1
|
Powell AA, Dowell AC, Moss P, Ladhani SN. Current state of COVID-19 in children: 4 years on. J Infect 2024; 88:106134. [PMID: 38432584 DOI: 10.1016/j.jinf.2024.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Children have been disproportionately affected by the COVID-19 pandemic. Despite evidence of a very low risk of severe disease, children were subjected to extensive lockdown, restriction and mitigation measures, including school closures, to control the rapid spread of SARS-CoV-2 in most parts of the world. In this review we summarise the UK experience of COVID-19 in children four years into the largest and longest pandemic of this century. We address the risks of SARS-CoV-2 infection, immunity, transmission, severity and outcomes in children. We also assess the implementation, uptake, effectiveness and impact of COVID-19 vaccination, as well as the emergence, evolution and near disappearance of PIMS-TS (paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2) and current understanding of long COVID in children. This review consolidates current knowledge on childhood COVID-19 and emphasises the importance of continued research and the need for research-driven public health actions and policy decisions, especially in the context of new variants and future vaccines.
Collapse
Affiliation(s)
- Annabel A Powell
- Public Health Programmes, UK Health Security Agency, London, UK.
| | - Alexander C Dowell
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shamez N Ladhani
- Public Health Programmes, UK Health Security Agency, London, UK; Paediatric Infectious Diseases Research Group, St. George's University of London, London, UK
| |
Collapse
|
2
|
Winklmeier S, Rübsamen H, Özdemir C, Wratil PR, Lupoli G, Stern M, Schneider C, Eisenhut K, Ho S, Wong HK, Taskin D, Petry M, Weigand M, Eichhorn P, Foesel BU, Mader S, Keppler OT, Kümpfel T, Meinl E. Intramuscular vaccination against SARS-CoV-2 transiently induces neutralizing IgG rather than IgA in the saliva. Front Immunol 2024; 15:1330864. [PMID: 38375482 PMCID: PMC10875124 DOI: 10.3389/fimmu.2024.1330864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
The mucosal immunity is crucial for restricting SARS-CoV-2 at its entry site. Intramuscularly applied vaccines against SARS-CoV-2 stimulate high levels of neutralizing Abs in serum, but the impact of these intramuscular vaccinations on features of mucosal immunity is less clear. Here, we analyzed kinetic and functional properties of anti-SARS-CoV-2 Abs in the saliva after vaccination with BNT162b2. We analyzed a total of 24 healthy donors longitudinally for up to 16 months. We found that specific IgG appeared in the saliva after the second vaccination, declined thereafter and reappeared after the third vaccination. Adjusting serum and saliva for the same IgG concentration revealed a strong correlation between the reactivity in these two compartments. Reactivity to VoCs correlated strongly as seen by ELISAs against RBD variants and by live-virus neutralizing assays against replication-competent viruses. For further functional analysis, we purified IgG and IgA from serum and saliva. In vaccinated donors we found neutralizing activity towards authentic virus in the IgG, but not in the IgA fraction of the saliva. In contrast, IgA with neutralizing activity appeared in the saliva only after breakthrough infection. In serum, we found neutralizing activity in both the IgA and IgG fractions. Together, we show that intramuscular mRNA vaccination transiently induces a mucosal immunity that is mediated by IgG and thus differs from the mucosal immunity after infection. Waning of specific mucosal IgG might be linked to susceptibility for breakthrough infection.
