1
|
Zhang H, Chen W, Lu X, Liang Y, Quan X, Liu X, Shi T, Yu Y, Li R, Wu H. Emergence and Characterization of the High-Level Tigecycline Resistance Gene tet(X4) in Salmonella enterica Serovar Rissen from Food in China. Foodborne Pathog Dis 2024. [PMID: 39358321 DOI: 10.1089/fpd.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The plasmid-mediated tet(X4) gene has exhibited a high-level resistance to tigecycline (TGC), which has raised concerns globally regarding antibiotic resistance. Although the widespread tet(X4) has been found widely in Escherichia coli, it is scarcely found in other Enterobacteriaceae. This study aimed to characterize a ST469 Salmonella enterica serovar Rissen (S. Rissen) isolate harboring tet(X4) from pork, which was identified and characterized via antimicrobial susceptibility testing, conjugation assays, plasmid curing testing, whole-genome sequencing, and bioinformatic analysis. Ten ST469 S. Rissen isolates of 223 Salmonella spp. isolates were isolated from food samples in China during 2021-2023. One of 10 S. Rissen isolates, SM2301, carrying tet(X4) conferred high-level resistance to TGC (minimum inhibitory concentration > 8 µg/mL). The tet(X4) could be conjugated into different recipients, including E. coli, S. enteritidis, and K. pneumoniae isolates. Plasmid curing confirmed that tet(X4) was plasmid-mediated. Genetic analysis revealed that the tet(X4) in the SM2301 isolate was located in the IncFIA(HI1)-IncHI1A-IncHI1B(R27) hybrid plasmid, and the structure of tet(X4) was abh-tet(X4)-ISCR2. To the best of our knowledge, this is the first report of a tet(X4)-positive food-derived S. Rissen isolate. The extending bacterial species of tet(X4)-bearing plasmids suggested the increasing transmission risk of the mobile TGC resistance gene tet(X4) beyond E. coli. This study highlights the emerging and evolution risk of novel resistance genes across various bacterial species. Therefore, further surveillance is warranted to monitor the prevalence of tet(X4) in Salmonella spp. and other bacterial species.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Wenjie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xiaoyu Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Yingying Liang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xiao Quan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Ying Yu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | | | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Liu X, Liu Y, Ma X, Chen R, Li C, Fu H, Yang Y, Guo K, Zhang X, Liu R, Xu H, Zhu J, Zheng B. Emergence of plasmid-borne tet(X4) resistance gene in clinical isolate of eravacycline- and omadacycline-resistant Klebsiella pneumoniae ST485. Microbiol Spectr 2024; 12:e0049624. [PMID: 39041815 PMCID: PMC11370244 DOI: 10.1128/spectrum.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Omadacycline and eravacycline are gradually being used as new tetracycline antibiotics for the clinical treatment of Gram-negative pathogens. Affected by various tetracycline-inactivating enzymes, there have been reports of resistance to eravacycline and omadacycline in recent years. We isolated a strain carrying the mobile tigecycline resistance gene tet(X4) from the feces of a patient in Zhejiang Province, China. The strain belongs to the rare ST485 sequence type. The isolate was identified as Klebsiella pneumoniae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The MICs of antimicrobial agents were determined using either the agar dilution method or the micro broth dilution method. The result showed that the isolate was resistant to eravacycline (MIC = 32 mg/L), omadacycline (MIC > 64 mg/L), and tigecycline (MIC > 32 mg/L). Whole-genome sequencing revealed that the tet(X4) resistance gene is located on the IncFII(pCRY) conjugative plasmid. tet(X4) is flanked by ISVsa3, and we hypothesize that this association contributes to the spread of the resistance gene. Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, and electrotransformation experiment. We successfully transferred the plasmid carrying tet(X4) to the recipient bacteria by electrotransformation experiment. Compared with the DH-5α, the MICs of the transformant L3995-DH5α were increased by eight-fold for eravacycline and two-fold higher for omadacycline. Overall, the emergence of plasmid-borne tet(X4) resistance gene in a clinical isolate of K. pneumoniae ST485 underscores the essential requirement for the ongoing monitoring of tet(X4) to prevent and control its further dissemination in China.IMPORTANCEThere are still limited reports on Klebsiella pneumoniae strains harboring tetracycline-resistant genes in China, and K. pneumoniae L3995hy adds a new example to those positive for the tet(X4) gene. Importantly, our study raises concerns that plasmid-mediated resistance to omadacycline and eravacycline may spread further to a variety of ecological and clinical pathogens, limiting the choice of medication for extensively drug-resistant bacterial infections. Therefore, it is important to continue to monitor the prevalence and spread of tet(X4) and other tetracyclines resistance genes in K. pneumoniae and diverse bacterial populations.
Collapse
Affiliation(s)
- Xiaojing Liu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yi Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohan Ma
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The First Affiliated Hospital of Beihua University, Jilin, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxin Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kexin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoping Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfei Zhu
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, China
| | - Beiwen Zheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Ma L, Xie M, Yang Y, Ding X, Li Y, Yan Z, Chan EWC, Chen S, Chen G, Zhang R. Prevalence and genomic characterization of clinical Escherichia coli strains that harbor the plasmid-borne tet(X4) gene in China. Microbiol Res 2024; 285:127730. [PMID: 38805981 DOI: 10.1016/j.micres.2024.127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
The tigecycline resistance gene tet(X4) has been widely reported in animals and animal products in some Asian countries including China in recent years but only sporadically detected in human. In this study, we investigated the prevalence and genetic features of tet(X4)-positive clinical E. coli strains. A total of 462 fecal samples were collected from patients in four hospitals located in four provinces in China in 2023. Nine tet(X4)-positive E. coli strains were isolated and subjected to characterization of their genetic and phenotypic features by performing antimicrobial susceptibility test, whole-genome sequencing, bioinformatic and phylogenetic analysis. The majority of the test strains were found to exhibit resistance to multiple antimicrobial agents including tigecycline but remained susceptible to colistin and meropenem. A total of seven different sequence types (STs) and an unknown ST type were identified among the nine tet(X4)-positive strains. Notably, the tet(X4) gene in six out of these nine tet(X4)-positive E. coli strains was located in a IncFIA-HI1A-HI1B hybrid plasmid, which was an tet(X4)-bearing epidemic plasmid responsible for dissemination of the tet(X4) gene in China. Furthermore, the tet(X4) gene in four out of nine tet(X4)-positive E. coli isolates could be successfully transferred to E. coli EC600 through conjugation. In conclusion, this study characterized the epidemic tet(X4)-bearing plasmids and tet(X4)-associated genetic environment in clinical E. coli strains, suggested the importance of continuous surveillance of such tet(X4)-bearing plasmids to control the increasingly widespread dissemination of tigecycline-resistant pathogens in clinical settings in China.
