1
|
Miryeganeh M, Marlétaz F, Gavriouchkina D, Saze H. De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree Bruguiera gymnorhiza. THE NEW PHYTOLOGIST 2022; 233:2094-2110. [PMID: 34532854 PMCID: PMC9293310 DOI: 10.1111/nph.17738] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/02/2021] [Indexed: 05/27/2023]
Abstract
Mangroves are adapted to harsh environments, such as high ultraviolet (UV) light, low nutrition, and fluctuating salinity in coastal zones. However, little is known about the transcriptomic and epigenomic basis of the resilience of mangroves due to limited available genome resources. We performed a de novo genome assembly and in natura epigenome analyses of the mangrove Bruguiera gymnorhiza, one of the dominant mangrove species. We also performed the first genome-guided transcriptome assembly for mangrove species. The 309 Mb of the genome is predicted to encode 34 403 genes and has a repeat content of 48%. Depending on its growing environment, the natural B. gymnorhiza population showed drastic morphological changes associated with expression changes in thousands of genes. Moreover, high-salinity environments induced genome-wide DNA hypermethylation of transposable elements (TEs) in the B. gymnorhiza. DNA hypermethylation was concurrent with the transcriptional regulation of chromatin modifier genes, suggesting robust epigenome regulation of TEs in the B. gymnorhiza genome under high-salinity environments. The genome and epigenome data in this study provide novel insights into the epigenome regulation of mangroves and a better understanding of the adaptation of plants to fluctuating, harsh natural environments.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawa904‐0495Japan
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment (GEE)University College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Daria Gavriouchkina
- Molecular Genetics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawa904‐0495Japan
| | - Hidetoshi Saze
- Plant Epigenetics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawa904‐0495Japan
| |
Collapse
|
2
|
Li Z, Hu Y, Chang M, Kashif MH, Tang M, Luo D, Cao S, Lu H, Zhang W, Huang Z, Yue J, Chen P. 5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). CHEMOSPHERE 2021; 271:129562. [PMID: 33453481 DOI: 10.1016/j.chemosphere.2021.129562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 05/19/2023]
Abstract
Soil salinization is becoming a major threat to the sustainable development of global agriculture. Kenaf is an industrial fiber crop with high tolerance to salt stress and could be used for soil phytoremediation. However, the molecular mechanism of kenaf salt tolerance remains largely unknown. DNA methylation is an important epigenetic modifications phenomena and plays a key role in gene expression regulation under abiotic stress condition. In the present study, the kenaf seedlings were pre-treated or not with 50 μM 5-azacytidine (5-azaC, a DNA methylation inhibitor) and then subjected to different concentrations of NaCl. Results showed that the biomass and antioxidant activities (superoxide dismutase, peroxidase and catalase) of kenaf seedlings pre-treated with 5-azaC were significantly increased, while the contents of superoxide anion (O2-) and malondialdehyde (MDA) were decreased, indicating that 5-azaC pre-treatment could significantly alleviate salt stress injury. Furthermore, the methylation-sensitive amplified polymorphism (MSAP) analysis revealed that DNA methylation level of keanf seedlings pre-treated with 5-azaC significantly decreased. The expression of seven differentially methylated genes responsing to salt stress was significantly changed from real-time fluorescent quantitative (qRT-PCR) analysis. Finally, knocked-down of the l-ascorbate oxidase (L-AAO) gene by virus-induced gene silencing (VIGS) resulted in increased sensitivity of kenaf seedlings under salt stress. Overall, it was suggested that 5-azaC pre-treatment can significantly improve salt tolerance in kenaf by decreasing ROS content, raising anti-oxidant activities, and regulating DNA methylation and expression of stress-responsive genes.
Collapse
Affiliation(s)
- Zengqiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yali Hu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Mengmeng Chang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad Haneef Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Meiqiong Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Shan Cao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hai Lu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wenxian Zhang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Huang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Yue
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China.
| |
Collapse
|
3
|
Barros NLF, Marques DN, Tadaiesky LBA, de Souza CRB. Halophytes and other molecular strategies for the generation of salt-tolerant crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:581-591. [PMID: 33773233 DOI: 10.1016/j.plaphy.2021.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/13/2021] [Indexed: 05/27/2023]
Abstract
The current increase in salinity can intensify the disparity between potential and actual crop yields, thus affecting economies and food security. One of the mitigating alternatives is plant breeding via biotechnology, where advances achieved so far are significant. Considering certain aspects when developing studies related to plant breeding can determine the success and accuracy of experimental design. Besides this strategy, halophytes with intrinsic and efficient abilities against salinity can be used as models for improving the response of crops to salinity stress. As crops are mostly glycophytes, it is crucial to point out the molecular differences between these two groups of plants, which may be the key to guiding and optimizing the transformation of glycophytes with halophytic tolerance genes. Therefore, this can broaden perspectives in the trajectory of research towards the cultivation, commercialization, and consumption of salt-tolerant crops on a large scale.