Collapse
Affiliation(s)
- Stephan Winklmeier
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Heike Rübsamen
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Ceren Özdemir
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Paul R. Wratil
- Max von Pettenkofer Institute & Gene Center, Virology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Gaia Lupoli
- Max von Pettenkofer Institute & Gene Center, Virology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute & Gene Center, Virology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Celine Schneider
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Katharina Eisenhut
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Samantha Ho
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Hoi Kiu Wong
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Damla Taskin
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Marvin Petry
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Michael Weigand
- Institute of Laboratory Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Eichhorn
- Institute of Laboratory Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bärbel U. Foesel
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Simone Mader
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Oliver T. Keppler
- Max von Pettenkofer Institute & Gene Center, Virology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
3
|
Lunt R, Quinot C, Kirsebom F, Andrews N, Skarnes C, Letley L, Haskins D, Angel C, Firminger S, Ratcliffe K, Rajan S, Sherridan A, Ijaz S, Zambon M, Brown K, Ramsay M, Bernal JL. The impact of vaccination and SARS-CoV-2 variants on the virological response to SARS-CoV-2 infections during the Alpha, Delta, and Omicron waves in England. J Infect 2024; 88:21-29. [PMID: 37926118 DOI: 10.1016/j.jinf.2023.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Vaccination status and the SARS-CoV-2 variant individuals are infected with are known to independently impact viral dynamics; however, little is known about the interaction of these two factors and how this impacts viral dynamics. Here we investigated how monovalent vaccination modified the time course and viral load of infections from different variants. Regression analyses were used to investigate the impact of vaccination on cycle threshold values and disease severity, and interval-censored survival analyses were used to investigate the impact of vaccination on duration of positivity. A range of covariates were adjusted for as potential confounders and investigated for their own effects in exploratory analyses. All analyses were done combining all variants and stratified by variant. For those infected with Alpha or Delta, vaccinated individuals were more likely to report mild disease than moderate/severe disease and had significantly shorter duration of positivity and lower viral loads compared to unvaccinated individuals. Vaccination had no impact on self-reported disease severity, viral load, or duration if positivity for those infected with Omicron. Overall, individuals who were immunosuppressed and clinically extremely vulnerable had longer duration of positivity and higher viral loads. This study adds to the evidence base on disease dynamics following COVID-19, demonstrating that vaccination mitigates severity of disease, the amount of detectable virus within infected individuals and reduces the time individuals are positive for. However, these effects have been significantly attenuated since the emergence of Omicron. Therefore, our findings strengthen the argument for using modified or multivalent vaccines that target emerging variants.
Collapse
Affiliation(s)
- Rachel Lunt
- UK Health Security Agency, London, United Kingdom.
| | | | | | - Nick Andrews
- UK Health Security Agency, London, United Kingdom; NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | | - Samreen Ijaz
- UK Health Security Agency, London, United Kingdom
| | - Maria Zambon
- UK Health Security Agency, London, United Kingdom; NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| | - Kevin Brown
- UK Health Security Agency, London, United Kingdom
| | - Mary Ramsay
- UK Health Security Agency, London, United Kingdom; NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jamie Lopez Bernal
- UK Health Security Agency, London, United Kingdom; NIHR Health Protection Research Unit in Vaccines and Immunisation, London School of Hygiene and Tropical Medicine, London, United Kingdom; NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Ratcliffe H, Tiley KS, Longet S, Tonry C, Roarty C, Watson C, Amirthalingam G, Vichos I, Morey E, Douglas NL, Marinou S, Plested E, Aley PK, Galiza E, Faust SN, Hughes S, Murray C, Roderick MR, Shackley F, Oddie S, Lee TW, Turner DP, Raman M, Owens S, Turner PJ, Cockerill H, Lopez Bernal J, Ijaz S, Poh J, Shute J, Linley E, Borrow R, Hoschler K, Brown KE, Carroll MW, Klenerman P, Dunachie SJ, Ramsay M, Voysey M, Waterfield T, Snape MD. Serum HCoV-spike specific antibodies do not protect against subsequent SARS-CoV-2 infection in children and adolescents. iScience 2023; 26:108500. [PMID: 38089581 PMCID: PMC10711458 DOI: 10.1016/j.isci.2023.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 02/15/2024] Open
Abstract
SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies.