Collapse
Affiliation(s)
- Lan Ma
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Xie
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yongxin Yang
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xinying Ding
- Department of Clinical Laboratory, Zibo First Hospital, Zibo, People's Republic of China
| | - Yuanyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Edward Wai-Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
4
|
Fan XY, Jiang Y, Wu H, Liu J, Gu QY, Wang ZY, Sun L, Jiao X, Li Q, Wang J. Distribution and spread of tigecycline resistance gene tet(X4) in Escherichia coli from different sources. Front Cell Infect Microbiol 2024; 14:1399732. [PMID: 39006743 PMCID: PMC11239352 DOI: 10.3389/fcimb.2024.1399732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Tigecycline serves as a last-resort antimicrobial agent against severe infections caused by multidrug-resistant bacteria. Tet(X) and its numerous variants encoding flavin-dependent monooxygenase can confer resistance to tigecycline, with tet(X4) being the most prevalent variant. This study aims to investigate the prevalence and characterize tigecycline resistance gene tet(X) in E. coli isolates from various origins in Yangzhou, China, to provide insights into tet(X) dissemination in this region. In 2022, we tested the presence of tet(X) in 618 E. coli isolates collected from diverse sources, including patients, pig-related samples, chicken-related samples, and vegetables in Yangzhou, China. The antimicrobial susceptibility of tet(X)-positive E. coli isolates was conducted using the agar dilution method or the broth microdilution method. Whole genome sequencing was performed on tet(X)-positive strains using Illumina and Oxford Nanopore platforms. Four isolates from pig or pork samples carried tet(X4) and exhibited resistance to multiple antimicrobial agents, including tigecycline. They were classified as ST542, ST10, ST761, and ST48, respectively. The tet(X4) gene was located on IncFIA8-IncHI1/ST17 (n=2), IncFIA18-IncFIB(K)-IncX1 (n=1), and IncX1 (n=1) plasmids, respectively. These tet(X4)-carrying plasmids exhibited high similarity to other tet(X4)-bearing plasmids with the same incompatible types found in diverse sources in China. They shared related genetic environments of tet(X4) associated with ISCR2, as observed in the first identified tet(X4)-bearing plasmid p47EC. In conclusion, although a low prevalence (0.65%) of tet(X) in E. coli strains was observed in this study, the horizontal transfer of tet(X4) among E. coli isolates mediated by pandemic plasmids and the mobile element ISCR2 raises great concerns. Thus, heightened surveillance and immediate action are imperative to curb this clinically significant resistance gene and preserve the efficacy of tigecycline.
Collapse
Affiliation(s)
- Xin-Yan Fan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jie Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qing-Yun Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Shao L, Wu C, Li C, He R, Chen G, Sun D, Yang Y, Feng Y, Zhang G, Yan B, Dai M, Tian GB, Zhong LL. Genomic characterization revealing the high rate of tet(X4)-positive Escherichia coli in animals associated with successful genetic elements. Front Microbiol 2024; 15:1423352. [PMID: 38979542 PMCID: PMC11228144 DOI: 10.3389/fmicb.2024.1423352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction The rapid spread of plasmid-mediated tet(X4) conferring high tigecycline resistance poses a significant threat to public health. Escherichia coli as the most common pathogen which carries tet(X4) has been widely disseminated in China. Thus, comprehensive investigations are required to understand the mechanism of transmission of tet(X4)-positive E. coli. Methods In this study, a total of 775 nonduplicate samples were collected in Guangdong, China from 2019 to 2020. We screened for tet(X4)-positive E. coli by PCR amplification and species identification. Furthermore, we analyzed the phylogenetics and genetic context of tet(X4)-positive E. coli through whole-genome sequencing and long-reads sequencing. Results Overall, 146 (18.84%) tet(X4)-positive E. coli were isolated, comprising 2 isolates from humans and 144 isolates from pigs. The majority of tet(X4)-positive E. coli exhibited resistance to multiple antibiotics but all of them were susceptible to amikacin and colistin. Phylogenetic analysis showed that ST877, ST871, and ST195 emerged as the predominant sequence types in tet(X4)-positive E. coli. Further analysis revealed various genetic environments associated with the horizontal transfer of tet(X4). Notably, a 100-kbp large fragment insertion was discovered downstream of tet(X4), containing a replicon and a 40-kbp gene cluster for the bacterial type IV secretion system. Discussion The high colonization rate of tet(X4)-positive E. coli in animals suggests that colonization as a key factor in its dissemination to humans. Diverse genetic context may contribute to the transfer of tet(X4). Our findings underline the urgent need for controlling the spread of plasmid-mediated tigecycline resistance.
Collapse
Affiliation(s)
- Li Shao
- School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China
| | - Changbu Wu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengjuan Li
- School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China
| | - Ruowen He
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guanping Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Dandan Sun
- School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China
| | - Yanxian Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yu Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guili Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Bin Yan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lan-Lan Zhong
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
6
|
Mansoor MH, Lu X, Woksepp H, Sattar A, Humak F, Ali J, Li R, Bonnedahl J, Mohsin M. Detection and genomic characterization of Klebsiella pneumoniae and Escherichia coli harboring tet(X4) in black kites (Milvus migrans) in Pakistan. Sci Rep 2024; 14:9054. [PMID: 38643223 PMCID: PMC11032342 DOI: 10.1038/s41598-024-59201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance gene tet(X4) among clinically relevant bacteria has promoted significant concerns, as tigecycline is considered a last-resort drug against serious infections caused by multidrug-resistant bacteria. We herein focused on the isolation and molecular characterization of tet(X4)-positive Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) in wild bird populations with anthropogenic interaction in Faisalabad, Pakistan. A total of 150 birds including black kites (Milvus migrans) and house crows (Corvus splendens) were screened for the presence of tigecycline resistance K. pneumoniae and E. coli. We found two K. pneumoniae and one E. coli isolate carrying tet(X4) originating from black kites. A combination of short- and long-read sequencing strategies showed that tet(X4) was located on a broad host range IncFII plasmid family in K. pneumoniae isolates whereas on an IncFII-IncFIB hybrid plasmid in E. coli. We also found an integrative and conjugative element ICEKp2 in K. pneumoniae isolate KP8336. We demonstrate the first description of tet(X4) gene in the WHO critical-priority pathogen K. pneumoniae among wild birds. The convergence of tet(X4) and virulence associated ICEKp2 in a wild bird with known anthropogenic contact should be further investigated to evaluate the potential epidemiological implications. The potential risk of global transmission of tet(X4)-positive K. pneumoniae and E. coli warrant comprehensive evaluation and emphasizes the need for effective mitigation strategies to reduce anthropogenic-driven dissemination of AMR in the environment.