Collapse
Affiliation(s)
| | - Deyvid Novaes Marques
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, CEP 13418-900, Brazil
| | - Lorene Bianca Araújo Tadaiesky
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, CEP 66075-110, Brazil; Programa de Pós-Graduação em Agronomia, Universidade Federal Rural da Amazônia, Belém, PA, CEP 66077-530, Brazil
| | | |
Collapse
|
4
|
Laanen P, Saenen E, Mysara M, Van de Walle J, Van Hees M, Nauts R, Van Nieuwerburgh F, Voorspoels S, Jacobs G, Cuypers A, Horemans N. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:611783. [PMID: 33868326 PMCID: PMC8044457 DOI: 10.3389/fpls.2021.611783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Previous studies have found indications that exposure to ionising radiation (IR) results in DNA methylation changes in plants. However, this phenomenon is yet to be studied across multiple generations. Furthermore, the exact role of these changes in the IR-induced plant response is still far from understood. Here, we study the effect of gamma radiation on DNA methylation and its effect across generations in young Arabidopsis plants. A multigenerational set-up was used in which three generations (Parent, generation 1, and generation 2) of 7-day old Arabidopsis thaliana plants were exposed to either of the different radiation treatments (30, 60, 110, or 430 mGy/h) or to natural background radiation (control condition) for 14 days. The parental generation consisted of previously non-exposed plants, whereas generation 1 and generation 2 plants had already received a similar irradiation in the previous one or two generations, respectively. Directly after exposure the entire methylomes were analysed with UPLC-MS/MS to measure whole genome methylation levels. Whole genome bisulfite sequencing was used to identify differentially methylated regions (DMRs), including their methylation context in the three generations and this for three different radiation conditions (control, 30 mGy/h, and 110 mGy/h). Both intra- and intergenerational comparisons of the genes and transposable elements associated with the DMRs were made. Taking the methylation context into account, the highest number of changes were found for cytosines followed directly by guanine (CG methylation), whereas only limited changes in CHG methylation occurred and no changes in CHH methylation were observed. A clear increase in IR-induced DMRs was seen over the three generations that were exposed to the lowest dose rate, where generation 2 had a markedly higher number of DMRs than the previous two generations (Parent and generation 1). Counterintuitively, we did not see significant differences in the plants exposed to the highest dose rate. A large number of DMRs associated with transposable elements were found, the majority of them being hypermethylated, likely leading to more genetic stability. Next to that, a significant number of DMRs were associated with genes (either in their promoter-associated region or gene body). A functional analysis of these genes showed an enrichment for genes related to development as well as various stress responses, including DNA repair, RNA splicing, and (a)biotic stress responses. These observations indicate a role of DNA methylation in the regulation of these genes in response to IR exposure and shows a possible role for epigenetics in plant adaptation to IR over multiple generations.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jorden Van de Walle
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | | | - Griet Jacobs
- Vlaamse Instelling voor Technologisch Onderzoek, VITO, Mol, Belgium
| | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
- *Correspondence: Nele Horemans,
| |
Collapse
|
5
|
Guo X, Xie Q, Li B, Su H. Molecular characterization and transcription analysis of DNA methyltransferase genes in tomato (Solanum lycopersicum). Genet Mol Biol 2019; 43:e20180295. [PMID: 31429858 PMCID: PMC7197986 DOI: 10.1590/1678-4685-gmb-2018-0295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/08/2019] [Indexed: 11/22/2022] Open
Abstract
DNA methylation plays an important role in plant growth and development, gene expression regulation, and maintenance of genome stability. However, only little information regarding stress-related DNA methyltransferases (MTases) genes is available in tomato. Here, we report the analysis of nine tomato MTases, which were categorized into four known subfamilies. Structural analysis suggested their DNA methylase domains are highly conserved, whereas the N-terminals are divergent. Tissue-specific analysis of these MTase genes revealed that SlCMT2, SlCMT3, and SlDRM5 were expressed higher in young leaves, while SlMET1, SlCMT4, SlDRM7, and SlDRM8 were highly expressed in immature green fruit, and their expression declined continuously with further fruit development. In contrast, SlMETL was highly expressed in ripening fruit and displayed an up-regulated tendency during fruit development. In addition, the expression of SlMET1 in the ripening of mutant rin and Nr tomatoes is significantly higher compared to wild-type tomato, suggesting that SlMET1 was negatively regulated by the ethylene signal and ripening regulator MADS-RIN. Furthermore, expression analysis under abiotic stresses revealed that these MTase genes were stress-responsive and may function diversely in different stress conditions. Overall, our results provide valuable information for exploring the regulation of tomato fruit ripening and response to abiotic stress through DNA methylation.
Collapse
Affiliation(s)
- Xuhu Guo
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Qian Xie
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Baoyuan Li
- Shanxi Datong University, School of Life Sciences, Datong, China.,Shanxi Datong University, Applied Biotechnology Institute, Datong, China
| | - Huanzhen Su
- Shanxi Datong University, School of Life Sciences, Datong, China
| |
Collapse
|
6
|
Marfil C, Ibañez V, Alonso R, Varela A, Bottini R, Masuelli R, Fontana A, Berli F. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:287-294. [PMID: 30599305 DOI: 10.1016/j.plaphy.2018.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 05/21/2023]
Abstract
Environment and crop management shape plant's phenotype. Argentinean high-altitude vineyards are characterized by elevated solar ultraviolet-B radiation (UVB) and water deficit (D) that enhance enological quality for red winemaking. These signals promote phenolics accumulation in leaves and berries, being the responses mediated by abscisic acid (ABA). DNA methylation is an epigenetic mechanism that regulates gene expression and may affect grapevine growth, development and acclimation, since methylation patterns are mitotically heritable. Berry skins low molecular weight polyphenols (LMWP) were characterized in field grown Vitis vinifera L. cv. Malbec plants exposed to contrasting UV-B, D, and ABA treatments during one season. The next season early fruit shoots were epigenetically (methylation-sensitive amplification polymorphism; MSAP) and biochemically (LMWP) characterized. Unstable epigenetic patterns and/or stochastic stress-induced methylation changes were observed. UV-B and D were the treatments that induced greater number of DNA methylation changes respect to Control; and UV-B promoted global hypermethylation of MSAP epiloci. Sequenced MSAP fragments associated with UV-B and ABA showed similarities with transcriptional regulators and ubiquitin ligases proteins activated by light. UV-B was associated with flavonols accumulation in berries and with hydroxycinnamic acids in the next season fruit shoots, suggesting that DNA methylation could regulate the LMWP accumulation and participate in acclimation mechanisms.
Collapse
Affiliation(s)
- Carlos Marfil
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Verónica Ibañez
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Rodrigo Alonso
- Catena Institute of Wine (CIW), Bodega Catena Zapata, Cobos S/n, M5509, Agrelo, Mendoza, Argentina
| | - Anabella Varela
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Rubén Bottini
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Ricardo Masuelli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
7
|
Pandey N, Goswami N, Tripathi D, Rai KK, Rai SK, Singh S, Pandey-Rai S. Epigenetic control of UV-B-induced flavonoid accumulation in Artemisia annua L. PLANTA 2019; 249:497-514. [PMID: 30267151 DOI: 10.1007/s00425-018-3022-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 05/11/2023]
Abstract
UV-B-induced flavonoid biosynthesis is epigenetically regulated by site-specific demethylation of AaMYB1, AaMYC, and AaWRKY TF-binding sites inAaPAL1promoter-causing overexpression ofAaPALgene inArtemisia annua. The present study was undertaken to understand the epigenetic regulation of flavonoid biosynthesis under the influence of ultraviolet-B radiation using Artemisia annua L. as an experimental model. In-vitro propagated and acclimatized plantlets were treated with UV-B radiation (2.8 W m-2; 3 h), which resulted in enhanced accumulation of total flavonoid and phenolics content as well as eleven individual flavonoids measured through HPLC-DAC. Expression of eight genes (phenylanaline ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate: CoA ligase; chalcone synthase, chalcone isomerase, cinnamoyl reductase, flavonoid-3'-hydroxylase, and flavones synthase) from upstream and downstream flavonoid biosynthetic pathways was measured through RT-PCR and RT-Q-PCR and all were variably induced under UV-B irradiation. Among them, AaPAL1 transcript and its protein were most significantly upregulated. Global DNA methylation analysis revealed hypomethylation of genomic DNA in A. annua. Further epigenetic characterization of promoter region of AaPAL1 revealed cytosine demethylation at five sites, which in turn caused epigenetic activation of six transcription factor-binding sites including QELEMENT, EBOXBNNAPA/MYCCONSENSUSAT, MYBCORE, MYBCOREATCYCB1, and GCCCORE. MYB transcription factors are positive regulators of flavonoid biosynthesis. Epigenetic activation of transcription-enhancing cis-regulatory elements in AaPAL1 promoter and subsequent overexpression of AaMYB1 and AaMYC and AaWRKY transcription factors under UV-B irradiation may probably be the reason for higher AaPAL1 expression and hence greater biosynthesis of flavonoids in A. annua L. The present study is the first report that provides mechanistic evidence of epigenetic regulation of flavonoid biosynthesis under UV-B radiation in A. annua L.
