum with the potential to contribute to the cycling of carbon, sulfur and nitrogen. The name Sysuimicrobiota phy. nov. is proposed.
Collapse
Affiliation(s)
- Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nimaichand Salam
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Jian-Chao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei-Min Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Ting OuYang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ying Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou 510006, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Shi Y, Gahagan AC, Morrison MJ, Gregorich E, Lapen DR, Chen W. Stratified Effects of Tillage and Crop Rotations on Soil Microbes in Carbon and Nitrogen Cycles at Different Soil Depths in Long-Term Corn, Soybean, and Wheat Cultivation. Microorganisms 2024; 12:1635. [PMID: 39203479 PMCID: PMC11356494 DOI: 10.3390/microorganisms12081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Understanding the soil bacterial communities involved in carbon (C) and nitrogen (N) cycling can inform beneficial tillage and crop rotation practices for sustainability and crop production. This study evaluated soil bacterial diversity, compositional structure, and functions associated with C-N cycling at two soil depths (0-15 cm and 15-30 cm) under long-term tillage (conventional tillage [CT] and no-till [NT]) and crop rotation (monocultures of corn, soybean, and wheat and corn-soybean-wheat rotation) systems. The soil microbial communities were characterized by metabarcoding the 16S rRNA gene V4-V5 regions using Illumina MiSeq. The results showed that long-term NT reduced the soil bacterial diversity at 15-30 cm compared to CT, while no significant differences were found at 0-15 cm. The bacterial communities differed significantly at the two soil depths under NT but not under CT. Notably, over 70% of the tillage-responding KEGG orthologs (KOs) associated with C fixation (primarily in the reductive citric acid cycle) were more abundant under NT than under CT at both depths. The tillage practices significantly affected bacteria involved in biological nitrogen (N2) fixation at the 0-15 cm soil depth, as well as bacteria involved in denitrification at both soil depths. The crop type and rotation regimes had limited effects on bacterial diversity and structure but significantly affected specific C-N-cycling genes. For instance, three KOs associated with the Calvin-Benson cycle for C fixation and four KOs related to various N-cycling processes were more abundant in the soil of wheat than in that of corn or soybean. These findings indicate that the long-term tillage practices had a greater influence than crop rotation on the soil bacterial communities, particularly in the C- and N-cycling processes. Integrated management practices that consider the combined effects of tillage, crop rotation, and crop types on soil bacterial functional groups are essential for sustainable agriculture.
Collapse
Affiliation(s)
- Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Alison Claire Gahagan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Malcolm J. Morrison
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Edward Gregorich
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - David R. Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada; (Y.S.); (A.C.G.); (M.J.M.); (E.G.); (D.R.L.)
- Department of Biology, University of Ottawa, 60 Marie Curie Prv., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Rasmussen AN, Tolar BB, Bargar JR, Boye K, Francis CA. Diverse and unconventional methanogens, methanotrophs, and methylotrophs in metagenome-assembled genomes from subsurface sediments of the Slate River floodplain, Crested Butte, CO, USA. mSystems 2024; 9:e0031424. [PMID: 38940520 PMCID: PMC11264602 DOI: 10.1128/msystems.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
We use metagenome-assembled genomes (MAGs) to understand single-carbon (C1) compound-cycling-particularly methane-cycling-microorganisms in montane riparian floodplain sediments. We generated 1,233 MAGs (>50% completeness and <10% contamination) from 50- to 150-cm depth below the sediment surface capturing the transition between oxic, unsaturated sediments and anoxic, saturated sediments in the Slate River (SR) floodplain (Crested Butte, CO, USA). We recovered genomes of putative methanogens, methanotrophs, and methylotrophs (n = 57). Methanogens, found only in deep, anoxic depths at SR, originate from three different clades (Methanoregulaceae, Methanotrichaceae, and Methanomassiliicoccales), each with a different methanogenesis pathway; putative methanotrophic MAGs originate from within the Archaea (Candidatus Methanoperedens) in anoxic depths and uncultured bacteria (Ca. Binatia) in oxic depths. Genomes for canonical aerobic methanotrophs were not recovered. Ca. Methanoperedens were exceptionally abundant (~1,400× coverage, >50% abundance in the MAG library) in one sample that also contained aceticlastic methanogens, indicating a potential C1/methane-cycling