1
|
Heljanko V, Karama M, Kymäläinen A, Kurittu P, Johansson V, Tiwari A, Nyirenda M, Malahlela M, Heikinheimo A. Wastewater and environmental sampling holds potential for antimicrobial resistance surveillance in food-producing animals - a pilot study in South African abattoirs. Front Vet Sci 2024; 11:1444957. [PMID: 39421833 PMCID: PMC11483616 DOI: 10.3389/fvets.2024.1444957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global One Health challenge that causes increased mortality and a high financial burden. Animal production contributes to AMR, as more than half of antimicrobials are used in food-producing animals globally. There is a growing body of literature on AMR in food-producing animals in African countries, but the surveillance practices across countries vary considerably. This pilot study aims to explore the potential of wastewater and environmental surveillance (WES) of AMR and its extension to the veterinary field. Floor drainage swab (n = 18, 3/abattoir) and wastewater (n = 16, 2-3/abattoir) samples were collected from six South African abattoirs that handle various animal species, including cattle, sheep, pig, and poultry. The samples were tested for Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-producing Enterobacterales, Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Candida auris by using selective culturing and MALDI-TOF MS identification. The phenotype of all presumptive ESBL-producing Escherichia coli (n = 60) and Klebsiella pneumoniae (n = 24) isolates was confirmed with a disk diffusion test, and a subset (15 and 6 isolates, respectively), were further characterized by whole-genome sequencing. In total, 314 isolates (0-12 isolates/sample) withstood MALDI-TOF MS, from which 37 species were identified, E. coli and K. pneumoniae among the most abundant. Most E. coli (n = 48/60; 80%) and all K. pneumoniae isolates were recovered from the floor drainage samples, while 21 presumptive carbapenem-resistant Acinetobacter spp. isolates were isolated equally from floor drainage and wastewater samples. MRSA, VRE, or C. auris were not found. All characterized E. coli and K. pneumoniae isolates represented ESBL-phenotype. Genomic analyses revealed multiple sequence types (ST) of E. coli (n = 10) and K. pneumoniae (n = 5), including STs associated with food-producing animals globally, such as E. coli ST48 and ST10 and K. pneumoniae ST101. Common beta-lactamases linked to food-producing animals, such as bla CTX-M-55 and bla CTX-M-15, were detected. The presence of food-production-animal-associated ESBL-gene-carrying E. coli and K. pneumoniae in an abattoir environment and wastewater indicates the potential of WES in the surveillance of AMR in food-producing animals. Furthermore, the results of this pilot study encourage studying the topic further with refined methodologies.
Collapse
Affiliation(s)
- Viivi Heljanko
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Musafiri Karama
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Kymäläinen
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paula Kurittu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Ananda Tiwari
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Matteo Nyirenda
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Annamari Heikinheimo
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
2
|
Saidenberg ABS, Edslev SM, Hallstrøm S, Rasmussen A, Park DE, Aziz M, Dos Santos Queiroz B, Baptista AAS, Barbosa F, Rocha VGP, van Vliet AHM, Dalsgaard A, Price LB, Knöbl T, Stegger M. Escherichia coli ST117: exploring the zoonotic hypothesis. Microbiol Spectr 2024; 12:e0046624. [PMID: 39235965 PMCID: PMC11448156 DOI: 10.1128/spectrum.00466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can lead to severe infections, with additional risks of increasing antimicrobial resistance rates. Genotypic similarities between ExPEC and avian pathogenic E. coli (APEC) support a possible role for a poultry meat reservoir in human disease. Some genomic studies have been done on the ST117 lineage which contaminates poultry meat, carries multidrug resistance, can be found in the human intestinal microbiota, and causes human extraintestinal disease. This study analyzed the genomes of 61 E. coli from Brazilian poultry outbreaks focusing on ST117, to further define its possible zoonotic characteristics by genotypic and phylogenomic analyses, along with 1,699 worldwide ST117 isolates originating from human, animal, and environment sources. A predominance of ST117 was detected in the Brazilian isolates (n = 20/61) frequently carrying resistance to critical antibiotics (>86%) linked to IncFII, IncI1, or IncX4 replicons. High similarities were found between IncX4 from Brazilian outbreaks and those from E. coli recovered from imported Brazilian poultry meat and human clinical cases. The ST117 phylogeny showed non-specificity according to host and continent and an AMR index score indicated the highest resistance in Asia and South America, with the latter statistically more resistant and overrepresented with resistance to extended-spectrum beta-lactamases (ESBL). Most ST117 human isolates were predicted to have a poultry origin (93%, 138/148). In conclusion, poultry is a likely source for zoonotic ExPEC strains, particularly the ST117 lineage which can also serve as a reservoir for resistance determinants against critical antibiotics encoded on highly transmissible plasmids. IMPORTANCE Certain extraintestinal pathogenic Escherichia coli (ExPEC) are particularly important as they affect humans and animals. Lineages, such as ST117, are predominant in poultry and frequent carriers of antibiotic resistance, presenting a risk to humans handling or ingesting poultry products. We analyzed ExPEC isolates causing outbreaks in Brazilian poultry, focusing on the ST117 as the most detected lineage. Genomic comparisons with international isolates from humans and animals were performed describing the potential zoonotic profile. The Brazilian ST117 isolates carried resistance determinants against critical antibiotics, mainly on plasmids, in some cases identical to those carried by international isolates. South American ST117 isolates from all sources generally exhibit more resistance, including to critical antibiotics, and worldwide, the vast majority of human isolates belonging to this lineage have a predicted poultry origin. As the world's largest poultry exporter, Brazil has an important role in developing strategies to prevent the dissemination of multidrug-resistant zoonotic ExPEC strains.
Collapse
Affiliation(s)
- A B S Saidenberg
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
- Section for Food Safety and Zoonoses, Institute for Veterinary and Companion Animal Science, Københavns Universitet, Copenhagen, Denmark
| | - S M Edslev
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - S Hallstrøm
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - A Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - D E Park
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - M Aziz
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | | | - A A S Baptista
- Preventive Veterinary Medicine Department, State University of Londrina, Parana, Brazil
| | - F Barbosa
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
| | - V G P Rocha
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
| | - Arnoud H M van Vliet
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - A Dalsgaard
- Section for Food Safety and Zoonoses, Institute for Veterinary and Companion Animal Science, Københavns Universitet, Copenhagen, Denmark
| | - L B Price
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - T Knöbl
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
| | - M Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| |
Collapse
|
3
|
Zhao K, Wang L, Deng J, Zuo Q, Adila M, Wang X, Dai Z, Tian P. Determining the Disinfectants Resistance Genes and the Susceptibility to Common Disinfectants of Extensively Drug-Resistant Carbapenem-Resistant Klebsiella pneumoniae Strains at a Tertiary Hospital in China. Microb Drug Resist 2024; 30:407-414. [PMID: 39166283 DOI: 10.1089/mdr.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has become a significant threat to global health. The application of chemical disinfectants is an effective infection control strategy to prevent the spread of CRKP in hospital environments. However, bacteria have shown reduced sensitivity to clinical disinfectants in recent years. Furthermore, bacteria can acquire antibiotic resistance due to the induction of disinfectants, posing a considerable challenge to hospital infection prevention and control. This study collected 68 CRKP strains from the Fifth Affiliated Hospital of Xinjiang Medical University in China from 2023 to 2024. These strains were isolated from the sputum, urine, and whole blood samples of patients diagnosed with CRKP infection. Antibiotic susceptibility tests were performed on CRKP strains. Concurrently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of disinfectants (benzalkonium bromide, 1% iodophor disinfectant, alcohol, and chlorine-containing disinfectant) against the test isolates were determined by the broth microdilution method. The efflux pump genes (cepA, qacE, qacEΔ1, qacEΔ1-SUL1, oqxA, and oqxB) were detected using polymerase chain reaction. The results showed that 21 out of the 68 CRKP strains exhibited extensive drug resistance, whereas 47 were nonextensively drug-resistant. The MIC value for benzalkonium bromide disinfectants displayed statistically significant differences (p < 0.05) between extensively drug-resistant (XDR) and non-XDR strains. Additionally, the MBC values for benzalkonium bromide disinfectants and 1% iodophor disinfectants displayed statistically significant differences (p < 0.05) between XDR and non-XDR strains. The detection rates for the efflux pump genes were as follows: cepA 52.9%, qacE 39.7%, qacEΔ1 35.2%, qacEΔ1-SUL1 52.9%, oqxA 30.8%, and oqxB 32.3%. The detection rate of the qacEΔ1-SUL1 gene in XDR CRKP strains was significantly higher than in non-XDR CRKP strains (p < 0.05). This indicates a potential link between CRKP bacterial disinfectant efflux pump genes and CRKP bacterial resistance patterns. Ongoing monitoring of the declining sensitivity of XDR strains against disinfectants is essential for the effective control and prevention of superbug.
