1
|
Reshma A, Subramanian A, Kumarasamy V, Tamilanban T, Sekar M, Gan S, Subramaniyan V, Wong L, Rani N, Wu Y. Neurocognitive effects of proanthocyanidin in Alzheimer's disease: a systematic review of preclinical evidence. Braz J Med Biol Res 2024; 57:e13587. [PMID: 39504064 PMCID: PMC11540257 DOI: 10.1590/1414-431x2024e13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Cognitive disorders and dementia largely influence individual independence and orientation. Based on the Alzheimer's Disease International (ADI) estimation, approximately 75% of individuals with dementia are undiagnosed. In fact, in some low- and middle-income countries, the percentage is as high as 90%. In this systematic review, which is based on PRISMA guidelines, we aim to identify the mechanism of action of proanthocyanidin. Finding a natural product alternative as a potential nootropic can help increase the number of armamentariums against dementia and other cognitive impairments. In this preclinical research, we determined the effect of proanthocyanidins on Alzheimer's disease (AD) by searching electronic bibliographic databases like Scopus, Proquest, ScienceDirect, PubMed, and Google. There was no imposed time limit. However, the search was limited to only English articles. The review protocol is registered on PROSPERO as CRD42022356301. A population, intervention, control, and outcomes (PICO) technique was utilized for report inclusion, and all reports were assessed for risk of bias by using the SYRCLE's RoB tool. The article's bibliographic information, induction model, type of proanthocyanidins, animal strain/weight/age, and outcome measurements were acquired from ten papers and are reported here. Further analysis was validated and determined for the review. The included studies met the review's inclusion criteria and suggested that proanthocyanidins have a neurocognitive effect against AD. Additionally, the effectiveness of proanthocyanidins in reducing oxidative stress, acetylcholinesterase activity, amyloid beta, its efficacy in alleviating superoxide dismutase, cognitive properties, and in facilitating cholinergic transmission in various models of AD has been collectively observed in ten studies.
Collapse
Affiliation(s)
- A. Reshma
- Department of Pharmacology, SRM College of Pharmacy, SRM
Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu,
India
| | - A. Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM
Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu,
India
| | - V. Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of
Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur,
Malaysia
| | - T. Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM
Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu,
India
- Department of Occupational Safety and Health, Faculty of Public
Health, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Health and Life Sciences, INTI International
University, Nilai, Malaysia
- Department of Pharmacology, Faculty of Medicine, MAHSA
University, Bandar Saujana Putra, Selangor, Malaysia
| | - M. Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway,
Selangor, Malaysia
| | - S.H. Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway,
Selangor, Malaysia
| | - V. Subramaniyan
- Department of Medical Sciences, School of Medical and Life
Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - L.S. Wong
- Faculty of Health and Life Sciences, INTI International
University, Nilai, Malaysia
| | - N.N.I.M. Rani
- Faculty of Pharmacy and Health Sciences, Royal College of
Medicine Perak, Universiti Kuala Lumpur, Perak, Malaysia
| | - Y.S. Wu
- Sunway Microbiome Centre & Department of Biological
Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya,
Selangor, Malaysia
| |
Collapse
|
2
|
Bobkova NV, Chuvakova LN, Kovalev VI, Zhdanova DY, Chaplygina AV, Rezvykh AP, Evgen'ev MB. A Mouse Model of Sporadic Alzheimer's Disease with Elements of Major Depression. Mol Neurobiol 2024:10.1007/s12035-024-04346-7. [PMID: 38980563 DOI: 10.1007/s12035-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis. On top of this, the synthesis of neurotrophic factors decreases leading to the disruption of the cytoskeleton of neurons, an increase in the level of intracellular calcium, and the activation of tau protein hyperphosphorylation. Moreover, the acetylcholinergic system is deficient in the background of the hyperactivation of acetylcholinesterase. Importantly, the activity of the dopaminergic, endorphin, and opiate systems in OBX mice decreases, leading to hormonal dysfunction. On the other hand, genes responsible for the regulation of circadian rhythms, cell migration, and innate immunity are activated in OBX animals. All this takes place in the background of a drastic downregulation of ribosomal protein genes in the brain. The obtained results indicate that OBX mice represent a model of Alzheimer's disease with elements of major depression.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - V I Kovalev