hotspot. Ca. Methylomirabilis MAGs from SR encode pathways for methylotrophy but do not harbor methane monooxygenase or nitrogen reduction genes. Comparative genomic analysis supports that one clade within the Ca. Methylomirabilis genus is not methanotrophic. The genetic potential for methylotrophy was widespread, with over 10% and 19% of SR MAGs encoding a methanol dehydrogenase or substrate-specific methyltransferase, respectively. MAGs from uncultured Thermoplasmata archaea in the Ca. Gimiplasmatales (UBA10834) contain pathways that may allow for anaerobic methylotrophic acetogenesis. Overall, MAGs from SR floodplain sediments reveal a potential for methane production and consumption in the system and a robust potential for methylotrophy.IMPORTANCEThe cycling of carbon by microorganisms in subsurface environments is of particular relevance in the face of global climate change. Riparian floodplain sediments contain high organic carbon that can be degraded into C1 compounds such as methane, methanol, and methylamines, the fate of which depends on the microbial metabolisms present as well as the hydrological conditions and availability of oxygen. In the present study, we generated over 1,000 MAGs from subsurface sediments from a montane river floodplain and recovered genomes for microorganisms that are capable of producing and consuming methane and other C1 compounds, highlighting a robust potential for C1 cycling in subsurface sediments both with and without oxygen. Archaea from the Ca. Methanoperedens genus were exceptionally abundant in one sample, indicating a potential C1/methane-cycling hotspot in the Slate River floodplain system.
Collapse
Affiliation(s)
- Anna N. Rasmussen
- Department of Earth System Science, Stanford University, Stanford, California, USA
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Bradley B. Tolar
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - John R. Bargar
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kristin Boye
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Christopher A. Francis
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Oceans Department, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Rodríguez-Ramos J, Nicora CD, Purvine SO, Borton MA, McGivern BB, Hoyt DW, Lipton MS, Wrighton KC. Untargeted, tandem mass spectrometry metaproteome of Columbia River sediments. Microbiol Resour Announc 2024; 13:e0003324. [PMID: 38651910 PMCID: PMC11237565 DOI: 10.1128/mra.00033-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Rivers are critical ecosystems that impact global biogeochemical cycles. Nonetheless, a mechanistic understanding of river microbial metabolisms and their influences on geochemistry is lacking. Here, we announce metaproteomes of river sediments that are paired with metagenomes and metabolites, enabling an understanding of the microbial underpinnings of river respiration.
Collapse
Affiliation(s)
- Josué Rodríguez-Ramos
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Carrie D Nicora
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel O Purvine
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bridget B McGivern
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - David W Hoyt
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mary S Lipton
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Nebauer DJ, Pearson LA, Neilan BA. Critical steps in an environmental metaproteomics workflow. Environ Microbiol 2024; 26:e16637. [PMID: 38760994 DOI: 10.1111/1462-2920.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Environmental metaproteomics is a rapidly advancing field that provides insights into the structure, dynamics, and metabolic activity of microbial communities. As the field is still maturing, it lacks consistent workflows, making it challenging for non-expert researchers to navigate. This review aims to introduce the workflow of environmental metaproteomics. It outlines the standard practices for sample collection, processing, and analysis, and offers strategies to overcome the unique challenges presented by common environmental matrices such as soil, freshwater, marine environments, biofilms, sludge, and symbionts. The review also highlights the bottlenecks in data analysis that are specific to metaproteomics samples and provides suggestions for researchers to obtain high-quality datasets. It includes recent benchmarking studies and descriptions of software packages specifically built for metaproteomics analysis. The article is written without assuming the reader's familiarity with single-organism proteomic workflows, making it accessible to those new to proteomics or mass spectrometry in general. This primer for environmental metaproteomics aims to improve accessibility to this exciting technology and empower researchers to tackle challenging and ambitious research questions. While it is primarily a resource for those new to the field, it should also be useful for established researchers looking to streamline or troubleshoot their metaproteomics experiments.