Collapse
Affiliation(s)
- Kexin Zhao
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Liang Wang
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jinglan Deng
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Qiuxia Zuo
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Maimaiti Adila
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Xiao Wang
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Zhe Dai
- Fifth School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - Ping Tian
- Infection Management Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Health Care Research Center for Xinjiang Regional population, Urumqi, China
| |
Collapse
|
4
|
Sartori L, Sellera FP, Silva-Pereira TT, Fuga B, Fuentes-Castillo D, Dropa M, Moura Q, Fernandes MR, Rodrigues L, Esposito F, Sano E, Aleman MAR, Gregory L, Lincopan N. Gut colonization by extended-spectrum β-lactamase-producing Escherichia coli in dairy herd in Brazil: successful dissemination of a One Health clone. Vet Res Commun 2024; 48:3355-3363. [PMID: 38972932 DOI: 10.1007/s11259-024-10456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum β-lactamase (ESβL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESβL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESβL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESβL variants by PCR and sequencing. The presence of ESβL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESβL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESβL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.
Collapse
Affiliation(s)
- Luciana Sartori
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Taiana T Silva-Pereira
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Milena Dropa
- MicroRes Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Federal Institute of Espírito Santo, Vila Velha, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Larissa Rodrigues
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mario A R Aleman
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil.
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Furlan JPR, Rosa RDS, Ramos MS, Lopes R, Dos Santos LDR, Savazzi EA, Stehling EG. Convergence of mcr-1 and broad-spectrum β-lactamase genes in Escherichia coli strains from the environmental sector. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124937. [PMID: 39260544 DOI: 10.1016/j.envpol.2024.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The mcr-type gene encodes the main plasmid-mediated mechanism of colistin resistance and has been reported in several bacterial species obtained from different sources. Anthropogenic activities in the environment favor the evolution of antimicrobial resistance. Indeed, mcr-1-positive Escherichia coli strains were susceptible to non-polymyxins antimicrobials, but now emerging as multidrug-resistant (MDR) lineages. In this regard, hundreds of surface water and agricultural soil samples were screened for the presence of E. coli carrying the mcr-type genes and mcr-1-positive strains were subjected to in-depth genomic analysis. Almost all colistin-resistant strains were classified as MDR, highlighting those obtained from soils that showed resistance to extended-spectrum cephalosporins and carbapenems. International and high-risk clones of E. coli were identified, with ST10 and ST1720 shared between water and soil samples. Resistome analysis showed a broad resistome (AMR, metal tolerance, and biocide resistance). The mcr-1.1 and mcr-1.26 allelic variants were detected on IncX4 and IncI2 plasmids. Curiously, mcr-1-positive E. coli strains from agricultural soils harbored plasmid-mediated blaCTX-M-1, blaCTX-M-8, or blaKPC-2 genes. Virulome analysis demonstrated traits of a high putative virulence potential, with the presence of extraintestinal pathogenic E. coli. Comparative analysis revealed the persistence and dissemination of plasmid-mediated antimicrobial resistance genes in genetically diversity E. coli strains at the human-animal-environmental interface. These findings demonstrate a possible emerging AMR trend with the convergence of resistance to colistin and broad-spectrum β-lactams in environmental-derived E. coli strains.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
6
|
Richter L, Duvenage S, du Plessis EM, Msimango T, Dlangalala M, Mathavha MT, Molelekoa T, Kgoale DM, Korsten L. Genomic Evaluation of Multidrug-Resistant Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Irrigation Water and Fresh Produce in South Africa: A Cross-Sectional Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14421-14438. [PMID: 39101763 PMCID: PMC11325645 DOI: 10.1021/acs.est.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024]
Abstract
Escherichia coli, both commensal and pathogenic, can colonize plants and persist in various environments. It indicates fecal contamination in water and food and serves as a marker of antimicrobial resistance. In this context, 61 extended-spectrum β-lactamase (ESBL)-producing E. coli from irrigation water and fresh produce from previous studies were characterized using whole genome sequencing (Illumina MiSeq). The Center for Genomic Epidemiology and Galaxy platforms were used to determine antimicrobial resistance genes, virulence genes, plasmid typing, mobile genetic elements, multilocus sequence typing (MLST), and pathogenicity prediction. In total, 19 known MLST groups were detected among the 61 isolates. Phylogroup B1 (ST58) and Phylogroup E (ST9583) were the most common sequence types. The six ST10 (serotype O101:H9) isolates carried the most resistance genes, spanning eight antibiotic classes. Overall, 95.1% of the isolates carried resistance genes from three or more classes. The blaCTX-M-1, blaCTX-M-14, and blaCTX-M-15 ESBL genes were associated with mobile genetic elements, and all of the E. coli isolates showed a >90% predicted probability of being a human pathogen. This study provided novel genomic information on environmental multidrug-resistant ESBL-producing E. coli from fresh produce and irrigation water, highlighting the environment as a reservoir for multidrug-resistant strains and emphasizing the need for ongoing pathogen surveillance within a One Health context.
Collapse
Affiliation(s)
- Loandi Richter
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Stacey Duvenage
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Food
and Markets Department, Natural Resources Institute, University of Greenwich, Chatham ME4 4TB, United
Kingdom
| | | | - Thabang Msimango
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Manana Dlangalala
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Muneiwa Tshidino Mathavha
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Tintswalo Molelekoa
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
| | - Degracious Moloko Kgoale
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| | - Lise Korsten
- Department
of Plant and Soil Sciences, University of
Pretoria, Hatfield, Pretoria 0001, South Africa
- Department
of Science and Innovation, National Research
Foundation Centre of Excellence in Food Security, Bellville 7535, South Africa
| |
Collapse
|
7
|
Machado MAM, Panzenhagen P, Lázaro C, Rojas M, Figueiredo EEDS, Conte-Junior CA. Unveiling the High Diversity of Clones and Antimicrobial Resistance Genes in Escherichia coli Originating from ST10 across Different Ecological Niches. Antibiotics (Basel) 2024; 13:737. [PMID: 39200037 PMCID: PMC11350709 DOI: 10.3390/antibiotics13080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
In this pioneering in silico study in Peru, we aimed to analyze Escherichia coli (E. coli) genomes for antimicrobial resistance genes (ARGs) diversity and virulence and for its mobilome. For this purpose, 469 assemblies from human, domestic, and wild animal hosts were investigated. Of these genomes, three were E. coli strains (pv05, pv06, and sf25) isolated from chickens in our previous study, characterized for antimicrobial susceptibility profile, and sequenced in this study. Three other genomes were included in our repertoire for having rare cgMLSTs. The phenotypic analysis for antimicrobial resistance revealed that pv05, pv06, and sf25 strains presented multidrug resistance to antibiotics belonging to at least three classes. Our in silico analysis indicated that many Peruvian genomes included resistance genes, mainly to the aminoglycoside class, ESBL-producing E. coli, sulfonamides, and tetracyclines. In addition, through Multi-locus Sequence Typing, we found more than 180 different STs, with ST10 being the most prevalent among the genomes. Pan-genome mapping revealed that, with new lineages, the repertoire of accessory genes in E. coli increased, especially genes related to resistance and persistence, which may be carried by plasmids. The results also demonstrated several genes related to adhesion, virulence, and pathogenesis, especially genes belonging to the high pathogenicity island (HPI) from Yersinia pestis, with a prevalence of 42.2% among the genomes. The complexity of the genetic profiles of resistance and virulence in our study highlights the adaptability of the pathogen to different environments and hosts. Therefore, our in silico analysis through genome sequencing enables tracking the epidemiology of E. coli from Peru and the future development of strategies to mitigate its survival.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Food Science Program (PPGCAL), Chemistry Institute (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil
| | - Cesar Lázaro
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 03-5137, Peru;
| | - Miguel Rojas
- Laboratory of Immunology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 03-5137, Peru;
| | - Eduardo Eustáquio de Souza Figueiredo
- Animal Science Program (PPGCA), Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil;
- Nutrition, Food and Metabolism Program (PPGNAM), Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil
| | - Carlos Adam Conte-Junior
- Food Science Program (PPGCAL), Chemistry Institute (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
8
|
Furlan JPR, Lopes R, Ramos MS, Rosa RDS, Dos Santos LDR, Stehling EG. The detection of KPC-2, NDM-1, and VIM-2 carbapenemases in international clones isolated from fresh vegetables highlights an emerging food safety issue. Int J Food Microbiol 2024; 420:110765. [PMID: 38838541 DOI: 10.1016/j.ijfoodmicro.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Fuga B, Sellera FP, Esposito F, Moura Q, Pillonetto M, Lincopan N. Hybrid genome assembly of colistin-resistant mcr-1.5-producing Escherichia coli ST354 reveals phylogenomic pattern associated with urinary tract infections in Brazil. J Glob Antimicrob Resist 2024; 37:37-41. [PMID: 38408561 PMCID: PMC11183298 DOI: 10.1016/j.jgar.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The rapid and global spread of Escherichia coli carrying mcr-type genes at the human-animal-environmental interface has become a serious global public health problem. OBJECTIVE To perform a genomic investigation of a colistin-resistant E. coli strain (14005RM) causing urinary tract infection, using a hybrid de novo assembly of Illumina/Nanopore sequence data, presenting phylogenomic insights into the relationship with mcr-1-positive strains circulating at the human-animal-environmental interface, in Brazil. METHODS Genomic DNA was sequenced using both the Illumina NexSeq and Nanopore MinION platforms. De novo hybrid assembly was performed by Unicycler. Genomic data were assessed by in silico prediction and bioinformatic tools. RESULTS The genome assembly size was 5 333 039 bp. The mcr-1.5-positive E. coli strain 14005RM belongs to the sequence type ST354 and presented a broad resistome (antibiotics, heavy metals, disinfectants, and glyphosate) and virulome. The mcr-1.5 gene was carried by an IncI2 plasmid (p14005RM, sizing 65,458 kb). Full genome SNP-based phylogenetic analysis reveals that mcr-1.5-producing E. coli strain 14005RM is highly related (> 98% identity) to colistin-resistant mcr-1.1-positive ST354 lineages associated with urinary tract infections in Brazil since 2015. CONCLUSION Mobile colistin resistance within the Brazilian One Health microbiosphere is mediated by mcr gene variants propagated by IncX4, IncHI2, and IncI2 plasmids, circulating among global clones of E. coli.