Collapse
Affiliation(s)
- Neha Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, CMP Degree College, University of Allahabad, Allahabad, India
| | - Niraj Goswami
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepika Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sanjay Kumar Rai
- Department of Horticulture, Dr. Rajendra Prasad Agricultural University, Pusa, Samastipur, Bihar, India
| | - Shilpi Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Pandey-Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
8
|
Zenda T, Liu S, Wang X, Jin H, Liu G, Duan H. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms. Int J Mol Sci 2018; 19:E3225. [PMID: 30340410 PMCID: PMC6213998 DOI: 10.3390/ijms19103225] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023] Open
Abstract
Drought stress is the major abiotic factor threatening maize (Zea mays L.) yield globally. Therefore, revealing the molecular mechanisms fundamental to drought tolerance in maize becomes imperative. Herein, we conducted a comprehensive comparative analysis of two maize inbred lines contrasting in drought stress tolerance based on their physiological and proteomic responses at the seedling stage. Our observations showed that divergent stress tolerance mechanisms exist between the two inbred-lines at physiological and proteomic levels, with YE8112 being comparatively more tolerant than MO17 owing to its maintenance of higher relative leaf water and proline contents, greater increase in peroxidase (POD) activity, along with decreased level of lipid peroxidation under stressed conditions. Using an iTRAQ (isobaric tags for relative and absolute quantification)-based method, we identified a total of 721 differentially abundant proteins (DAPs). Amongst these, we fished out five essential sets of drought responsive DAPs, including 13 DAPs specific to YE8112, 107 specific DAPs shared between drought-sensitive and drought-tolerant lines after drought treatment (SD_TD), three DAPs of YE8112 also regulated in SD_TD, 84 DAPs unique to MO17, and five overlapping DAPs between the two inbred lines. The most significantly enriched DAPs in YE8112 were associated with the photosynthesis antenna proteins pathway, whilst those in MO17 were related to C5-branched dibasic acid metabolism and RNA transport pathways. The changes in protein abundance were consistent with the observed physiological characterizations of the two inbred lines. Further, quantitative real-time polymerase chain reaction (qRT-PCR) analysis results confirmed the iTRAQ sequencing data. The higher drought tolerance of YE8112 was attributed to: activation of photosynthesis proteins involved in balancing light capture and utilization; enhanced lipid-metabolism; development of abiotic and biotic cross-tolerance mechanisms; increased cellular detoxification capacity; activation of chaperones that stabilize other proteins against drought-induced denaturation; and reduced synthesis of redundant proteins to help save energy to battle drought stress. These findings provide further insights into the molecular signatures underpinning maize drought stress tolerance.
Collapse
Affiliation(s)
- Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Xuan Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyu Jin
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Guo Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
9
|
Agrelius T, Dudycha JL, Morris JT. Global DNA cytosine methylation variation in Spartina alterniflora at North Inlet, SC. PLoS One 2018; 13:e0203230. [PMID: 30199541 PMCID: PMC6130869 DOI: 10.1371/journal.pone.0203230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022] Open
Abstract
Spartina alterniflora, marsh grass, is a vegetative apomicticly-reproducing halophyte native to marshes along the east coast of the United States and invasive across the world. S. alterniflora provides many ecosystem services including, but not limited to, water filtration, habitats for invertebrates, and sediment retention. Widespread diebacks of longstanding marsh grass colonies launched extensive investigations into probable mechanisms leading to patchy diebacks. There is still current debate as to the causes of a marsh dieback but environmental stress is acknowledged as a constant. Spatial epigenetic variation could contribute to variation of stress susceptibility, but the scale and structure of epigenetic variation is unknown. The current study investigates patterns of epigenetic variation in a natural population of S. alterniflora. This study examines variation of global DNA methylation within and among clones of the marsh grass Spartina alterniflora using an ELISA-like microplate reaction and observed significant heterogeneity of global DNA methylation within and among clones of S. alterniflora across the North Inlet basin, as well as significant differences of global methylation between adults and sexually produced seedlings. The present study also characterized differences for plants in a section of the population that experienced an acute marsh dieback in the year 2001 and have subsequently recolonized, finding a significant positive correlation between cytosine methylation and time period of colonization. The significant heterogeneity of global DNA methylation both within and among clones observed within this natural population of S. alterniflora and potential impacts from hypersaline environments at North Inlet suggests the need for more in-depth epigenetic studies to fully understand DNA methylation within an ecological context. Future studies should consider the effects of varying saline conditions on both global DNA and gene specific methylation.
Collapse
Affiliation(s)
- Trenton Agrelius
- Belle W. Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - Jeffry L. Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - James T. Morris
- Belle W. Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
10
|
Uthup TK, Karumamkandathil R, Ravindran M, Saha T. Heterografting induced DNA methylation polymorphisms in Hevea brasiliensis. PLANTA 2018; 248:579-589. [PMID: 29799082 DOI: 10.1007/s00425-018-2918-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/11/2018] [Indexed: 05/19/2023]
Abstract
Heterografting induced intraclonal epigenetic variations were detected among rubber plants. Interaction between genetically divergent root stock and scion tissues might have triggered these epigenetic changes which may eventually lead to intraclonal variability in rubber. DNA methylation in response to stress may be associated with the alteration in gene transcription leading to morphological changes in plants. Rubber tree is commercially propagated by bud grafting where the scion of a high yielding variety is grafted on to a genetically divergent root stock. Still, significant levels of intraclonal variations exist among them. Epigenetic changes associated with heterografting may be partly responsible for this conundrum. In the present study, an attempt was made to identify the impact of divergent root stock on the epigenome of scion in grafted rubber plants. Heterografts were developed by grafting eye buds from a single polyembryony derived seedling on to genetically divergent root stocks of unknown parentage. The plants were uniformly maintained and their DNA was subjected to MSAP analysis. Polymorphic DNA methylation bands corresponding to CG as well as the plant-specific CHG types of methylation were observed. Cloning of selected polymorphic regions and bisulfite sequencing confirmed the presence of methylation in the promoter and coding region of important genes including an LRR receptor kinase gene. Since divergent root stock is the major factor differentiating the grafted plants, the changes in DNA methylation patterns might have been triggered by the interaction between the two genetically different tissues of stock and scion. The study assumes importance in Hevea, because accumulation and maintenance of epigenetic changes in functional genes and promoters during subsequent cycles of vegetative propagation may contribute towards intraclonal variability eventually leading to altered phenotypes.
