1
|
Khademi SMH, Sahl C, Happonen L, Forsberg Å, Påhlman LI. The twin-arginine translocation system is vital for cell adhesion and uptake of iron in the cystic fibrosis pathogen Achromobacter xylosoxidans. Virulence 2024; 15:2284513. [PMID: 37974335 PMCID: PMC11533796 DOI: 10.1080/21505594.2023.2284513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Achromobacter xylosoxidans is an emerging pathogen that causes airway infections in patients with cystic fibrosis. Knowledge of virulence factors and protein secretion systems in this bacterium is limited. Twin arginine translocation (Tat) is a protein secretion system that transports folded proteins across the inner cell membranes of gram-negative bacteria. Tat has been shown to be important for virulence and cellular processes in many different bacterial species. This study aimed to investigate the role of Tat in iron metabolism and host cell adhesion in A. xylosoxidans. Putative Tat substrates in A. xylosoxidans were identified using the TatFind, TatP, and PRED-Tat prediction tools. An isogenic tatC deletion mutant (ΔtatC) was generated and phenotypically characterized. The wild-type and ΔtatC A. xylosoxidans were fractionated into cytosolic, membrane, and periplasmic fractions, and the expressed proteome of the different fractions was analysed using liquid chromatography-mass spectrometry (LC-MS/MS). A total of 128 putative Tat substrates were identified in the A. xylosoxidans proteome. The ΔtatC mutant showed attenuated host cell adhesion, growth rate, and iron acquisition. Twenty predicted Tat substrates were identified as expressed proteins in the periplasmic compartment, nine of which were associated with the wild type. The data indicate that Tat secretion is important for iron acquisition and host cell adhesion in A. xylosoxidans.
Collapse
Affiliation(s)
- S. M. Hossein Khademi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Cecilia Sahl
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, Umeå
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Sweden, Sweden
| |
Collapse
|
2
|
Lazzem A, Lekired A, Ouzari HI, Landoulsi A, Chatti A, El May A. Isolation and characterization of a newly chrysene-degrading Achromobacter aegrifaciens. Int Microbiol 2024; 27:857-869. [PMID: 37851202 DOI: 10.1007/s10123-023-00435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered substances of potential human health hazards because of their resistance to biodegradation and carcinogenic index. Chrysene is a PAH with a high molecular weight (HMW) that poses challenges for its elimination from the environment. However, bacterial degradation is an effective, environmentally friendly, and cost-effective solution. In our study, we isolated a potential chrysene-degrading bacteria from crude oil-contaminated seawater (Bizerte, Tunisia). Based on 16SrRNA analysis, the isolate S5 was identified as Achromobacter aegrifaciens. Furthermore, the results revealed that A. aegrifaciens S5 produced a biofilm on polystyrene at 20 °C and 30 °C, as well as at the air-liquid (A-L) interface. Moreover, this isolate was able to swim and produce biosurfactants with an emulsification activity (E24%) over 53%. Chrysene biodegradation by isolate S5 was clearly assessed by an increase in the total viable count. Confirmation was obtained via gas chromatography-mass spectrometry (GC-MS) analyses. A. aegrifaciens S5 could use chrysene as its sole carbon and energy source, exhibiting an 86% degradation of chrysene on day 7. In addition, the bacterial counts reached their highest level, over 25 × 1020 CFU/mL, under the conditions of pH 7.0, a temperature of 30 °C, and a rotary speed of 120 rpm. Based on our findings, A. aegrifaciens S5 can be a potential candidate for bioremediation in HMW-PAH-contaminated environments.
Collapse
Affiliation(s)
- Assia Lazzem
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia.
| | - Abdelmalek Lekired
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Actives Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Alya El May
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
3
|
Sorlin P, Brivet E, Jean-Pierre V, Aujoulat F, Besse A, Dupont C, Chiron R, Jumas-Bilak E, Menetrey Q, Marchandin H. Prevalence and variability of siderophore production in the Achromobacter genus. Microbiol Spectr 2024; 12:e0295323. [PMID: 38315029 PMCID: PMC10913535 DOI: 10.1128/spectrum.02953-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024] Open
Abstract
Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.