Collapse
Affiliation(s)
- Bruna Fuga
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| | - Fábio P Sellera
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Quézia Moura
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Federal Institute of Espírito Santo, Vila Velha, Brazil; Postgraduate Program in Infectious Diseases, Federal University of Espírito Santo, Vitória, Brazil
| | - Marcelo Pillonetto
- State Public Health Laboratory of Paraná, São José dos Pinhais, Brazil; Pontifical Catholic University of Paraná, Curitiba, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| |
Collapse
|
10
|
da Silva MRF, Souza KS, da Silva FHS, Santos MDV, de Veras BO, da Silva IJS, Motteran F, de Oliveira Luz AC, Balbino TCL, de Araújo LCA, Malafaia G, de Oliveira MBM. Hidden ecotoxicological dangers: Investigating pathogen circulation and non-toxic risks hazards in a crucial brazilian watershed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106931. [PMID: 38718520 DOI: 10.1016/j.aquatox.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Numerous studies evaluate chemical contaminants released by human activities and their effects on biota and aquatic ecosystems. However, few of these studies address non-toxic agents and their potentially harmful effects, which, in a concealed manner, culminate in an increased ecotoxicological risk for aquatic life and public health. This study investigated the presence of toxic and non-toxic pollutants in one of the main watersheds in Northeast Brazil (Rio São Francisco) and proposed a model of dispersion and transfer of resistance among the analyzed bacteria, also assessing the health risks of individuals and aquatic organisms present there. The results are worrying because although most toxic parameters, including physical-chemical and chromatographic aspects, comply with Brazilian environmental standards, non-toxic (microbiological) parameters do not. This research reveals the circulation of pathogens in several points of this hydrographic basin, highlighting the hidden ecotoxicological potential of an aquatic environment considered unaffected by the usual patterns of toxic parameters.
Collapse
Affiliation(s)
| | - Karolayne Silva Souza
- Molecular Biology Laboratory, Department of Biochemistry, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | | | | | - Bruno Oliveira de Veras
- Molecular Biology Laboratory, Department of Biochemistry, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Iago José Santos da Silva
- Department of Civil and Environmental Engineering, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Fabricio Motteran
- Department of Civil and Environmental Engineering, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | | | | | | | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | | |
Collapse
|
11
|
Furlan JPR, Ramos MS, Sellera FP, Gonzalez IHL, Ramos PL, Stehling EG. Gram-negative bacterial diversity and evidence of international clones of multidrug-resistant strains in zoo animals. Integr Zool 2024; 19:417-423. [PMID: 37984552 DOI: 10.1111/1749-4877.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Enterobacterales and Pseudomonas aeruginosa have been colonizing or infecting wild hosts and antimicrobial-resistant strains are present in mammals and birds. Furthermore, international high-risk clones of multidrug-resistant Escherichia coli are identified and the implications of multidrug-resistant Gram-negative bacteria in zoo animals are discussed.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fábio Parra Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Irys Hany Lima Gonzalez
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Silva A, Silva V, Tavares T, López M, Rojo-Bezares B, Pereira JE, Falco V, Valentão P, Igrejas G, Sáenz Y, Poeta P. Rabbits as a Reservoir of Multidrug-Resistant Escherichia coli: Clonal Lineages and Public Health Impact. Antibiotics (Basel) 2024; 13:376. [PMID: 38667052 PMCID: PMC11047531 DOI: 10.3390/antibiotics13040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli, including extended-spectrum β-lactamases (ESBL)-producing strains, poses a global health threat due to multidrug resistance, compromising food safety and environmental integrity. In industrial settings, rabbits raised for meat have the highest consumption of antimicrobial agents compared to other food-producing animals. The European Union is facing challenges in rabbit farming as rabbit consumption declines and antibiotic-resistant strains of E. coli cause enteric diseases. The aim of this study was to investigate the antibiotic resistance profile, genetic diversity, and biofilm formation in cefotaxime-resistant E. coli strains isolated from twenty rabbit farms in Northern Portugal to address the effect of the pressing issue of antibiotic resistance in the rabbit farming industry. Resistance to critically antibiotics was observed, with high levels of resistance to several categories, such as tetracycline, ampicillin, aztreonam, and streptomycin. However, all isolates were susceptible to cefoxitin and imipenem. Multidrug resistance was common, with strains showing resistance to all antibiotics tested. The blaCTX-M variants (blaCTX-3G and blaCTX-M9), followed by the tetracycline resistance genes, were the most frequent resistance genes found. ST10 clones exhibiting significant resistance to various categories of antibiotics and harboring different resistance genes were detected. ST457 and ST2325 were important sequence types due to their association with ESBL-E. coli isolates and have been widely distributed in a variety of environments and host species. The strains evaluated showed a high capacity for biofilm formation, which varied when they were grouped by the number of classes of antibiotics to which they showed resistance (i.e., seven different classes of antibiotics, six classes of antibiotics, and three/four/five classes of antibiotics). The One Health approach integrates efforts to combat antimicrobial resistance in rabbit farming through interdisciplinary collaboration of human, animal, and environmental health. Our findings are worrisome and raise concerns. The extensive usage of antibiotics in rabbit farming emphasizes the urgent need to establish active surveillance systems.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Teresa Tavares
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- José Azevedo Monteiro, Lda., Rua do Campo Grande 309, 4625-679 Vila Boa do Bispo, Portugal
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Virgílio Falco
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
| | - Patrícia Valentão
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
13
|
Wang JL, Lai CC, Tsai YW, Hsueh CC, Ko WC, Hsueh PR. Global trends in nonsusceptibility rates of Escherichia coli isolates to meropenem and ceftazidime/avibactam: Data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme, 2014-21. Int J Antimicrob Agents 2024; 63:107103. [PMID: 38325725 DOI: 10.1016/j.ijantimicag.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE To understand the global changes in the nonsusceptibility rates of Escherichia coli to meropenem and ceftazidime-avibactam (CZA), we conducted a study using the Antimicrobial Testing Leadership and Surveillance database. METHODS A total of 49 394 E. coli isolates were collected during the 8-year study period. RESULT The countries with the highest nonsusceptible rates for meropenem were India (16.6%), followed by Pakistan (6.7%), Ukraine (5.4%), Qatar (5.3%), and Guatemala (3.2%). For CZA, the nonsusceptible rate was highest in India (15.6%), followed by Qatar (4.0%), Guatemala (3.9%), China (2.6%), and Thailand (2.5%). During the study period, the nonsusceptible rates of meropenem and CZA in E. coli increased in Asia, Latin America, and Africa/Middle East. Isolates from the medical ICU (odds ratio [OR], 4.62) and surgical ICU (OR, 3.98) were associated with a higher risk of CZA nonsusceptible rates. Compared to intestinal specimens, respiratory and genitourinary specimens had the highest OR (2.32 and 2.17) associated with CZA resistance. Further analysis of carbapenemase distribution showed an increase in the percentage of blaNDM-positive isolates and a decrease in blaKPC-positive isolates worldwide, especially in Latin America. Additionally, we observed a gradual decline in the prevalence of blaOXA-positive E. coli without concomitant carriage of metallo-β-lactamase genes in the worldwide surveillance. CONCLUSIONS Further surveillance is necessary to determine whether blaNDM -positive E. coli (i.e., CZA-resistant isolates) is increasing and leading to more superbugs spreading worldwide.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ya-Wen Tsai