Collapse
Affiliation(s)
- Thomas K Uthup
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India.
| | - Rekha Karumamkandathil
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| | - Minimol Ravindran
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| | - Thakurdas Saha
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board P O, Kottayam, Kerala, 686009, India
| |
Collapse
|
11
|
Caplin N, Willey N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. FRONTIERS IN PLANT SCIENCE 2018; 9:847. [PMID: 29997637 PMCID: PMC6028737 DOI: 10.3389/fpls.2018.00847] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 05/09/2023]
Abstract
Understanding the effects of ionizing radiation (IR) on plants is important for environmental protection, for agriculture and horticulture, and for space science but plants have significant biological differences to the animals from which much relevant knowledge is derived. The effects of IR on plants are understood best at acute high doses because there have been; (a) controlled experiments in the field using point sources, (b) field studies in the immediate aftermath of nuclear accidents, and (c) controlled laboratory experiments. A compilation of studies of the effects of IR on plants reveals that although there are numerous field studies of the effects of chronic low doses on plants, there are few controlled experiments that used chronic low doses. Using the Bradford-Hill criteria widely used in epidemiological studies we suggest that a new phase of chronic low-level radiation research on plants is desirable if its effects are to be properly elucidated. We emphasize the plant biological contexts that should direct such research. We review previously reported effects from the molecular to community level and, using a plant stress biology context, discuss a variety of acute high- and chronic low-dose data against Derived Consideration Reference Levels (DCRLs) used for environmental protection. We suggest that chronic low-level IR can sometimes have effects at the molecular and cytogenetic level at DCRL dose rates (and perhaps below) but that there are unlikely to be environmentally significant effects at higher levels of biological organization. We conclude that, although current data meets only some of the Bradford-Hill criteria, current DCRLs for plants are very likely to be appropriate at biological scales relevant to environmental protection (and for which they were intended) but that research designed with an appropriate biological context and with more of the Bradford-Hill criteria in mind would strengthen this assertion. We note that the effects of IR have been investigated on only a small proportion of plant species and that research with a wider range of species might improve not only the understanding of the biological effects of radiation but also that of the response of plants to environmental stress.
Collapse
Affiliation(s)
| | - Neil Willey
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Al Harrasi I, Al-Yahyai R, Yaish MW. Detection of Differential DNA Methylation Under Stress Conditions Using Bisulfite Sequence Analysis. Methods Mol Biol 2018; 1631:121-137. [PMID: 28735394 DOI: 10.1007/978-1-4939-7136-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
DNA methylation is the most important epigenetic change affecting gene expression in plants grown under normal as well as under stress conditions. Therefore, researchers study differential DNA methylation under distinct environmental conditions and their relationship with transcriptome abundance. Up to date, more than 25 methods and techniques are available to detect DNA methylation based on different principles. Bisulfite sequencing method is considered as a gold standard since it is able to distinguish 5-methylcytosine from cytosine using the bisulfite treatment. Therefore, it is useful for qualitative and semiquantitative measurement of DNA methylation. However, the reliability of data obtaining from this technique is mainly depending on the efficiency of bisulfite conversion and number of sequencing clones representing the target-converted sequence. Therefore, it is labor intensive and time-consuming. Revolution of next generation DNA sequencing (NGS) has allowed researches to combine conventional bisulfite sequencing methods with high-throughput Illumina sequencing in a technique called whole genome bisulfite sequencing (WGBS). This technique allows a single nucleotide resolution of 5-methylcytosine on a genome scale. WGBS technique workflow involves DNA fragmentation, processing through end blunting, terminal A(s) addition at 3' end and adaptor ligation, bisulfite treatment, PCR amplification, sequencing libraries and assembling, and finally alignment with the reference genome and data analysis. Despite the fact that WGBS is more reliable than the conventional clone-based bisulfite sequencing, it is costly, requires large amount of DNA and its output data is not easily handled.
Collapse
Affiliation(s)
- Ibtisam Al Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, PO box 36, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Science, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, PO box 36, Muscat, Oman.
| |
Collapse
|
13
|
Sudan J, Raina M, Singh R. Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 2018; 8:172. [PMID: 29556426 PMCID: PMC5845050 DOI: 10.1007/s13205-018-1202-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/07/2018] [Indexed: 10/17/2022] Open
Abstract
Plants have evolved various defense mechanisms including morphological adaptations, cellular pathways, specific signalling molecules and inherent immunity to endure various abiotic stresses during different growth stages. Most of the defense mechanisms are controlled by stress-responsive genes by transcribing and translating specific genes. However, certain modifications of DNA and chromatin along with small RNA-based mechanisms have also been reported to regulate the expression of stress-responsive genes and constitute another line of defense for plants in their struggle against stresses. More recently, studies have suggested that these modifications are heritable to the future generations as well, thereby indicating their possible role in the evolutionary mechanisms related to abiotic stresses.
Collapse
Affiliation(s)
- Jebi Sudan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Meenakshi Raina
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu and Kashmir India
| |
Collapse
|
14
|
Al-Harrasi I, Al-Yahyai R, Yaish MW. Differential DNA methylation and transcription profiles in date palm roots exposed to salinity. PLoS One 2018; 13:e0191492. [PMID: 29352281 PMCID: PMC5774813 DOI: 10.1371/journal.pone.0191492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
As a salt-adaptive plant, the date palm (Phoenix dactylifera L.) requires a suitable mechanism to adapt to the stress of saline soils. There is growing evidence that DNA methylation plays an important role in regulating gene expression in response to abiotic stresses, including salinity. Thus, the present study sought to examine the differential methylation status that occurs in the date palm genome when plants are exposed to salinity, and to identify salinity responsive genes that are regulated by DNA methylation. To achieve these, whole-genome bisulfite sequencing (WGBS) was employed and mRNA was sequenced from salinity-treated and untreated roots. The WGBS analysis included 324,987,795 and 317,056,091 total reads of the control and the salinity-treated samples, respectively. The analysis covered about 81% of the total genomic DNA with about 40% of mapping efficiency of the sequenced reads and an average read depth of 17-fold coverage per DNA strand, and with a bisulfite conversion rate of around 99%. The level of methylation within the differentially methylated regions (DMRs) was significantly (p < 0.05, FDR ≤ 0.05) increased in response to salinity specifically at the mCHG and mCHH sequence contexts. Consistently, the mass spectrometry and the enzyme-linked immunosorbent assay (ELISA) showed that there was a significant (p < 0.05) increase in the global DNA methylation in response to salinity. mRNA sequencing revealed the presence of 6,405 differentially regulated genes with a significant value (p < 0.001, FDR ≤ 0.05) in response to salinity. Integration of high-resolution methylome and transcriptome analyses revealed a negative correlation between mCG methylation located within the promoters and the gene expression, while a positive correlation was noticed between mCHG/mCHH methylation rations and gene expression specifically when plants grew under control conditions. Therefore, the methylome and transcriptome relationships vary based on the methylated sequence context, the methylated region within the gene, the protein-coding ability of the gene, and the salinity treatment. These results provide insights into interplay among DNA methylation and gene expression, and highlight the effect of salinity on the nature of this relationship, which may involve other genetic and epigenetic players under salt stress conditions. The results obtained from this project provide the first draft map of the differential methylome and transcriptome of date palm when exposed to an abiotic stress.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Epigenesis, Genetic
- Gene Expression Profiling
- Genes, Plant
- Molecular Sequence Annotation
- Phoeniceae/genetics
- Phoeniceae/growth & development
- Phoeniceae/metabolism
- Photosynthesis
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Salinity
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Ibtisam Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
- * E-mail:
| |
Collapse
|
15
|
Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). PLANT CELL REPORTS 2017; 36:759-772. [PMID: 27999979 DOI: 10.1007/s00299-016-2093-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/07/2016] [Indexed: 05/18/2023]
Abstract
Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.