Collapse
Affiliation(s)
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, 391 85, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| | - Amna Sattar
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Farwa Humak
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Jabir Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
- Department of Infectious Diseases, Region Kalmar County, 391 85, Kalmar, Sweden.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
7
|
Chirabhundhu N, Luk-In S, Phuadraksa T, Wichit S, Chatsuwan T, Wannigama DL, Yainoy S. Occurrence and mechanisms of tigecycline resistance in carbapenem- and colistin-resistant Klebsiella pneumoniae in Thailand. Sci Rep 2024; 14:5215. [PMID: 38433246 PMCID: PMC10909888 DOI: 10.1038/s41598-024-55705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Tigecycline has been regarded as one of the most important last-resort antibiotics for the treatment of infections caused by extensively drug-resistant (XDR) bacteria, particularly carbapenem- and colistin-resistant Klebsiella pneumoniae (C-C-RKP). However, reports on tigecycline resistance have been growing. Overall, ~ 4000 K. pneumoniae clinical isolates were collected over a five-year period (2017-2021), in which 240 isolates of C-C-RKP were investigated. Most of these isolates (91.7%) were resistant to tigecycline. Notably, a high-risk clone of ST16 was predominantly identified, which was associated with the co-harboring of blaNDM-1 and blaOXA-232 genes. Their major mechanism of tigecycline resistance was the overexpression of efflux pump acrB gene and its regulator RamA, which was caused by mutations in RamR (M184V, Y59C, I141T, A28T, C99/C100 insertion), in RamR binding site (PI) of ramA gene (C139T), in MarR (S82G), and/or in AcrR (L154R, R13Q). Interestingly, four isolates of ST147 carried the mutated tet(A) efflux pump gene. To our knowledge, this is the first report on the prevalence and mechanisms of tigecycline resistance in C-C-RKP isolated from Thailand. The high incidence of tigecycline resistance observed among C-C-RKP in this study reflects an ongoing evolution of XDR bacteria against the last-resort antibiotics, which demands urgent action.
Collapse
Affiliation(s)
- Nachat Chirabhundhu
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thanawat Phuadraksa
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
8
|
Chen R, Li C, Ge H, Qiao J, Fang L, Liu C, Gou J, Guo X. Difference analysis and characteristics of incompatibility group plasmid replicons in gram-negative bacteria with different antimicrobial phenotypes in Henan, China. BMC Microbiol 2024; 24:64. [PMID: 38373913 PMCID: PMC10875880 DOI: 10.1186/s12866-024-03212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Multi-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment. METHODS 330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes. RESULTS 21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking blaKPC-2 and blaNDM. CONCLUSIONS MDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.
Collapse
Affiliation(s)
- Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Fang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cailin Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Zhao Y, Qian C, Ye J, Li Q, Zhao R, Qin L, Mao Q. Convergence of plasmid-mediated Colistin and Tigecycline resistance in Klebsiella pneumoniae. Front Microbiol 2024; 14:1221428. [PMID: 38282729 PMCID: PMC10813211 DOI: 10.3389/fmicb.2023.1221428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/15/2023] [Indexed: 01/30/2024] Open
Abstract
Objective The co-occurrence of colistin and tigecycline resistance genes in Klebsiella pneumoniae poses a serious public health problem. This study aimed to characterize a K. pneumoniae strain, K82, co-harboring a colistin resistance gene (CoRG) and tigecycline resistance gene (TRG), and, importantly, investigate the genetic characteristics of the plasmid with CoRG or TRG in GenBank. Methods K. pneumoniae strain K82 was subjected to antimicrobial susceptibility testing, conjugation assay, and whole-genome sequencing (WGS). In addition, comparative genomic analysis of CoRG or TRG-harboring plasmids from K82 and GenBank was conducted. K. pneumoniae strain K82 was resistant to all the tested antimicrobials including colistin and tigecycline, except for carbapenems. Results WGS and bioinformatic analysis showed that K82 belonged to the ST656 sequence type and carried multiple drug resistance genes, including mcr-1 and tmexCD1-toprJ1, which located on IncFIA/IncHI2/IncHI2A/IncN/IncR-type plasmid pK82-mcr-1 and IncFIB/IncFII-type plasmid pK82-tmexCD-toprJ, respectively. The pK82-mcr-1 plasmid was capable of conjugation. Analysis of the CoRG/TRG-harboring plasmid showed that mcr-8 and tmexCD1-toprJ1 were the most common CoRG and TRG of Klebsiella spp., respectively. These TRG/CoRG-harboring plasmids could be divided into two categories based on mash distance. Moreover, we found an IncFIB/IncHI1B-type plasmid, pSYCC1_tmex_287k, co-harboring mcr-1 and tmexCD1-toprJ1. To the best of our knowledge, this is the first report on the co-occurrence of mcr-1 and tmexCD1-toprJ1 on a single plasmid. Conclusion Our research expands the known diversity of CoRG and TRG-harboring plasmids in K. pneumoniae. Effective surveillance should be implemented to assess the prevalence of co-harboring CoRG and TRG in a single K. pneumoniae isolate or even a single plasmid.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Rongqing Zhao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Ling Qin
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Qifeng Mao
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
10
|