- Center of Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chun-Chung Hsueh
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
15
|
Cardenas-Arias AR, Sano E, Cardoso B, Fuga B, Sellera FP, Esposito F, Aravena-Ramírez V, Huaman DC, Gonzales CD, Espinoza LL, Hernández LM, Lincopan N. Genomic data of global clones of CTX-M-65-producing Escherichia coli ST10 from South American llamas inhabiting the Andean Highlands of Peru. J Glob Antimicrob Resist 2024; 36:135-138. [PMID: 38072242 DOI: 10.1016/j.jgar.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND The global spread of extended-spectrum β-lactamase (ESβL)-producing Escherichia coli has been considered a One Health issue that demands continuous genomic epidemiology surveillance in humans and non-human hosts. OBJECTIVES To report the occurrence and genomic data of ESβL-producing E. coli strains isolated from South American llamas inhabiting a protected area with public access in the Andean Highlands of Peru. METHODS Two ESβL-producing E. coli strains (E. coli L1LB and L2BHI) were identified by MALDI-TOF. Genomic DNAs were extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Genomic Workbench and in silico prediction was accomplished by curated bioinformatics tools. SNP-based phylogenomic analysis was performed using publicly available genomes of global E. coli ST10. RESULTS Escherichia coli L1LB generated a total of 4 000 11 and L2BHI a total of 4 002 54 paired-end reads of ca.164 × and ca. 157 ×, respectively. Both E. coli strains were assigned to serotype O8:H4, fimH41, and ST10. The blaCTX-M-65 ESβL gene, along with other medically important antimicrobial resistance genes, was predicted. Broad virulomes, including the presence of the astA gene, were confirmed. The phylogenomic analysis revealed that E. coli L1LB and L2BHI strains are closely related to isolates from companion animals and human hosts, as well as environmental strains, previously reported in North America, South America, Africa, and Asia. CONCLUSION Presence of ESβL-producing E. coli ST10 in South American camelids with historical and cultural importance supports successful expansion of international clones of priority pathogens in natural areas with public access.
Collapse
Affiliation(s)
- Adriana R Cardenas-Arias
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Elder Sano
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Valentina Aravena-Ramírez
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Dennis Carhuaricra Huaman
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carla Duran Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Nilton Lincopan
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Castañeda-Meléndrez AM, Magaña-Lizárraga JA, Martínez-Valenzuela M, Clemente-Soto AF, García-Cervantes PC, Delgado-Vargas F, Bernal-Reynaga R. Genomic characterization of a multidrug-resistant uropathogenic Escherichia coli and evaluation of Echeveria plant extracts as antibacterials. AIMS Microbiol 2024; 10:41-61. [PMID: 38525046 PMCID: PMC10955171 DOI: 10.3934/microbiol.2024003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 03/26/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common bacterial agent associated with urinary tract infections, threatening public health systems with elevated medical costs and high morbidity rates. The successful establishment of the infection is associated with virulence factors encoded in its genome, in addition to antibacterial resistance genes, which could limit the treatment and resolution of the infection. In this sense, plant extracts from the genus Echeveria have traditionally been used to treat diverse infectious diseases. However, little is known about the effects of these extracts on bacteria and their potential mechanisms of action. This study aims to sequence a multidrug-resistant UPEC isolate (UTI-U7) and assess the multilocus sequence typing (MLST), virulence factors, antimicrobial resistance profile, genes, serotype, and plasmid content. Antimicrobial susceptibility profiling was performed using the Kirby-Bauer disk diffusion. The antibacterial and anti-adherent effects of the methanol extracts (ME) of Echeveria (E. craigiana, E. kimnachii, and E. subrigida) against UTI-U7 were determined. The isolate was characterized as an O25:H4-B2-ST2279-CH40 subclone and had resistant determinants to aminoglycosides, β-lactams, fluoroquinolones/quinolones, amphenicols, and tetracyclines, which matched with the antimicrobial resistance profile. The virulence genes identified encode adherence factors, iron uptake, protectins/serum resistance, and toxins. Identified plasmids belonged to the IncF group (IncFIA, IncFIB, and IncFII), alongside several prophage-like elements. After an extensive genome analysis that confirmed the pathogenic status of UTI-U7 isolate, Echeveria extracts were tested to determine their antibacterial effects; as an extract, E. subrigida (MIC, 5 mg/mL) displayed the best inhibitory effect. However, the adherence between UTI-U7 and HeLa cells was unaffected by the ME of the E. subrigida extract.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rodolfo Bernal-Reynaga
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico-Biológicas. Universidad Autónoma de Sinaloa. Ciudad Universitaria, Culiacán, Sinaloa, México
| |
Collapse
|
17
|
Stehling EG, Sellera FP, de Almeida OGG, Gonzalez IHL, Ramos PL, da Rosa-Garzon NG, von Zeska Kress MR, Cabral H, Furlan JPR. Genomic features and comparative analysis of a multidrug-resistant Acinetobacter bereziniae strain infecting an animal: a novel emerging one health pathogen? World J Microbiol Biotechnol 2024; 40:63. [PMID: 38190002 DOI: 10.1007/s11274-023-03867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Acinetobacter bereziniae has recently gained medical notoriety due to its emergence as a multidrug resistance and healthcare-associated pathogen. In this study, we report the whole-genome characterization of an A. bereziniae strain (A321) recovered from an infected semiaquatic turtle, as well as a comparative analysis of A. bereziniae strains circulating at the human-animal-environment interface. Strain A321 displayed a multidrug resistance profile to medically important antimicrobials, which was supported by a wide resistome. The novel Tn5393m transposon and a qnrB19-bearing ColE1-like plasmid were identified in A321 strain. Novel OXA-229-like β-lactamases were detected and expression of OXA-931 demonstrated a 2-64-fold increase in the minimum inhibitory concentration for β-lactam agents. Comparative genomic analysis revealed that most A. bereziniae strains did not carry any antimicrobial resistance genes (ARGs); however, some strains from China, Brazil, and India harbored six or more ARGs. Furthermore, A. bereziniae strains harbored conserved virulence genes. These results add valuable information regarding the spread of ARGs and mobile genetic elements that could be shared not only between A. bereziniae but also by other bacteria of clinical interest. This study also demonstrates that A. bereziniae can spill over from anthropogenic sources into natural environments and subsequently be transmitted to non-human hosts, making this a potential One Health bacteria that require close surveillance.
