1
|
Waller SJ, Butcher RG, Lim L, McInnes K, Holmes EC, Geoghegan JL. The radiation of New Zealand's skinks and geckos is associated with distinct viromes. BMC Ecol Evol 2024; 24:81. [PMID: 38872095 PMCID: PMC11170836 DOI: 10.1186/s12862-024-02269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND New Zealand is home to over 120 native endemic species of skinks and geckos that radiated over the last 20-40 million years, likely driven by the exploitation of diverse habitats formed during the Miocene. The recent radiation of animal hosts may facilitate cross-species virus transmission, likely reflecting their close genetic relationships and therefore relatively low barriers for viruses to emerge in new hosts. Conversely, as animal hosts adapt to new niches, even within specific geographic locations, so too could their viruses. Consequently, animals that have niche-specialised following radiations may be expected to harbour genetically distinct viruses. Through a metatranscriptomic analysis of eight of New Zealand's native skink and gecko species, as well as the only introduced lizard species, the rainbow skink (Lampropholis delicata), we aimed to reveal the diversity of viruses in these hosts and determine whether and how the radiation of skinks and geckos in New Zealand has impacted virus diversity and evolution. RESULTS We identified a total of 15 novel reptilian viruses spanning 11 different viral families, across seven of the nine species sampled. Notably, we detected no viral host-switching among the native animals analysed, even between those sampled from the same geographic location. This is compatible with the idea that host speciation has likely resulted in isolated, niche-constrained viral populations that have prevented cross-species transmission. Using a protein structural similarity-based approach, we further identified a highly divergent bunya-like virus that potentially formed a new family within the Bunyavirales. CONCLUSIONS This study has broadened our understanding of reptilian viruses within New Zealand and illustrates how niche adaptation may limit viral-host interactions.
Collapse
Affiliation(s)
- Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Richelle G Butcher
- Tāwharau Ora, School of Veterinary Science, Massey University, University Avenue, Fitzherbert, Palmerston North, 4442, New Zealand
| | - Lauren Lim
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Kate McInnes
- Department of Conservation, P.O. Box 10420, Wellington, 6143, New Zealand
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
- Institute of Environmental Science and Research, Wellington, New Zealand.
| |
Collapse
|
2
|
Mahar JE, Wille M, Harvey E, Moritz CC, Holmes EC. The diverse liver viromes of Australian geckos and skinks are dominated by hepaciviruses and picornaviruses and reflect host taxonomy and habitat. Virus Evol 2024; 10:veae044. [PMID: 38854849 PMCID: PMC11160328 DOI: 10.1093/ve/veae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Lizards have diverse ecologies and evolutionary histories, and represent a promising group to explore how hosts shape virome structure and virus evolution. Yet, little is known about the viromes of these animals. In Australia, squamates (lizards and snakes) comprise the most diverse order of vertebrates, and Australia hosts the highest diversity of lizards globally, with the greatest breadth of habitat use. We used meta-transcriptomic sequencing to determine the virome of nine co-distributed, tropical lizard species from three taxonomic families in Australia and analyzed these data to identify host traits associated with viral abundance and diversity. We show that lizards carry a large diversity of viruses, identifying more than thirty novel, highly divergent vertebrate-associated viruses. These viruses were from nine viral families, including several that contain well known pathogens, such as the Flaviviridae, Picornaviridae, Bornaviridae, Iridoviridae, and Rhabdoviridae. Members of the Flaviviridae were particularly abundant across species sampled here, largely belonging to the genus Hepacivirus: fourteen novel hepaciviruses were identified, broadening the known diversity of this group and better defining its evolution by uncovering new reptilian clades. The evolutionary histories of the viruses studied here frequently aligned with the biogeographic and phylogenetic histories of the hosts, indicating that exogenous viruses may help infer host evolutionary history if sampling is strategic and sampling density high enough. Notably, analysis of alpha and beta diversity revealed that virome composition and richness in the animals sampled here was shaped by host taxonomy and habitat. In sum, we identified a diverse range of reptile viruses that broadly contributes to our understanding of virus-host ecology and evolution.
