1
|
Yuan YY, Hao YT, Zeng D, Pan P, Lu JX, Zhang B, He SN, Xing AP, Chen SQ, Yuan J. A near-infrared fluorescent probe for the detection of Cu 2+ in Chinese herbal medicine and imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124407. [PMID: 38723466 DOI: 10.1016/j.saa.2024.124407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Copper is one of the common among the heavy metal pollution in Chinese herbal medicine (CHM). So, it is essential to develop rapid and accurate testing method to quantify the Cu2+ content in CHM. Herein, we prepared a coordination-based near-infrared fluorescent probe (NRh6G-FA) by introducing a hemicyanine dye in rhodamine 6G scaffold. NRh6G-FA had a high sensitivity, anti-interference performance, fast response (within 60 s), visualization (from light yellow to green) for Cu2+ and excellent sensing performance for the detection of Cu2+ at low concentrations (LOD = 0.225 μM). The most likely mechanism was verified on the basis of Job's plot, ESI-HRMS and DFT calculations. NRh6G-FA could be successfully applied for the detection and "naked eye" recognition of Cu2+ in CHM samples. Moreover, NRh6G-FA was used to visualize Cu2+ in living MCF-7 cells by confocal fluorescence imaging.
Collapse
Affiliation(s)
- Yao-Yao Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ya-Ting Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Dai Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Pan Pan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jia-Xing Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Bin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shu-Ni He
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ai-Ping Xing
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Sui-Qing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
2
|
Stelmashook EV, Budagova TY, Genrikhs EE, Isaev NK. Extracellular Acidosis, Cysteine, and Glutathione Enhance the Toxic Effect of Copper Ions in Cultures of Cerebellar Granule Neurons. Bull Exp Biol Med 2024; 177:588-591. [PMID: 39342006 DOI: 10.1007/s10517-024-06229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 10/01/2024]
Abstract
We studied the effect of extracellular acidosis, cysteine, glutathione, and iron ions (Fe3+) on the neurocytotoxic effect of copper ions (Cu2+) in vitro. At acidic pH of the culture medium (pH 6.8), the toxic effect of copper on cultured neurons significantly increased in comparison with that at neutral pH 7.3. In the presence of 25 μM Cu2+ in the culture medium at pH 7.3 and 6.8, the neuronal survival was 89±2 and 63±4%, respectively. In the presence of glutathione or cysteine (1 μM) in the culture medium, even 0.5 μM Cu2+ caused 100% death of cultured neurons, while the presence of Fe3+ (10-50 μM) had no effect on the toxicity of Cu2+. In general, acidosis or the presence of glutathione or cysteine increases the cytotoxicity of copper ions.
Collapse
Affiliation(s)
| | - T Y Budagova
- Research Center of Neurology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | - N K Isaev
- Research Center of Neurology, Moscow, Russia.
- Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
3
|
Huang Y, Guo X, Lu S, Chen Q, Wang Z, Lai L, Liu Q, Zhu X, Luo L, Li J, Huang Y, Gao H, Zhang Z, Bu Q, Cen X. Long-term exposure to cadmium disrupts neurodevelopment in mature cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168923. [PMID: 38065485 DOI: 10.1016/j.scitotenv.2023.168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Cadmium (Cd) is a pervasive environmental pollutant. Increasing evidence suggests that Cd exposure during pregnancy can induce adverse neurodevelopmental outcomes. However, due to the limitations of neural cell and animal models, it is challenging to study the developmental neurotoxicity and underlying toxicity mechanism of long-term exposure to environmental pollutants during human brain development. In this study, chronic Cd exposure was performed in human mature cerebral organoids for 49 or 77 days. Our study found that prolonged exposure to Cd resulted in the inhibition of cerebral organoid growth and the disruption of neural differentiation and cortical layer organization. These potential consequences of chronic Cd exposure may include impaired GFAP expression, a reduction in SOX2+ neuronal progenitor cells, an increase in TUJ1+ immature neurons, as well as an initial increase and a subsequent decrease in both TBR2+ intermediate progenitors and CTIP2+ deep layer cortical neurons. Transcriptomic analyses revealed that long-term exposure to Cd disrupted zinc and copper ion homeostasis through excessive synthesis of metallothionein and disturbed synaptogenesis, as evidenced by inhibited postsynaptic protein. Our study employed mature cerebral organoids to evaluate the developmental neurotoxicity induced by long-term Cd exposure.
Collapse
Affiliation(s)
- Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xizhi Zhu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Department of Gynaecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China
| | - Zunzhen Zhang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Wang T, Sun L, Mao X, Du X, Liu J, Chen L, Chen J. Bridging attraction of condensed bovine serum albumin solution in the presence of trivalent ions: A SANS study. Biochim Biophys Acta Gen Subj 2023; 1867:130487. [PMID: 37806463 DOI: 10.1016/j.bbagen.2023.130487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The bridging attraction of condensed bovine serum albumin (BSA) solution (D2O) in the presence of yttrium chloride (YCl3) was studied by small angle neutron scattering (SANS). With increasing the concentration of YCl3 (cY) from 3 to 15 mM and from 15 to 100 mM, the intensity in low-q region increases and then decreases. Combining the tri-axial ellipsoid (TaE) geometry and the multi-component sticky hard sphere (SHS) potential, a SHS-TaE model was established to quantitatively determine the size and distribution of particles. In this way, the structural mechanism of the aggregation-redissolution process in protein solution was demonstrated and discussed. As cY increases from 3 to 100 mM, the SHS radius rL decreases from ca. 2.97 to 2.50 nm, suggesting that the relatively well dispersed BSAs may form aggregates with various polydispersities. The axis a increases from 1.88 to 2.30 nm, while b and c decrease from 3.53 to 3.23 nm and from 4.12 to 3.55 nm, respectively. (RgTaE decreases from ca. 2.57 to 2.38 nm). Moreover, the scattering length density (SLD) of BSA decreases from 3.67 to 1.56 × 10-6 Å-2. All these results consistently indicate a strengthened attraction and the BSA molecules might shrink and tune out to be more like of oblate ellipsoid with increasing the amount of YCl3.
Collapse
Affiliation(s)
- Tingting Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China.
| | - Liangwei Sun
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621999 Mianyang, China
| | - Xin Mao
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Xiaobo Du
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China.
| | - Jihui Liu
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Liang Chen
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621999 Mianyang, China
| | - Jie Chen
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621999 Mianyang, China.