Collapse
Affiliation(s)
- Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Otávio Guilherme Gonçalves de Almeida
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Irys Hany Lima Gonzalez
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Nathália Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marcia Regina von Zeska Kress
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Meena S, Bharti G, Mathur P. Pre- and Post-COVID-19 Appraisal of Antimicrobial Susceptibility for Urinary Tract Infections at an Outpatient Setting of a Tertiary Care Hospital in Delhi. Cureus 2023; 15:e47095. [PMID: 38021575 PMCID: PMC10646440 DOI: 10.7759/cureus.47095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND This study was conducted to understand the effect of the COVID-19 pandemic on urine culture and sensitivity results in an outpatient setting. There are plenty of data from inpatient and ICU settings but there is a paucity of data in outpatient or community settings. Thus, this study primarily targeted change in antibiotic resistance of urinary tract infection (UTI) agents in the pre- and post-COVID-19 period. METHODS In the study, urine samples received in the Department of Laboratory Medicine (microbiology laboratory) with a preliminary diagnosis of UTI between April 2019 and March 2021 were analyzed. Urine cultures and antibiotic susceptibility tests of the patients included in the study were examined in two periods (pre-pandemic and post-pandemic). RESULTS A total of 22,372 urine samples were received in the pre-pandemic period (April 2019 to March 2020) and 4885 samples in the post-pandemic period (April 2020 to March 2021). The positivity rate obtained from urine cultures sent post-COVID-19 pandemic (16%) was significantly higher than those sent before the COVID-19 pandemic (8%). According to cultures and antibiogram results, resistance to ampicillin, amikacin, ceftazidime (p < 0.05), co-trimoxazole, levofloxacin, gentamicin (p < 0.05), nitrofurantoin, fosfomycin, and tetracycline decreased compared with the pre-COVID-19 period. CONCLUSIONS In this study, we found that the frequency of significant bacteriuria increased significantly in the post-pandemic period. However, resistance to antibiotics decreased significantly in the post-COVID-19 period compared to the pre-COVID-19 period. There was no significant change in the etiology of UTI during the two time periods.
Collapse
Affiliation(s)
- Suneeta Meena
- Laboratory Medicine - Microbiology, All India Institute of Medical Sciences, New Delhi, IND
| | - Ginni Bharti
- Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Purva Mathur
- Laboratory Medicine, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
19
|
Sellera FP, Fuentes-Castillo D, Furlan JPR. One Health Spread of 16S Ribosomal RNA Methyltransferase-Harboring Gram-Negative Bacterial Genomes: An Overview of the Americas. Pathogens 2023; 12:1164. [PMID: 37764972 PMCID: PMC10536106 DOI: 10.3390/pathogens12091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Aminoglycoside antimicrobials remain valuable therapeutic options, but their effectiveness has been threatened by the production of bacterial 16S ribosomal RNA methyltransferases (16S-RMTases). In this study, we evaluated the genomic epidemiology of 16S-RMTase genes among Gram-negative bacteria circulating in the American continent. A total of 4877 16S-RMTase sequences were identified mainly in Enterobacterales and nonfermenting Gram-negative bacilli isolated from humans, animals, foods, and the environment during 1931-2023. Most of the sequences identified were found in the United States, Brazil, Canada, and Mexico, and the prevalence of 16S-RMTase genes have increased in the last five years (2018-2022). The three species most frequently carrying 16S-RMTase genes were Acinetobacter baummannii, Klebsiella pneumoniae, and Escherichia coli. The armA gene was the most prevalent, but other 16S-RMTase genes (e.g., rmtB, rmtE, and rmtF) could be emerging backstage. More than 90% of 16S-RMTase sequences in the Americas were found in North American countries, and although the 16S-RMTase genes were less prevalent in Central and South American countries, these findings may be underestimations due to limited genomic data. Therefore, whole-genome sequence-based studies focusing on aminoglycoside resistance using a One Health approach in low- and middle-income countries should be encouraged.
Collapse
Affiliation(s)
- Fábio Parra Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil;
- School of Veterinary Medicine, Metropolitan University of Santos, Santos 11065-402, Brazil
| | - Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3780000, Chile;
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| |
Collapse
|
20
|
Fuzi M, Sokurenko E. Commensal Fitness Advantage May Contribute to the Global Dissemination of Multidrug-Resistant Lineages of Bacteria-The Case of Uropathogenic E. coli. Pathogens 2023; 12:1150. [PMID: 37764958 PMCID: PMC10536240 DOI: 10.3390/pathogens12091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
It is widely accepted that favorable fitness in commensal colonization is one of the prime facilitators of clonal dissemination in bacteria. The question arises as to what kind of fitness advantage may be wielded by uropathogenic strains of the two predominant fluoroquinolone- and multidrug-resistant clonal groups of E. coli-ST131-H30 and ST1193, which has permitted their unprecedented pandemic-like global expansion in the last few decades. The colonization-associated genes' content, carriage of low-cost plasmids, and integrons with weak promoters could certainly contribute to the fitness of the pandemic groups, although those genetic factors are common among other clonal groups as well. Also, ST131-H30 and ST1193 strains harbor fluoroquinolone-resistance conferring mutations targeting serine residues in DNA gyrase (GyrA-S83) and topoisomerase IV (ParC-S80) that, in those clonal backgrounds, might result in a commensal fitness benefit, i.e., beyond the antibiotic resistance per se. This fitness gain might have contributed not only to the widespread dissemination of these major clones in the healthcare setting but also to their long-term colonization of healthy individuals and, thus, circulation in the community, even in a low or no fluoroquinolone use environment. This evolutionary shift affecting commensal E. coli, initiated by mutations co-favorable in both antibiotics-treated patients and healthy individuals warrants more in-depth studies to monitor further changes in the epidemiological situation and develop effective measures to reduce the antibiotic resistance spread.
Collapse
Affiliation(s)
- Miklos Fuzi
- Independent Researcher, Seattle, WA 98195, USA
| | - Evgeni Sokurenko
- Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., Seattle, WA 98195, USA;
| |
Collapse
|
21
|
Carramaschi IN, de C Queiroz MM, da Mota FF, Zahner V. First Identification of bla NDM-1 Producing Escherichia coli ST 9499 Isolated from Musca domestica in the Urban Center of Rio de Janeiro, Brazil. Curr Microbiol 2023; 80:278. [PMID: 37436443 DOI: 10.1007/s00284-023-03393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
The present study presents phenotypic and molecular characterization of a multidrug-resistant strain of Escherichia coli (Lemef26), belonging to sequence type ST9499 carrying a blaNDM-1 carbapenem resistance gene. The bacterium was isolated from a specimen of Musca domestica, collected in proximity to a hospital in Rio de Janeiro City, Brazil. The strain was identified as E. coli by matrix-assisted laser desorption-ionization time of flight mass spectrometry (Maldi-TOF-MS) and via genotypic analysis (Whole-Genome Sequencing-WGS), followed by phylogenetic analysis, antibiotic resistance profiling (using phenotypic and genotypic methods) and virulence genotyping. Interestingly, the blaNDM-1 was the only resistance determinant detected using a panel of common resistance genes, as evaluated by PCR. In contrast, WGS detected genes conferring resistance to aminoglycosides, fluoroquinolones, quinolones, trimethoprim, beta-lactams, chloramphenicol, macrolides, sulfonamide, tetracycline, lincosamide and streptogramin B. Conjugation experiments demonstrated the transfer of carbapenem resistance, via acquisition of the blaNDM-1 sequence, to a sensitive receptor strain of E. coli, indicating that blaNDM-1 is located on a conjugative plasmid (most likely of the IncA/C incompatibility group, in association with the transposon Tn3000). Phylogenetic analyses placed Lemef26 within a clade of strains exhibiting allelic and environment diversity, with the greatest level of relatedness recorded with a strain isolated from a human source suggesting a possible anthropogenic origin. Analysis of the virulome revealed the presence of fimbrial and pilus genes, including a CFA/I fimbriae (cfaABCDE), common pilus (ecpABCDER), laminin-bind fimbrae (elfADG), hemorrhagic pilus (hcpABC) and fimbrial adherence determinants (stjC) indicates the ability of strain Lemef26 to colonize animal hosts. To the best of our knowledge, this study represents the first report of blaNDM-1 carbapenemase gene in an E. coli strain isolated from M. domestica. In concordance with the findings of previous studies on the carriage of MDR bacteria by flies, the data presented herein provide support to the idea that flies may represent a convenient means (as sentinel animals) for the monitoring of environmental contamination with multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Isabel N Carramaschi
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Cep 21040-360, Brazil
| | - Margareth M de C Queiroz
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Cep 21040-360, Brazil
| | - Fabio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Cep 21040-360, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Viviane Zahner
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Cep 21040-360, Brazil.