Collapse
Affiliation(s)
- Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Craig C Moritz
- Research School of Biology & Centre for Biodiversity Analysis, The Australian National University, Canberra, ACT 2600, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Qian L, Zhuang Z, Lu J, Wang H, Wang X, Yang S, Ji L, Shen Q, Zhang W, Shan T. Metagenomic survey of viral diversity obtained from feces of piglets with diarrhea. Heliyon 2024; 10:e25616. [PMID: 38375275 PMCID: PMC10875384 DOI: 10.1016/j.heliyon.2024.e25616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Pigs are natural host to various zoonotic pathogens including viruses. In this study, we analyzed the viral communities in the feces of 89 piglets with diarrhea under one month old which were collected from six farms in Jiangsu Province of the Eastern China, using the unbiased virus metagenomic method. A total of 89 libraries were constructed, and 46937894 unique sequence reads were generated by Illumina sequencing. Overall, the family Picornaviridae accounted for the majority of the total reads of putative mammalian viruses. Ten novel virus genomes from different family members were discovered, including Parvoviridae (n = 2), Picobirnaviridae (n = 4) and CRESS DNA viruses (n = 4). A large number of phages were identified, which mainly belonged to the order Caudovirales and the family Microviridae. Moreover, some identified viruses were closely related to viruses found in non-porcine hosts, highlighting the potential for cross-species virus dissemination. This study increased our understanding of the fecal virus communities of diarrhea piglets and provided valuable information for virus monitoring and preventing.
Collapse
Affiliation(s)
- Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zi Zhuang
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 200062, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| |
Collapse
|
4
|
Ikechukwu CK, Qin K, Zhang H, Pan J, Zhang W. Novel equid papillomavirus from domestic donkey. Equine Vet J 2024; 56:171-177. [PMID: 37246448 DOI: 10.1111/evj.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Papillomaviruses can be of great medical importance as they infect humans and animals such as Equus species, other livestock and pets. They are responsible for several papillomas and benign tumours in their host. OBJECTIVES To describe a novel equid papillomavirus detected in oral swab samples collected from donkeys (Equus asinus) found on the Northwest plateau of China. STUDY DESIGN Cross-sectional. METHODS Swab samples collected from the oral mucosa of 32 donkeys in the Gansu Province of China, were subjected to viral metagenomic analysis to detect the presence of Papillomavirus. After de novo assembly, a novel papillomavirus genome designated as Equus asinus papillomavirus 3 (EaPV3) was identified in the studied samples. Additional bioinformatic analysis of the assembled genome was done using the Geneious prime software (version 2022.0.2). RESULTS The complete circular genome of EaPV3 is 7430 bp in length with a GC content of 50.8%. The genome was predicted to contain five ORFs coding for three early proteins (E7, E1, and E2) and two late proteins (L1 and L2). Phylogenic analysis of the nucleotide sequences of the concatenated amino acid sequences of the E1E2L1L2 genes revealed that EaPV3 is most closely related to Equus asinus papillomavirus 1 (EaPV1). The genome analysis of EaPV3 revealed similar genome organisation with other equine papillomavirus and the presence of E7 papillomavirus oncoprotein. MAIN LIMITATIONS Since there were no warts in the oral cavity of the donkeys in this study, and no biopsy samples taken, we are unable to conclusively link the novel virus to any clinical condition in the donkeys. CONCLUSIONS The Comparative characterisation of EaPV3 and its closest relatives, as well as phylogenetic analysis demonstrated that it is a novel virus specie that clusters within the Dyochipapilloma PV genus.
Collapse
Affiliation(s)
- Chukwudozie Kingsley Ikechukwu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Kailin Qin
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Han Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiamin Pan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Yi B, Deng Q, Guo C, Li X, Wu Q, Zha R, Wang X, Lu J. Evaluating the zoonotic potential of RNA viromes of rodents provides new insight into rodent-borne zoonotic pathogens in Guangdong, China. One Health 2023; 17:100631. [PMID: 38024253 PMCID: PMC10665145 DOI: 10.1016/j.onehlt.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Emerging and re-emerging infectious diseases have been on the rise, with a significant proportion being zoonotic. Rodents, as the natural reservoirs of numerous diverse zoonotic viruses, pose a substantial threat to human health. To investigate the diversity of known and unknown viruses harbored by rodents in Guangdong (southern province of China), we conducted a comprehensive analysis of viral genomes through metagenomic sequencing of organs from 194 rodents. Our analysis yielded 2163 viral contigs that were assigned to 25 families known to infect a wide range of hosts, including vertebrates, invertebrates, amoebas, and plants. The viral compositions vary considerably among different organs, but not in rodent species. We also assessed and prioritized zoonotic potential of those detected viruses. Ninety-two viral species that are either known to infect vertebrates and invertebrates or only vertebrates were identified, among which 21 are considered high-risk to humans. The high-risk viruses included members of the Hantavirus, Picobirnaviruses, Astroviruses and Pestivirus. The phylogenetic trees of four zoonotic viruses revealed features of novel viral genomes that seem to fit evolutionarily into a zone of viruses that potentially pose a risk of transmission to humans. Recognizing that zoonotic diseases are a One Health issue, we approached the problem of identifying the zoonotic risk from rodent-transmitted disease in the Guangdong province by performing next-generation sequencing to look for potentially zoonotic viruses in these animals.