| |
Collapse
|
5
|
Ait Lhaj Z, Ibork H, El Idrissi S, Ait Lhaj F, Sobeh M, Mohamed WMY, Alamy M, Taghzouti K, Abboussi O. Bioactive strawberry fruit ( Arbutus unedo L.) extract remedies paraquat-induced neurotoxicity in the offspring prenatally exposed rats. Front Neurosci 2023; 17:1244603. [PMID: 37901424 PMCID: PMC10600521 DOI: 10.3389/fnins.2023.1244603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Background Paraquat (1,1'-dimethyl-4-4'-bipyridinium dichloride) exposure is well-established as a neurotoxic agent capable of causing neurological deficits in offspring. This study aimed to investigate therapeutic effects of Arbutus unedo L. aqueous extract (AU) against paraquat (PQ) exposure. Methods For that the phytoconstituents of AU was determined by LC/MS, and then its antioxidant potential was assessed by DPPH and ABTS assays. The assessment included its impact on cell viability and mitochondrial metabolism using N27 dopaminergic cells. Additionally, we evaluated the effects of prenatal PQ exposure on motor coordination, dopamine levels, trace element levels, and total antioxidant capacity (TAC) in rat progeny. Results The phytochemical profile of AU extract revealed the presence of 35 compounds, primarily phenolic and organic acids, and flavonoids. This accounted for its strong in vitro antioxidant activities against DPPH and ABTS radicals, surpassing the activities of vitamin C. Our findings demonstrated that AU effectively inhibited PQ-induced loss of N27 rat dopaminergic neural cells and significantly enhanced their mitochondrial respiration. Furthermore, daily post-treatment with AU during the 21 days of the rat's pregnancy alleviated PQ-induced motor deficits and akinesia in rat progeny. These effects inhibited dopamine depletion and reduced iron levels in the striatal tissues. The observed outcomes appeared to be mediated by the robust antioxidant activity of AU, effectively counteracting the PQ-induced decrease in TAC in the blood plasma of rat progeny. These effects could be attributed to the bioactive compounds present in AU, including phenolic acids such as gallic acid and flavonoids such as quercetin, rutin, apigenin, glucuronide, and kaempferol, all known for their potent antioxidant capacity. Discussion In conclusion, this preclinical study provided the first evidence of the therapeutic potential of AU extract against PQ-induced neurotoxicity. These findings emphasize the need for further exploration of the clinical applicability of AU in mitigating neurotoxin-induced brain damage.
Collapse
Affiliation(s)
- Zakaria Ait Lhaj
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Farida Ait Lhaj
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Faculty of Sciences, Center of Materials, Mohammed V University, Rabat, Morocco
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Wael M. Y. Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Meryem Alamy
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| |
Collapse
|
6
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Zhao Y, Ray A, Portengen L, Vermeulen R, Peters S. Metal Exposure and Risk of Parkinson Disease: A Systematic Review and Meta-Analysis. Am J Epidemiol 2023; 192:1207-1223. [PMID: 37022311 PMCID: PMC10326611 DOI: 10.1093/aje/kwad082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/29/2022] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Metal exposure has been suggested as a possible environmental risk factor for Parkinson disease (PD). We searched the PubMed, EMBASE, and Cochrane databases to systematically review the literature on the relationship between metal exposure and PD risk and to examine the overall quality of each study and the exposure assessment method. A total of 83 case-control studies and 5 cohort studies published during the period 1963-July 2021 were included, of which 73 were graded as being of low or moderate overall quality. Investigators in 69 studies adopted self-reported exposure and biomonitoring after disease diagnosis for exposure assessment approaches. The meta-analyses showed that concentrations of copper and iron in serum and concentrations of zinc in either serum or plasma were lower, while concentrations of magnesium in CSF and zinc in hair were higher, among PD cases as compared with controls. Cumulative lead levels in bone were found to be associated with increased risk of PD. We did not find associations between other metals and PD. The current level of evidence for associations between metals and PD risk is limited, as biases from methodological limitations cannot be ruled out. High-quality studies assessing metal levels before disease onset are needed to improve our understanding of the role of metals in the etiology of PD.
Collapse
Affiliation(s)
| | | | | | | | - Susan Peters
- Correspondence to Dr. Susan Peters, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands (e-mail: )
| |
Collapse
|
8
|
Anwar F, Al-Abbasi FA, Naqvi S, Sheikh RA, Alhayyani S, Asseri AH, Asar TO, Kumar V. Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma. Int J Nanomedicine 2023; 18:2737-2756. [PMID: 37250469 PMCID: PMC10211371 DOI: 10.2147/ijn.s405454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India
| |
Collapse
|
9
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|
10
|
Structures, Binding and Clustering Energies of Cu2+(MeOH)n=1-8 Clusters and Temperature Effects : A DFT Study. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
11
|
Varshavskaya KB, Mitkevich VA, Makarov AA, Barykin EP. Synthetic, Cell-Derived, Brain-Derived, and Recombinant β-Amyloid: Modelling Alzheimer's Disease for Research and Drug Development. Int J Mol Sci 2022; 23:15036. [PMID: 36499362 PMCID: PMC9738609 DOI: 10.3390/ijms232315036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, characterised by the accumulation of senile plaques and tau tangles, neurodegeneration, and neuroinflammation in the brain. The development of AD is a pathological cascade starting according to the amyloid hypothesis with the accumulation and aggregation of the β-amyloid peptide (Aβ), which induces hyperphosphorylation of tau and promotes the pro-inflammatory activation of microglia leading to synaptic loss and, ultimately, neuronal death. Modelling AD-related processes is important for both studying the molecular basis of the disease and the development of novel therapeutics. The replication of these processes is often achieved with the use of a purified Aβ peptide. However, Aβ preparations obtained from different sources can have strikingly different properties. This review aims to compare the structure and biological effects of Aβ oligomers and aggregates of a higher order: synthetic, recombinant, purified from cell culture, or extracted from brain tissue. The authors summarise the applicability of Aβ preparations for modelling Aβ aggregation, neurotoxicity, cytoskeleton damage, receptor toxicity in vitro and cerebral amyloidosis, synaptic plasticity disruption, and cognitive impairment in vivo and ex vivo. Further, the paper discusses the causes of the reported differences in the effect of Aβ obtained from the sources mentioned above. This review points to the importance of the source of Aβ for AD modelling and could help researchers to choose the optimal way to model the Aβ-induced abnormalities.
Collapse
Affiliation(s)
| | | | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Vavilov St. 32, 119991 Moscow, Russia
| | | |
Collapse
|
12
|
Da-yang TE, Fifen JJ, Conradie J, Conradie MM. Structures, temperature effect, binding and clustering energies of Cu2+(MeOH)n=1-8 clusters and extrapolations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
14
|
Burkhead JL, Collins JF. Nutrition Information Brief-Copper. Adv Nutr 2022; 13:681-683. [PMID: 34940824 PMCID: PMC8970836 DOI: 10.1093/advances/nmab157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jason L Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Piazzi M, Bavelloni A, Cenni V, Faenza I, Blalock WL. Revisiting the Role of GSK3, A Modulator of Innate Immunity, in Idiopathic Inclusion Body Myositis. Cells 2021; 10:cells10113255. [PMID: 34831477 PMCID: PMC8625526 DOI: 10.3390/cells10113255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Idiopathic or sporadic inclusion body myositis (IBM) is the leading age-related (onset >50 years of age) autoimmune muscular pathology, resulting in significant debilitation in affected individuals. Once viewed as primarily a degenerative disorder, it is now evident that much like several other neuro-muscular degenerative disorders, IBM has a major autoinflammatory component resulting in chronic inflammation-induced muscle destruction. Thus, IBM is now considered primarily an inflammatory pathology. To date, there is no effective treatment for sporadic inclusion body myositis, and little is understood about the pathology at the molecular level, which would offer the best hopes of at least slowing down the degenerative process. Among the previously examined potential molecular players in IBM is glycogen synthase kinase (GSK)-3, whose role in promoting TAU phosphorylation and inclusion bodies in Alzheimer’s disease is well known. This review looks to re-examine the role of GSK3 in IBM, not strictly as a promoter of TAU and Abeta inclusions, but as a novel player in the innate immune system, discussing some of the recent roles discovered for this well-studied kinase in inflammatory-mediated pathology.