Collapse
Affiliation(s)
- P. Sorlin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - E. Brivet
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - V. Jean-Pierre
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| | - F. Aujoulat
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - A. Besse
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - C. Dupont
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire de Bactériologie, CHU de Montpellier, Montpellier, France
| | - R. Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, Montpellier, France
| | - E. Jumas-Bilak
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire d’Écologie Microbienne Hospitalière, CHU de Montpellier, Montpellier, France
| | - Q. Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, Lille, France
| | - H. Marchandin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| |
Collapse
|
4
|
Grote A, Piscon B, Manson AL, Adani B, Cohen H, Livny J, Earl AM, Gal-Mor O. Persistent Salmonella infections in humans are associated with mutations in the BarA/SirA regulatory pathway. Cell Host Microbe 2024; 32:79-92.e7. [PMID: 38211565 PMCID: PMC11410052 DOI: 10.1016/j.chom.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Several bacterial pathogens, including Salmonella enterica, can cause persistent infections in humans by mechanisms that are poorly understood. By comparing genomes of isolates longitudinally collected from 256 prolonged salmonellosis patients, we identified repeated mutations in global regulators, including the barA/sirA two-component regulatory system, across multiple patients and Salmonella serovars. Comparative RNA-seq analysis revealed that distinct mutations in barA/sirA led to diminished expression of Salmonella pathogenicity islands 1 and 4 genes, which are required for Salmonella invasion and enteritis. Moreover, barA/sirA mutants were attenuated in an acute salmonellosis mouse model and induced weaker transcription of host immune responses. In contrast, in a persistent infection mouse model, these mutants exhibited long-term colonization and prolonged shedding. Taken together, these findings suggest that selection of mutations in global virulence regulators facilitates persistent Salmonella infection in humans, by attenuating Salmonella virulence and inducing a weaker host inflammatory response.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bar Piscon
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Boaz Adani
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Helit Cohen
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Sahl C, Baumgarten M, Shannon O, Påhlman LI. Exoproducts of the Most Common Achromobacter Species in Cystic Fibrosis Evoke Similar Inflammatory Responses In Vitro. Microbiol Spectr 2023; 11:e0019523. [PMID: 37284754 PMCID: PMC10434066 DOI: 10.1128/spectrum.00195-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Achromobacter is a genus of Gram-negative rods, which can cause persistent airway infections in people with cystic fibrosis (CF). The knowledge about virulence and clinical implications of Achromobacter is still limited, and it is not fully established whether Achromobacter infections contribute to disease progression or if it is a marker of poor lung function. The most commonly reported Achromobacter species in CF is A. xylosoxidans. While other Achromobacter spp. are also identified in CF airways, the currently used Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry (MALDI-TOF MS) method in routine diagnostics cannot distinguish between species. Differences in virulence between Achromobacter species have consequently not been well studied. In this study, we compare phenotypes and proinflammatory properties of A. xylosoxidans, A. dolens, A. insuavis, and A. ruhlandii using in vitro models. Bacterial supernatants were used to stimulate CF bronchial epithelial cells and whole blood from healthy individuals. Supernatants from the well-characterized CF-pathogen Pseudomonas aeruginosa were included for comparison. Inflammatory mediators were analyzed with ELISA and leukocyte activation was assessed using flow cytometry. The four Achromobacter species differed in morphology seen in scanning electron microscopy (SEM), but there were no observed differences in swimming motility or biofilm formation. Exoproducts from all Achromobacter species except A. insuavis caused significant IL-6 and IL-8 secretion from CF lung epithelium. The cytokine release was equivalent or stronger than the response induced by P. aeruginosa. All Achromobacter species activated neutrophils and monocytes ex vivo in a lipopolysaccharide (LPS)-independent manner. Our results indicate that exoproducts of the four included Achromobacter species do not differ consistently in causing inflammatory responses, but they are equally or even more capable of inducing inflammation compared with the classical CF pathogen P. aeruginosa. IMPORTANCE Achromobacter xylosoxidans is an emerging pathogen among people with cystic fibrosis (CF). Current routine diagnostic methods are often unable to distinguish A. xylosoxidans from other Achromobacter species, and the clinical relevance of different species is still unknown. In this work, we show that four different Achromobacter species relevant to CF evoke similar inflammatory responses from airway epithelium and leukocytes in vitro, but they are all equally or even more proinflammatory compared to the classic CF-pathogen Pseudomonas aeruginosa. The results suggest that Achromobacter species are important airway pathogens in CF, and that all Achromobacter species are relevant to treat.