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D Y Zhdanova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A V Chaplygina
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
3
|
van Rensburg DJ, Lindeque Z, Harvey BH, Steyn SF. Ndufs4 KO mice: A model to study comorbid mood disorders associated with mitochondrial dysfunction. Pharmacol Biochem Behav 2024; 234:173689. [PMID: 38070656 DOI: 10.1016/j.pbb.2023.173689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
The Ndufs4 knockout (KO) mouse is a validated and robust preclinical model of mitochondrial diseases (specifically Leigh syndrome), that displays a narrow window of relative phenotypical normality, despite its inherent mitochondrial complex I dysfunction and severe phenotype. Preclinical observations related to psychiatric comorbidities that arise in patients with mitochondrial diseases and indeed in Leigh syndrome are, however, yet to be investigated in this model. Strengthening this narrative is the fact that major depression and bipolar disorder are known to present with deficits in mitochondrial function. We therefore screened the behavioural profile of male and female Ndufs4 KO mice (relative to heterozygous; HET and wildtype; WT mice) between postnatal days 28 and 35 for locomotor, depressive- and anxiety-like alterations and linked it with selected brain biomarkers, viz. serotonin, kynurenine, and redox status in brain areas relevant to psychiatric pathologies (i.e., prefrontal cortex, hippocampus, and striatum). The Ndufs4 KO mice initially displayed depressive-like behaviour in the tail suspension test on PND31 but not on PND35 in the forced swim test. In the mirror box test, increased risk resilience was observed. Serotonin levels of KO mice, compared to HET controls, were increased on PND36, together with increased tryptophan to serotonin and kynurenine turnover. Kynurenine to kynurenic acid turnover was however decreased, while reduced versus oxidized glutathione ratio (GSH/GSSG) was increased. When considering the comorbid psychiatric traits of patients with mitochondrial disorders, this work elaborates on the neuropsychiatric profile of the Ndufs KO mouse. Secondly, despite locomotor differences, Ndufs4 KO mice present with a behavioural profile not unlike rodent models of bipolar disorder, namely variable mood states and risk-taking behaviour. The model may elucidate the bio-energetic mechanisms underlying mood disorders, especially in the presence of mitochondrial disease. Studies are however required to further validate the model's translational relevance.
Collapse
Affiliation(s)
- Daniël J van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
4
|
Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 2023; 48:725-744. [PMID: 36385213 DOI: 10.1007/s11064-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.
Collapse
|
5
|
Xu HN, Gourmaud S, Podsednik A, Li X, Zhao H, Jensen FE, Talos DM, Li LZ. Optical Redox Imaging of Ex Vivo Hippocampal Tissue Reveals Age-Dependent Alterations in the 5XFAD Mouse Model of Alzheimer’s Disease. Metabolites 2022; 12:metabo12090786. [PMID: 36144191 PMCID: PMC9504813 DOI: 10.3390/metabo12090786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
A substantial decline in nicotinamide adenine dinucleotide (NAD) has been reported in brain tissue homogenates or neurons isolated from Alzheimer’s disease (AD) models. NAD, together with flavin adenine dinucleotide (FAD), critically supports energy metabolism and maintains mitochondrial redox homeostasis. Optical redox imaging (ORI) of the intrinsic fluorescence of reduced NAD (NADH) and oxidized FAD yields cellular redox and metabolic information and provides biomarkers for a variety of pathological conditions. However, its utility in AD has not been characterized at the tissue level. We performed ex vivo ORI of freshly dissected hippocampi from a well-characterized AD mouse model with five familial Alzheimer’s disease mutations (5XFAD) and wild type (WT) control littermates at various ages. We found (1) a significant increase in the redox ratio with age in the hippocampi of both the WT control and the 5XFAD model, with a more prominent redox shift in the AD hippocampi; (2) a higher NADH in the 5XFAD versus WT hippocampi at the pre-symptomatic age of 2 months; and (3) a negative correlation between NADH and Aβ42 level, a positive correlation between Fp and Aβ42 level, and a positive correlation between redox ratio and Aβ42 level in the AD hippocampi. These findings suggest that the ORI can be further optimized to conveniently study the metabolism of freshly dissected brain tissues in animal models and identify early AD biomarkers.