| |
Collapse
|
22
|
Espinoza LL, Huamán DC, Cueva CR, Gonzales CD, León YI, Espejo TS, Monge GM, Alcántara RR, Hernández LM. Genomic analysis of multidrug-resistant Escherichia coli strains carrying the mcr-1 gene recovered from pigs in Lima-Peru. Comp Immunol Microbiol Infect Dis 2023; 99:102019. [PMID: 37473695 DOI: 10.1016/j.cimid.2023.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance is a current problem that significantly impacts overall health. The dissemination of antibiotic resistance genes (ARGs) to urban areas primarily occurs through ARG-carrying bacteria present in the gut microbiota of animals raised in intensive farming settings, such as pig production. Hence, this study aimed to isolate and analyzed 87 Escherichia coli strains from pig fecal samples obtained from intensive farms in Lima Department. The isolates were subjected to Kirby-Bauer-Disk Diffusion Test and PCR for mcr-1 gene identification. Disk-diffusion assay revealed a high level of resistance among these isolates to oxytetracycline, ampicillin, cephalothin, chloramphenicol, ciprofloxacin, and doxycycline. PCR analysis identified the mcr-1 gene in 8% (7/87) E. coli isolates. Further, whole genome sequencing was conducted on 17 isolates, including multidrug resistance (MDR) E. coli and/or mcr-1 gene carriers. This analysis unveiled a diverse array of ARGs. Alongside the mcr-1 gene, the blaCTX-M55 gene was particularly noteworthy as it confers resistance to third generation cephalosporins, including ceftriaxone. MDR E. coli genomes exhibited other ARGs encoding resistance to fosfomycin (fosA3), quinolones (qnrB19, qnrS1, qnrE1), tetracyclines (tetA, tetB, tetD, tetM), sulfonamides (sul1, sul2, sul3), amphenicols (cmlA1, floR), lincosamides (inuE), as well as various aminoglycoside resistance genes. Additionally, Multi Locus Sequence Typing (MLST) revealed a high diversity of E. coli strains, including ST10, a pandemic clone. This information provides evidence of the dissemination of highly significant ARGs in public health. Therefore, it is imperative to implement measures aimed at mitigating and preventing the transmission of MDR bacteria carrying ARGs to urban environments.
Collapse
Affiliation(s)
- Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru; Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, Brazil
| | - Carmen Rodríguez Cueva
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Carla Durán Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Yennifer Ignación León
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Thalía Silvestre Espejo
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Geraldine Marcelo Monge
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Raúl Rosadio Alcántara
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation [SANIGEN], Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru.
| |
Collapse
|
23
|
Furlan JPR, Sellera FP, Stehling EG. Strengthening genomic surveillance of carbapenemases in soils: a call for global attention. THE LANCET. MICROBE 2023; 4:e386-e387. [PMID: 36966797 DOI: 10.1016/s2666-5247(23)00093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/05/2023]
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Carlsen L, Büttner H, Christner M, Cordts L, Franke G, Hoffmann A, Knobling B, Lütgehetmann M, Nakel J, Werner T, Knobloch JK. Long time persistence and evolution of carbapenemase-producing Enterobacterales in the wastewater of a tertiary care hospital in Germany. J Infect Public Health 2023; 16:1142-1148. [PMID: 37267681 DOI: 10.1016/j.jiph.2023.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Worldwide observations revealed increased frequencies of multi-resistant Enterobacterales and resistance genes in hospital wastewater compared to any other type of wastewater. Despite the description of clonal lineages possibly adapted to hospital wastewater, little is known about long term persistence as well as evolution of these lineages. METHODS In this study, wastewater isolates of different Enterobacterales species from a tertiary care hospital were investigated with 2.5 years distance. Whole Genome Sequencing (WGS) and resistance gene identification were performed for E. coli, C. freundii, S. marcescens, K. pneumoniae, K. oxytoca, and E. cloacae isolates (n = 59), isolated in 2022 and compared with strains isolated from the same wastewater pipeline in 2019 (n = 240). RESULTS Individual clonal lineages with highly related isolates could be identified in all species identified more than once in 2022 that appear to persist in the wastewater drainage. A common motif of all persistent clonal lineages was the carriage of mobile genetic elements encoding carbapenemase genes with hints for horizontal gene transfer in persistent clones in this environment observed over the 2.5-year period. Multiple plasmid replicons could be detected in both years. In 2022 isolates blaVIM-1 replaced blaOXA-48 as the most common carbapenemase gene compared to 2019. Interestingly, despite a similar abundance of carbapenemase genes (>80% of all isolates) at both time points genes encoding extended spectrum β-lactamases decreased over time. CONCLUSIONS This data indicates that hospital wastewater continuously releases genes encoding carbapenemases to the urban wastewater system. The evolution of the resident clones as well as the reasons for the selection advantage in this specific ecological niche needs to be further investigated in the future.
Collapse
Affiliation(s)
- Laura Carlsen
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henning Büttner
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Martin Christner
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Lukas Cordts
- HAMBURG WASSER, Billhorner Deich 2, 20539 Hamburg, Germany
| | - Gefion Franke
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Armin Hoffmann
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Birte Knobling
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jacqueline Nakel
- Virus Genomics, Heinrich-Pette-Institute, Leibniz Institute for Experimental Biology, Martinistraße 52, 20251 Hamburg, Germany
| | - Thomas Werner
- HAMBURG WASSER, Billhorner Deich 2, 20539 Hamburg, Germany
| | - Johannes K Knobloch
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
25
|
Huerta-Saquero A, Chapartegui-González I, Bowser S, Khakhum N, Stockton JL, Torres AG. P22-Based Nanovaccines against Enterohemorrhagic Escherichia coli. Microbiol Spectr 2023:e0473422. [PMID: 36943089 PMCID: PMC10100862 DOI: 10.1128/spectrum.04734-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important causative agent of diarrhea in humans that causes outbreaks worldwide. Efforts have been made to mitigate the morbidity and mortality caused by these microorganisms; however, the global incidence is still high, causing hundreds of deaths per year. Several vaccine candidates have been evaluated that demonstrate some stability and therapeutic potential but have limited overarching effect. Virus-like particles have been used successfully as nanocontainers for the targeted delivery of drugs, proteins, or nucleic acids. In this study, phage P22 nanocontainers were used as a carrier for the highly antigenic T3SS structural protein EscC that is conserved between EHEC and other enteropathogenic bacteria. We were able to stably incorporate the EscC protein into P22 nanocontainers. The EscC-P22 particles were used to intranasally inoculate mice, which generated specific antibodies against EscC. These antibodies increased the phagocytic activity of murine macrophages infected with EHEC in vitro and reduced bacterial adherence to Caco-2 epithelial cells in vitro, illustrating their functionality. The EscC-P22-based particles are a potential nanovaccine candidate for immunization against EHEC O157:H7 infections. IMPORTANCE This study describes the initial attempt to use P22 viral-like particles as nanocontainers expressing enterohemorrhagic Escherichia coli (EHEC) proteins that are immunogenic and could be used as effective vaccines against EHEC infections.
Collapse
Affiliation(s)
- Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nittaya Khakhum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob L Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
26
|
Krüger GI, Pardo-Esté C, Zepeda P, Olivares-Pacheco J, Galleguillos N, Suarez M, Castro-Severyn J, Alvarez-Thon L, Tello M, Valdes JH, Saavedra CP. Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. Front Microbiol 2023; 14:1072793. [PMID: 37007466 PMCID: PMC10061128 DOI: 10.3389/fmicb.2023.1072793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds.