Collapse
Affiliation(s)
- Daniel J Nebauer
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- Centre of Excellence in Synthetic Biology, Australian Research Council, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Wang L, Yin H, Li Y, Yang Z, Wang Y, Liu X. Prediction of microbial activity and abundance using interpretable machine learning models in the hyporheic zone of effluent-dominated receiving rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120627. [PMID: 38565034 DOI: 10.1016/j.jenvman.2024.120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Serving as a vital linkage between surface water and groundwater, the hyporheic zone (HZ) plays a fundamental role in improving water quality and maintaining ecological security. In arid or semi-arid areas, effluent discharge from wastewater treatment facilities could occupy a predominant proportion of the total base flow of receiving rivers. Nonetheless the relationship between microbial activity, abundance and environmental factors in the HZ of effluent-receiving rivers appear to be rarely addressed. In this study, a spatiotemporal field study was performed in two representative effluent-dominated receiving rivers in Xi'an, China. Land use data, physical and chemical water quality parameters of surface and subsurface water were used as predictive variables, while the microbial respiratory electron transport system activity (ETSA), the Chao1 and Shannon index of total microbial community, as well as the Chao1 and Shannon index of denitrifying bacteria community were used as response variables, while ETSA was used as response variables indicating ecological processes and Shannon and Chao1 were utilized as parameters indicating microbial diversity. Two machine learning models were utilized to provide evidence-based information on how environmental factors interact and drive microbial activity and abundance in the HZ at variable depths. The models with Chao1 and Shannon as response variables exhibited excellent predictive performances (R2: 0.754-0.81 and 0.783-0.839). Dissolved organic nitrogen (DON) was the most important factor affecting the microbial functions, and an obvious threshold value of ∼2 mg/L was observed. Credible predictions of models with Chao1 and Shannon index of denitrifying bacteria community as response variables were detected (R2: 0.484-0.624 and 0.567-0.638), with soluble reactive phosphorus (SRP) being the key influencing factor. Fe (Ⅱ) was favorable in predicting denitrifying bacteria community. The ESTA model highlighted the importance of total nitrogen in the ecological health monitoring in HZ. These findings provide novel insights in predicting microbial activity and abundance in highly-impacted areas such as the HZ of effluent-dominated receiving rivers.
Collapse
Affiliation(s)
- Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Haojie Yin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhengjian Yang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| | - Yutao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xianwei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
9
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
10
|
Shaaban M. Microbial pathways of nitrous oxide emissions and mitigation approaches in drylands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120393. [PMID: 38364533 DOI: 10.1016/j.jenvman.2024.120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Drylands refer to water scarcity and low nutrient levels, and their plant and biocrust distribution is highly diverse, making the microbial processes that shape dryland functionality particularly unique compared to other ecosystems. Drylands are constraint for sustainable agriculture and risk for food security, and expected to increase over time. Nitrous oxide (N2O), a potent greenhouse gas with ozone reduction potential, is significantly influenced by microbial communities in drylands. However, our understanding of the biological mechanisms and processes behind N2O emissions in these areas is limited, despite the fact that they highly account for total gaseous nitrogen (N) emissions on Earth. This review aims to illustrate the important biological pathways and microbial players that regulate N2O emissions in drylands, and explores how these pathways might be influenced by global changes for example N deposition, extreme weather events, and climate warming. Additionally, we propose a theoretical framework for manipulating the dryland microbial community to effectively reduce N2O emissions using evolving techniques that offer inordinate specificity and efficacy. By combining expertise from different disciplines, these exertions will facilitate the advancement of innovative and environmentally friendly microbiome-based solutions for future climate change vindication approaches.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
11
|