Collapse
Affiliation(s)
- He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (H.N.X.); (D.M.T.); (L.Z.L.)
| | - Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison Podsednik
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Frances E. Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia M. Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (H.N.X.); (D.M.T.); (L.Z.L.)
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (H.N.X.); (D.M.T.); (L.Z.L.)
| |
Collapse
|
6
|
Nguyen HT, Le XT, Van Nguyen T, Phung HN, Pham HTN, Nguyen KM, Matsumoto K. Ursolic acid and its isomer oleanolic acid are responsible for the anti-dementia effects of Ocimum sanctum in olfactory bulbectomized mice. J Nat Med 2022; 76:621-633. [PMID: 35218459 DOI: 10.1007/s11418-022-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
Abstract
This study aims to clarify the bioactive constituents responsible for the anti-dementia effects of Ocimum sanctum Linn. ethanolic extract (OS) using olfactory bulbectomized (OBX) mice, an animal model of dementia. The effects of OS or its extract further fractionated with n-hexane (OS-H), ethyl acetate (OS-E), and n-butanol (OS-B) on the spatial cognitive deficits of OBX mice were elucidated by the modified Y-maze tests. The effects of the major constituents of the most active OS fraction were also elucidated using the reference drug donepezil. The administration of OS and OS-E ameliorated the spatial cognitive deficits caused by OBX, whereas OS-H or OS-B had no effect. Two major constituents, ursolic acid (URO) and oleanolic acid (OLE), and three minor constituents were isolated from OS-E. URO (6 and 12 mg/kg) and OLE (24 mg/kg) attenuated the OBX-induced cognitive deficits. URO (6 mg/kg) and donepezil reversed the OBX-induced down-regulation of vascular endothelial growth factor (VEGF) and choline acetyltransferase expression levels in the hippocampus. URO inhibited the ex vivo activity of acetylcholinesterase with similar efficacy to donepezil. URO inhibited the in vitro activity of acetylcholinesterase (IC50 = 106.5 μM), while the effects of OS, OS-E, and other isolated compounds were negligible. These findings suggest that URO and OLE are responsible for the anti-dementia action of OS extract, whereas URO possesses a more potent anti-dementia effect than its isomer OLE. The effects of URO are, at least in part, mediated by normalizing the function of central cholinergic systems and VEGF protein expression.
Collapse
Affiliation(s)
- Hien Thu Nguyen
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi, 10000, Vietnam
| | - Xoan Thi Le
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi, 10000, Vietnam.
| | - Tai Van Nguyen
- Department of Phytochemistry, National Institute of Medicinal Materials, Hanoi, 10000, Vietnam
| | - Hoa Nhu Phung
- Department of Phytochemistry, National Institute of Medicinal Materials, Hanoi, 10000, Vietnam
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi, 10000, Vietnam
| | - Khoi Minh Nguyen
- Department of Phytochemistry, National Institute of Medicinal Materials, Hanoi, 10000, Vietnam
| | - Kinzo Matsumoto
- Graduate School of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| |
Collapse
|
7
|
Intranasal Administration of Microvesicles in the Brain of Mice with Induced Model of Alzheimer’s Type of Neurodegeneration. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
9
|
Bobkova NV, Zhdanova DY, Belosludtseva NV, Penkov NV, Mironova GD. Intranasal administration of mitochondria improves spatial memory in olfactory bulbectomized mice. Exp Biol Med (Maywood) 2021; 247:416-425. [PMID: 34727745 DOI: 10.1177/15353702211056866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer's type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Natalia V Bobkova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Daria Y Zhdanova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
10
|
Systematic review and meta-analysis on the role of mitochondrial cytochrome c oxidase in Alzheimer's disease. Acta Neuropsychiatr 2021; 33:55-64. [PMID: 33256871 DOI: 10.1017/neu.2020.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study was designed to test the hypothesis that there is a reduction in the activity of the enzyme cytochrome c oxidase (Cox) in Alzheimer's disease (AD). METHODS Systematic review of literature and meta-analysis were used with data obtained from the PubMed, Scopus, MEDLINE, Lilacs, Eric and Cochrane. The keywords were Alzheimer's AND Cox AND mitochondria; Alzheimer's AND Cox AND mitochondria; Alzheimer's AND complex IV AND mitochondria. A total of 1372 articles were found, 23 of them fitting the inclusion criteria. The data were assembled in an Excel spreadsheet and analysed using the RevMan software. A random effects model was adopted to the estimative of the effect. RESULTS The data shows a significant decrease in the activity of the Cox AD patients and animal models. CONCLUSION Cox enzyme may be an important molecular component involved in the mechanisms underlying AD. Therefore, this enzyme may represent a possible new biomarker for the disease as a complementary diagnosis and a new treatment target for AD.