Collapse
Affiliation(s)
- Garima Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Chandra Bhan Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
16
|
|
17
|
Kumar S, Beena AS, Awana M, Singh A. Salt-Induced Tissue-Specific Cytosine Methylation Downregulates Expression of HKT Genes in Contrasting Wheat (Triticum aestivum L.) Genotypes. DNA Cell Biol 2017; 36:283-294. [PMID: 28384069 PMCID: PMC5385449 DOI: 10.1089/dna.2016.3505] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Ananda Sankara Beena
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Monika Awana
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Archana Singh
- Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| |
Collapse
|
18
|
Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Viggiano L, de Pinto MC. Dynamic DNA Methylation Patterns in Stress Response. PLANT EPIGENETICS 2017. [DOI: 10.1007/978-3-319-55520-1_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Shevchuk TV, Zakharchenko NS, Tarlachkov SV, Furs OV, Dyachenko OV, Buryanov YI. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:968-971. [PMID: 27682168 DOI: 10.1134/s0006297916090054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.
Collapse
Affiliation(s)
- T V Shevchuk
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | |
Collapse
|
21
|
Caño L, Fuertes-Mendizabal T, García-Baquero G, Herrera M, González-Moro MB. Plasticity to salinity and transgenerational effects in the nonnative shrub Baccharis halimifolia: Insights into an estuarine invasion. AMERICAN JOURNAL OF BOTANY 2016; 103:808-820. [PMID: 27208349 DOI: 10.3732/ajb.1500477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Abiotic constraints act as selection filters for plant invasion in stressful habitats. Adaptive phenotypic plasticity and transgenerational effects play a major role in colonization of heterogeneous habitats when the scale of environmental variation is smaller than that of gene flow. We investigated how plasticity and parental salinity conditions influence the performance of the invasive dioecious shrub Baccharis halimifolia, which replaces heterogeneous estuarine communities in Europe with monospecific and continuous stands. METHODS In two greenhouse experiments, we grew plants derived from seeds and cuttings collected through interspersed patches differing in edaphic salinity from an invasive population. We estimated parental environmental salinity from leaf Na(+) content in parental plants, and we measured fitness and ion homeostasis of the offspring grown in contrasting salinity conditions. KEY RESULTS Baccharis halimifolia tolerates high salinity but experiences drastic biomass reduction at moderate salinity. At moderate salinity, responses to salinity are affected by the parental salinity: flowering initiation in seedlings and male cuttings is positively correlated with parental leaf Na(+) content, and biomass is positively correlated with maternal leaf Na(+) in female cuttings and seedlings. Plant height, leaf production, specific leaf area, and ionic homeostasis at the low part of the gradient are also affected by parental salinity, suggesting enhanced shoot growth as parental salinity increases. CONCLUSIONS Our results support plasticity to salinity and transgenerational effects as factors with great potential to contribute to the invasive ability of B. halimifolia through estuarine communities of high conservation value.
Collapse
Affiliation(s)
- Lidia Caño
- Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU 48080 Bizkaia, Spain Ikerbasque, Basque Foundation for Science 48160 Bilbao, Spain
| | - Teresa Fuertes-Mendizabal
- Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU 48080 Bizkaia, Spain
| | - Gonzalo García-Baquero
- Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU 48080 Bizkaia, Spain
| | - Mercedes Herrera
- Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU 48080 Bizkaia, Spain
| | - M Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU 48080 Bizkaia, Spain
| |
Collapse
|
22
|
Fleta-Soriano E, Munné-Bosch S. Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective. FRONTIERS IN PLANT SCIENCE 2016; 7:143. [PMID: 26913046 PMCID: PMC4753297 DOI: 10.3389/fpls.2016.00143] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/28/2016] [Indexed: 05/19/2023]
Abstract
Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other "omics" approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the "omics" level, to understand stress memory in plants better.
Collapse
Affiliation(s)
| | - Sergi Munné-Bosch
- Department of Plant Biology, Faculty of Biology, University of BarcelonaBarcelona, Spain
| |
Collapse
|
23
|
King GJ. Crop epigenetics and the molecular hardware of genotype × environment interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:968. [PMID: 26594221 PMCID: PMC4635209 DOI: 10.3389/fpls.2015.00968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/22/2015] [Indexed: 05/04/2023]
Abstract
Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalization within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behavior of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears to be a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localized ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involves specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype × environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.
Collapse
Affiliation(s)
- Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Crops for the Future, Biotechnology and Breeding Systems, Semenyih, Malaysia
| |
Collapse
|
24
|
Pandey N, Pandey-Rai S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. PLANTA 2015; 242:869-879. [PMID: 25998525 DOI: 10.1007/s00425-015-2323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
UV-B-caused DNA hypomethylation and UV-B-mediated epigenetic activation of additional WRKY-binding site(s) in the DBR2 promoter may contribute to the overexpression of the DBR2 gene in Artemisia annua. DNA methylation is one of the key mechanisms behind stress-induced transcriptional switch off/on. Here, we evaluate the DNA methylation level in response to UV-B radiation in Artemisia annua which produces artemisinin, a sesquiterpene that has been recommended by WHO for the frontline treatment of malaria. However, the drug is facing serious shortage due to its low concentration in plants. UV-B treatment (3 h) enhanced artemisinin concentration up to 1.91-fold as compared to control. A key regulatory gene of artemisinin biosynthesis, DBR2 was upregulated under UV-B. This study presents observations regarding contributions of DNA methylation to the gene regulation using DBR2 as an example. Restriction digestion of genomic DNA by isoschizomers (MspI and HpaII) suggested UV-B involvement in DNA hypomethylation in A. annua. The global level of DNA methylation (R) was 3.4 and 5.9% for UV-B treated and control plants, respectively, attesting hypomethylation of DNA in response to UV-B. Further bisulfite sequencing PCR showed demethylation at two CHG sites in 18S rRNA gene. Similarly, bisulfite sequencing of promoter region of DBR2 has demonstrated demethylation at 4 CG-, 4 CHH- and 2 CHG-sites. In silico analysis revealed UV-B-mediated demethylation at seven putative transcription factor binding sites including WRKY, which are positive regulators of artemisinin biosynthesis. UV-B treatment has resulted in activation of additional WRKY-binding site in UV-B-treated plants compared with single active WRKY-binding site in control and this could be the probable reason for overexpression of DBR2. It is suggested that DNA demethylation is an important epigenetic response to UV-B radiation in A. annua that surely will provide new horizons to further elucidate the mechanistic evidence of plant's responses to UV-B radiation.