Collapse
Affiliation(s)
- Manuela Piazzi
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Vittoria Cenni
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche and Neuromotorie, Università di Bologna, 40136 Bologna, Italy;
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy; (M.P.); (V.C.)
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
16
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev Neurosci 2021; 31:233-243. [PMID: 31747384 DOI: 10.1515/revneuro-2019-0052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022]
Abstract
The disruption of homeostasis of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Wilson's, Creutzfeldt-Jakob, Parkinson's, and Alzheimer's diseases (AD), and traumatic brain injury (TBI). The last two pathological conditions of the brain are the most common; moreover, it is possible that TBI is a risk factor for the development of AD. Disruptions of Zn2+ and Cu2+ homeostasis play an important role in the mechanisms of pathogenesis of both TBI and AD. This review attempts to summarize and systematize the currently available research data on this issue. The neurocytotoxicity of Cu2+ and Zn2+, the synergism of the toxic effect of calcium and Zn2+ ions on the mitochondria of neurons, and the interaction of Zn2+ and Cu2+ with β-amyloid (Abeta) and tau protein are considered.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
17
|
S K, Sam B, George L, N SY, Varghese A. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. J Fluoresc 2021; 31:1251-1276. [PMID: 34255257 DOI: 10.1007/s10895-021-02770-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Fluorescein molecules are extensively used to develop fluorescent probes for various analytes due to their excellent photophysical properties and the spirocyclic structure. The main structural modification of fluorescein occurs at the carboxyl group where different groups can be easily introduced to produce the spirolactam structure which is non-fluorescent. The spirolactam ring opening accounts for the fluorescence and the dual sensing of analytes using fluorescent sensors is still a topic of high interest. There is an increase in the number of dual sensors developed in the past five years and quite a good number of fluorescein derivatives were also reported based on reversible mechanisms. This review analyses environmentally and biologically important cations such as Cu2+, Hg2+, Fe3+, Pd2+, Zn2+, Cd2+, and Mg2+; anions (F-, OCl-) and small molecules (thiols, CO and H2S). Structural modifications, binding mechanisms, different strategies and a comparative study for selected cations, anions and molecules are outlined in the article.
Collapse
Affiliation(s)
- Keerthana S
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Bincy Sam
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Sudhakar Y N
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
18
|
Jing Z, Liu C, Ren P. Advanced Electrostatic Model for Monovalent Ions Based on Ab Initio Energy Decomposition. J Chem Inf Model 2021; 61:2806-2817. [PMID: 34096706 PMCID: PMC8323402 DOI: 10.1021/acs.jcim.1c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ions play important roles in the structures and functions of biomolecules. In biomolecular simulations, ions either directly interact with biomolecules or provide an ionic environment that influences electrostatic interactions of solutes. The AMOEBA+ water model has demonstrated significant advancement of the classical force field for describing molecular interactions due to its improvements on the functional forms to account for essential physics. This work expands the applicability of the AMOEBA+ model toward alkali metal (Li, Na, K, Rb, and Cs) and halogen (F, Cl, Br, and I) ions. Various quantum chemical data on ion-ion and ion-water interactions, experimental ion hydration free energies, and lattice energies of salt crystals are used in the parametrization. The final parameters are verified with other properties outside of the parametrization data, including lattice energies of additional salt crystals and ionic activity coefficients in solution. The new model captures a wide range of ion properties from the gas phase to solution phase and crystals. More importantly, AMOEBA+ provides energy components that are consistent with ab initio energy decomposition. Thus, we expect AMOEBA+ to be more general, transferable, and valuable for the interpretation of intermolecular forces in efficient classical simulations.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
19
|
Aranaz M, Costas-Rodríguez M, Lobo L, García M, González-Iglesias H, Pereiro R, Vanhaecke F. Homeostatic alterations related to total antioxidant capacity, elemental concentrations and isotopic compositions in aqueous humor of glaucoma patients. Anal Bioanal Chem 2021; 414:515-524. [PMID: 34173037 PMCID: PMC8748375 DOI: 10.1007/s00216-021-03467-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Glaucoma is a multifactorial eye disease, characterized by progressive optic neurodegeneration. Elevation of the intraocular pressure is the main risk factor for glaucoma and is a consequence of an imbalance in the aqueous humor hydrodynamics, the physiology of which is influenced by the homeostatic equilibrium of essential elements, oxidative stress, and antioxidants. The aim of this work was to study local alterations in glaucomatous patients from two different, but connected, points of view: (i) the total antioxidant capacity (as an indicator of oxidative damage) and (ii) the concentration of mineral elements and their isotopic composition. Such objective was pursued using aqueous humor from patients diagnosed with pseudoexfoliation glaucoma (PEXG, n = 17) and primary open-angle glaucoma (POAG, n = 5) and age-matched control subjects (n = 16). The total antioxidant capacity (TAC) was examined in both aqueous humor and 60 serum samples (n = 20 controls, n = 20 for PEXG, and n = 20 for POAG), both showing higher TAC for the glaucoma population. The concentrations of the essential mineral elements (Cu, Fe, Mg, Na, P, and Zn) and the isotopic compositions of Cu and Zn were determined in aqueous humor using single-collector and multi-collector inductively coupled plasma–mass spectrometry, respectively. Significant differences were established for Mg and P levels when comparing the results for glaucomatous patients with those for the control population (p < 0.01 and p < 0.05 for Mg and P respectively, ANOVA and Kruskal-Wallis). The Zn isotopic composition was significantly shifted from that for the control population for PEXG patients. A significant difference in the isotopic composition of Zn was also established between the PEXG and POAG glaucoma cohorts.
Collapse
Affiliation(s)
- Marta Aranaz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Marta Costas-Rodríguez
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium.