Collapse
|
11
|
Avetisyan A, Balasanyants S, Simonyan R, Koroev D, Kamynina A, Zinovkin R, Bobkova N, Volpina O. Synthetic fragment (60-76) of RAGE improves brain mitochondria function in olfactory bulbectomized mice. Neurochem Int 2020; 140:104799. [PMID: 32783973 DOI: 10.1016/j.neuint.2020.104799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is considered to contribute to the pathogenesis of Alzheimer's disease (AD), mediating amyloid beta (Aβ) accumulation, mitochondrial damage, and neuroinflammation. Previously, we have synthesized small peptides corresponding to the fragments (60-76) (P1) and (60-62) (P2) of the RAGE extracellular domain, and have shown that administration of P1 fragment but not P2 results in restoration of the spatial memory and decreases the brain Aβ (1-40) level in olfactory bulbectomized (OBX) mice demonstrating main features of Alzheimer's type neurodegeneration. In the present study, we have investigated the supposed mechanism of the therapeutic efficacy of P1 RAGE fragment and compared it to P2 short fragment. We have found that P1 restored activities of the respiratory chain in the Complexes I and IV in both cortical and hippocampal mitochondria of the OBX mice while P2 had no effect. Besides, fluorescein-labeled analog Flu-P1 bound to Aβ (1-40) and Aβ (1-42) with high affinity (Kd in the nanomolar range) whereas Flu-P2 revealed low affinity with tenfold higher Kd value for Aβ (1-40) and did not bind to Aβ (1-42). However, neither of the peptides had a notable impact on inflammation, estimated as mRNA expression of proinflammatory cytokines in the brain tissues of OBX mice. Taken together, our results suggest that direct Aβ-P1 interaction is one of the molecular events mediating the protection of the mitochondria in OBX animals from Aβ toxic effect. The RAGE fragment P1 would be the soluble decoy for Aβs and serve as a promising therapeutic agent against neurodegeneration accompanied by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Armine Avetisyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Samson Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Ruben Simonyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Anna Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Roman Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia Bobkova
- Institute of Cell Biophysics RAS, Moscow Region, Pushchino, Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| |
Collapse
|
12
|
Zuo LJ, Guo P, Liu L, Yu SY, Lian TH, Yu QJ, Hu Y, Jin Z, Wang RD, Piao YS, Li LX, Wang YJ, Wang XM, Zhang W. Analyses of Clinical Features and Investigations on Potential Mechanisms in Patients with Alzheimer's Disease and Olfactory Dysfunction. J Alzheimers Dis 2019; 66:789-799. [PMID: 30347619 DOI: 10.3233/jad-180425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND OD is common in patients with Alzheimer's disease (AD). However, the relationship between OD and clinical symptoms and the potential mechanisms of OD in AD patients are still unknown. OBJECTIVE To explore the relationship between OD and clinical symptoms and the potential mechanisms of OD in AD patients. METHODS We evaluated OD using the Hyposmia Rating Scale (HRS), classified patients into AD with OD (AD-OD) and AD with no OD (AD-NOD) groups, and detected the levels of free radicals and inflammatory factors, including hydroxyl radical (•OH), hydrogen peroxide (H2O2), nitric oxide, interleukin-1β, interleukin-6, tumor necrosis factor-α, and prostaglandin E2 in serum from AD patients. RESULTS It was shown that the scores of the Mini-Mental State Examination, Animal Fluency Test, Boston Naming Test (BNT), and Auditory Verbal Learning Test-delayed recall were all significantly lower and the score of overall activity of daily living (ADL) and instrumental ADL were significantly higher in AD-OD group than those in AD-NOD group. Compared with AD-NOD group, •OH level in serum was prominently elevated, and H2O2 level was dramatically declined in AD-OD group. In the correlation analysis, HRS score was significantly and positively correlated with the score of BNT, and negatively correlated with •OH level in serum. CONCLUSIONS AD-OD patients suffered from severe cognitive impairment in the domain of language. Oxidative stress might be correlated with AD-OD featured by the drastically increased •OH level in serum.