Collapse
Affiliation(s)
- Helen Ratcliffe
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Karen S. Tiley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Cathal Roarty
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Chris Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | | | - Iason Vichos
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Ella Morey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Naomi L. Douglas
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Spyridoula Marinou
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Emma Plested
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Parvinder K. Aley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Eva Galiza
- St Georges Hospital NHS Foundation Trust
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine and Institute of Life Sciences, University of Southampton
- National Immunisation Schedule Evaluation Consortium
| | - Stephen Hughes
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Clare Murray
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | - Sam Oddie
- Bradford Teaching Hospitals NHS Foundation Trust
| | | | - David P.J. Turner
- School of Life Sciences, University of Nottingham
- Nottingham University Hospitals NHS Trust
| | | | - Stephen Owens
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust
| | - Paul J. Turner
- National Heart & Lung Institute, Imperial College London
| | | | | | | | | | | | | | | | | | | | - Miles W. Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford BRC
| | - Susanna J. Dunachie
- National Institute for Health Research (NIHR) Oxford BRC
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Merryn Voysey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Thomas Waterfield
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Matthew D. Snape
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
- National Immunisation Schedule Evaluation Consortium
- West Suffolk NHS Foundation Trust
| |
Collapse
|
5
|
Nguipdop-Djomo P, Oswald WE, Halliday KE, Cook S, Sturgess J, Sundaram N, Warren-Gash C, Fine PE, Glynn J, Allen E, Clark TG, Ford B, Judd A, Ireland G, Poh J, Bonell C, Dawe F, Rourke E, Diamond I, Ladhani SN, Langan SM, Hargreaves J, Mangtani P. Risk factors for SARS-CoV-2 infection in primary and secondary school students and staff in England in the 2020/2021 school year: a longitudinal study. Int J Infect Dis 2023; 128:230-243. [PMID: 36621754 PMCID: PMC9815858 DOI: 10.1016/j.ijid.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/27/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Investigate risk factors for SARS-CoV-2 infections in school students and staff. METHODS In the 2020/2021 school year, we administered polymerase chain reaction, antibody tests, and questionnaires to a sample of primary and secondary school students and staff, with data linkage to COVID-19 surveillance. We fitted logistic regression models to identify the factors associated with infection. RESULTS We included 6799 students and 5090 staff in the autumn and 11,952 students and 4569 staff in the spring/summer terms. Infections in students in autumn 2020 were related to the percentage of students eligible for free school meals. We found no statistical association between infection risk in primary and secondary schools and reported contact patterns between students and staff in either period in our study. Using public transports was associated with increased risk in autumn in students (adjusted odds ratio = 1.72; 95% confidence interval 1.31-2.25) and staff. One or more infections in the same household during either period was the strongest risk factor for infection in students and more so among staff. CONCLUSION Deprivation, community, and household factors were more strongly associated with infection than contacts patterns at school; this suggests that the additional school-based mitigation measures in England in 2020/2021 likely helped reduce transmission risk in schools.
Collapse
Affiliation(s)
- Patrick Nguipdop-Djomo
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| | - William E Oswald
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Katherine E Halliday
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sarah Cook
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Joanna Sturgess
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Neisha Sundaram
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Charlotte Warren-Gash
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Paul Em Fine
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Judith Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Allen
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Benjamin Ford
- Office for National Statistics, Government Buildings, Newport, UK
| | - Alison Judd
- Office for National Statistics, Government Buildings, Newport, UK
| | | | - John Poh
- Public Health Programmes, UK Health Security Agency, London, UK
| | - Chris Bonell
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Fiona Dawe
- Office for National Statistics, Government Buildings, Newport, UK
| | - Emma Rourke
- Office for National Statistics, Government Buildings, Newport, UK
| | - Ian Diamond
- Office for National Statistics, Government Buildings, Newport, UK
| | - Shamez N Ladhani
- Public Health Programmes, UK Health Security Agency, London, UK; Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Sinéad M Langan
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - James Hargreaves
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Punam Mangtani
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
6
|
Powell AA, Ireland G, Leeson R, Lacey A, Ford B, Poh J, Ijaz S, Shute J, Cherepanov P, Tedder R, Bottomley C, Dawe F, Mangtani P, Jones P, Nguipdop-Djomo P, Ladhani SN. National and regional prevalence of SARS-CoV-2 antibodies in primary and secondary school children in England: the School Infection Survey, a national open cohort study, November 2021. J Infect 2023; 86:361-368. [PMID: 36803676 PMCID: PMC9930376 DOI: 10.1016/j.jinf.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND SARS-CoV-2 infection rates are likely to be underestimated in children because of asymptomatic or mild infections. We aim to estimate national and regional prevalence of SARS-CoV-2 antibodies in primary (4-11-year-olds) and secondary (11-18-year-olds) school children between 10 November and 10 December 2021. METHODS Cross-sectional surveillance in England using two stage sampling, firstly stratifying into regions and selecting local authorities, then selecting schools according to a stratified sample within selected local authorities. Participants were sampled using a novel oral fluid validated assay for SARS-CoV-2 spike and nucleocapsid IgG antibodies. RESULTS 4,980 students from 117 state-funded schools (2,706 from 83 primary schools, 2,274 from 34 secondary schools) provided a valid sample. After weighting for age, sex and ethnicity, and adjusting for assay accuracy, the national prevalence of SARS-CoV-2 antibodies in primary school students, who were all unvaccinated, was 40.1% (95%CI; 37.3-43.0). Antibody prevalence increased with age (p<0.001) and were higher in urban than rural schools (p=0.01). In secondary school students, the adjusted, weighted national prevalence of SARS-CoV-2 antibodies was 82.4% (95%CI; 79.5-85.1); including 71.5% (95%CI; 65.7-76.8) in unvaccinated and 97.5% (95%CI; 96.1-98.5) in vaccinated students. Antibody prevalence increased with age (p<0.001), and was not significantly different in urban versus rural students (p=0.1). CONCLUSIONS In November 2021, using a validated oral fluid assay, national SARS-CoV-2 seroprevalence was estimated to be 40.1% in primary school students and 82.4% in secondary school students. In unvaccinated children this was approximately three-fold higher than confirmed infections highlighting the importance of seroprevalence studies to estimate prior exposure. DATA AVAILABILITY De-identified study data are available for access by accredited researchers in the ONS Secure Research Service (SRS) for accredited research purposes under part 5, chapter 5 of the Digital Economy Act 2017. For further information about accreditation, contact Research.support@ons.gov.uk or visit the SRS website.