Yao H, Zhang T, Peng K, Peng J, Liu X, Xia Z, Chi L, Zhao X, Li S, Chen S, Qin S, Li R. Conjugative plasmids facilitate the transmission of tmexCD2-toprJ2 among carbapenem-resistant Klebsiella pneumoniae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167373. [PMID: 37758131 DOI: 10.1016/j.scitotenv.2023.167373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great threat to global public health. The emergence of tmexCD-toprJ greatly weakened the efficacy of tigecycline in the treatment of CRKP infections. In this study, we did a comprehensive investigation of the prevalence and genomic features of tmexCD-toprJ in clinical CRKP from 2018 to 2020 in Henan province, China. The results demonstrated tmexCD-toprJ was at a low prevalence in CRKP from patients (7/2031, 0.34 %). Among the seven tmexCD-toprJ positive CRKP, KP18-29 that carried tmexCD1-toprJ1, blaNDM-1 and mcr-8.2 was resistant to tigecycline, carbapenem and colistin simultaneously. While, tmexCD2-toprJ2 together with one or two carbapenemase genes were detected in the remaining strains. Four strains (KP18-231, KP18-2110-2, KP19-3023 and KP19-3088) isolated at different times but shared the same sequence type (ST) 2667 exhibited high genomic similarity, indicating the clonal dissemination of CRKP ST2667 co-producing KPC-2 and TMexCD-TOprJ. Notably, conjugative transmission of the IncFrepB(R1701) plasmid co-harboring tmexCD2-toprJ2 and blaKPC-2 among clinical CRKP isolates belonging to different STs (ST2667, ST978 and ST147) revealed further propagation of tmexCD-toprJ among K. pneumoniae. Such IncFrepB(R1701) plasmids pose a substantial threat to public health due to their mobile resistance to both tigecycline and carbapenem. Online data mining showed isolates carried both carbapenemase genes and tmexCD-toprJ were dominantly isolated from humans, and isolates of animal origins usually carried mcr genes and tmexCD-toprJ, suggesting that these critical resistance genes co-existed in diverse niches. Global surveillance of K. pneumoniae co-harboring tmexCD-toprJ and mcr/carbapenemase genes in various settings with a One Health strategy was warranted.
Collapse
Affiliation(s)
- Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Tingting Zhang
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Peng
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Junke Peng
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziwei Xia
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Leizi Chi
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyu Zhao
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shangshang Qin
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ruichao Li
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
11
|
Chen H, Zhan Y, Wang L, Xiao Z, Feng D, Chen Z, Liu H, Chen D, Xu Z, Yang L. Co-Occurrence of tet(X4) and blaNDM-5 in Escherichia coli Isolates of Inpatient Origin in Guangzhou, China. Microb Drug Resist 2023. [PMID: 38150703 DOI: 10.1089/mdr.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant pathogens, especially carbapenem-resistant Enterobacterales and Acinetobacter in recent years. The emergence of antibiotic-resistant bacteria and antibiotic-resistant genes has threatened the effectiveness of antibiotics and public health with the excessive use of antibiotics in clinics. However, the emergence and dissemination of high-level mobile tigecycline-resistance gene tet(X) is challenging for clinical effectiveness of antimicrobial agent. This study aimed to characterize an E. coli strain T43, isolated from an inpatient in a teaching hospital in China. The E. coli T43 was resistant to almost all antimicrobials except colistin and consisted of a 4,774,080 bp chromosome and three plasmids. Plasmids pT43-1 and pT43-2 contained tigecycline-resistance gene tet(X4). Plasmid pT43-1 had a size of 152,423 bp with 51.05% GC content and harbored 151 putative open reading frames. pT43-1 was the largest plasmid in strain T43 and carried numerous resistance genes, especially tigecycline resistance gene tet(X4) and carbapenemase resistance gene blaNDM-5. The tet(X) gene was associated with IS26. Co-occurrence of numerous resistance genes in a single plasmid possibly contributed to the dissemination of these genes under antibiotics stress. It might explain the presence of clinically crucial resistance genes tet(X) and blaNDM-5 in clinics. This study suggested the applicable use of antibiotics and continued surveillance of tet(X) and blaNDM-5 in clinics are imperative.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Zhan
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linjing Wang
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhirou Xiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Donghua Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhemei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haitao Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Zhang S, Cui M, Liu D, Fu B, Shi T, Wang Y, Sun C, Wu C. Tigecycline Sensitivity Reduction in Escherichia coli Due to Widely Distributed tet(A) Variants. Microorganisms 2023; 11:3000. [PMID: 38138144 PMCID: PMC10745318 DOI: 10.3390/microorganisms11123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Despite scattered studies that have reported mutations in the tet(A) gene potentially linked to tigecycline resistance in clinical pathogens, the detailed function and epidemiology of these tet(A) variants remains limited. In this study, we analyzed 64 Escherichia coli isolates derived from MacConkey plates supplemented with tigecycline (2 μg/mL) and identified five distinct tet(A) variants that account for reduced sensitivity to tigecycline. In contrast to varied tigecycline MICs (0.25 to 16 μg/mL) of the 64 tet(A)-variant-positive E. coli isolates, gene function analysis confirmed that the five tet(A) variants exhibited a similar capacity to reduce tigecycline sensitivity in DH5α carrying pUC19. Among the observed seven non-synonymous mutations, the V55M mutation was unequivocally validated for its positive role in conferring tigecycline resistance. Interestingly, the variability in tigecycline MICs among the E. coli strains did not correlate with tet(A) gene expression. Instead, a statistically significant reduction in intracellular tigecycline concentrations was noted in strains displaying higher MICs. Genomic analysis of 30 representative E. coli isolates revealed that tet(A) variants predominantly resided on plasmids (n = 14) and circular intermediates (n = 13). Within China, analysis of a well-characterized E. coli collection isolated from pigs and chickens in 2018 revealed the presence of eight tet(A) variants in 103 (4.2%, 95% CI: 3.4-5.0%) isolates across 13 out of 17 tested Chinese provinces or municipalities. Globally, BLASTN analysis identified 21 tet(A) variants in approximately 20.19% (49,423/244,764) of E. coli genomes in the Pathogen Detection database. These mutant tet(A) genes have been widely disseminated among E. coli isolates from humans, food animals, and the environment sectors, exhibiting a growing trend in tet(A) variants over five decades. Our findings underscore the urgency of addressing tigecycline resistance and the underestimated role of tet(A) mutations in this context.
Collapse
Affiliation(s)
- Shan Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mingquan Cui
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bo Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tingxuan Shi
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (S.Z.); (D.L.); (B.F.); (T.S.); (Y.W.)