Collapse
Affiliation(s)
- Li-Jun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shu-Yang Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiu-Jin Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Dan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying-Shan Piao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-Jie Wang
- Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory on Parkinson's Disease, Beijing, China
| |
Collapse
|
13
|
Fetisova EK, Muntyan MS, Lyamzaev KG, Chernyak BV. Therapeutic Effect of the Mitochondria-Targeted Antioxidant SkQ1 on the Culture Model of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2082561. [PMID: 31354902 PMCID: PMC6636568 DOI: 10.1155/2019/2082561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/18/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease of unknown etiology characterized by inflammation, demyelination, and axonal degeneration that affects both the white and gray matter of CNS. Recent large-scale epidemiological and genomic studies identified several genetic and environmental risk factors for the disease. Among them are environmental factors of infectious origin, possibly causing MS, which include Epstein-Barr virus infection, reactivation of some endogenous retrovirus groups, and infection by pathogenic bacteria (mycobacteria, Chlamydia pneumoniae, and Helicobacter pylori). However, the nature of the events leading to the activation of immune cells in MS is mostly unknown and there is no effective therapy against the disease. Amazingly, whatever the cause of the disease, signs of damage to the nerve tissue with MS lesions were the same as with infectious leprosy, while in the latter case nitrozooxidative stress was suggested as the main cause of the nerve damage. With this in mind and following the hypothesis that excessive production of mitochondrial reactive oxygen species critically contributes to MS pathogenesis, we studied the effect of mitochondria-targeted antioxidant SkQ1 in an in vitro MS model of the primary oligodendrocyte culture of the cerebellum, challenged with lipopolysaccharide (LPS). SkQ1 was found to accumulate in the mitochondria of oligodendrocytes and microglial cells, and it was also found to prevent LPS-induced inhibition of myelin production in oligodendrocytes. The results implicate that mitochondria-targeted antioxidants could be promising candidates as components of a combined therapy for MS and related neurological disorders.
Collapse
Affiliation(s)
- Elena K. Fetisova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria S. Muntyan
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Islam BU, Jabir NR, Tabrez S. The role of mitochondrial defects and oxidative stress in Alzheimer's disease. J Drug Target 2019; 27:932-942. [PMID: 30775938 DOI: 10.1080/1061186x.2019.1584808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder. Recent reports suggest that it affects more than 36 million people worldwide and accounts 60-80% of all cases of dementia. It is characterised by aberrations of multiple interactive systems and pathways, which ultimately lead to memory loss and cognitive dysfunction. The exact mechanisms and initial triggering factors that underpin the known pathological defects in AD remain to be fully elucidated. In addition, an effective treatment strategy to reduce the progression of AD is yet to be achieved. In the light of above-mentioned facts, our article deals with the exploration of the mitochondrial defect and oxidative stress leading to this devastating disease. In this communication, we have highlighted specific mitochondrial and antioxidant-directed approach to ameliorate and manage AD. Nonetheless, new approaches should also be investigated that could tackle various molecular events involved in AD pathogenicity.