Collapse
Affiliation(s)
- Cecilia Sahl
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Maria Baumgarten
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| |
Collapse
|
6
|
Izydorczyk C, Waddell BJ, Thornton CS, Conly JM, Rabin HR, Somayaji R, Surette MG, Church DL, Parkins MD. Stenotrophomonas maltophilia natural history and evolution in the airways of adults with cystic fibrosis. Front Microbiol 2023; 14:1205389. [PMID: 37396351 PMCID: PMC10308010 DOI: 10.3389/fmicb.2023.1205389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Stenotrophomonas maltophilia is an opportunistic pathogen infecting persons with cystic fibrosis (pwCF) and portends a worse prognosis. Studies of S. maltophilia infection dynamics have been limited by cohort size and follow-up. We investigated the natural history, transmission potential, and evolution of S. maltophilia in a large Canadian cohort of 321 pwCF over a 37-year period. Methods One-hundred sixty-two isolates from 74 pwCF (23%) were typed by pulsed-field gel electrophoresis, and shared pulsotypes underwent whole-genome sequencing. Results S. maltophilia was recovered at least once in 82 pwCF (25.5%). Sixty-four pwCF were infected by unique pulsotypes, but shared pulsotypes were observed between 10 pwCF. In chronic carriage, longer time periods between positive sputum cultures increased the likelihood that subsequent isolates were unrelated. Isolates from individual pwCF were largely clonal, with differences in gene content being the primary source of genetic diversity objectified by gene content differences. Disproportionate progression of CF lung disease was not observed amongst those infected with multiple strains over time (versus a single) or amongst those with shared clones (versus strains only infecting one patient). We did not observe evidence of patient-to-patient transmission despite relatedness between isolates. Twenty-four genes with ≥ 2 mutations accumulated over time were identified across 42 sequenced isolates from all 11 pwCF with ≥ 2 sequenced isolates, suggesting a potential role for these genes in adaptation of S. maltophilia to the CF lung. Discussion Genomic analyses suggested common, indirect sources as the origins of S. maltophilia infections in the clinic population. The information derived from a genomics-based understanding of the natural history of S. maltophilia infection within CF provides unique insight into its potential for in-host evolution.
Collapse
Affiliation(s)
- Conrad Izydorczyk
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barbara J. Waddell
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina S. Thornton
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - John M. Conly
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Harvey R. Rabin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Michael G. Surette
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Deirdre L. Church
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Michael D. Parkins
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
7
|
Polymyxin Resistance and Heteroresistance Are Common in Clinical Isolates of Achromobacter Species and Correlate with Modifications of the Lipid A Moiety of Lipopolysaccharide. Microbiol Spectr 2023; 11:e0372922. [PMID: 36519943 PMCID: PMC9927164 DOI: 10.1128/spectrum.03729-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Achromobacter genus includes opportunistic pathogens that can cause chronic infections in immunocompromised patients, especially in people with cystic fibrosis (CF). Treatment of Achromobacter infections is complicated by antimicrobial resistance. In this study, a collection of Achromobacter clinical isolates, from CF and non-CF sources, was investigated for polymyxin B (PmB) resistance. Additionally, the effect of PmB challenge in a subset of isolates was examined and the presence of PmB-resistant subpopulations within the isolates was described. Further, chemical and mass spectrometry analyses of the lipid A of Achromobacter clinical isolates enabled the determination of the most common structures and showed that PmB challenge was associated with lipid A modifications that included the addition of glucosamine and palmitoylation and the concomitant loss of the free phosphate at the C-1 position. This study demonstrates that lipid A modifications associated with PmB resistance are prevalent in Achromobacter and that subresistant populations displaying the addition of positively charged residues and additional acyl chains to lipid A can be selected for and isolated from PmB-sensitive Achromobacter clinical isolates. IMPORTANCE Achromobacter species can cause chronic and potentially severe infections in immunocompromised patients, especially in those with cystic fibrosis. Bacteria cannot be eradicated due to Achromobacter's intrinsic multidrug resistance. We report that intrinsic resistance to polymyxin B (PmB), a last-resort antimicrobial peptide used to treat infections by multiresistant bacteria, is prevalent in Achromobacter clinical isolates; many isolates also display increased resistance upon PmB challenge. Analysis of the lipopolysaccharide lipid A moiety of several Achromobacter species reveals a penta-acylated lipid A, which in the PmB-resistant isolates was modified by the incorporation of glucosamine residues, an additional acyl chain, loss of phosphates, and hydroxylation of acyl chains, all of which can enhance PmB resistance in other bacteria. We conclude that PmB resistance, particularly in Achromobacter isolates from chronic respiratory infections, is a common phenomenon, and that Achromobacter lipid A displays modifications that may confer increased resistance to polymyxins and potentially other antimicrobial peptides.