Collapse
Affiliation(s)
| | | | | | | | - Ben Ford
- Office for National Statistics, Newport, UK
| | - John Poh
- Public Health Programmes, UK Health Security Agency, London, UK
| | - Samreen Ijaz
- Public Health Programmes, UK Health Security Agency, London, UK
| | - Justin Shute
- Public Health Programmes, UK Health Security Agency, London, UK
| | - Peter Cherepanov
- Department of Infectious Disease, Imperial College London, London, UK
| | - Richard Tedder
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick institute, London, UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Fiona Dawe
- Office for National Statistics, Newport, UK
| | - Punam Mangtani
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Patrick Nguipdop-Djomo
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Shamez N Ladhani
- Public Health Programmes, UK Health Security Agency, London, UK; Paediatric Infectious Diseases Research Group, St George's University of London, London, UK.
| | | |
Collapse
|
7
|
Ratcliffe H, Tiley KS, Andrews N, Amirthalingam G, Vichos I, Morey E, Douglas NL, Marinou S, Plested E, Aley P, Galiza EP, Faust SN, Hughes S, Murray CS, Roderick M, Shackley F, Oddie SJ, Lees T, Turner DPJ, Raman M, Owens S, Turner P, Cockerill H, Lopez Bernal J, Linley E, Borrow R, Brown K, Ramsay ME, Voysey M, Snape MD. Community seroprevalence of SARS-CoV-2 in children and adolescents in England, 2019-2021. Arch Dis Child 2023; 108:123-130. [PMID: 35858775 PMCID: PMC9887370 DOI: 10.1136/archdischild-2022-324375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To understand community seroprevalence of SARS-CoV-2 in children and adolescents. This is vital to understanding the susceptibility of this cohort to COVID-19 and to inform public health policy for disease control such as immunisation. DESIGN We conducted a community-based cross-sectional seroprevalence study in participants aged 0-18 years old recruiting from seven regions in England between October 2019 and June 2021 and collecting extensive demographic and symptom data. Serum samples were tested for antibodies against SARS-CoV-2 spike and nucleocapsid proteins using Roche assays processed at UK Health Security Agency laboratories. Prevalence estimates were calculated for six time periods and were standardised by age group, ethnicity and National Health Service region. RESULTS Post-first wave (June-August 2020), the (anti-spike IgG) adjusted seroprevalence was 5.2%, varying from 0.9% (participants 10-14 years old) to 9.5% (participants 5-9 years old). By April-June 2021, this had increased to 19.9%, varying from 13.9% (participants 0-4 years old) to 32.7% (participants 15-18 years old). Minority ethnic groups had higher risk of SARS-CoV-2 seropositivity than white participants (OR 1.4, 95% CI 1.0 to 2.0), after adjusting for sex, age, region, time period, deprivation and urban/rural geography. In children <10 years, there were no symptoms or symptom clusters that reliably predicted seropositivity. Overall, 48% of seropositive participants with complete questionnaire data recalled no symptoms between February 2020 and their study visit. CONCLUSIONS Approximately one-third of participants aged 15-18 years old had evidence of antibodies against SARS-CoV-2 prior to the introduction of widespread vaccination. These data demonstrate that ethnic background is independently associated with risk of SARS-CoV-2 infection in children. TRIAL REGISTRATION NUMBER NCT04061382.