Collapse
Affiliation(s)
- Badar Ul Islam
- a Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University , Aligarh , India
| | - Nasimudeen R Jabir
- b King Fahd Medical Research Center, King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Shams Tabrez
- b King Fahd Medical Research Center, King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
15
|
Fruhmann G, Marchal C, Vignaud H, Verduyckt M, Talarek N, De Virgilio C, Winderickx J, Cullin C. The Impact of ESCRT on Aβ 1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer's Disease. Front Mol Neurosci 2018; 11:406. [PMID: 30455629 PMCID: PMC6230623 DOI: 10.3389/fnmol.2018.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Aβ metabolism plays a pivotal role in Alzheimer’s disease. Here, we used a yeast model to monitor Aβ42 toxicity when entering the secretory pathway and demonstrate that processing in, and exit from the endoplasmic reticulum (ER) is required to unleash the full Aβ42 toxic potential. Consistent with previously reported data, our data suggests that Aβ42 interacts with mitochondria, thereby enhancing formation of reactive oxygen species and eventually leading to cell demise. We used our model to search for genes that modulate this deleterious effect, either by reducing or enhancing Aβ42 toxicity, based on screening of the yeast knockout collection. This revealed a reduced Aβ42 toxicity not only in strains hampered in ER-Golgi traffic and mitochondrial functioning but also in strains lacking genes connected to the cell cycle and the DNA replication stress response. On the other hand, increased Aβ42 toxicity was observed in strains affected in the actin cytoskeleton organization, endocytosis and the formation of multivesicular bodies, including key factors of the ESCRT machinery. Since the latter was shown to be required for the repair of membrane lesions in mammalian systems, we studied this aspect in more detail in our yeast model. Our data demonstrated that Aβ42 heavily disturbed the plasma membrane integrity in a strain lacking the ESCRT-III accessory factor Bro1, a phenotype that came along with a severe growth defect and enhanced loading of lipid droplets. Thus, it appears that also in yeast ESCRT is required for membrane repair, thereby counteracting one of the deleterious effects induced by the expression of Aβ42. Combined, our studies once more validated the use of yeast as a model to investigate fundamental mechanisms underlying the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Christelle Marchal
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | - Hélène Vignaud
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | | | - Nicolas Talarek
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | | | - Christophe Cullin
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| |
Collapse
|
16
|
Kozin MS, Kulakova OG, Favorova OO. Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. BIOCHEMISTRY (MOSCOW) 2018; 83:813-830. [PMID: 30200866 DOI: 10.1134/s0006297918070052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functional disruption and neuronal loss followed by progressive dysfunction of the nervous system underlies the pathogenesis of numerous disorders defined as "neurodegenerative diseases". Multiple sclerosis, a chronic inflammatory demyelinating disease of the central nervous system resulting in serious neurological dysfunctions and disability, is one of the most common neurodegenerative diseases. Recent studies suggest that disturbances in mitochondrial functioning are key factors leading to neurodegeneration. In this review, we consider data on mitochondrial dysfunctions in multiple sclerosis, which were obtained both with patients and with animal models. The contemporary data indicate that the axonal degeneration in multiple sclerosis largely results from the activation of Ca2+-dependent proteases and from misbalance of ion homeostasis caused by energy deficiency. The genetic studies analyzing association of mitochondrial DNA polymorphic variants in multiple sclerosis suggest the participation of mitochondrial genome variability in the development of this disease, although questions of the involvement of individual genomic variants are far from being resolved.
Collapse
Affiliation(s)
- M S Kozin
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O G Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O O Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
17
|
Bobkova NV, Novikov VV, Medvinskaya NI, Aleksandrova IY, Nesterova IV, Fesenko EE. Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer's disease. Electromagn Biol Med 2018; 37:127-137. [PMID: 29771571 DOI: 10.1080/15368378.2018.1471700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Subchronic effect of a weak combined magnetic field (MF), produced by superimposing a constant component, 42 µT and an alternating MF of 0.08 µT, which was the sum of two frequencies of 4.38 and 4.88 Hz, was studied in olfactory bulbectomized (OBE) and transgenic Tg (APPswe, PSEN1) mice, which were used as animal models of sporadic and heritable Alzheimer's disease (AD) accordingly. Spatial memory was tested in a Morris water maze on the following day after completion of training trials with the hidden platform removed. The amyloid-β (Aβ) level was determined in extracts of the cortex and hippocampus of mice using a specific DOT analysis while the number and dimensions of amyloid plaques were detected after their staining with thioflavin S in transgenic animals. Exposure to the MFs (4 h/day for 10 days) induced the decrease of Aβ level in brain of OBE mice and reduced the number of Aβ plaques in the cortex and hippocampus of Tg animals. However, memory improvement was revealed in Tg mice only, but not in the OBE animals. Here, we suggest that in order to prevent the Aβ accumulation, MFs could be used at early stage of neuronal degeneration in case of AD and other diseases with amyloid protein deposition in other tissues.