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Chen G, Chen L, Lin S, Yang C, Liang H, Huang K, Guo Z, Lv F. Sensitive and rapid detection of tet(X2) ~ tet(X5) by loop-mediated isothermal amplification based on visual OTG dye. BMC Microbiol 2023; 23:329. [PMID: 37932695 PMCID: PMC10626792 DOI: 10.1186/s12866-023-02944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/13/2023] [Indexed: 11/08/2023] Open
Abstract
The emergence of tigecycline-resistant tet(X2/X3/X4/X5) genes poses a new threat to the efficacy of anti-infective therapy and the safety of our food and environment. To control the transfer of such genes, a sensitive and rapid molecular method is warranted to detect tet(X2/X3/X4/X5) genes in clinical isolates. Herein, we established a loop-mediated isothermal amplification (LAMP) assay to rapidly detect tet(X2/X3/X4/X5) genes, and the results were assessed by chromogenic visualization. The specificity and sensitivity of the primers during the LAMP assay for the simultaneous detection of tet(X2/X3/X4/X5) genes were determined in this study. All 48 clinical strains without tet(X2/X3/X4/X5) genes yielded negative results during the LAMP assay, substantiating the high specificity of the LAMP primers. The detection thresholds of this assay were 1.5 × 102 CFU/ml and 0.2 fg/uL corresponding to a 10 to 100-fold and 100-fold increase in sensitivity compared to polymerase chain reaction (PCR) assays. Out of 52 bacterial strains tested, using PCR as a reference, our research revealed that the LAMP assay demonstrated a sensitivity and specificity of 100%. To sum up, our novel approach has huge prospects for application in the simultaneous detection of tet(X2/X3/X4/X5) genes and can be applied to detect other drug-resistance genes.
Collapse
Affiliation(s)
- Guiling Chen
- Department of Clinical Laboratory, DongGuan SongShan Lake Tungwah Hospital, Dongguan, Guangdong, China
| | - Lulin Chen
- Department of Clinical Laboratory, DongGuan Tungwah Hospital, Dongguan, Guangdong, China
| | - Sisi Lin
- Department of Clinical Laboratory, DongGuan Tungwah Hospital, Dongguan, Guangdong, China
| | - Congzhu Yang
- Department of Clinical Laboratory, DongGuan SongShan Lake Tungwah Hospital, Dongguan, Guangdong, China
| | - Huanlin Liang
- Department of Clinical Laboratory, DongGuan SongShan Lake Tungwah Hospital, Dongguan, Guangdong, China
| | - Kuang Huang
- Department of Clinical Laboratory, DongGuan Tungwah Hospital, Dongguan, Guangdong, China
| | - Zhusheng Guo
- Department of Clinical Laboratory, DongGuan Tungwah Hospital, Dongguan, Guangdong, China.
| | - Fei Lv
- Department of Clinical Laboratory, DongGuan SongShan Lake Tungwah Hospital, Dongguan, Guangdong, China.
| |
Collapse
|
14
|
Yu R, Li L, Zou C, Chen Z, Schwarz S, Chen S, Xu C, Yao H, Du XD. Emergence of high-level tigecycline resistance due to the amplification of a tet(A) gene variant in clinical carbapenem-resistant Klebsiella pneumoniae. Clin Microbiol Infect 2023; 29:1452.e1-1452.e7. [PMID: 37549732 DOI: 10.1016/j.cmi.2023.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVE To investigate the prevalence of a tet(A) gene variant and its role in developing high-level tigecycline resistance among carbapenem-resistant Klebsiella pneumoniae (CRKP) clinical isolates. METHODS The mechanism of high-level tigecycline resistance in CRKP mediated by a tet(A) variant was explored by induction experiments, antimicrobial susceptibility testing, whole-genome sequencing and bioinformatics analysis. The amplification and overexpression of the tet(A) variant were measured by the determination of sequencing depth, gene copy numbers, and qRT-PCR. RESULTS A high rate (62.1%, 998/1607) of tet(A) variant carriage was observed among 1607 CRKP clinical isolates from Henan Province, China. High-level tigecycline resistance could rapidly develop by the amplification of the tet(A) variant in these isolates. The analysis of the raw sequencing data and the plasmid mapping depth revealed that the ΔtnpA homologous sequence of Tn1721 supports the amplification of the region that harbours the tet(A) variant by forming a large number of repeat arrays through translocatable units (TUs). Moreover, the epidemiological analysis of tet(A) variant-carrying structures among 1607 clinical CRKPs showed that the TU structure is widely present. CONCLUSION The presence of a tigecycline resistance-mediating tet(A) variant in CRKP clinical isolates represents a greater health concern than initially thought and should be monitored consistently.
Collapse
Affiliation(s)
- Runhao Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Longyu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chenhui Zou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zheng Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chunyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
15
|
Wang J, Huang Y, Guan C, Li J, Yang H, Zhao G, Liu C, Ma J, Tang B. Characterization of an Escherichia coli Isolate Coharboring the Virulence Gene astA and Tigecycline Resistance Gene tet(X4) from a Dead Piglet. Pathogens 2023; 12:903. [PMID: 37513750 PMCID: PMC10385434 DOI: 10.3390/pathogens12070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
tet(X4) is the critical resistance gene for tigecycline degradation that has been continually reported in recent years. In particular, pathogenic bacteria carrying tet(X4) are a severe threat to human health. However, information describing Escherichia coli coharboring tet(X4) with virulence genes is limited. Here, we isolated an E. coli strain coharboring tet(X4) and the heat-stable toxin gene astA from a dead piglet. The strain named 812A1-131 belongs to ST10. The genome was sequenced using the Nanopore and Illumina platforms. The virulence genes astA and tet(X4) are located on the chromosome and in the IncHI1-type plasmid p812A1-tetX4-193K, respectively. The plasmid could be conjugatively transferred to recipient E. coli J53 with high frequency. In vivo experiments showed that strain 812A1-131 is pathogenic to Galleria mellonella and could colonize the intestines of mice. In summary, pathogenic E. coli could receive a plasmid harboring the tet(X4) gene, which can increase the difficulty of treatment. The prevalence and transmission mechanisms of pathogenic bacteria coharboring the tet(X4) gene need more attention.