Collapse
Affiliation(s)
- Neha Pandey
- Laboratory of Morphogenesis, Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | |
Collapse
|
25
|
|
26
|
López-Arredondo D, González-Morales SI, Bello-Bello E, Alejo-Jacuinde G, Herrera L. Engineering food crops to grow in harsh environments. F1000Res 2015; 4:651. [PMID: 26380074 PMCID: PMC4560252 DOI: 10.12688/f1000research.6538.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 12/18/2022] Open
Abstract
Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.
Collapse
Affiliation(s)
| | - Sandra Isabel González-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Elohim Bello-Bello
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Gerardo Alejo-Jacuinde
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Luis Herrera
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| |
Collapse
|
27
|
Xie Q, Niu J, Xu X, Xu L, Zhang Y, Fan B, Liang X, Zhang L, Yin S, Han L. De novo assembly of the Japanese lawngrass (Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress. FRONTIERS IN PLANT SCIENCE 2015; 6:610. [PMID: 26347751 PMCID: PMC4542685 DOI: 10.3389/fpls.2015.00610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/23/2015] [Indexed: 05/08/2023]
Abstract
Japanese lawngrass (Zoysia japonica Steud.) is an important warm-season turfgrass that is able to survive in a range of soils, from infertile sands to clays, and to grow well under saline conditions. However, little is known about the molecular mechanisms involved in its resistance to salt stress. Here, we used high-throughput RNA sequencing (RNA-seq) to investigate the changes in gene expression of Zoysia grass at high NaCl concentrations. We first constructed two sequencing libraries, including control and NaCl-treated samples, and sequenced them using the Illumina HiSeq™ 2000 platform. Approximately 157.20 million paired-end reads with a total length of 68.68 Mb were obtained. Subsequently, 100,800 unigenes with an N50 length of 1104 bp were assembled using Trinity, among which 70,127 unigenes were functionally annotated (E ≤ 10(-5)) in the non-redundant protein (NR) database. Furthermore, three public databases, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-prot, and Clusters of Orthologous Groups (COGs), were used for gene function analysis and enrichment. The annotated genes included 46 Gene Ontology (GO) terms, 120 KEGG pathways, and 25 COGs. Compared with the control, 6035 genes were significantly different (false discovery rate ≤0.01, |log2Ratio|≥1) in the NaCl-treated samples. These genes were enriched in 10 KEGG pathways and 58 GO terms, and subjected to 25 COG categories. Using high-throughput next-generation sequencing, we built a database as a global transcript resource for Z. japonica Steud. roots. The results of this study will advance our understanding of the early salt response in Japanese lawngrass roots.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Jun Niu
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry UniversityBeijing, China
| | - Xilin Xu
- Bioinformatics, College of Plant Protection, Hunan Agricultural UniversityChangsha, China
| | - Lixin Xu
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Yinbing Zhang
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Bo Fan
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Xiaohong Liang
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Lijuan Zhang
- Shenzhen Tourism College, Jinan UniversityShenzhen, China
| | - Shuxia Yin
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Liebao Han
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
28
|
Analysis of methylation-sensitive amplified polymorphism in different cotton accessions under salt stress based on capillary electrophoresis. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0301-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Naydenov M, Baev V, Apostolova E, Gospodinova N, Sablok G, Gozmanova M, Yahubyan G. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:102-8. [PMID: 25576840 DOI: 10.1016/j.plaphy.2014.12.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 05/20/2023]
Abstract
Along with its essential role in the maintenance of genome integrity, DNA methylation takes part in regulation of genes which are important for plant development and stress response. In plants, DNA methylation process can be directed by small RNAs in process known as RNA-directed DNA methylation (RdDM) involving two plant-specific RNA polymerases - PolIV and PolV. The aim of the present study was to investigate the effect of heat stress on the expression of genes encoding key players in DNA methylation - DNA methyltransferase (MET1, CMT3, and DRM2), the largest subunits of PoIIV and PolV (NRPD1 and NRPE1 respectively) and the DNA demethylase ROS1. We also examined the high-temperature effect on two protein-coding genes - At3g50770 and At5g43260 whose promoters contain transposon insertions and are affected by DNA-methylation, as well as on the AtSN1, a SINE-like retrotransposon. To assess the involvement of PolIV and PolV in heat stress response, the promoter methylation status and transcript levels of these genes were compared between wild type and double mutant lacking NRPD1 and NRPE1. The results demonstrate coordinated up-regulation of the DRM2, NRPD1 and NRPE1 in response to high temperature and suggest that PolIV and/or PolV might be required for the induction of DRM2 expression under heat stress. The ROS1 expression was confirmed to be suppressed in the mutant lacking active PolIV and PolV that might be a consequence of abolished DNA methylation. The increased expression of At3g50770 in response to elevated temperature correlated with reduced promoter DNA methylation, while the stress response of At5g43260 did not show inverse correlation between promoter methylation and gene expression. Our results also imply that PolIV and/or PolV could regulate gene expression under stress conditions not only through RdDM but also by acting in other regulatory processes.
Collapse
Affiliation(s)
- Mladen Naydenov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Vesselin Baev
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Nadezhda Gospodinova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Gaurav Sablok
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, IASMA, San Michele 38010, Italy
| | - Mariyana Gozmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
30
|
Plitta BP, Michalak M, Bujarska-Borkowska B, Barciszewska MZ, Barciszewski J, Chmielarz P. Effect of desiccation on the dynamics of genome-wide DNA methylation in orthodox seeds of Acer platanoides L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 85:71-77. [PMID: 25394802 DOI: 10.1016/j.plaphy.2014.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
5-methylcytosine, an abundant epigenetic mark, plays an important role in the regulation of plant growth and development, but there is little information about stress-induced changes in DNA methylation in seeds. In the present study, changes in a global level of m5C were measured in orthodox seeds of Acer platanoides L. during seed desiccation from a WC of 1.04 to 0.05-0.06 g H2O g g(-1) dry mass (g g(-1)). Changes in the level of DNA methylation were measured using 2D TLC e based method. Quality of desiccated seeds was examined by germination and seedling emergence tests. Global m5C content (R2)increase was observed in embryonic axes isolated from seeds collected at a high WC of 1.04 g g(-1) after their desiccation to significantly lower WC of 0.17 and 0.19 g g(-1). Further desiccation of these seeds to a WC of 0.06 g g(-1), however, resulted in a significant DNA demethylation to R2 ¼ 11.52-12.22%. Similar m5C decrease was observed in seeds which undergo maturation drying on the tree and had four times lower initial WC of 0.27 g g(-1) at the time of harvest, as they were dried to a WC of 0.05 g g(-1). These data confirm that desiccation induces changes in seed m5C levels. Results were validated by seed lots derived from tree different A. platanoides provenances. It is plausible that sine wave-like alterations in m5C amount may represent a specific response of orthodox seeds to drying and play a relevant role in desiccation tolerance in seeds.