Collapse
Affiliation(s)
- Natalia V Bobkova
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Vadim V Novikov
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Natalia I Medvinskaya
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Irina Y Aleksandrova
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Inna V Nesterova
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Eugenii E Fesenko
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| |
Collapse
|
18
|
Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 2018; 592:692-702. [PMID: 29292494 DOI: 10.1002/1873-3468.12964] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Mitochondria are key cell organelles in that they are responsible for energy production and control many processes from signalling to cell death. The function of the mitochondrial electron transport chain is coupled with the production of reactive oxygen species (ROS) in the form of superoxide anion or hydrogen peroxide. As a result of the constant production of ROS, mitochondria are protected by highly efficient antioxidant systems. The rapidly changing levels of ROS in mitochondria, coupled with multiple essential cellular functions, make ROS apt for physiological signalling. Thus, mutations, environmental toxins and chronic ischaemic conditions could affect the mitochondrial redox balance and lead to the development of pathology. In long-living and non-mitotic cells such as neurons, oxidative stress induced by overproduction of mitochondrial ROS or impairment of the antioxidant defence results in a dysfunction of mitochondria and initiation of the cell death cascade. Mitochondrial ROS overproduction and changes in mitochondrial redox homeostasis have been shown to be involved in both a number of neurological conditions and a majority of neurodegenerative diseases. Here, we summarise the involvement of mitochondrial ROS in the mechanism of neuronal loss of major neurodegenerative disorders.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
19
|
Lian W, Jia H, Xu L, Zhou W, Kang D, Liu A, Du G. Multi-Protection of DL0410 in Ameliorating Cognitive Defects in D-Galactose Induced Aging Mice. Front Aging Neurosci 2017; 9:409. [PMID: 29276489 PMCID: PMC5727065 DOI: 10.3389/fnagi.2017.00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/27/2017] [Indexed: 01/28/2023] Open
Abstract
D-galactose has been reported to accelerate senescence in rodents, accompanied by a decline in learning and memory. We used a model of D-galactose-induced amnesia for the efficacy evaluation and pharmacologic studies of active compounds against Alzheimer's disease (AD). DL0410 is a potent inhibitor against acetylcholinesterase (AChE) and, in the present study, the effect of DL0410 was evaluated in this model. We found that DL0410 could significantly improve the learning and memory of D-galactose induced aging mice in a series of behavioral tests: novel-object recognition test, nest-building test, Morris water maze test and step-through test. Pharmacologic studies were conducted from several aspects: the cholinergic system, mitochondrial respiration, oxidative stress, neuroinflammation, apoptosis and synaptic loss. The acetylcholine level and AChE activity were not altered by D-galactose but were slightly affected by DL0410 in the brain. DL0410 could significantly improve decreased mitochondrial respiration in the NADH chain and FADH2 chain, and protect mitochondrial ultrastructure. DL0410 reduced the accumulation of advanced glycation end products (AGEs) and malondialdehyde (MDA) and increase the total antioxidant capability of the brain via an increase in activity of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). RAGE expression was inhibited by DL0410, followed by the decreased activation of astrocytes and microglia. Subsequent phosphorylation of NF-κB was also reversed by DL0410, with lower expression of cyclooxygenase-2 (COX2) and iNOS. With respect to apoptosis, the activation of caspase 3 and cleavage of PARP were downregulated significantly by DL0410, after the inhibition of phosphorylation of JNK induced by inflammation and oxidative stress. Synaptic protection by DL0410 was also demonstrated. These data suggest that mitochondrial protection has a primary role in the ameliorating effect of DL0410 on the impaired learning and memory, oxidative stress, inflammation, apoptosis and synaptic loss induced by D-galactose. DL0410 is a promising candidate for the treatment of aging-related AD, and this study lays an important foundation for its further research and development.