Collapse
Affiliation(s)
- Jianmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuting Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Chunjiu Guan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
16
|
Zhang Y, Zhang J, Cai P, Lu Y, Sun RY, Cao MT, Xu XL, Webber MA, Jiang HX. IncHI1 plasmids are epidemic vectors that mediate transmission of tet(X4) in Escherichia coli isolated from China. Front Microbiol 2023; 14:1153139. [PMID: 37303808 PMCID: PMC10248516 DOI: 10.3389/fmicb.2023.1153139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction This study aimed to investigate the genetic factors promoting widespread Q6 dissemination of tet(X4) between Escherichia coli and to characterize the genetic contexts of tet(X4). Methods We isolated E. coli from feces, water, soil and flies collected across a large-scale chicken farm in China in 2020. Antimicrobial susceptibility testing and PFGE typing were used to identify tigecycline resistance and assess clonal relationships among isolates. Plasmids present and genome sequences were analyzed by conjugation, S1 pulsed-field gel electrophoresis (PFGE), plasmid stability testing and whole-genome sequencing. Results A total of 204 tigecycline-resistant E. coli were isolated from 662 samples. Of these, we identified 165 tet(X4)-carrying E. coli and these strains exhibited a high degree of multidrug resistance. Based on the geographical location distribution of the sampled areas, number of samples in each area and isolation rate of tigecycline-resistant strains and tet(X4)-carrying isolates, 72 tet(X4)-positive isolates were selected for further investigation. Tigecycline resistance was shown to be mobile in 72 isolates and three types of tet(X4)-carrying plasmids were identified, they were IncHI1 (n = 67), IncX1 (n = 3) and pO111-like/IncFIA(HI1) (n = 2). The pO111-like/IncFIA(HI1) is a novel plasmid capable of transferring tet(X4). The transfer efficiency of IncHI1 plasmids was extremely high in most cases and IncHI1 plasmids were stable when transferred into common recipient strains. The genetic structures flanked by IS1, IS26 and ISCR2 containing tet(X4) were complex and varied in different plasmids. Discussion The widespread dissemination of tigecycline-resistant E. coli is a major threat to public health. This data suggests careful use of tetracycline on farms is important to limit spread of resistance to tigecycline. Multiple mobile elements carrying tet(X4) are in circulation with IncHI1 plasmids the dominant vector in this setting.
Collapse
Affiliation(s)
- Yan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ping Cai
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ruan-Yang Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Meng-Tao Cao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Li Xu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, China
| | | | - Hong-Xia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
17
|
First detection of tet(X4)-positive Enterobacterales in retail vegetables and clonal spread of Escherichia coli ST195 producing Tet(X4) in animals, foods, and humans across China and Thailand. Int J Food Microbiol 2023; 391-393:110145. [PMID: 36841076 DOI: 10.1016/j.ijfoodmicro.2023.110145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
The mobile tigecycline-resistant gene tet(X4), which confers resistance to all tetracyclines, has been identified in bacterial isolates from various sources. However, there are no reports on the occurrence of tet(X4) in bacterial isolates of ready-to-eat fresh vegetables. In this study, 113 vegetable samples from farmers' markets were screened for tigecycline-resistant strains. Ten Escherichia coli (two ST195, two ST48, and one ST10, ST58, ST88, ST394, ST641, and ST101) and one Klebsiella pneumoniae (ST327) recovered from nine vegetable samples (7.96 %) were identified as carrying tet(X4). The core genome sequences of the two E. coli ST195 isolates showed a close relationship (14-41 single-nucleotide polymorphisms) with 31 tet(X4)-bearing E. coli ST195 isolates from humans, pigs, pork, and bird in China and Thailand, and the 33 E. coli ST195 isolates producing Tet(X4) shared similar resistance genes and plasmid replicons. Nanopore sequencing and conjugation experiments confirmed that the tet(X4) genes were located on the hybrid plasmids IncFIA-HI1A-HI1B (n = 6), IncX1 (n = 3), and IncFII2 (n = 1) in E. coli, and IncFII plasmid in K. pneumoniae. IncFIA-HI1A-HI1B and IncX1 plasmids shared highly similar structures with plasmids from various sources in the GenBank database. This is the first study to report the observation of tet(X4)-positive bacteria in retail vegetables. The epidemic clones and plasmids contribute to tet(X4) dissemination in vegetables. The clonal spread of Tet(X4)-producing E. coli ST195 across multiple niches and countries could pose a potential threat to public health.
Collapse
|
18
|
Ma J, Wang J, Yang H, Su M, Li R, Bai L, Feng J, Huang Y, Yang Z, Tang B. IncHI1 plasmids mediated the tet(X4) gene spread in Enterobacteriaceae in porcine. Front Microbiol 2023; 14:1128905. [PMID: 37065147 PMCID: PMC10098456 DOI: 10.3389/fmicb.2023.1128905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
The tigecycline resistance gene tet(X4) was widespread in various bacteria. However, limited information about the plasmid harboring the tet(X4) gene spread among the different species is available. Here, we investigated the transmission mechanisms of the tet(X4) gene spread among bacteria in a pig farm. The tet(X4) positive Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Enterobacter hormaeche were identified in the same farm. The whole genome sequencing (WGS) analysis showed that the K. pneumoniae belonged to ST727 (n = 11) and ST3830 (n = 1), E. cloacae and E. hormaeche belonged to ST524 (n = 1) and ST1862 (n = 1). All tet(X4) genes were located on the IncHI1 plasmids that could be conjugatively transferred into the recipient E. coli C600 at 30°C. Moreover, a fusion plasmid was identified that the IncHI1 plasmid recombined with the IncN plasmid mediated by ISCR2 during the conjugation from strains B12L to C600 (pB12L-EC-1). The fusion plasmid also has been discovered in a K. pneumoniae (K1L) that could provide more opportunities to spread antimicrobial resistance genes. The tet(X4) plasmids in these bacteria are derived from the same plasmid with a similar structure. Moreover, all the IncHI1 plasmids harboring the tet(X4) gene in GenBank belonged to the pST17, the newly defined pMLST. The antimicrobial susceptibility testing was performed by broth microdilution method showing the transconjugants acquired the most antimicrobial resistance from the donor strains. Taken together, this report provides evidence that IncHI1/pST17 is an important carrier for the tet(X4) spread in Enterobacteriaceae species, and these transmission mechanisms may perform in the environment.