Collapse
|
31
|
Zhao W, Shi X, Li J, Guo W, Liu C, Chen X. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China. PLoS One 2014; 9:e112869. [PMID: 25386983 PMCID: PMC4227887 DOI: 10.1371/journal.pone.0112869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/19/2014] [Indexed: 11/19/2022] Open
Abstract
Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.
Collapse
Affiliation(s)
- Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- Institute of Botany, Changbai Mountain Academy of Sciences, Erdao, Jilin, China
| | - Xiaozheng Shi
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Wei Guo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- Institute of Botany, Changbai Mountain Academy of Sciences, Erdao, Jilin, China
| | - Chengbai Liu
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
32
|
Epigenetic dynamics: role of epimarks and underlying machinery in plants exposed to abiotic stress. Int J Genomics 2014; 2014:187146. [PMID: 25313351 PMCID: PMC4182684 DOI: 10.1155/2014/187146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022] Open
Abstract
Abiotic stress induces several changes in plants at physiological and molecular level. Plants have evolved regulatory mechanisms guided towards establishment of stress tolerance in which epigenetic modifications play a pivotal role. We provide examples of gene expression changes that are brought about by conversion of active chromatin to silent heterochromatin and vice versa. Methylation of CG sites and specific modification of histone tail determine whether a particular locus is transcriptionally active or silent. We present a lucid review of epigenetic machinery and epigenetic alterations involving DNA methylation, histone tail modifications, chromatin remodeling, and RNA directed epigenetic changes.
Collapse
|
33
|
Wang M, Qin L, Xie C, Li W, Yuan J, Kong L, Yu W, Xia G, Liu S. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. PLANT & CELL PHYSIOLOGY 2014; 55:1354-65. [PMID: 24793752 DOI: 10.1093/pcp/pcu059] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytosine methylation is a well recognized epigenetic mark. Here, the methylation status of a salinity-tolerant wheat cultivar (cv. SR3, derived from a somatic hybridization event) and its progenitor parent (cv. JN177) was explored both globally and within a set of 24 genes responsive to salinity stress. A further comparison was made between DNA extracted from plants grown under control conditions and when challenged by salinity stress. The SR3 and JN177 genomes differed with respect to their global methylation level, and methylation levels were reduced by exposure to salinity stress. We found the genetic stress- (triggered by a combination of different genomes in somatic hybridization) induced methylation pattern of 13 loci in non-stressed SR3; the same 13 loci were found to undergo methylation in salinity-stressed JN177. For the salinity-responsive genes, SR3 and JN177 also showed different methylation modifications. C methylation polymorphisms induced by salinity stress were present in both the promoter and coding regions of some of the 24 selected genes, but only the former were associated with changes in transcript abundance. The expression of both TaFLS1 (encoding a flavonol synthase) and TaWRSI5 (encoding a Bowman-Birk-type protease inhibitor), which showed both a different expression and a different DNA methylation level between SR3 and JN177, enhanced the salinity tolerance of Arabidopsis thaliana. C methylation changes appear to be a common component of the plant response to stress, and methylation changes triggered by somatic hybridization may contribute to the superior salinity tolerance of SR3.
Collapse
Affiliation(s)
- Meng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Lumin Qin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Chao Xie
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Wei Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Jiarui Yuan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Lina Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Wenlong Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Shuwei Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| |
Collapse
|
34
|
Zhang J, Liu J, Ming R. Genomic analyses of the CAM plant pineapple. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3395-404. [PMID: 24692645 DOI: 10.1093/jxb/eru101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars.
Collapse
Affiliation(s)
- Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China College of Life Sciences, Fujian Normal University, Fuzhou, 350108, China
| | - Juan Liu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|
36
|
Kumari R, Sharma V, Sharma V, Kumar S. Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance. J Genet 2014; 92:369-94. [PMID: 24371160 DOI: 10.1007/s12041-013-0271-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants of Mendelian inheritance and their wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size, photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type. Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins of mutant phenotypes and evolutionary importance of these mutants are discussed.
Collapse
Affiliation(s)
- Renu Kumari
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | |
Collapse
|
37
|
Gao G, Li J, Li H, Li F, Xu K, Yan G, Chen B, Qiao J, Wu X. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. BREEDING SCIENCE 2014; 64:125-33. [PMID: 24987298 PMCID: PMC4065319 DOI: 10.1270/jsbbs.64.125] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/16/2014] [Indexed: 05/21/2023]
Abstract
DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus.
Collapse
|
38
|
Abstract
Stress-induced ROS changes DNA methylation patterns. A protocol combining methylation-sensitive restriction endonuclease (MS-RE) digestion with suppression subtractive hybridization (SSH) to construct the differential-methylation subtractive library was developed for finding genes regulated by methylation mechanism under cold stress. The total efficiency of target fragment detection was 74.64%. DNA methylation analysis demonstrated the methylation status of target fragments changed after low temperature or DNA methyltransferase inhibitor treatment. Transcription level analysis indicated that demethylation of DNA promotes gene expression level. The results proved that our protocol was reliable and efficient to obtain gene fragments in differential-methylation status.
Collapse
|
39
|
Demirkiran A, Marakli S, Temel A, Gozukirmizi N. Genetic and epigenetic effects of salinity on in vitro growth of barley. Genet Mol Biol 2013; 36:566-70. [PMID: 24385861 PMCID: PMC3873189 DOI: 10.1590/s1415-47572013000400016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022] Open
Abstract
Morphological, physiological and molecular changes were investigated in in vitro salt-stressed barley (Hordeum vulgare L. cv. Tokak). Mature embryos were cultured in Murashige and Skoog medium containing 0 (control), 50 and 100 mM NaCl for 20 days. Both concentrations inhibited shoot growth, decreased fresh weight and protein content, and increased SOD (EC 1.15.1.1) activity in a dose-dependent manner. The lower concentration increased root growth. Salinity caused nucleotide variations in roots, but did not affect shoot DNAs. The higher concentration caused methylation changes, mainly hypermethylation in shoots. This is the first study on genetic and epigenetic effects of salinity in barley.
Collapse
Affiliation(s)
- Aykut Demirkiran
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Sevgi Marakli
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Aslihan Temel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Nermin Gozukirmizi
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
40
|
Gao X, Cao D, Liu J, Wang X, Geng S, Liu B, Shi D. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress. PLoS One 2013; 8:e78426. [PMID: 24223802 PMCID: PMC3818329 DOI: 10.1371/journal.pone.0078426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/20/2013] [Indexed: 01/25/2023] Open
Abstract
Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.