| | - Lara Lobo
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Fernández-Vega 34, 33012, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avda. Fernández-Vega 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avda. Fernández-Vega 34, 33012, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avda. Fernández-Vega 34, 33012, Oviedo, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.,Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avda. Fernández-Vega 34, 33012, Oviedo, Spain
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| |
Collapse
|
20
|
Li Z, Wang Z, Xue K, Wang Z, Guo C, Qian Y, Li X, Wei Y. High concentration of blood cobalt is associated with the impairment of blood-brain barrier permeability. CHEMOSPHERE 2021; 273:129579. [PMID: 33493816 DOI: 10.1016/j.chemosphere.2021.129579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Excess heavy metals can lead to many kinds of adverse effects in human. The present study is designed to investigate whether the internal excess burden of heavy metals relate to the disturbance of the Blood-brain-barrier (BBB) and oxidative stress (OS) in subjects, and identify specific metallic constituents responsible for the disturbance. We collected the blood from recruited 122 subjects for our comparison study, 69 were living at an area near e-waste dismantling factories (exposed group), who have higher levels of heavy metals in the body; and others were in a chosen reference area (reference group), who were the general residents in city, in December 2017 in Taizhou, Zhejiang province. The analyses showed that the concentrations of altogether 4 metals, including nickel (Ni), cobalt (Co), mercury (Hg) and stannum (Sn), and the triggers of BBB disruption (Apolipoprotein E4 and matrix-metalloproteinase-9), indicators of BBB (Myelin basic protein, serotonin and dopamine) and biomarkers of OS (Malondialdehyde and 8-isoprostane) were statistically significant higher in exposed group than in reference group. Moreover, they are also significantly positively correlated with each other. Among all the metals, both Pearson correlation and multiple linear regression showed Co was positive correlated with almost all biomarkers. Considering the explicit correlation between Co and BBB permeability, we speculated that high burden of Co in blood may have a connection with neurodegenerative diseases, which propose a requirement for constructing the environmental criteria for Co and might provide a potential new hint for the intervention of dementia.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kaibing Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
21
|
Yadav J, Verma AK, Ahmad MK, Garg RK, Shiuli, Mahdi AA, Srivastava S. Metals toxicity and its correlation with the gene expression in Alzheimer's disease. Mol Biol Rep 2021; 48:3245-3252. [PMID: 33970397 DOI: 10.1007/s11033-021-06386-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease is a common neurodegenerative disease in the elderly population and a leading cause of dementia. Genetics and environmental risk factors were considered to play a major role in the onset of the disease. This study aimed to examine the correlation between different metals levels and the gene expression in Alzheimer's patients with age-matched control subjects. Non- essential metals were measured in the whole blood due to its higher concentration in red blood corpuscles (RBCs) and essential biometals in the serum samples of Alzheimer's disease (AD) by using Inductively coupled plasma optical emission spectroscopy (ICP-OES) that allows the analysis and detection of the different elements at low levels. Gene expression level was performed by quantitative real-time PCR (qRT-PCR). In this study, the levels of Lead and Arsenic metals were not detected in the AD patient samples. Cadmium, Mercury, and Aluminum were found higher in cases as compared to controls with 0.009240 ± 0.0007707 (P = < 0.0001), 0.02332 ± 0.001041 (P = < 0.0001), and 0.09222 ± 0.02804 (P = 0.0087) respectively. Essential biometal like copper was higher 0.1274 ± 0.02453 (P = 0.0254) in cases, while iron 0.1117 ± 0.009599 (P = 0.0304) and zinc 0.03800 ± 0.003462 mg/L were found significantly lower as compared to controls. All targeted genes such as APP, PSEN1, PSEN2, and APOE4 were found up-regulated in AD patients. We concluded that there was no significant correlation between metals dyshomeostasis and gene expressions in this study.
Collapse
Affiliation(s)
- Jyoti Yadav
- Forensic Medicine & Toxicology Department, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Anoop Kumar Verma
- Forensic Medicine & Toxicology Department, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| | | | | | - Shiuli
- Forensic Medicine & Toxicology Department, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | | | | |
Collapse
|
22
|
Synaptic Zinc: An Emerging Player in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094724. [PMID: 33946908 PMCID: PMC8125092 DOI: 10.3390/ijms22094724] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
Alterations of zinc homeostasis have long been implicated in Parkinson's disease (PD). Zinc plays a complex role as both deficiency and excess of intracellular zinc levels have been incriminated in the pathophysiology of the disease. Besides its role in multiple cellular functions, Zn2+ also acts as a synaptic transmitter in the brain. In the forebrain, subset of glutamatergic neurons, namely cortical neurons projecting to the striatum, use Zn2+ as a messenger alongside glutamate. Overactivation of the cortico-striatal glutamatergic system is a key feature contributing to the development of PD symptoms and dopaminergic neurotoxicity. Here, we will cover recent evidence implicating synaptic Zn2+ in the pathophysiology of PD and discuss its potential mechanisms of actions. Emphasis will be placed on the functional interaction between Zn2+ and glutamatergic NMDA receptors, the most extensively studied synaptic target of Zn2+.
Collapse
|
23
|
Zhong M, Kou H, Zhao P, Zheng W, Xu H, Zhang X, Lan W, Guo C, Wang T, Guo F, Wang Z, Gao H. Nasal Delivery of D-Penicillamine Hydrogel Upregulates a Disintegrin and Metalloprotease 10 Expression via Melatonin Receptor 1 in Alzheimer's Disease Models. Front Aging Neurosci 2021; 13:660249. [PMID: 33935689 PMCID: PMC8081912 DOI: 10.3389/fnagi.2021.660249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative disease that is associated with the accumulation of amyloid plaques. Increasing non-amyloidogenic processing and/or manipulating amyloid precursor protein signaling could reduce AD amyloid pathology and cognitive impairment. D-penicillamine (D-Pen) is a water-soluble metal chelator and can reduce the aggregation of amyloid-β (Aβ) with metals in vitro. However, the potential mechanism of D-Pen for treating neurodegenerative disorders remains unexplored. In here, a novel type of chitosan-based hydrogel to carry D-Pen was designed and the D-Pen-CS/β-glycerophosphate hydrogel were characterized by scanning electron microscopy and HPLC. Behavior tests investigated the learning and memory levels of APP/PS1 mice treated through the D-Pen hydrogel nasal delivery. In vivo and in vitro findings showed that nasal delivery of D-Pen-CS/β-GP hydrogel had properly chelated metal ions that reduced Aβ deposition. Furthermore, D-Pen mainly regulated A disintegrin and metalloprotease 10 (ADAM10) expression via melatonin receptor 1 (MTNR1α) and the downstream PKA/ERK/CREB pathway. The present data demonstrated D-Pen significantly improved the cognitive ability of APP/PS1 mice and reduced Aβ generation through activating ADAM10 and accelerating non-amyloidogenic processing. Hence, these findings indicate the potential of D-Pen as a promising agent for treating AD.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hejia Kou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, Shenyang, China
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wang Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
24
|
Baesler J, Michaelis V, Stiboller M, Haase H, Aschner M, Schwerdtle T, Sturzenbaum SR, Bornhorst J. Nutritive Manganese and Zinc Overdosing in Aging C. elegans Result in a Metallothionein-Mediated Alteration in Metal Homeostasis. Mol Nutr Food Res 2021; 65:e2001176. [PMID: 33641237 PMCID: PMC8224813 DOI: 10.1002/mnfr.202001176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/15/2021] [Indexed: 01/02/2023]
Abstract
SCOPE Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. METHODS AND RESULTS Chronic co-exposure of C. elegans to Mn and Zn increases metal uptake, exceeding levels of single metal exposures. Supplementation with Mn and/or Zn also leads to an age-dependent increase in metal content, a decline in overall mRNA expression, and metal co-supplementation induced expression of target genes involved in Mn and Zn homeostasis, in particular metallothionein 1 (mtl-1). Studies in transgenic worms reveal that mtl-1 played a prominent role in mediating age- and diet-dependent alterations in metal homeostasis. Metal dyshomeostasis is further induced in parkin-deficient nematodes (Parkinson's disease (PD) model), but this did not accelerate the age-dependent dopaminergic neurodegeneration. CONCLUSIONS A nutritive overdose of Mn and Zn can alter interactions between essential metals in an aging organism, and metallothionein 1 acts as a potential protective modulator in regulating homeostasis.