Collapse
Affiliation(s)
| | - K S Tiley
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nick Andrews
- Statistics, Modelling and Economics Department, Health Protection Agency, London, UK
| | - Gayatri Amirthalingam
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, UK
| | - I Vichos
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - E Morey
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - N L Douglas
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - S Marinou
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emma Plested
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Parvinder Aley
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva P Galiza
- St George's Vaccine Institute, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Saul N Faust
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - S Hughes
- Department of Paediatrics, Royal Manchester Children's Hospital, Manchester, UK
| | - Clare S Murray
- Department of Paediatrics, Royal Manchester Children's Hospital, Manchester, UK
- Respiratory Group, University of Manchester, Manchester, UK
| | - Marion Roderick
- Paediatric Infectious Diseases and Immunology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Fiona Shackley
- Immunology, Allergy and Infectious Diseases, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Sam J Oddie
- Bradford Neonatology, Bradford Teaching Hospitals NHS Foundation Trust, West Yorkshire, UK
| | - Tim Lees
- Paediatric Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - D P J Turner
- School of Life Sciences, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - M Raman
- Department of Paediatrics, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Stephen Owens
- Paediatric Immunology and Infectious Diseases, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Turner
- Section of Paediatrics, Imperial College London, London, UK
| | - H Cockerill
- Department of Paediatrics, West Suffolk NHS Foundation Trust, Bury Saint Edmunds, UK
| | - J Lopez Bernal
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, UK
| | - E Linley
- Vaccine Evaluation Unit, UK Health Security Agency, London, UK
| | - Ray Borrow
- Vaccine Evaluation Unit, UK Health Security Agency, London, UK
| | - Kevin Brown
- Virus Reference Department, Public Health England, Colindale, UK
| | - Mary Elizabeth Ramsay
- Immunisation, Hepatitis and Blood Safety Department, Public Health England, London, UK
| | - M Voysey
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Dhakal S, Yu T, Yin A, Pisanic N, Demko ZO, Antar AAR, Cox AL, Heaney CD, Manabe YC, Klein SL. Reconsideration of Antinucleocapsid IgG Antibody as a Marker of SARS-CoV-2 Infection Postvaccination for Mild COVID-19 Patients. Open Forum Infect Dis 2023; 10:ofac677. [PMID: 36655185 PMCID: PMC9835753 DOI: 10.1093/ofid/ofac677] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Antinucleocapsid (anti-N) immunoglobulin G antibody responses were lower in plasma and oral fluid after severe acute respiratory syndrome coronavirus 2 infection in vaccinated patients compared with patients infected before vaccination or infected without vaccination. This raises questions about the long-term use of anti-N antibodies as a marker for natural infection for surveillance.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tong Yu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anna Yin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zoe O Demko
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Annukka A R Antar
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yukari C Manabe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Transmission of SARS-CoV-2 by children to contacts in schools and households: a prospective cohort and environmental sampling study in London. THE LANCET. MICROBE 2022; 3:e814-e823. [PMID: 36029775 PMCID: PMC9401977 DOI: 10.1016/s2666-5247(22)00124-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Assessing transmission of SARS-CoV-2 by children in schools is of crucial importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shedding into air and onto fomites in both settings. METHODS We did a prospective cohort and environmental sampling study in London, UK in eight schools. Schools reporting new cases of SARS-CoV-2 infection to local health protection teams were invited to take part if a child index case had been attending school in the 48 h before a positive SARS-CoV-2 PCR test. At the time of the study, PCR testing was available to symptomatic individuals