Collapse
|
8
|
Grote A, Earl AM. Within-host evolution of bacterial pathogens during persistent infection of humans. Curr Opin Microbiol 2022; 70:102197. [PMID: 36063686 PMCID: PMC11333989 DOI: 10.1016/j.mib.2022.102197] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023]
Abstract
Many bacterial pathogens can form persistent infections, providing an infectious reservoir, which allows for infection of new hosts. Currently, the molecular mechanisms and evolutionary dynamics driving persistence are still not well-understood. High-throughput sequencing methods have enabled the study of within-host evolution of persistent bacterial pathogens, revealing common trends among bacterial species in how they adapt to persist. We will focus on trends emerging from longitudinal human-cohort studies, including i) genome-size reduction, ii) metabolic adaptation to the host, iii) antimicrobial resistance, iv) changes in virulence and the bacterial cell surface, and v) hypermutation, and comment on where the field should focus going forward.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Pickrum AM, Riegert MO, Wells C, Brockman K, Frank DW. The In Vitro Replication Cycle of Achromobacter xylosoxidans and Identification of Virulence Genes Associated with Cytotoxicity in Macrophages. Microbiol Spectr 2022; 10:e0208322. [PMID: 35856670 PMCID: PMC9430717 DOI: 10.1128/spectrum.02083-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Achromobacter xylosoxidans is an opportunistic pathogen implicated in a wide variety of human infections including the ability to colonize the lungs of cystic fibrosis (CF) patients. The role of A. xylosoxidans in human pathology remains controversial due to the lack of optimized in vitro and in vivo model systems to identify and test bacterial gene products that promote a pathological response. We have previously identified macrophages as a target host cell for A. xylosoxidans-induced cytotoxicity. By optimizing our macrophage infection model, we determined that A. xylosoxidans enters macrophages and can reside within a membrane bound vacuole for extended periods of time. Intracellular replication appears limited with cellular lysis preceding an enhanced, mainly extracellular replication cycle. Using our optimized in vitro model system along with transposon mutagenesis, we identified 163 genes that contribute to macrophage cytotoxicity. From this list, we characterized a giant RTX adhesin encoded downstream of a type one secretion system (T1SS) that mediates bacterial binding and entry into host macrophages, an important first step toward cellular toxicity and inflammation. The RTX adhesin is encoded by other human isolates and is recognized by antibodies present in serum isolated from CF patients colonized by A. xylosoxidans, indicating this virulence factor is produced and deployed in vivo. This study represents the first characterization of A. xylosoxidans replication during infection and identifies a variety of genes that may be linked to virulence and human pathology. IMPORTANCE Patients affected by CF develop chronic bacterial infections characterized by inflammatory exacerbations and tissue damage. Advancements in sequencing technologies have broadened the list of opportunistic pathogens colonizing the CF lung. A. xylosoxidans is increasingly recognized as an opportunistic pathogen in CF, yet our understanding of the bacterium as a contributor to human disease is limited. Genomic studies have identified potential virulence determinants in A. xylosoxidans isolates, but few have been mechanistically studied. Using our optimized in vitro cell model, we identified and characterized a bacterial adhesin that mediates binding and uptake by host macrophages leading to cytotoxicity. A subset of serum samples from CF patients contains antibodies that recognize the RTX adhesion, suggesting, for the first time, that this virulence determinant is produced in vivo. This work furthers our understanding of A. xylosoxidans virulence factors at a mechanistic level.
Collapse
Affiliation(s)
- Adam M. Pickrum
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Molly O. Riegert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Clive Wells
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth Brockman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|