Collapse
Affiliation(s)
- Jessica Baesler
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Vivien Michaelis
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hajo Haase
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- TU Berlin, Department of Food Chemistry and Toxicology, Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Stephen R. Sturzenbaum
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| |
Collapse
|
25
|
Chen T, Yang Y, Zhu S, Lu Y, Zhu L, Wang Y, Wang X. Inhibition of Aβ aggregates in Alzheimer's disease by epigallocatechin and epicatechin-3-gallate from green tea. Bioorg Chem 2020; 105:104382. [PMID: 33137558 DOI: 10.1016/j.bioorg.2020.104382] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive accumulation of senile plaques, which are primarily composed of misfolded amyloid β-peptide (Aβ). Aβ aggregates are believed to be a key factor in the pathogenesis of AD, affecting the nervous system in human body. The therapeutic potential of tea-derived polyphenolic compounds, (-)-epigallocatechin (EGC) and (-)-epicatechin-3-gallate (ECG), for AD was investigated by assessing their effects on the Cu2+/Zn2+-induced or self-assembled Aβ40 aggregation using thioflavine T fluorescent spectrometry, inductively coupled plasma mass spectrometry, UV-Vis spectroscopy, transmission electron microscope, silver staining, immunohistochemistry, and immunofluorescence assays. EGC and ECG mildly bind to Cu2+ and Zn2+, and diminish the Cu2+- or Zn2+-induced or self-assembled Aβ aggregates; they also modulate the Cu2+/Zn2+-Aβ40 induced neurotoxicity on mouse neuroblastoma Neuro-2a cells by reducing the production of ROS. Metal chelating, hydrogen bonding or Van Der Waals force may drive the interaction between the polyphenolic compounds and Aβ. The results demonstrate that green tea catechins EGC and ECG are able to alleviate the toxicity of Aβ oligomers and fibrils. Particularly, ECG can cross the blood-brain barrier to reduce the Aβ plaques in the brain of APP/PS1 mice, thereby protecting neurons from injuries. The results manifest the potential of green tea for preventing or ameliorating the symptoms of AD.
Collapse
Affiliation(s)
- Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Yanfei Yang
- Institute of Nautical Medicine, Nantong University, Nantong 226019, PR China
| | - Shajun Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, PR China
| | - Yapeng Lu
- Institute of Nautical Medicine, Nantong University, Nantong 226019, PR China
| | - Li Zhu
- Institute of Nautical Medicine, Nantong University, Nantong 226019, PR China.
| | - Yanqing Wang
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng 224002, PR China
| | - Xiaoyong Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
26
|
Human Risk from Exposure to Heavy Metals and Arsenic in Water from Rivers with Mining Influence in the Central Andes of Peru. WATER 2020. [DOI: 10.3390/w12071946] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Water pollution by heavy metals is one of the leading environmental concerns as a result of intense anthropogenic pressure on the aquatic environment. This constitutes a significant limitation to the human right of access to drinking water. In this context, the risk to humans from exposure to heavy metals and arsenic in water from rivers subject to mining influence in the Central Andes of Peru was assessed. Water samples were collected from seven rivers at 63 sampling sites, and concentrations of Cu, Fe, Pb, Zn, and As were determined using flame atomic absorption spectrophotometry. Cluster analysis was used to group 21 sampling sites into four groups with similar chemical characteristics, and principal component analysis was used to simplify the complex relationship between the toxic elements by generating two main components with a total percentage of variation of 86%. Fe, Zn, and As had higher percentages of contribution in the Mantaro, Cunas, and Chia rivers. The hazard quotient was highest for children and adults. The hazard index for ingestion of all the studied heavy metals and As was higher than the threshold value (HIing > 1). HIing in 43% of the rivers indicated that the adult population is at risk of non-carcinogenic effects, and HIing in 14% of the rivers revealed a very high health risk. The risk of cancer by ingestion for children varied from medium to high risk and for adults from low to high risk.
Collapse
|
27
|
Isaev NK, Chetverikov NS, Stelmashook EV, Genrikhs EE, Khaspekov LG, Illarioshkin SN. Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. BIOCHEMISTRY (MOSCOW) 2020; 85:167-176. [PMID: 32093593 DOI: 10.1134/s0006297920020042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thymoquinone is one of the main active components of the essential oil from black cumin (Nigella sativa) seeds. Thymoquinone exhibits a wide range of pharmacological activities, including neuroprotective action demonstrated in the models of brain ischemia/reperfusion, Alzheimer's and Parkinson's diseases, and traumatic brain injury. The neuroprotective effect of thymoquinone is mediated via inhibition of lipid peroxidation, downregulation of proinflammatory cytokines, maintenance of mitochondrial membrane potential, and prevention of apoptosis through inhibition of caspases-3, -8, and -9. Thymoquinone-based mitochondria-targeted antioxidants are accumulated in the mitochondria and exhibit neuroprotective properties in nanomolar concentrations. Thymoquinone reduces the negative effects of acute and chronic forms of brain pathologies. The mechanisms of the pharmacological action of thymoquinone and its chemical derivatives require more comprehensive studying. In this paper, we formulated the prospects of application of thymoquinone and thymoquinone-based drugs in the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- N K Isaev
- Research Center of Neurology, Moscow, 125367, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - N S Chetverikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | | | - E E Genrikhs
- Research Center of Neurology, Moscow, 125367, Russia
| | - L G Khaspekov
- Research Center of Neurology, Moscow, 125367, Russia.
| | | |
Collapse
|
28
|
Pilozzi A, Yu Z, Carreras I, Cormier K, Hartley D, Rogers J, Dedeoglu A, Huang X. A Preliminary Study of Cu Exposure Effects upon Alzheimer's Amyloid Pathology. Biomolecules 2020; 10:E408. [PMID: 32155778 PMCID: PMC7175127 DOI: 10.3390/biom10030408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/25/2023] Open
Abstract
A large body of evidence indicates that dysregulation of cerebral biometals (Fe, Cu, Zn) and their interactions with amyloid precursor protein (APP) and Aβ amyloid may contribute to the Alzheimer's disease (AD) Aβ amyloid pathology. However, the molecular underpinnings associated with the interactions are still not fully understood. Herein we have further validated the exacerbation of Aβ oligomerization by Cu and H2O2 in vitro. We have also reported that Cu enhanced APP translations via its 5' untranslated region (5'UTR) of mRNA in SH-SY5Y cells, and increased Aβ amyloidosis and expression of associated pro-inflammatory cytokines such as MCP-5 in Alzheimer's APP/PS1 doubly transgenic mice. This preliminary study may further unravel the pathogenic role of Cu in Alzheimer's Aβ amyloid pathogenesis, warranting further investigation.
Collapse
Affiliation(s)
- Alexander Pilozzi
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Isabel Carreras
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kerry Cormier
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Jack Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Medical Center, Bedford, MA 01730, USA; (I.C.); (K.C.); (A.D.)