only. Children aged 2-14 years (extended to <18 years in November, 2020) with a new nose or throat swab SARS-CoV-2 positive PCR from an accredited laboratory were included. Incidents involving exposure to at least one index pupil with COVID-19 were identified (the prevailing variants were original, α, and δ). Weekly PCR testing for SARS-CoV-2 was done on immediate classroom contacts (the so-called bubble), non-bubble school contacts, and household contacts of index pupils. Testing was supported by genome sequencing and on-surface and air samples from school and home environments. FINDINGS Between October, 2020, and July, 2021 from the eight schools included, secondary transmission of SARS-CoV-2 was not detected in 28 bubble contacts, representing ten bubble classes (participation rate 8·8% [IQR 4·6-15·3]). Across eight non-bubble classes, 3 (2%) of 62 pupils tested positive, but these were unrelated to the original index case (participation rate 22·5% [9·7-32·3]). All three were asymptomatic and tested positive in one setting on the same day. In contrast, secondary transmission to previously negative household contacts from infected index pupils was found in six (17%) of 35 household contacts rising to 13 (28%) of 47 household contacts when considering all potential infections in household contacts. Environmental contamination with SARS-CoV-2 was rare in schools: fomite SARS-CoV-2 was identified in four (2%) of 189 samples in bubble classrooms, two (2%) of 127 samples in non-bubble classrooms, and five (4%) of 130 samples in washrooms. This contrasted with fomites in households, where SARS-CoV-2 was identified in 60 (24%) of 248 bedroom samples, 66 (27%) of 241 communal room samples, and 21 (11%) 188 bathroom samples. Air sampling identified SARS-CoV-2 RNA in just one (2%) of 68 of school air samples, compared with 21 (25%) of 85 air samples taken in homes. INTERPRETATION There was no evidence of large-scale SARS-CoV-2 transmission in schools with precautions in place. Low levels of environmental contamination in schools are consistent with low transmission frequency and suggest adequate cleaning and ventilation in schools during the period of study. The high frequency of secondary transmission in households associated with evident viral shedding throughout the home suggests a need to improve advice to households with infection in children to prevent onward community spread. The data suggest that SARS-CoV-2 transmission from children in any setting is very likely to occur when precautions are reduced. FUNDING UK Research and Innovation and UK Department of Health and Social Care, National Institute for Health and Care Research.
Collapse
|
10
|
Mao N, Dong M, Zhu Z, Huang Q, Yu X, Xie H, Dong J, Sun J, Huang F, Xu W. Detection of SARS-CoV-2 Antibodies in Oral Fluid Using a Magnetic Particle-Based Chemiluminescence Immunoassay - Beijing Municipality, China, 2021. China CDC Wkly 2022; 4:890-894. [PMID: 36285322 PMCID: PMC9579980 DOI: 10.46234/ccdcw2022.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction Oral fluids (OFs) have been broadly used as non-invasive samples for evaluating protective IgG antibodies from natural infection or vaccination, especially in pediatric populations. Methods Paired OF and serum were collected from both individuals who received a booster dose of the inactive coronavirus disease 2019 (COVID-19) vaccine as well as those who did not have a history of COVID-19 vaccination and infection (as the control group). The total human IgG antibody (HIgG) content was evaluated as a marker of OF sampling quality. An in-house adapted magnetic particle-based chemiluminescence immunoassay was used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibody detection in the OF. The SARS-CoV-2 IgG antibody in the serum samples was detected using a commercial immunoassay. Results In total, 579 paired OF and serum samples were collected. An additional 172 OF samples were collected from preschool children. The results indicated that the HIgG concentration in qualified OF samples should be higher than 0.3 µg/mL. Compared to the serum assay, the in-house OF immunoassay for detecting IgG antibodies against SARS-CoV-2 had 95.06% accuracy, 95.03% sensitivity, and 100% specificity. Conclusions Overall, the in-house immunoassay for detecting SARS-CoV-2 IgG antibodies in OF showed high potential for application towards serological surveillance and immunization effect assessment after large-scale, inactive COVID-19 vaccination in China.