Collapse
Affiliation(s)
- Wenwen Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lvjie Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Gulyaeva NV, Bobkova NV, Kolosova NG, Samokhin AN, Stepanichev MY, Stefanova NA. Molecular and Cellular Mechanisms of Sporadic Alzheimer's Disease: Studies on Rodent Models in vivo. BIOCHEMISTRY (MOSCOW) 2017; 82:1088-1102. [PMID: 29037130 DOI: 10.1134/s0006297917100029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, recent data are presented on molecular and cellular mechanisms of pathogenesis of the most widespread (about 95%) sporadic forms of Alzheimer's disease obtained on in vivo rodent models. Although none of the available models can fully reproduce the human disease, several key molecular mechanisms (such as dysfunction of neurotransmitter systems, especially of the acetylcholinergic system, β-amyloid toxicity, oxidative stress, neuroinflammation, mitochondrial dysfunction, disturbances in neurotrophic systems) are confirmed with different models. Injection models, olfactory bulbectomy, and senescence accelerated OXYS rats are reviewed in detail. These three approaches to in vivo modeling of sporadic Alzheimer's disease have demonstrated a considerable similarity in molecular and cellular mechanisms of pathology development. Studies on these models provide complementary data, and each model possesses its specific advantages. A general analysis of the data reported for the three models provides a multifaceted and the currently most complete molecular picture of sporadic Alzheimer's disease. This is highly relevant also from the practical viewpoint because it creates a basis for elaboration and preclinical studies of means for treatment of this disease.
Collapse
Affiliation(s)
- N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | | | | | | | | | | |
Collapse
|
21
|
Cognitive behavioral therapy (CBT) for preventing Alzheimer's disease. Behav Brain Res 2017; 334:163-177. [PMID: 28743599 DOI: 10.1016/j.bbr.2017.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
This review provides the rationale for implementing cognitive behavioral therapy (CBT) for the prevention of Alzheimer's disease (AD). There are known risk factors associated with the development of AD, some of which may be ameliorated with CBT. We posit that treating the risk factors of inactivity, poor diet, hyposmia and anosmia, sleep disorders and lack of regularly engaged challenging cognitive activity will modify the physiology of the brain sufficiently to avoid the accumulation of excess proteins, including amyloid beta, causal events in the development of AD. Further, the successful treatment of the listed risk factors is well within our technology to do so and, even further, it is cost effective. Also, there is considerable scientific literature to support the proposition that, if implemented by well-established practices, CBT will be effective and will be engaged by those of retirement age. That is, we present a biologically informed CBT for the prevention of the development of AD, i.e., an aspect of applied behavioral neuroscience.
Collapse
|
22
|
de Oliveira MR, Peres A, Ferreira GC. Pinocembrin Attenuates Mitochondrial Dysfunction in Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal: Role for the Erk1/2-Nrf2 Signaling Pathway. Neurochem Res 2016; 42:1057-1072. [PMID: 28000163 DOI: 10.1007/s11064-016-2140-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023]
Abstract
Pinocembrin (PB; 5,7-dihydroxyflavanone) is found in propolis and exhibits antioxidant activity in several experimental models. The antioxidant capacity of PB is associated with the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. The Nrf2/ARE axis mediates the expression of antioxidant and detoxifying enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase-1 (HO-1), and the catalytic (GCLC) and regulatory (GCLM) subunits of the rate-limiting enzyme in the synthesis of glutathione (GSH), γ-glutamate-cysteine ligase (γ-GCL). Nonetheless, it is not clear how PB exerts mitochondrial protection in mammalian cells. Human neuroblastoma SH-SY5Y cells were pretreated (4 h) with PB (0-25 µM) and then exposed to methylglyoxal (MG; 500 µM) for further 24 h. Mitochondria were isolated by differential centrifugation. PB (25 µM) provided mitochondrial protection (decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes; decreased mitochondrial free radical production; enhanced the content of GSH in mitochondria; rescued mitochondrial membrane potential-MMP) and blocked MG-triggered cell death by a mechanism dependent on the activation of the extracellular-related kinase (Erk1/2) and consequent upregulation of Nrf2. PB increased the levels of GPx, GR, HO-1, and mitochondrial GSH. The PB-induced effects were suppressed by silencing of Nrf2 with siRNA. Therefore, PB activated the Erk1/2-Nrf2 signaling pathway resulting in mitochondrial protection in SH-SY5Y cells exposed to MG. Our work shows that PB is a strong candidate to figure among mitochondria-focusing agents with pharmacological potential.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT, Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| | - Alessandra Peres
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Centro de Pesquisa da Pós-Graduação, Centro Universitário Metodista IPA, Porto Alegre, Brazil
| | - Gustavo Costa Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|