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (J.R.)
| |
Collapse
|
29
|
Wang L, Pu Z, Li M, Wang K, Deng L, Chen W. Antioxidative and antiapoptosis: Neuroprotective effects of dauricine in Alzheimer's disease models. Life Sci 2019; 243:117237. [PMID: 31887302 DOI: 10.1016/j.lfs.2019.117237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
AIMS Dauricine has been found that has significant neuroprotective effect on Alzheimer's disease (AD), but the mechanism is unclear, so we further investigated the possible mechanism of dauricine on AD. MAIN METHODS Cell counting kit-8 (CCK8) was applied to measure the cytotoxicity of dauricine on SH-SY5Y cells that overexpress the Swedish mutant form of human β-amyloid precursor protein (APPsw) and control cells (Neo). We used the Cu2+ to induce oxidative damage on APPsw cells, then tested the effect of dauricine on the damage and relative factors including reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and superoxide dismutase (SOD) activity. The secretion level of amyloid beta 1-42(Aβ1-42), protein expression of apoptosis-related factors and the components of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway were determined by western blotting. Aβ1-42-transgenic Caenorhabditis elegans GMC101, a model of AD, was applied to evaluate the neuroprotective effect of dauricine through the behavioral experiment and relative anti-oxidative tests. KEY FINDINGS In vitro, dauricine decreased the secretion level of Aβ1-42, significantly reduced the level of Cu2+-induced ROS, and restored MMP and SOD activity in APPsw cells. Meanwhile, dauricine could suppress the activation of caspase-3 and to upregulate the expression of Bcl-2. Dauricine also regulated the proteins levels of Nrf2, and Kelch-like ECH-associated protein 1 (Keap1) that is necessary for the activation of Nrf2 in APPsw cell. As oxidative stress induced by Aβ or paraquat (PQ), dauricine showed protective effects in the survival experiment of GMC101 worms. SIGNIFICANCE Those data revealed that dauricine has the pharmacological activity of anti-oxidative and anti-apoptosis, and shows the potential therapeutic value for AD.
Collapse
Affiliation(s)
- Lingfeng Wang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhijun Pu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Mingxin Li
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Kaixuan Wang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lijuan Deng
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wei Chen
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
30
|
Chen J, Chen Q, Xie C, Ahmad W, Jiang L, Zhao L. Effects of simulated gastric and intestinal digestion on chitooligosaccharides in two
in vitro
models. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiayi Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Qiming Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Chuanqi Xie
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Waheed Ahmad
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry East China University of Science and Technology Shanghai 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) Shanghai 200237 China
| |
Collapse
|
31
|
Dos Santos AB, Bezerra MA, Rocha ME, Barreto GE, Kohlmeier KA. Higher zinc concentrations in hair of Parkinson’s disease are associated with psychotic complications and depression. J Neural Transm (Vienna) 2019; 126:1291-1301. [DOI: 10.1007/s00702-019-02041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
|
32
|
Bischof H, Burgstaller S, Waldeck-Weiermair M, Rauter T, Schinagl M, Ramadani-Muja J, Graier WF, Malli R. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019; 8:E492. [PMID: 31121936 PMCID: PMC6562680 DOI: 10.3390/cells8050492] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Collapse
Affiliation(s)
- Helmut Bischof
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Markus Waldeck-Weiermair
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Thomas Rauter
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Maximilian Schinagl
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - Roland Malli
- Gottfried Schatz Research Center, Chair of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
33
|
Sales TA, Prandi IG, Castro AAD, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019; 20:E1829. [PMID: 31013856 PMCID: PMC6514778 DOI: 10.3390/ijms20081829] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Collapse
Affiliation(s)
- Thais A Sales
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Ingrid G Prandi
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Daniel H S Leal
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus/ES, 29932-540, Brazil.
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 500 03 Czech Republic.
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
| |
Collapse
|
34
|
Synthesis, crystal structure and investigation of the catalytic and spectroscopic properties of a Zn(II) complex with coumarin-hydrazone ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
36
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
37
|
Isaev NK, Genrikhs EE, Oborina MV, Stelmashook EV. Accelerated aging and aging process in the brain. Rev Neurosci 2018; 29:233-240. [PMID: 29150992 DOI: 10.1515/revneuro-2017-0051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
One of the approaches to the research of the problem of aging is the study of genetic pathologies leading to accelerated aging, such as the Hutchinson-Gilford progeria syndrome, Werner syndrome, and Down syndrome. Probably, this approach can be used in an attempt to understand the neuronal mechanisms underlying normal and pathological brain aging. The analysis of the current state of scientific knowledge about these pathologies shows that in the Hutchinson-Gilford progeria and Werner syndrome, the rate of brain aging is significantly lower than the rate of whole body aging, whereas in Down syndrome, the brain ages faster than other organs due to amyloid-beta accumulation and chronic oxidative stress in the brain tissue. The main point of a previously proposed hypothesis is that the aging of higher animals and humans is associated with an increased level of reactive oxygen species in mitochondria with age, which activates apoptosis, thus reducing the number of functioning cells.
Collapse
Affiliation(s)
- Nickolay K Isaev
- Department of Bioenergetics N. A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, M. V. Lomonosov Moscow State University, 119992 Leninsky Gory, 1b. 40, Moscow 119991, Russia
| | | | - Maria V Oborina
- Brain Research Department Research Center of Neurology, Moscow 125367, Russia
| | - Elena V Stelmashook
- Brain Research Department Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
38
|
Kulik L, Maywald M, Kloubert V, Wessels I, Rink L. Zinc deficiency drives Th17 polarization and promotes loss of Treg cell function. J Nutr Biochem 2018; 63:11-18. [PMID: 30316032 DOI: 10.1016/j.jnutbio.2018.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
A high number of illnesses and disorders are connected to zinc deficiency. Equally, T cell polarization and a balance between different T helper (Th) cell subsets are essential. Therefore, in this study, the influence of zinc deficiency on T cell polarization and on respective signaling pathways was investigated. We uncovered a significantly increased number of regulatory T cells (Treg) and Th17 cells in expanded T cells during zinc deficiency after 3 days of combined treatment with IL-2 and TGF-β1 (Treg) or IL-6 and TGF-β1 (Th17). No difference in Th1 and Th2 cell polarization between zinc-deficient and zinc-adequate status was prominent. On the molecular level, Smad signaling was significantly enhanced by stimulation with TGF-β1/IL-6 during zinc deficiency compared to adequate zinc condition. This represents an explanation for the elevated Th17 cell numbers associated with autoimmune disease especially during zinc deficiency. Moreover, Treg cell numbers are increased during zinc deficiency as well. However, those cells might be nonfunctional since a lower expression of miR-146a was uncovered compared to normal zinc concentrations. In summary, an adequate zinc homeostasis is fundamental to slow down or probably stop the progression of autoimmune diseases and infections. Therefore, supplementing zinc might be a therapeutic approach to dampen autoimmune diseases connected to Th17 cells.