Collapse
Affiliation(s)
- Boyang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiang Deng
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York 10032, USA
| | - Xiaokang Li
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Renyun Zha
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xianhua Wang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou 510520, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou 571199, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
6
|
Liu Y, Zhao Y, Qian C, Huang Z, Feng L, Chen L, Yao Z, Xu C, Ye J, Zhou T. Study of Combined Effect of Bacteriophage vB3530 and Chlorhexidine on the Inactivation of Pseudomonas aeruginosa. BMC Microbiol 2023; 23:256. [PMID: 37704976 PMCID: PMC10498570 DOI: 10.1186/s12866-023-02976-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Chlorhexidine (CHG) is a disinfectant commonly used in hospitals. However, it has been reported that the excessive use of CHG can cause resistance in bacteria to this agent and even to other clinical antibiotics. Therefore, new methods are needed to alleviate the development of CHG tolerance and reduce its dosage. This study aimed to explore the synergistic effects of CHG in combination with bacteriophage against CHG-tolerant Pseudomonas aeruginosa (P. aeruginosa) and provide ideas for optimizing disinfection strategies in clinical environments as well as for the efficient use of disinfectants. METHODS The CHG-tolerant P. aeruginosa strains were isolated from the First Affiliated Hospital of Wenzhou Medical University in China. The bacteriophage vB3530 was isolated from the sewage inlet of the hospital, and its genome was sequenced. Time-killing curve was used to determine the antibacterial effects of vB3530 and chlorohexidine gluconate (CHG). The phage sensitivity to 16 CHG-tolerant P. aeruginosa strains and PAO1 strain was detected using plaque assay. The emergence rate of resistant bacterial strains was detected to determine the development of phage-resistant and CHG-tolerant strains. Finally, the disinfection effects of the disinfectant and phage combination on the surface of the medical devices were preliminarily evaluated. RESULTS The results showed that (1) CHG combined with bacteriophage vB3530 significantly inhibited the growth of CHG-resistant P. aeruginosa and reduced the bacterial colony forming units (CFUs) after 24 h. (2) The combination of CHG and bacteriophage inhibited the emergence of phage-resistant and CHG-tolerant strains. (3) The combination of CHG and bacteriophage significantly reduced the bacterial load on the surface of medical devices. CONCLUSIONS In this study, the combination of bacteriophage vB3530 and CHG presented a combined inactivation effect to CHG-tolerant P. aeruginosa and reduced the emergence of strains resistant to CHG and phage. This study demonstrated the potential of bacteriophage as adjuvants to traditional disinfectants. The use of bacteriophage in combination with commercial disinfectants might be a promising method for controlling the spread of bacteria in hospitals.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yining Zhao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Diakoudi G, Buonavoglia A, Pellegrini F, Capozza P, Vasinioti VI, Cardone R, Catella C, Camero M, Parisi A, Capozzi L, Mendoza-Roldan JA, Otranto D, Bànyai K, Martella V, Lanave G. Identification of new astroviruses in synanthropic squamates. Res Vet Sci 2023; 161:103-109. [PMID: 37331242 DOI: 10.1016/j.rvsc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Astroviruses have been identified in a wide variety of animal species and are associated with gastro-intestinal disease in humans. Pathologies due to extra-intestinal localization are known in different hosts. We report the detection of astroviruses in synanthropic squamate reptile species (Podercis siculus and Tarentola mauritanica). Fecal samples were collected from 100 squamates from urban and peri-urban areas of three regions in South Italy and tested for the presence of astroviruses using a broadly reactive (pan-astrovirus) RT-PCR protocol targeting the RNA-dependent RNA polymerase. Astrovirus RNA was detected in 11% of the samples and for six strains a 3 kb-long fragment at the 3' end of the genome was sequenced, obtaining information on the complete capsid-encoding ORF2 sequence. Viral RNA was also detected in the brain of one of the positive animals. The sequences generated from the astrovirus strains shared low nucleotide identities in the ORF2 (< 43.7%) with other known reptilian astrovirus sequences, hinting to the massive genetic diversity of members of this viral family. Based on the partial RdRp gene of the sequenced strains, however, we observed species-specific patterns, regardless of the geographic origin of the animals, and we also identified a possible inter-species transmission event between geckoes and lizards.