Collapse
Affiliation(s)
- Gabriel I. Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antibacteriana en Bacterias Patógenas Ambientales GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nicolas Galleguillos
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcia Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Luis Alvarez-Thon
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge H. Valdes
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- *Correspondence: Claudia P. Saavedra,
| |
Collapse
|
27
|
Sousa M, Afonso AC, Teixeira LS, Borges A, Saavedra MJ, Simões LC, Simões M. Hydrocinnamic Acid and Perillyl Alcohol Potentiate the Action of Antibiotics against Escherichia coli. Antibiotics (Basel) 2023; 12:antibiotics12020360. [PMID: 36830271 PMCID: PMC9952493 DOI: 10.3390/antibiotics12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The treatment of bacterial infections has been troubled by the increased resistance to antibiotics, instigating the search for new antimicrobial therapies. Phytochemicals have demonstrated broad-spectrum and effective antibacterial effects as well as antibiotic resistance-modifying activity. In this study, perillyl alcohol and hydrocinnamic acid were characterized for their antimicrobial action against Escherichia coli. Furthermore, dual and triple combinations of these molecules with the antibiotics chloramphenicol and amoxicillin were investigated for the first time. Perillyl alcohol had a minimum inhibitory concentration (MIC) of 256 µg/mL and a minimum bactericidal concentration (MBC) of 512 µg/mL. Hydrocinnamic acid had a MIC of 2048 µg/mL and an MBC > 2048 µg/mL. Checkerboard and time-kill assays demonstrated synergism or additive effects for the dual combinations chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid, and amoxicillin/hydrocinnamic acid at low concentrations of both molecules. Combenefit analysis showed synergism for various concentrations of amoxicillin with each phytochemical. Combinations of chloramphenicol with perillyl alcohol and hydrocinnamic acid revealed synergism mainly at low concentrations of antibiotics (up to 2 μg/mL of chloramphenicol with perillyl alcohol; 0.5 μg/mL of chloramphenicol with hydrocinnamic acid). The results highlight the potential of combinatorial therapies for microbial growth control, where phytochemicals can play an important role as potentiators or resistance-modifying agents.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Cristina Afonso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lília Soares Teixeira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Maria José Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lúcia Chaves Simões
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
28
|
Ordine JVW, de Souza GM, Tamasco G, Virgilio S, Fernandes AFT, Silva-Rocha R, Guazzaroni ME. Metagenomic Insights for Antimicrobial Resistance Surveillance in Soils with Different Land Uses in Brazil. Antibiotics (Basel) 2023; 12:antibiotics12020334. [PMID: 36830245 PMCID: PMC9952835 DOI: 10.3390/antibiotics12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Land-use conversion changes soil properties and their microbial communities, which, combined with the overuse of antibiotics in human and animal health, promotes the expansion of the soil resistome. In this context, we aimed to profile the resistome and the microbiota of soils under different land practices. We collected eight soil samples from different locations in the countryside of São Paulo (Brazil), assessed the community profiles based on 16S rRNA sequencing, and analyzed the soil metagenomes based on shotgun sequencing. We found differences in the communities' structures and their dynamics that were correlated with land practices, such as the dominance of Staphylococcus and Bacillus genera in agriculture fields. Additionally, we surveyed the abundance and diversity of antibiotic resistance genes (ARGs) and virulence factors (VFs) across studied soils, observing a higher presence and homogeneity of the vanRO gene in livestock soils. Moreover, three β-lactamases were identified in orchard and urban square soils. Together, our findings reinforce the importance and urgency of AMR surveillance in the environment, especially in soils undergoing deep land-use transformations, providing an initial exploration under the One Health approach of environmental levels of resistance and profiling soil communities.
Collapse
Affiliation(s)
- João Vitor Wagner Ordine
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gabrielle Messias de Souza
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Gustavo Tamasco
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Stela Virgilio
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - Ana Flávia Tonelli Fernandes
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Rafael Silva-Rocha
- ByMyCell Inova Simples. Avenue Dra. Nadir Águiar, 1805-Supera Parque, Ribeirão Preto 14056-680, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-33153680
| |
Collapse
|
29
|
dos Santos Alves T, Rosa VS, da Silva Leite D, Guerra ST, Joaquim SF, Guimarães FF, de Figueiredo Pantoja JC, Lucheis SB, Rall VLM, Hernandes RT, Langoni H, Ribeiro MG. Genome-Based Characterization of Multidrug-Resistant Escherichia coli Isolated from Clinical Bovine Mastitis. Curr Microbiol 2023; 80:89. [PMID: 36723699 PMCID: PMC9890429 DOI: 10.1007/s00284-023-03191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Mastitis occurrence in dairy cows is a broad topic that involves several sectors, from antimicrobial resistance and virulence of strains to economic implications and cattle management practices. Here, we assessed the molecular characterization (antimicrobial resistance determinants, virulence genes, sequences type, serotypes, and plasmid types) of 178 Escherichia coli strains isolated from milk samples from cows with clinical mastitis using a genome-based k-mers approach. Of these, 53 (29.8%) showed multidrug resistance by disc diffusion. We selected eight multidrug-resistant mastitis-associated E. coli for whole-genome sequencing and molecular characterization based on raw data using k-mers. We assessed antimicrobial resistance genes, virulence factors, serotypes, Multilocus Sequence Typing (MLST), and plasmid types. The most antimicrobial resistance gene found were blaTEM-1B (7/8), tetA (6/8), strA (6/8), strB (6/8), and qnrB19 (5/8). A total of 25 virulence factors were detected encoding adhesins, capsule, enzymes/proteins, increased serum survival, hemolysin, colicins, and iron uptake. These virulence factors were associated with Extraintestinal Pathogenic E. coli. Three pandemic clones were found: ST10, ST101, and ST69. Two E. coli were assigned in the O117 serogroup and one in the O8:H25 serotype. The most common plasmid groups were IncFII (7/8) and IncFIB (6/8). Our findings contribute to the knowledge of virulence mechanisms, epidemiological aspects, and antimicrobial resistance determinants of E. coli strains obtained from clinical mammary infections of cows.
Collapse
Affiliation(s)
- Taila dos Santos Alves
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP 13083 862 Brazil
| | - Vinícius Sanches Rosa
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP 13083 862 Brazil
| | - Domingos da Silva Leite
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP 13083 862 Brazil
| | - Simony Trevizan Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Sâmea Fernandes Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Felipe Freitas Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - José Carlos de Figueiredo Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Simoni Baldini Lucheis
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Vera Lúcia Mores Rall
- Department of Microbiology and Immunology, São Paulo State University-UNESP, Botucatu, SP 18618 689 Brazil
| | | | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| | - Márcio Garcia Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University-UNESP, Botucatu, SP 18618 681 Brazil
| |
Collapse
|
30
|
Prendergast DM, Slowey R, Burgess CM, Murphy D, Johnston D, Morris D, O’ Doherty Á, Moriarty J, Gutierrez M. Characterization of cephalosporin and fluoroquinolone resistant Enterobacterales from Irish farm waste by whole genome sequencing. Front Microbiol 2023; 14:1118264. [PMID: 37032887 PMCID: PMC10073600 DOI: 10.3389/fmicb.2023.1118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Background The Enterobacterales are a group of Gram-negative bacteria frequently exhibiting extended antimicrobial resistance (AMR) and involved in the transmission of resistance genes to other bacterial species present in the same environment. Due to their impact on human health and the paucity of new antibiotics, the World Health Organization (WHO) categorized carbapenem resistant and ESBL-producing as critical. Enterobacterales are ubiquitous and the role of the environment in the transmission of AMR organisms or antimicrobial resistance genes (ARGs) must be examined in tackling AMR in both humans and animals under the one health approach. Animal manure is recognized as an important source of AMR bacteria entering the environment, in which resistant genes can accumulate. Methods To gain a better understanding of the dissemination of third generation cephalosporin and fluoroquinolone resistance genes between isolates in the environment, we applied whole genome sequencing (WGS) to Enterobacterales (79 E. coli, 1 Enterobacter cloacae, 1 Klebsiella pneumoniae, and 1 Citrobacter gillenii) isolated from farm effluents in Ireland before (n = 72) and after (n = 10) treatment by integrated constructed wetlands (ICWs). DNA was extracted using the MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) followed by WGS on a MiSeq platform (Illumina, Eindhoven, Netherlands) using v3 chemistry as 300-cycle paired-end runs. AMR genes and point mutations were identified and compared to the phenotypic results for better understanding of the mechanisms of resistance and resistance transmission. Results A wide variety of cephalosporin and fluoroquinolone resistance genes (mobile genetic elements (MGEs) and chromosomal mutations) were identified among isolates that mostly explained the phenotypic AMR patterns. A total of 31 plasmid replicon types were identified among the 82 isolates, with a subset of them (n = 24), identified in E. coli isolates. Five plasmid replicons were confined to the Enterobacter cloacae isolate and two were confined to the Klebsiella pneumoniae isolate. Virulence genes associated with functions including stress, survival, regulation, iron uptake secretion systems, invasion, adherence and toxin production were identified. Conclusion Our study showed that antimicrobial resistant organisms (AROs) can persist even following wastewater treatment and could transmit AMR of clinical relevance to the environment and ultimately pose a risk to human or animal health.