Collapse
Affiliation(s)
- Naiying Mao
- NHC Key Laboratory of Medical Virology and Viral Diseases, WHO WPRO Regional Reference Laboratory of Measles and Rubella, Measles Laboratory in National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei Dong
- Institute for Immunization and Prevention, Beijing Center for Disease Control and Prevention, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Zhen Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, WHO WPRO Regional Reference Laboratory of Measles and Rubella, Measles Laboratory in National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Huang
- Institute for Immunization and Prevention, Beijing Center for Disease Control and Prevention, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Xiali Yu
- Institute for Immunization and Prevention, Beijing Center for Disease Control and Prevention, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Hui Xie
- Institute for Immunization and Prevention, Beijing Center for Disease Control and Prevention, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Jingyi Sun
- Department of Infectious Diseases, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Fang Huang
- Institute for Immunization and Prevention, Beijing Center for Disease Control and Prevention, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China,Fang Huang,
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, WHO WPRO Regional Reference Laboratory of Measles and Rubella, Measles Laboratory in National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Wenbo Xu,
| |
Collapse
|
11
|
Hargreaves JR, Langan SM, Oswald WE, Halliday KE, Sturgess J, Phelan J, Nguipdop-Djomo P, Ford B, Allen E, Sundaram N, Ireland G, Poh J, Ijaz S, Diamond I, Rourke E, Dawe F, Judd A, Warren-Gash C, Clark TG, Glynn JR, Edmunds WJ, Bonell C, Mangtani P, Ladhani SN. Epidemiology of SARS-CoV-2 infection among staff and students in a cohort of English primary and secondary schools during 2020-2021. THE LANCET REGIONAL HEALTH. EUROPE 2022; 21:100471. [PMID: 36035630 PMCID: PMC9398464 DOI: 10.1016/j.lanepe.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background There remains uncertainty about the epidemiology of SARS-CoV-2 among school students and staff and the extent to which non-pharmaceutical-interventions reduce the risk of school settings. Methods We conducted an open cohort study in a sample of 59 primary and 97 secondary schools in 15 English local authority areas that were implementing government guidance to schools open during the pandemic. We estimated SARS-CoV-2 infection prevalence among those attending school, antibody prevalence, and antibody negative to positive conversion rates in staff and students over the school year (November 2020-July 2021). Findings 22,585 staff and students participated. SARS-CoV-2 infection prevalence among those attending school was highest during the first two rounds of testing in the autumn term, ranging from 0.7% (95% CI 0.2, 1.2) among primary staff in November 2020 to 1.6% (95% CI 0.9, 2.3) among secondary staff in December 2020. Antibody conversion rates were highest in the autumn term. Infection patterns were similar between staff and students, and between primary and secondary schools. The prevalence of nucleoprotein antibodies increased over the year and was lower among students than staff. SARS-CoV-2 infection prevalence in the North-West region was lower among secondary students attending school on normal school days than the regional estimate for secondary school-age children. Interpretation SARS-CoV-2 infection prevalence in staff and students attending school varied with local community infection rates. Non-pharmaceutical interventions intended to prevent infected individuals attending school may have partially reduced the prevalence of infection among those on the school site. Funding UK Department of Health and Social Care.
Collapse
Affiliation(s)
- James R. Hargreaves
- Department of Public Health, Environments and Society, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Sinéad M. Langan
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - William E. Oswald
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Katherine E. Halliday
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Joanna Sturgess
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Patrick Nguipdop-Djomo
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Benjamin Ford
- Office for National Statistics, Government Buildings, Newport, UK
| | - Elizabeth Allen
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Neisha Sundaram
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Georgina Ireland
- National Infection Service, UK Health Security Agency, London, UK
| | - John Poh
- National Infection Service, UK Health Security Agency, London, UK
| | - Samreen Ijaz
- National Infection Service, UK Health Security Agency, London, UK
| | - Ian Diamond
- Office for National Statistics, Government Buildings, Newport, UK
| | - Emma Rourke
- Office for National Statistics, Government Buildings, Newport, UK
| | - Fiona Dawe
- Office for National Statistics, Government Buildings, Newport, UK
| | - Alison Judd
- Office for National Statistics, Government Buildings, Newport, UK
| | - Charlotte Warren-Gash
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G. Clark
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Judith R. Glynn
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - W. John Edmunds
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Chris Bonell
- Department of Public Health, Environments and Society, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Punam Mangtani
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Shamez N. Ladhani
- National Infection Service, UK Health Security Agency, London, UK
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| |
Collapse
|
12
|
González de Dios J, Martínez Rubio V, Giménez Díaz de Atauri Á, Ochoa Sangrador C, Rodríguez-Salinas Pérez E, Flores Villar S, Cuervo Valdés JJ. [Main changes in the «COVID-19 in paediatrics» clinical practice guideline]. An Pediatr (Barc) 2022; 97:129.e1-129.e8. [PMID: 35782910 PMCID: PMC9237022 DOI: 10.1016/j.anpedi.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
We present a summary of the main modifications to the «COVID-19 in Paediatrics» clinical practice guideline made from its initial version, published in 2021, and the version published in 2022. The document was developed following the structured steps of evidence-based medicine and applying the GRADE system to synthesize the evidence, assess its quality and, when appropriate, issue graded recommendations (based on the quality of the evidence, values and preferences, the balance between benefits, risks and costs, equity and feasibility). This update also includes the modifications proposed by external reviewers.We summarised the main modifications in the following sections: epidemiology, clinical features, diagnosis, prevention, treatment and vaccines. In relation to the body of knowledge achieved in the first year of the pandemic, the literature published in the second year contributed additional data, but without substantial modifications in many of the areas. The main changes took place in the field of vaccine research. This update was completed in December 2021, coinciding with the emergence of infections by the omicron variant, so the document will need to be updated in the future.