Collapse
|
19
|
Yoon EJ, Jeong SH, Aminov R. Editorial: Resistance to third-generation tetracyclines. Front Microbiol 2023; 13:1114660. [PMID: 36713182 PMCID: PMC9878852 DOI: 10.3389/fmicb.2022.1114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Eun-Jeong Yoon
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea,Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom,*Correspondence: Rustam Aminov ✉
| |
Collapse
|
20
|
Yang Y, He R, Wu Y, Qin M, Chen J, Feng Y, Zhao R, Xu L, Guo X, Tian GB, Dai M, Yan B, Qin LN. Characterization of two multidrug-resistant Klebsiella pneumoniae harboring tigecycline-resistant gene tet(X4) in China. Front Microbiol 2023; 14:1130708. [PMID: 37180274 PMCID: PMC10171367 DOI: 10.3389/fmicb.2023.1130708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives Tigecycline is recognized as one of the last-line antibiotics to treat serious bacterial infection caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). The plasmid-borne gene tet(X4) mediates high resistance to tigecycline. However, the prevalence and genetic context of tet(X4) in K. pneumoniae from various sources are not fully understood. Here, we investigated the prevalence of tet(X4)-positive K. pneumoniae and characterized the genetic context of tet(X4)-bearing plasmids in K. pneumoniae isolates. Methods Polymerase chain reaction (PCR) was used to detect the tet(X4) gene. The transferability of the tet(X4)-carrying plasmids was tested by conjugation assays. The Galleria mellonella infection model was used to test virulence of tet(X4)-positive strains. Whole-genome sequencing and genome-wide analysis were performed to identify the antimicrobial resistance and the virulence genes, and to clarify the genetic characteristics of the tet(X4)-positive isolates. Results Among 921 samples, we identified two tet(X4)-positive K. pneumoniae strains collected from nasal swabs of two pigs (0.22%, 2/921). The two tet(X4)-positive isolates exhibited high minimum inhibitory concentrations to tigecycline (32-256 mg/L) and tetracycline (256 mg/L). The plasmids carrying the tet(X4) gene can transfer from the donor strain K. pneumoniae to the recipient strain Escherichia coli J53. Genetic analysis of the complete sequence of two tet(X4)-carrying plasmids pTKPN_3-186k-tetX4 and pTKPN_8-216k-tetX4 disclosed that the tet(X4) gene was flanked by delta ISCR2 and IS1R, which may mediate the transmission of the tet(X4) gene. Conclusion The prevalence of tet(X4)-positive K. pneumoniae among different sources was low. ISCR2 and IS1R may contribute to the horizontal transfer of tet(X4) gene. Effective measures should be taken to prevent the transmission of tet(X4)-producing K. pneumoniae in humans or animals.
Collapse
Affiliation(s)
- Yanxian Yang
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ruowen He
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiping Wu
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Mingyang Qin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- School of Public Health, Shandong University, Jinan, China
| | - Jieyun Chen
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Feng
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Runping Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Lei Xu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xilong Guo
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo-Bao Tian
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- Min Dai,
| | - Bin Yan
- Program in Pathobiology, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
- Bin Yan,
| | - Li-Na Qin
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Li-Na Qin,
| |
Collapse
|
21
|
Li Y, Li Y, Bu K, Wang M, Wang Z, Li R. Antimicrobial Resistance and Genomic Epidemiology of tet(X4)-Bearing Bacteria of Pork Origin in Jiangsu, China. Genes (Basel) 2022; 14:36. [PMID: 36672777 PMCID: PMC9858217 DOI: 10.3390/genes14010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The emergence of tigecycline-resistant bacteria in agri-food chains poses a public health concern. Recently, plasmid-mediated tet(X4) was found to be resistant to tigecycline. However, genome differences between tet(X4)-positive Escherichia coli of human and pork origins are still under-investigated. In this study, 53 pork samples were collected from markets in Jiangsu, China, and 23 tet(X4)-positive isolates were identified and shown to confer resistance to multiple antibiotics, including tigecycline. tet(X4)-positive isolates were mainly distributed in E. coli (n = 22), followed by Klebsiella pneumoniae (n = 1). More than half of the tet(X4) genes were able to be successfully transferred into E. coli C600. We downloaded all tet(X4)-positive E. coli isolates from humans and pork found in China from the NCBI database. A total of 42 known STs were identified, of which ST10 was the dominant ST. The number of ARGs and plasmid replicons carried by E. coli of human origin were not significantly different from those carried by E. coli of pork origin. However, the numbers of insertion sequences and virulence genes carried by E. coli of human origin were significantly higher than those carried by E. coli of pork origin. In addition to E. coli, we analyzed all 23 tet(X4)-positive K. pneumoniae strains currently reported. We found that these tet(X4)-positive K. pneumoniae were mainly distributed in China and had no dominant STs. This study systematically investigated the tet(X4)-positive isolates, emphasizing the importance of the continuous surveillance of tet(X4) in pork.
Collapse
Affiliation(s)
- Yuhan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kefan Bu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mianzhi Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
Li Y, Wang Z, Dong H, Wang M, Qin S, Chen S, Li R. Emergence of tet(X4)-positive hypervirulent Klebsiella pneumoniae of food origin in China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Chen T, Zhao M, Tang X, Wang W, Zhang M, Tang J, Wang W, Wei W, Ma B, Zou Y, Zhang N, Mi J, Wang Y, Liao X, Wu Y. Serious Risk of Tigecycline Resistance in Escherichia coli Isolated from Swine Manure. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02133-2. [PMID: 36326874 DOI: 10.1007/s00248-022-02133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The emergence of the plasmid-mediated tigecycline resistance gene tetX family in pig farms has attracted worldwide attention. The use of tetracycline antibiotics in pig farms has a facilitating effect on the prevalence of the tetX family, but the relationship among its presence, expression, and resistance phenotype in resistant bacteria is unknown. In this study, the presence and expression characteristics of tetracycline resistance genes (TRGs) in 89 strains of doxycycline-resistant E. coli (DRE) isolated from pig manure samples from 20 pig farms under low concentrations of doxycycline stress (2 μg/mL) were analyzed. The detection rate of tetO was 96.63%, which is higher than those of other TRGs, such as tetA (94.38%), tetX (76.40%), tetB (73.03%), and tet(X4) (69.66%). At least three TRG types were present in DRE strains, which thus showed extensive resistance to tetracycline antibiotics, and 37% of these strains were resistant to tigecycline. In the presence of a low concentration of doxycycline, tetA played an important role, and the expression and existence ratio of TRGs indicated low expression of TRGs. Furthermore, the doxycycline resistance of DRE was jointly determined by the total absolute abundance of TRGs, and the absolute abundance of tetX and tet(X4) was significantly positively associated with tigecycline resistance in DRE (P < 0.05). Overall, DRE isolated from swine manure is an important reservoir of the tetX family, which suggests that DRE in swine manure has a high risk of tigecycline resistance, poses a potential threat to human health, and should be of public concern.