Collapse
Affiliation(s)
- Leonie Kulik
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Martina Maywald
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Veronika Kloubert
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
39
|
Bornhorst J, Kipp AP, Haase H, Meyer S, Schwerdtle T. The crux of inept biomarkers for risks and benefits of trace elements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Meijerman A, Amiri H, Steenwijk MD, Jonker MA, van Schijndel RA, Cover KS, Vrenken H. Reproducibility of Deep Gray Matter Atrophy Rate Measurement in a Large Multicenter Dataset. AJNR Am J Neuroradiol 2017; 39:46-53. [PMID: 29191870 DOI: 10.3174/ajnr.a5459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/28/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Precise in vivo measurement of deep GM volume change is a highly demanded prerequisite for an adequate evaluation of disease progression and new treatments. However, quantitative data on the reproducibility of deep GM structure volumetry are not yet available. In this paper we aim to investigate this reproducibility using a large multicenter dataset. MATERIALS AND METHODS We have assessed the reproducibility of 2 automated segmentation software packages (FreeSurfer and the FMRIB Integrated Registration and Segmentation Tool) by quantifying the volume changes of deep GM structures by using back-to-back MR imaging scans from the Alzheimer Disease Neuroimaging Initiative's multicenter dataset. Five hundred sixty-two subjects with scans at baseline and 1 year were included. Reproducibility was investigated in the bilateral caudate nucleus, putamen, amygdala, globus pallidus, and thalamus by carrying out descriptives as well as multilevel and variance component analysis. RESULTS Median absolute back-to-back differences varied between GM structures, ranging from 59.6-156.4 μL for volume change, and 1.26%-8.63% for percentage volume change. FreeSurfer had a better performance for the outcome of longitudinal volume change for the bilateral amygdala, putamen, left caudate nucleus (P < .005), and right thalamus (P < .001). For longitudinal percentage volume change, Freesurfer performed better for the left amygdala, bilateral caudate nucleus, and left putamen (P < .001). Smaller limits of agreement were found for FreeSurfer for both outcomes for all GM structures except the globus pallidus. Our results showed that back-to-back differences in 1-year percentage volume change were approximately 1.5-3.5 times larger than the mean measured 1-year volume change of those structures. CONCLUSIONS Longitudinal deep GM atrophy measures should be interpreted with caution. Furthermore, deep GM atrophy measurement techniques require substantially improved reproducibility, specifically when aiming for personalized medicine.
Collapse
Affiliation(s)
- A Meijerman
- From the Departments of Radiology and Nuclear Medicine (A.M., H.A., M.D.S., R.A.v.S., K.S.C., H.V.).,Epidemiology and Biostatistics (A.M., M.A.J.), Vrije University Medical Center, Amsterdam, The Netherlands
| | - H Amiri
- From the Departments of Radiology and Nuclear Medicine (A.M., H.A., M.D.S., R.A.v.S., K.S.C., H.V.) .,the Neuroscience Research Center, Institute of Neuropharmacology (H.A.), Kerman University of Medical Sciences, Kerman, Iran
| | - M D Steenwijk
- From the Departments of Radiology and Nuclear Medicine (A.M., H.A., M.D.S., R.A.v.S., K.S.C., H.V.)
| | - M A Jonker
- Epidemiology and Biostatistics (A.M., M.A.J.), Vrije University Medical Center, Amsterdam, The Netherlands
| | - R A van Schijndel
- From the Departments of Radiology and Nuclear Medicine (A.M., H.A., M.D.S., R.A.v.S., K.S.C., H.V.)
| | - K S Cover
- From the Departments of Radiology and Nuclear Medicine (A.M., H.A., M.D.S., R.A.v.S., K.S.C., H.V.)
| | - H Vrenken
- From the Departments of Radiology and Nuclear Medicine (A.M., H.A., M.D.S., R.A.v.S., K.S.C., H.V.)
| | | |
Collapse
|
41
|
Ouyang QQ, Zhao S, Li SD, Song C. Application of Chitosan, Chitooligosaccharide, and Their Derivatives in the Treatment of Alzheimer's Disease. Mar Drugs 2017; 15:E322. [PMID: 29112116 PMCID: PMC5706020 DOI: 10.3390/md15110322] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Classic hypotheses of Alzheimer's disease (AD) include cholinergic neuron death, acetylcholine (ACh) deficiency, metal ion dynamic equilibrium disorder, and deposition of amyloid and tau. Increased evidence suggests neuroinflammation and oxidative stress may cause AD. However, none of these factors induces AD independently, but they are all associated with the formation of Aβ and tau proteins. Current clinical treatments based on ACh deficiency can only temporarily relieve symptoms, accompanied with many side-effects. Hence, searching for natural neuroprotective agents, which can significantly improve the major symptoms and reverse disease progress, have received great attention. Currently, several bioactive marine products have shown neuroprotective activities, immunomodulatory and anti-inflammatory effects with low toxicity and mild side effects in laboratory studies. Recently, chitosan (CTS), chitooligosaccharide (COS) and their derivatives from exoskeletons of crustaceans and cell walls of fungi have shown neuroprotective and antioxidative effects, matrix metalloproteinase inhibition, anti-HIV and anti-inflammatory properties. With regards to the hypotheses of AD, the neuroprotective effect of CTS, COS, and their derivatives on AD-like changes in several models have been reported. CTS and COS exert beneficial effects on cognitive impairments via inhibiting oxidative stress and neuroinflammation. They are also a new type of non-toxic β-secretase and AChE inhibitor. As neuroprotective agents, they could reduce the cell membrane damage caused by copper ions and decrease the content of reactive oxygen species. This review will focus on their anti-neuroinflammation, antioxidants and their inhibition of β-amyloid, acetylcholinesterase and copper ions adsorption. Finally, the limitations and future work will be discussed.
Collapse
Affiliation(s)
- Qian-Qian Ouyang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China.
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shannon Zhao
- American Studies and Ethnicity, University of Southern California, Los Angeles, CA 90089, USA.
| | - Si-Dong Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
42
|
Candidate proteins from predegenerated nerve exert time-specific protection of retinal ganglion cells in glaucoma. Sci Rep 2017; 7:14540. [PMID: 29109409 PMCID: PMC5673995 DOI: 10.1038/s41598-017-14860-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
Glaucoma is thought to be the main cause of severe visual impairment or permanent loss of vision. Current therapeutic strategies are not sufficient to protect against glaucoma. Thus, new therapies and potential novel therapeutic targets must be developed to achieve progress in the treatment of this insidious disease. This study was undertaken to verify whether the time of administration of an extract from predegenerated rat sciatic nerves as well as exposure time of this extract onto retinal ganglion cells (RGCs) influences the survival of RGCs in a rat glaucoma model. We have demonstrated that extract obtained from the predegenerated sciatic nerves protects RGCs in a rat glaucoma model. The neuroprotective effect depends mostly on the time of administration of the extract and less clearly on the time of exposure to the extract and is associated with stimulation of endogenous BDNF expression both in RGCs and glial cells. The 14th day following glaucoma induction represents a therapeutic window for effective treatment in a glaucoma model. Mass Spectrometry analysis demonstrated that metallothionein 2 (MT2) may be a key molecule responsible for neuroprotective effects on RGC survival.