Collapse
Affiliation(s)
- Javier González de Dios
- Servicio de Pediatría, Hospital General Universitario de Alicante. Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, España
| | | | | | | | | | - Sergio Flores Villar
- Servicio de Pediatría, Hospital Universitario Mutua Terrasa, Terrasa, Barcelona, España
| | | |
Collapse
|
13
|
González de Dios J, Martínez Rubio V, Giménez Díaz de Atauri Á, Ochoa Sangrador C, Rodríguez-Salinas Pérez E, Flores Villar S, Cuervo Valdés JJ. Main changes in the "COVID-19 in paediatrics" clinical practice guideline. An Pediatr (Barc) 2022; 97:129.e1-129.e8. [PMID: 35871151 PMCID: PMC9259469 DOI: 10.1016/j.anpede.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
We present a summary of the main modifications to the "COVID-19 in Paediatrics" clinical practice guideline made from its initial version, published in 2021, and the version published in 2022. The document was developed following the structured steps of evidence-based medicine and applying the GRADE system to synthesize the evidence, assess its quality and, when appropriate, issue graded recommendations (based on the quality of the evidence, values and preferences, the balance between benefits, risks and costs, equity and feasibility). This update also includes the modifications proposed by external reviewers. We summarised the main modifications in the following sections: epidemiology, clinical features, diagnosis, prevention, treatment and vaccines. In relation to the body of knowledge achieved in the first year of the pandemic, the literature published in the second year contributed additional data, but without substantial modifications in many the areas. The main changes took place in the field of vaccine research. This update was completed in December 2021, coinciding with the emergence of infections by the omicron variant, so the document will need to be updated in the future.
Collapse
Affiliation(s)
- Javier González de Dios
- Servicio de Pediatría, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante(ISABIAL), Alicante, Spain.
| | | | | | | | | | - Sergio Flores Villar
- Servicio de Pediatría. Hospital Universitario Mutua Terrasa, Terrasa, Barcelona, Spain
| | | |
Collapse
|
14
|
Ijaz S, Dicks S, Jegatheesan K, Parker E, Katsanovskaja K, Vink E, McClure MO, Shute J, Hope J, Cook N, Cherepanov P, Turtle L, Paxton WA, Pollakis G, Ho A, Openshaw PJM, Baillie JK, Semple MG, Tedder RS. Mapping of SARS-CoV-2 IgM and IgG in gingival crevicular fluid: Antibody dynamics and linkage to severity of COVID-19 in hospital inpatients. J Infect 2022; 85:152-160. [PMID: 35667482 PMCID: PMC9163047 DOI: 10.1016/j.jinf.2022.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/19/2022] [Accepted: 05/29/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Samreen Ijaz
- Blood Borne Virus Unit, Reference Department, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK.
| | - Steve Dicks
- Blood Borne Virus Unit, Reference Department, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK; NHS Blood and Transplant, London, UK
| | - Keerthana Jegatheesan
- Blood Borne Virus Unit, Reference Department, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK; NHS Blood and Transplant, London, UK
| | - Eleanor Parker
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Elen Vink
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Myra O McClure
- Department of Infectious Disease, Imperial College London, London, UK
| | - J Shute
- Blood Borne Virus Unit, Reference Department, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Joshua Hope
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Nicola Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Peter Cherepanov
- Department of Infectious Disease, Imperial College London, London, UK; Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - William A Paxton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Georgios Pollakis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Antonia Ho
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - Malcolm G Semple
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Respiratory Medicine, Alder Hey Children's Hospital, Liverpool, UK
| | - Richard S Tedder
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|