Collapse
Affiliation(s)
- Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | | | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Roberta Cardone
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Putignano, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Putignano, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Krisztián Bànyai
- Veterinary Medical Research Institute, Budapest, Hungary; University of Veterinary Medicine, Budapest, Hungary
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| |
Collapse
|
8
|
Viral Metagenomic Analysis of the Fecal Samples in Domestic Dogs (Canis lupus familiaris). Viruses 2023; 15:v15030685. [PMID: 36992396 PMCID: PMC10058366 DOI: 10.3390/v15030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Canine diarrhea is a common intestinal illness that is usually caused by viruses, bacteria, and parasites, and canine diarrhea may induce morbidity and mortality of domestic dogs if treated improperly. Recently, viral metagenomics was applied to investigate the signatures of the enteric virome in mammals. In this research, the characteristics of the gut virome in healthy dogs and dogs with diarrhea were analyzed and compared using viral metagenomics. The alpha diversity analysis indicated that the richness and diversity of the gut virome in the dogs with diarrhea were much higher than the healthy dogs, while the beta diversity analysis revealed that the gut virome of the two groups was quite different. At the family level, the predominant viruses in the canine gut virome were certified to be Microviridae, Parvoviridae, Siphoviridae, Inoviridae, Podoviridae, Myoviridae, and others. At the genus level, the predominant viruses in the canine gut virome were certified to be Protoparvovirus, Inovirus, Chlamydiamicrovirus, Lambdavirus, Dependoparvovirus, Lightbulbvirus, Kostyavirus, Punavirus, Lederbergvirus, Fibrovirus, Peduovirus, and others. However, the viral communities between the two groups differed significantly. The unique viral taxa identified in the healthy dogs group were Chlamydiamicrovirus and Lightbulbvirus, while the unique viral taxa identified in the dogs with diarrhea group were Inovirus, Protoparvovirus, Lambdavirus, Dependoparvovirus, Kostyavirus, Punavirus, and other viruses. Phylogenetic analysis based on the near-complete genome sequences showed that the CPV strains collected in this study together with other CPV Chinese isolates clustered into a separate branch, while the identified CAV-2 strain D5-8081 and AAV-5 strain AAV-D5 were both the first near-complete genome sequences in China. Moreover, the predicted bacterial hosts of phages were certified to be Campylobacter, Escherichia, Salmonella, Pseudomonas, Acinetobacter, Moraxella, Mediterraneibacter, and other commensal microbiota. In conclusion, the enteric virome of the healthy dogs group and the dogs with diarrhea group was investigated and compared using viral metagenomics, and the viral communities might influence canine health and disease by interacting with the commensal gut microbiome.
Collapse
|
9
|
Zhao Y, Feng L, Zhou B, Zhang X, Yao Z, Wang L, Wang Z, Zhou T, Chen L. A newly isolated bacteriophage vB8388 and its synergistic effect with aminoglycosides against multi-drug resistant Klebsiella oxytoca strain FK-8388. Microb Pathog 2023; 174:105906. [PMID: 36494020 DOI: 10.1016/j.micpath.2022.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The bacteriophage vB8388 can lyse multi-drug resistant Klebsiella oxytoca strain FK-8388 and maintain stability in a wide range of temperatures (from 4 °C to 80 °C) and pHs (3-11). Bioinformatics analysis showed that vB8388 is a linear double-stranded DNA virus that is 39,750 long with 50.65% G + C content and 44 putative open reading frames (ORFs). Phage vB8388 belongs to the family Autographviridae and possesses a non-contractile tail. The latency period of vB8388 was approximately 20 min. The combination of phage vB8388 and gentamicin, amikacin, or tobramycin could effectively inhibit the growth of K. oxytoca strain FK-8388, with a decrease of more than 4 log units within 12 h in vitro. Phage vB8388 showed a strong synergistic effect with gentamicin that could enhance the anti-biofilm effect of vB8388. The phage + gentamicin combination also showed synergy in vivo in the larval infection model of Galleria mellonella. In conclusion, the findings of this study suggest the potential of phage + antibiotic combination therapy to be used as an alternative therapeutic approach for treating infectious diseases caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Beibei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Cloacal virome of an ancient host lineage – The tuatara (Sphenodon punctatus) – Reveals abundant and diverse diet-related viruses. Virology 2022; 575:43-53. [DOI: 10.1016/j.virol.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|