Collapse
Affiliation(s)
- Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Minxing Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenqiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Miao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxiao Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, 528200, Foshan, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, 528200, Foshan, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, 528200, Foshan, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 525000, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing, China.
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Wang Q, Lei C, Cheng H, Yang X, Huang Z, Chen X, Ju Z, Zhang H, Wang H. Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. Microbiol Spectr 2022; 10:e0161522. [PMID: 36125305 PMCID: PMC9602804 DOI: 10.1128/spectrum.01615-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as blaNDM-1 and cfr. Additionally, we were the first to report that tet(X4) and blaNDM-1 coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10-2 to 10-7. These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hansen Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xue Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Xuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zijing Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Haoyu Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
25
|
Zhang S, Wen J, Wang Y, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). Front Microbiol 2022; 13:969769. [PMID: 36246244 PMCID: PMC9557194 DOI: 10.3389/fmicb.2022.969769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jinfeng Wen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Wang J, Lu MJ, Wang ZY, Jiang Y, Wu H, Pan ZM, Jiao X. Tigecycline-resistant Escherichia coli ST761 carrying tet(X4) in a pig farm, China. Front Microbiol 2022; 13:967313. [PMID: 36016796 PMCID: PMC9396132 DOI: 10.3389/fmicb.2022.967313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the prevalence and characterization of tet(X4) in Escherichia coli isolates from a pig farm in Shanghai, China, and to elucidate tet(X4) dissemination mechanism in this swine farm. Forty-nine (80.33%) E. coli strains were isolated from 61 samples from a pig farm and were screened for the presence of tet(X). Among them, six (12.24%) strains were positive for tet(X4) and exhibited resistance to tigecycline (MIC ≥ 16 mg/L). They were further sequenced by Illumina Hiseq. Six tet(X4)-positive strains belonged to ST761 with identical resistance genes, resistance profiles, plasmid replicons, and cgMLST type except that additional ColE10 plasmid was present in isolate SH21PTE35. Isolate SH21PTE31, as a representative ST761 E. coli strain, was further sequenced using Nanopore MinION. The tet(X4) in SH21PTE31 was located on IncFIA18/IncFIB(K)/IncX1 hybrid plasmid pYUSHP31-1, highly similar to other tet(X4)-carrying IncFIA18/IncFIB(K)/IncX1 plasmids from ST761 E. coli and other E. coli lineages in China. These IncFIA18/IncFIB(K)/IncX1 plasmids shared closely related multidrug resistance regions, and could reorganize, acquire or lose resistance modules mediated by mobile elements such as ISCR2 and IS26. Phylogenetic analysis were performed including all tet(X4)-positive isolates obtained in this pig farm combined with 43 tet(X4)-positive E. coli from pigs, cow, pork, wastewater, and patients with the same ST from NCBI. The 50 tet(X4)-carrying E. coli ST761 isolates from different areas in China shared a close phylogenetic relationship (0-49 SNPs). In conclusion, clonal transmission of tet(X4)-positive E. coli ST761 has occurred in this swine farm. E. coli ST761 has the potential to become a high-risk clone for tet(X4) dissemination in China.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Meng-Jun Lu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhi-Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- *Correspondence: Xinan Jiao,
| |
Collapse
|
27
|
Zhai W, Tian Y, Shao D, Zhang M, Li J, Song H, Sun C, Wang Y, Liu D, Zhang Y. Fecal Carriage of Escherichia coli Harboring the tet(X4)-IncX1 Plasmid from a Tertiary Class-A Hospital in Beijing, China. Antibiotics (Basel) 2022; 11:antibiotics11081068. [PMID: 36009937 PMCID: PMC9405050 DOI: 10.3390/antibiotics11081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of the mobile tigecycline-resistance gene, tet(X4), poses a significant threat to public health. To investigate the prevalence and genetic characteristics of the tet(X4)-positive Escherichia coli in humans, 1101 human stool samples were collected from a tertiary class-A hospital in Beijing, China, in 2019. Eight E. coli isolates that were positive for tet(X4) were identified from clinical departments of oncology (n = 3), hepatology (n = 2), nephrology (n = 1), urology (n = 1), and general surgery (n = 1). They exhibited resistance to multiple antibiotics, including tigecycline, but remained susceptible to meropenem and polymyxin B. A phylogenetic analysis revealed that the clonal spread of four tet(X4)-positive E. coli from different periods of time or departments existed in this hospital, and three isolates were phylogenetically close to the tet(X4)-positive E. coli from animals and the environment. All tet(X4)-positive E. coli isolates contained the IncX1-plasmid replicon. Three isolates successfully transferred their tigecycline resistance to the recipient strain, C600, demonstrating that the plasmid-mediated horizontal gene transfer constitutes another critical mechanism for transmitting tet(X4). Notably, all tet(X4)-bearing plasmids identified in this study had a high similarity to several plasmids recovered from animal-derived strains. Our findings revealed the importance of both the clonal spread and horizontal gene transfer in the spread of tet(X4) within human clinics and between different sources.
Collapse
Affiliation(s)
- Weishuai Zhai
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingxin Tian
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Dongyan Shao
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muchen Zhang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyun Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huangwei Song
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (D.L.); (Y.Z.)
| | - Ying Zhang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence: (D.L.); (Y.Z.)
| |
Collapse
|
28
|
Anyanwu MU, Nwobi OC, Okpala COR, Ezeonu IM. Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Front Microbiol 2022; 13:808744. [PMID: 35979498 PMCID: PMC9376449 DOI: 10.3389/fmicb.2022.808744] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Microbiology Unit, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Obichukwu Chisom Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ifeoma M. Ezeonu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|