Fadum JM, Borton MA, Daly RA, Wrighton KC, Hall EK. Dominant nitrogen metabolisms of a warm, seasonally anoxic freshwater ecosystem revealed using genome resolved metatranscriptomics. mSystems 2024; 9:e0105923. [PMID: 38259093 PMCID: PMC10878078 DOI: 10.1128/msystems.01059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Nitrogen (N) availability is one of the principal drivers of primary productivity across aquatic ecosystems. However, the microbial communities and emergent metabolisms that govern N cycling in tropical lakes are both distinct from and poorly understood relative to those found in temperate lakes. This latitudinal difference is largely due to the warm (>20°C) temperatures of tropical lake anoxic hypolimnions (deepest portion of a stratified water column), which result in unique anaerobic metabolisms operating without the temperature constraints found in lakes at temperate latitudes. As such, tropical hypolimnions provide a platform for exploring microbial membership and functional diversity. To better understand N metabolism in warm anoxic waters, we combined measurements of geochemistry and water column thermophysical structure with genome-resolved metatranscriptomic analyses of the water column microbiome in Lake Yojoa, Honduras. We sampled above and below the oxycline in June 2021, when the water column was stratified, and again at the same depths and locations in January 2022, when the water column was mixed. We identified 335 different lineages and significantly different microbiome membership between seasons and, when stratified, between depths. Notably, nrfA (indicative of dissimilatory nitrate reduction to ammonium) was upregulated relative to other N metabolism genes in the June hypolimnion. This work highlights the taxonomic and functional diversity of microbial communities in warm and anoxic inland waters, providing insight into the contemporary microbial ecology of tropical ecosystems as well as inland waters at higher latitudes as water columns continue to warm in the face of global change.IMPORTANCEIn aquatic ecosystems where primary productivity is limited by nitrogen (N), whether continuously, seasonally, or in concert with additional nutrient limitations, increased inorganic N availability can reshape ecosystem structure and function, potentially resulting in eutrophication and even harmful algal blooms. Whereas microbial metabolic processes such as mineralization and dissimilatory nitrate reduction to ammonium increase inorganic N availability, denitrification removes bioavailable N from the ecosystem. Therefore, understanding these key microbial mechanisms is critical to the sustainable management and environmental stewardship of inland freshwater resources. This study identifies and characterizes these crucial metabolisms in a warm, seasonally anoxic ecosystem. Results are contextualized by an ecological understanding of the study system derived from a multi-year continuous monitoring effort. This unique data set is the first of its kind in this largely understudied ecosystem (tropical lakes) and also provides insight into microbiome function and associated taxa in warm, anoxic freshwaters.
Collapse
Affiliation(s)
- J. M. Fadum
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| | - M. A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - R. A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - K. C. Wrighton
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - E. K. Hall
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Wang Y, Wang Y, Shang J, Wang L, Li Y, Wang Z, Zou Y, Cai W, Wang L. Redox gradients drive microbial community assembly patterns and molecular ecological networks in the hyporheic zone of effluent-dominated rivers. WATER RESEARCH 2024; 248:120900. [PMID: 38000224 DOI: 10.1016/j.watres.2023.120900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The impacts of effluent discharge on receiving waterbodies have been a research hotspot. Nonetheless, limited information is available on the microbial community assembly patterns in the hyporheic zones (HZ) responding to the changes in the microenvironments, e.g., solute transport and redox gradient variations. Using two representative effluent-dominated rivers as model systems, the spatio-temporal bacterial community dynamics and assembly patterns in oxic and suboxic zones in the shallow riverbed sediments were disentangled via null model- and neutral model-based approaches. Bacterial dynamics in community composition were observed driven by environmental filtering, i.e., impacts of environmental variables, more than geographic distances, i.e., the depths of sediments. The communities in samples collected in summer were largely shaped by stochasticity, in which homogeneous selection occupied a higher proportion in oxic (∼39%) than in suboxic zone (∼23%). Deterministic processes contributed to a more complex community structure for samples from oxic zones, whereas weakened the interspecies interactions in suboxic zones. The richness and abundances of non-neutral community were confirmed governing the deterministic assembly in oxic zones. Key species ascribed to 'connectors' and 'network hubs' dominated the community assembly variations in samples collected in winter, and in oxic zones, respectively. Significant positive relationships between β-nearest taxon index and dissolved organic nitrogen (DON) and nitrate highlighted their vital roles in community assembly via deterministic selective pressures in oxic zones. The significance thresholds of nitrogen species for community transition in winter (ΔDON: 2.81 mg-N/L, ΔNO3-: 1.09 mg-N/L) were lower than in summer, probably implying that stricter effluent quality standards should be established in colder seasons. Combined, our work poses first insights on the roles of redox zonation in driving microbial community assembly in HZ, which is of significance in guiding ecological remediation processes in effluent-dominated rivers.