Collapse
Affiliation(s)
- Deirdre M. Prendergast
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
- *Correspondence: Deirdre M. Prendergast,
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | | - Declan Murphy
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dayle Johnston
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, University of Galway, Galway, Ireland
| | - Áine O’ Doherty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - John Moriarty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | |
Collapse
|
31
|
One health clones of multidrug-resistant Escherichia coli carried by synanthropic animals in Brazil. One Health 2022; 16:100476. [PMID: 36691392 PMCID: PMC9860340 DOI: 10.1016/j.onehlt.2022.100476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
WHO priority pathogens have disseminated beyond hospital settings and are now being detected in urban and wild animals worldwide. In this regard, synanthropic animals such as urban pigeons (Columba livia) and rodents (Rattus rattus, Rattus norvegicus and Mus musculus) are of interest to public health due to their role as reservoirs of pathogens that can cause severe diseases. These animals usually live in highly contaminated environments and have frequent interactions with humans, domestic animals, and food chain, becoming sentinels of anthropogenic activities. In this study, we report genomic data of Escherichia coli strains selected for ceftriaxone and ciprofloxacin resistance, isolated from pigeons and black rats. Genomic analysis revealed the occurrence of international clones belonging to ST10, ST155, ST224 and ST457, carrying a broad resistome to beta-lactams, aminoglycosides, trimethoprim/sulfamethoxazole, fluoroquinolones, tetracyclines and/or phenicols. SNP-based phylogenomic investigation confirmed clonal relatedness with high-risk lineages circulating at the human-animal-environmental interface globally. Our results confirm the dissemination of WHO priority CTX-M-positive E. coli in urban rodents and pigeons in Brazil, highlighting potential of these animals as infection sources and hotspot for dissemination of clinically relevant pathogens and their resistance genes, which is a critical issue within a One Health perspective.
Collapse
|
32
|
Virulence Profile, Antibiotic Resistance, and Phylogenetic Relationships among Escherichia coli Strains Isolated from the Feces and Urine of Hospitalized Patients. Pathogens 2022; 11:pathogens11121528. [PMID: 36558862 PMCID: PMC9782660 DOI: 10.3390/pathogens11121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) may inhabit the human gut microbiota without causing disease. However, if they reach extra-intestinal sites, common cystitis to bloodstream infections may occur, putting patients at risk. To examine the human gut as a source of endogenous infections, we evaluated the E. coli clonal diversity of 18 inpatients' guts and their relationship with strains isolated from urinary tract infection (UTI) in the same hospital. Random amplified polymorphic DNA evaluated the clonal diversity, and the antimicrobial susceptibility was determined by disk diffusion. One isolate of each clone detected was sequenced, and their virulome and resistome were determined. Overall, 177 isolates were screened, among which 32 clones were identified (mean of two clones per patient), with ExPEC strains found in over 75% of the inpatients' guts. Endogenous infection was confirmed in 75% of the cases. ST10, ST59, ST69, ST131, and ST1193 clones and critical mobile drug-resistance encoding genes (blaCTX-M-15, blaOXA-1, blaDHA-1, aac(6')-lb-cr, mcr-1.26, qnrB4, and qnrB19) were identified in the gut of inpatients. The genomic analysis highlighted the diversity of the fecal strains, colonization by lactose-negative E. coli, the high frequency of ExPEC in the gut of inpatients without infections, and the presence of β-lactamase producing E. coli in the gut of inpatients regardless of the previous antibiotics' usage. Considering that we found more than one ExPEC clone in the gut of several inpatients, surveillance of inpatients' fecal pathogens may prevent UTI caused by E. coli in the hospital and dissemination of risk clones.
Collapse
|
33
|
Emergence and Dissemination of Extraintestinal Pathogenic High-Risk International Clones of Escherichia coli. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122077. [PMID: 36556442 PMCID: PMC9780897 DOI: 10.3390/life12122077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Multiresistant Escherichia coli has been disseminated worldwide, and it is one of the major causative agents of nosocomial infections. E. coli has a remarkable and complex genomic plasticity for taking up and accumulating genetic elements; thus, multiresistant high-risk clones can evolve. In this review, we summarise all available data about internationally disseminated extraintestinal pathogenic high-risk E. coli clones based on whole-genome sequence (WGS) data and confirmed outbreaks. Based on genetic markers, E. coli is clustered into eight phylogenetic groups. Nowadays, the E. coli ST131 clone from phylogenetic group B2 is the predominant high-risk clone worldwide. Currently, strains of the C1-M27 subclade within clade C of ST131 are circulating and becoming prominent in Canada, China, Germany, Hungary and Japan. The C1-M27 subclade is characterised by blaCTX-M-27. Recently, the ST1193 clone has been reported as an emerging high-risk clone from phylogenetic group B2. ST38 clone carrying blaOXA-244 (a blaOXA-48-like carbapenemase gene) caused several outbreaks in Germany and Switzerland. Further high-risk international E. coli clones include ST10, ST69, ST73, ST405, ST410, ST457. High-risk E. coli strains are present in different niches, in the human intestinal tract and in animals, and persist in environment. These strains can be transmitted easily within the community as well as in hospital settings. WGS analysis is a useful tool for tracking the dissemination of resistance determinants, the emergence of high-risk mulitresistant E. coli clones and to analyse changes in the E. coli population on a genomic level.
Collapse
|
34
|
Torres AG. The Challenge to Control Emergence of Antibiotic Resistance in Virulent Escherichia coli Isolates in Latin America. Microbiol Spectr 2022; 10:e0150622. [PMID: 35762783 PMCID: PMC9430625 DOI: 10.1128/spectrum.01506-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Latin American Coalition for Escherichia coli Research (LACER) was created as a network of investigators using One Health approaches trying to understand infections caused by regional E. coli isolates and to sound the alarm due to the evolution of strains that are multiresistant to antibiotics (resistome) that also display different virulence profiles (virulome). After the COVID19 pandemic, a major concern by investigators has been the appearance of more virulent and resistant strains. Recently, a paper published in Microbiology Spectrum by Brazilian investigators (Fuga B., et al. Microbiol Spectr 10:e0125621, 2022, https://doi.org/10.1128/spectrum.01256-21) has used a genomic approach to demonstrate that during a period of 45 years, a wide resistome and virulome has converged, resulting in the appearance and persistence of high-risk clones affecting humans, animals and the environment, and its rapid dissemination is becoming an unattended international threat.
Collapse
Affiliation(s)
- Alfredo G. Torres
- University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, Texas, USA
| |
Collapse
|
35
|
Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. Antibiotics (Basel) 2022; 11:antibiotics11050692. [DOI: 10.3390/antibiotics11050692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK®2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1 heat-stable toxin. Both genomes carried ESBL genes (blaEC-15, blaCTX-M-8, and blaCTX-M-55). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.
Collapse
|
36
|
Ramos CP, Kamei CYI, Viegas FM, de Melo Barbieri J, Cunha JLR, Hounmanou YMG, Coura FM, Santana JA, Lobato FCF, Bojesen AM, Silva ROS. Fecal Shedding of Multidrug Resistant Escherichia coli Isolates in Dogs Fed with Raw Meat-Based Diets in Brazil. Antibiotics (Basel) 2022; 11:antibiotics11040534. [PMID: 35453285 PMCID: PMC9029118 DOI: 10.3390/antibiotics11040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
The practice of feeding dogs raw meat-based diets (RMBDs) is growing in several countries, and the risks associated with the ingestion of pathogenic and antimicrobial-resistant Escherichia coli in dogs fed these diets are largely unknown. We characterized E. coli strains isolated from dogs fed either an RMBD or a conventional dry feed, according to the phylogroup, virulence genes, and antimicrobial susceptibility profiles of the bacteria. Two hundred and sixteen E. coli strains were isolated. Dogs fed RMBDs shed E. coli strains from the phylogroup E more frequently and were positive for the E. coli heat-stable enterotoxin 1-encoding gene. Isolates from RMBD-fed dogs were also frequently positive for multidrug-resistant E. coli isolates including extended-spectrum beta-lactamase (ESBL) producers. Whole-genome sequencing of seven ESBL-producing E. coli strains revealed that they predominantly harbored blaCTX-M-55, and two strains were also positive for the colistin-resistant gene mcr-1. These results suggest that feeding an RMBD can affect the dog’s microbiota, change the frequency of certain phylogroups, and increase the shedding of diarrheagenic E. coli. Also, feeding an RMBD seemed to be linked with the fecal shedding of multidrug-resistant E. coli, including the spread of strains harboring mobilizable colistin resistance and ESBL genes. This finding is of concern for both animal and human health.
Collapse
Affiliation(s)
- Carolina Pantuzza Ramos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Carolina Yumi Iceri Kamei
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Flávia Mello Viegas
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Jonata de Melo Barbieri
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - João Luís Reis Cunha
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Fernanda Morcatti Coura
- Departamento de Ciências Agrárias, Instituto Federal de Minas Gerais (IFMG), Bambuí 38900-000, Brazil;
| | - Jordana Almeida Santana
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Francisco Carlos Faria Lobato
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Rodrigo Otávio Silveira Silva
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
- Correspondence:
| |
Collapse
|