Collapse
|
43
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
44
|
Du K, Liu MY, Zhong X, Wei MJ. Decreased circulating Zinc levels in Parkinson's disease: a meta-analysis study. Sci Rep 2017; 7:3902. [PMID: 28634347 PMCID: PMC5478669 DOI: 10.1038/s41598-017-04252-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
There is no consensus on the involvement of zinc (Zn) dysfunctions in Parkinson's Disease (PD). We performed a meta-analysis to evaluate whether circulating Zn levels in the serum, plasma, and cerebrospinal fluid (CSF) are altered in PD. Twenty-three published studies were selected by searching the databases of PubMed and China National Knowledge Infrastructure (CNKI). A total of 803 PD patients and 796 controls, 342 PD patients and 392 controls, and 135 PD patients and 93 controls were included to study Zn levels in the serum, plasma, and CSF, respectively. Our meta-analysis showed that the serum Zn levels were significantly lower in PD patients compared with health controls (SMD = -0.59; 95% CI [-1.06, -0.12]; P = 0.014). A reduced Zn levels in PD patients were found when serum and plasma studies were analyzed together (SMD = -0.60, 95% CI [-0.98; -0.22]; p = 0.002). PD patients had a tendency toward reduced CSF Zn levels compared with health controls (SMD = -0.50; 95% CI [-1.76, 0.76]; P = 0.439), but no statistical significance was obtained and this data did not allow conclusions due to a small sample size of CSF studies. This study suggests that reduced Zn levels in the serum and plasma are associated with an increased risk for PD.
Collapse
Affiliation(s)
- Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China
| | - Ming-Yan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China
| | - Min-Jie Wei
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
45
|
Genrikhs EE, Stelmashook EV, Turovetskii VB, Khaspekov LG, Isaev NK. Copper ions potentiate a decrease in the mitochondrial membrane potential in cultured cerebellar granule neurons during glucose deprivation. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Moore RET, Larner F, Coles BJ, Rehkämper M. High Precision Zinc Stable Isotope Measurement of Certified Biological Reference Materials Using the Double Spike Technique and Multiple Collector-ICP-MS. Anal Bioanal Chem 2017; 409:2941-2950. [PMID: 28210756 PMCID: PMC5366171 DOI: 10.1007/s00216-017-0240-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/09/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Biological reference materials with well-characterised stable isotope compositions are lacking in the field of 'isotope biochemistry', which seeks to understand bodily processes that rely on essential metals by determining metal stable isotope ratios. Here, we present Zn stable isotope data for six biological reference materials with certified trace metal concentrations: fish muscle, bovine muscle, pig kidney, human hair, human blood serum and human urine. Replicate analyses of multiple aliquots of each material achieved reproducibilities (2sd) of 0.04-0.13‰ for δ66/64Zn (which denotes the deviation of the 66Zn/64Zn ratio of a sample from a pure Zn reference material in parts per 1000). This implies only very minor isotopic heterogeneities within the samples, rendering them suitable as quality control materials for Zn isotope analyses. This endorsement is reinforced by (i) the close agreement of our Zn isotope data for two of the samples (bovine muscle and human blood serum) to previously published results for different batches of the same material and (ii) the similarity of the isotopic data for the samples (δ66/64Zn ≈ -0.8 to 0.0‰) to previously published Zn isotope results for similar biological materials. Further tests revealed that the applied Zn separation procedure is sufficiently effective to enable accurate data acquisition even at low mass resolving power (M/ΔM ≈ 400), as measurements and analyses conducted at much higher mass resolution (M/ΔM ≈ 8500) delivered essentially identical results.
Collapse
Affiliation(s)
- Rebekah E T Moore
- Department of Earth Science and Engineering, Imperial College London, Royal School of Mines, Prince Consort Rd, Kensington, London, SW7 2AZ, UK.
| | - Fiona Larner
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Barry J Coles
- Department of Earth Science and Engineering, Imperial College London, Royal School of Mines, Prince Consort Rd, Kensington, London, SW7 2AZ, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College London, Royal School of Mines, Prince Consort Rd, Kensington, London, SW7 2AZ, UK
| |
Collapse
|
47
|
Bhunia S, Singh A, Ojha AK. Investigation of the encapsulation of metal cations (Cu2+, Zn2+, Ca2+ and Ba2+) by the dipeptide Phe–Phe using natural bond orbital theory and molecular dynamics simulation. J Mol Model 2017; 23:88. [DOI: 10.1007/s00894-017-3248-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
|
48
|
Galván-García EA, Agacino-Valdés E, Franco-Pérez M, Gómez-Balderas R. [Cu(H2O) n ]2+ (n = 1–6) complexes in solution phase: a DFT hierarchical study. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2056-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Reid CA, Hildebrand MS, Mullen SA, Hildebrand JM, Berkovic SF, Petrou S. Synaptic Zn 2+ and febrile seizure susceptibility. Br J Pharmacol 2016; 174:119-125. [PMID: 27771943 DOI: 10.1111/bph.13658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Zn2+ , the second most prevalent trace element in the body, is essential for supporting a wide range of biological functions. While the majority of Zn2+ in the brain is protein-bound, a significant proportion of free Zn2+ is found co-localized with glutamate in synaptic vesicles and is released in an activity-dependent manner. Clinical studies have shown Zn2+ levels are significantly lower in blood and cerebrospinal fluid of children that suffer febrile seizures. Likewise, investigations in multiple animal models demonstrate that low levels of brain Zn2+ increase seizure susceptibility. Recent work provides human genetic evidence that disruption of brain Zn2+ homeostasis at the level of the synapse is associated with increased seizure susceptibility. In this review, we have explored the clinical, functional and genetic data supporting the view that low synaptic Zn2+ increases cellular excitability and febrile seizure susceptibility. Finally, the review focuses on the potential of therapeutic Zn2+ supplementation for at risk patients.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Saul A Mullen
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Steven Petrou
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Solaimani P, Saffari A, Sioutas C, Bondy SC, Campbell A. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons. Neurotoxicology 2016; 58:50-57. [PMID: 27851901 DOI: 10.1016/j.neuro.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022]
Abstract
Exposure to ambient particulate matter (PM) has been associated with the onset of neurodevelopmental and neurodegenerative disorders, but the mechanism of toxicity remains unclear. To gain insight into this neurotoxicity, this study sought to examine global gene expression changes caused by exposure to ambient ultrafine PM. Microarray analysis was performed on primary human neurons derived from fetal brain tissue after a 24h exposure to 20μg/mL of ambient ultrafine particles. We found a majority of the changes in noncoding RNAs, which are involved in epigenetic regulation of gene expression, and thereby could impact the expression of several other protein coding gene targets. Although neurons from biologically different lot numbers were used, we found a significant increase in the expression of metallothionein 1A and 1F in all samples after exposure to particulate matter as confirmed by quantitative PCR. These metallothionein 1 proteins are responsible for neuroprotection after exposure to environmental insult but prolonged induction can be toxic. Epidemiological studies have reported that in utero exposure to ultrafine PM not only leads to neurodevelopmental and behavioral abnormalities, but may also predispose the progeny to neurodegenerative disease later in life by genetic imprinting. Our results pinpoint some of the PM-induced genetic changes that may underlie these findings.
Collapse
Affiliation(s)
- Parrisa Solaimani
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Arian Saffari
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|