Collapse
Affiliation(s)
- Yuming Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yutao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Ziyi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yina Zou
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Wei Cai
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
13
|
Baumann KBL, Mazzoli A, Salazar G, Ruscheweyh HJ, Müller B, Niederdorfer R, Sunagawa S, Lever MA, Lehmann MF, Bürgmann H. Metagenomic and -transcriptomic analyses of microbial nitrogen transformation potential, and gene expression in Swiss lake sediments. ISME COMMUNICATIONS 2024; 4:ycae110. [PMID: 39411197 PMCID: PMC11476906 DOI: 10.1093/ismeco/ycae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
The global nitrogen (N) cycle has been strongly altered by anthropogenic activities, including increased input of bioavailable N into aquatic ecosystems. Freshwater sediments are hotspots with regards to the turnover and elimination of fixed N, yet the environmental controls on the microbial pathways involved in benthic N removal are not fully understood. Here, we analyze the abundance and expression of microbial genes involved in N transformations using metagenomics and -transcriptomics across sediments of 12 Swiss lakes that differ in sedimentation rates and trophic regimes. Our results indicate that microbial N loss in these sediments is primarily driven by nitrification coupled to denitrification. N-transformation gene compositions indicated three groups of lakes: agriculture-influenced lakes characterized by rapid depletion of oxidants in the sediment porewater, pristine-alpine lakes with relatively deep sedimentary penetration of oxygen and nitrate, and large, deep lakes with intermediate porewater hydrochemical properties. Sedimentary organic matter (OM) characteristics showed the strongest correlations with the community structure of microbial N-cycling communities. Most transformation pathways were expressed, but expression deviated from gene abundance and did not correlate with benthic geochemistry. Cryptic N-cycling may maintain transcriptional activity even when substrate levels are below detection. Sediments of large, deep lakes generally showed lower in-situ N gene expression than agriculture-influenced lakes, and half of the pristine-alpine lakes. This implies that prolonged OM mineralization in the water column can lead to the suppression of benthic N gene expression.
Collapse
Affiliation(s)
- Kathrin B L Baumann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Alessandra Mazzoli
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8093 Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat Müller
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Robert Niederdorfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8093 Zurich, Switzerland
| | - Mark A Lever
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- Now at Marine Science Institute, University of Texas at Austin, Port Aransas, 78373 TX, United States
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
14
|
Rodríguez-Ramos J, Oliverio A, Borton MA, Danczak R, Mueller BM, Schulz H, Ellenbogen J, Flynn RM, Daly RA, Schopflin L, Shaffer M, Goldman A, Lewandowski J, Stegen JC, Wrighton KC. Spatial and temporal metagenomics of river compartments reveals viral community dynamics in an urban impacted stream. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535500. [PMID: 37066413 PMCID: PMC10104031 DOI: 10.1101/2023.04.04.535500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Although river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood. To assess how viral and microbial communities change over time, we sampled surface water and pore water compartments of the wastewater-impacted River Erpe in Germany every 3 hours over a 48-hour period resulting in 32 metagenomes paired to geochemical and metabolite measurements. We reconstructed 6,500 viral and 1,033 microbial genomes and found distinct communities associated with each river compartment. We show that 17% of our vMAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to carbon and nitrogen cycling. Together, these findings demonstrate that microbial and viral communities in surface waters of this urban river can exist as stable communities along a flowing river; and raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.
Collapse
|