Collapse
Affiliation(s)
- Xiang Gao
- Institutes of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Donghui Cao
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jie Liu
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Weifang University of science & technology, Shouguang, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shujuan Geng
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Decheng Shi
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail:
| |
Collapse
|
41
|
Popova OV, Dinh HQ, Aufsatz W, Jonak C. The RdDM pathway is required for basal heat tolerance in Arabidopsis. MOLECULAR PLANT 2013; 6:396-410. [PMID: 23376771 PMCID: PMC3603006 DOI: 10.1093/mp/sst023] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/20/2013] [Indexed: 05/19/2023]
Abstract
Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epigenetic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, histone modifications, chromatin-remodeling, or siRNA-based silencing pathways. Plants deficient in NRPD2, the common second-largest subunit of RNA polymerases IV and V, and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure. Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress. The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription. We provide evidence that the transcriptional response to temperature stress, at least partially, relies on the integrity of the RNA-dependent DNA methylation pathway.
Collapse
Affiliation(s)
| | | | | | - Claudia Jonak
- To whom correspondence should be addressed. E-mail , tel. +43 1 790449850, fax +43 1 790449001
| |
Collapse
|
42
|
Evo–Devo–Eco and Ecological Stem Species: Potential Repair Systems in the Planetary Biosphere Crisis. PROGRESS IN BOTANY 2013. [DOI: 10.1007/978-3-642-30967-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. N Biotechnol 2012; 30:355-61. [PMID: 23165101 DOI: 10.1016/j.nbt.2012.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/05/2012] [Indexed: 11/29/2022]
Abstract
Drought and high salinity are two major abiotic stresses affecting crop productivity. Therefore, the development of crops better adapted to cope with these stresses represents a key goal to ensure global food security to an increasing world population. Although many genes involved in the response to these abiotic stresses have been extensively characterised and some stress tolerant plants developed, the success rate in producing stress-tolerant crops for field conditions has been thus far limited. In this review we discuss different factors hampering the successful transfer of beneficial genes from model species to crops, emphasizing some limitations in the phenotypic characterisation and definition of the stress tolerant plants developed so far. We also highlight some technological advances and different approaches that may help in developing cultivated stress tolerant plants.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via E. Bassini 15, 20133 Milano, Italy
| | | | | | | |
Collapse
|
44
|
Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM. Life at the extreme: lessons from the genome. Genome Biol 2012; 13:241. [PMID: 22390828 DOI: 10.1186/gb-2012-13-3-241] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Extremophile plants thrive in places where most plant species cannot survive. Recent developments in high-throughput technologies and comparative genomics are shedding light on the evolutionary mechanisms leading to their adaptation.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|
45
|
Ou X, Zhang Y, Xu C, Lin X, Zang Q, Zhuang T, Jiang L, von Wettstein D, Liu B. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS One 2012; 7:e41143. [PMID: 22984395 PMCID: PMC3439459 DOI: 10.1371/journal.pone.0041143] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. METHODOLOGY/PRINCIPAL FINDINGS We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. CONCLUSIONS/SIGNIFICANCE Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest that environmental induction of heritable modifications in DNA methylation provides a plausible molecular underpinning for the still contentious paradigm of inheritance of acquired traits originally put forward by Jean-Baptiste Lamarck more than 200 years ago.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Chromatin/metabolism
- Crosses, Genetic
- DNA Methylation/drug effects
- DNA Methylation/genetics
- DNA Transposable Elements/genetics
- Gene Expression Regulation, Plant/drug effects
- Genetic Loci/genetics
- Hybridization, Genetic
- Inheritance Patterns/genetics
- Metals, Heavy/toxicity
- Open Reading Frames/genetics
- Oryza/drug effects
- Oryza/genetics
- Oryza/growth & development
- Oryza/physiology
- Phenotype
- Quantitative Trait, Heritable
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seedlings/drug effects
- Seedlings/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- Xiufang Ou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yunhong Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Qi Zang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Tingting Zhuang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Diter von Wettstein
- Department of Crop and Soil Sciences and School of Molecular Biology, Washington State University, Pullman, Washington, United States of America
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
46
|
Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM. Life at the extreme: lessons from the genome. Genome Biol 2012. [DOI: 10.1186/gb4003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
47
|
Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I. The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 2012; 7:e30515. [PMID: 22291972 PMCID: PMC3264603 DOI: 10.1371/journal.pone.0030515] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/16/2011] [Indexed: 02/02/2023] Open
Abstract
Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5′ and 3′ ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Breeding
- Cluster Analysis
- DNA Methylation/drug effects
- DNA Methylation/genetics
- DNA Methylation/physiology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Genes, Reporter/drug effects
- Histones/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/genetics
- Reproduction, Asexual/physiology
- Salt Tolerance/drug effects
- Salt Tolerance/genetics
- Salt-Tolerant Plants/drug effects
- Salt-Tolerant Plants/genetics
- Salt-Tolerant Plants/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological/genetics
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Andriy Bilichak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnystkyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jens Hollunder
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent University, Ghent, Belgium
- Department of Molecular Genetics, Ghent University, Ghent, Belgium
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
48
|
Greco M, Chiappetta A, Bruno L, Bitonti MB. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:695-709. [PMID: 22058406 PMCID: PMC3254685 DOI: 10.1093/jxb/err313] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/08/2011] [Accepted: 08/18/2011] [Indexed: 05/17/2023]
Abstract
In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 μM) and high (50 μM) doses of Cd, through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach, respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase, was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin. Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.
Collapse
Affiliation(s)
| | | | | | - Maria Beatrice Bitonti
- Department of Ecology, University of Calabria, Laboratory of Plant Cyto-physiology, Ponte Pietro Bucci, I-87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
49
|
|
50
|
Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:176-85. [PMID: 21914492 DOI: 10.1016/j.bbagrm.2011.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
Abstract
Plants have developed intricate mechanisms involving gene regulatory systems to adjust to stresses. Phenotypic variation in plants under stress is classically attributed to DNA sequence variants. More recently, it was found that epigenetic modifications - DNA methylation-, chromatin- and small RNA-based mechanisms - can contribute separately or together to phenotypes by regulating gene expression in response to the stress effect. These epigenetic modifications constitute an additional layer of complexity to heritable phenotypic variation and the evolutionary potential of natural plant populations because they can affect fitness. Natural populations can show differences in performance when they are exposed to changes in environmental conditions, partly because of their genetic variation but also because of their epigenetic variation. The line between these two components is blurred because little is known about the contribution of genotypes and epigenotypes to stress tolerance in natural populations. Recent insights in this field have just begun to shed light on the behavior of genetic and epigenetic variation in natural plant populations under biotic and abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | |
Collapse
|