1
|
Luqman A. The orchestra of human bacteriome by hormones. Microb Pathog 2023; 180:106125. [PMID: 37119938 DOI: 10.1016/j.micpath.2023.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Human microbiome interact reciprocally with the host. Recent findings showed the capability of microorganisms to response towards host signaling molecules, such as hormones. Studies confirmed the complex response of bacteria in response to hormones exposure. These hormones impact many aspects on bacteria, such as the growth, metabolism, and virulence. The effects of each hormone seem to be species-specific. The most studied hormones are cathecolamines also known as stress hormones that consists of epinephrine, norepinephrine and dopamine. These hormones affect the growth of bacteria either inhibit or enhance by acting like a siderophore. Epinephrine and norepinephrine have also been reported to activate QseBC, a quorum sensing in Gram-negative bacteria and eventually enhances the virulence of pathogens. Other hormones were also reported to play a role in shaping human microbiome composition and affect their behavior. Considering the complex response of bacteria on hormones, it highlights the necessity to take the impact of hormones on bacteria into account in studying human health in relation to human microbiome.
Collapse
Affiliation(s)
- Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| |
Collapse
|
2
|
Ovcharova MA, Schelkunov MI, Geras’kina OV, Makarova NE, Sukhacheva MV, Martyanov SV, Nevolina ED, Zhurina MV, Feofanov AV, Botchkova EA, Plakunov VK, Gannesen AV. C-Type Natriuretic Peptide Acts as a Microorganism-Activated Regulator of the Skin Commensals Staphylococcus epidermidis and Cutibacterium acnes in Dual-Species Biofilms. BIOLOGY 2023; 12:436. [PMID: 36979128 PMCID: PMC10045295 DOI: 10.3390/biology12030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The effect of C-type natriuretic peptide in a concentration closer to the normal level in human blood plasma was studied on the mono-species and dual-species biofilms of the skin commensal bacteria Cutibacterium acnes HL043PA2 and Staphylococcus epidermidis ATCC14990. Despite the marginal effect of the hormone on cutibacteria in mono-species biofilms, the presence of staphylococci in the community resulted in a global shift of the CNP effect, which appeared to increase the competitive properties of C. acnes, its proliferation and the metabolic activity of the community. S. epidermidis was mostly inhibited in the presence of CNP. Both bacteria had a significant impact on the gene expression levels revealed by RNA-seq. CNP did not affect the gene expression levels in mono-species cutibacterial biofilms; however, in the presence of staphylococci, five genes were differentially expressed in the presence of the hormone, including two ribosomal proteins and metal ABC transporter permease. In staphylococci, the Na-translocating system protein MpsB NADH-quinone oxidoreductase subunit L was downregulated in the dual-species biofilms in the presence of CNP, while in mono-species biofilms, two proteins of unknown function were downregulated. Hypothetically, at least one of the CNP mechanisms of action is via the competition for zinc, at least on cutibacteria.
Collapse
Affiliation(s)
- Maria A. Ovcharova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
| | - Olga V. Geras’kina
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | | | - Marina V. Sukhacheva
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Sergey V. Martyanov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Ekaterina D. Nevolina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Marina V. Zhurina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V. Feofanov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Ekaterina A. Botchkova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir K. Plakunov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrei V. Gannesen
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
3
|
Regulation of Lysozyme Activity by Human Hormones. IRANIAN BIOMEDICAL JOURNAL 2023; 27:58-65. [PMID: 36624688 PMCID: PMC9971709 DOI: 10.52547/ibj.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Lysozyme is a part of human and animal noncellular immunity. The regulation of its activity by hormones is poorly studied. The aim of this study was to test the in vitro activity of lysozyme in the presence of catecholamines, natriuretic hormones, and estradiol (E2). Methods Hormones were incubated with lysozyme, and the activity of lysozome was further determined using a test culture of Micrococcus luteus in the early exponential growth stage. The activity of lysozyme was assessed based on the rate of change in the OD of the test culture. Molecular docking was performed using SwissDock server http://www.swissdock.ch/docking), and molecular structures were further analyzed and visualized in the UCSF Chimera 1.15rc software. Results According to the results, epinephrine and norepinephrine increased lysozyme activity up to 180% compared to the hormone-free enzyme. Changing the pH of the medium from 6.3 to 5.5, increased the lysozyme activity in the presence of E2 up to 150-200 %. The results also showed that exposure to hormones could modify lysozyme ctivity, and this effect depends on the temperature and pH value. The molecular docking revealed a decrease in the activation energy of the active site of enzyme during the interaction of catecholamines with the amino acid residues, asp52 and glu35 of the active site. Conclusion Our findings demonstrate an additional mechanism for the involvement of lysozyme in humoral regulation of nonspecific immunity with respect to human pathogenic microflora and bacterial skin commensals by direct modulation of its activity using human hormones.
Collapse
|
4
|
Diuvenji EV, Nevolina ED, Mart’yanov SV, Zhurina MA, Kalmantaeva OV, Makarova MA, Botchkova EA, Firstova VV, Plakunov VK, Gannesen AV. Binary Biofilms of Staphylococcus aureus 209P and Kytococcus schroeteri H01: Dualistic Role of Kytococci and Cell Adhesion Alterations in the Presence of the A-Type Natriuretic Peptide. Microbiology (Reading) 2022. [DOI: 10.1134/s002626172260118x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
5
|
Gannesen AV, Ziganshin RH, Zdorovenko EL, Klimko AI, Ianutsevich EA, Danilova OA, Tereshina VM, Gorbachevskii MV, Ovcharova MA, Nevolina ED, Martyanov SV, Shashkov AS, Dmitrenok AS, Novikov AA, Zhurina MV, Botchkova EA, Toukach PV, Plakunov VK. Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin. Front Microbiol 2022; 13:1003942. [PMID: 36204611 PMCID: PMC9530943 DOI: 10.3389/fmicb.2022.1003942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10-9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.
Collapse
Affiliation(s)
- Andrei V. Gannesen
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evelina L. Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alena I. Klimko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Ianutsevich
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Olga A. Danilova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | | | - Maria A. Ovcharova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina D. Nevolina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Sergey V. Martyanov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei A. Novikov
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Marina V. Zhurina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Botchkova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Philipp V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir K. Plakunov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Dardouri M, Aljnadi IM, Deuermeier J, Santos C, Costa F, Martin V, Fernandes MH, Gonçalves L, Bettencourt A, Gomes PS, Ribeiro IA. Bonding antimicrobial rhamnolipids onto medical grade PDMS: A strategy to overcome multispecies vascular catheter-related infections. Colloids Surf B Biointerfaces 2022; 217:112679. [DOI: 10.1016/j.colsurfb.2022.112679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/06/2023]
|
7
|
Brain Natriuretic Peptide (BNP) Affects Growth and Stress Tolerance of Representatives of the Human Microbiome, Micrococcus luteus C01 and Alcaligenes faecalis DOS7. BIOLOGY 2022; 11:biology11070984. [PMID: 36101364 PMCID: PMC9311935 DOI: 10.3390/biology11070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The body of an average person weighing 70 kg contains approximately 39 trillion bacterial cells, which densely inhabit the gastrointestinal tract, skin, mucous membranes, etc. Bacteria respond to the signaling molecules in the human body, regulate the expression of the necessary genes, and thus adapt to the physiology of the host. Signaling molecules include hormones, neurotransmitters, immune system molecules, as well as natriuretic peptides, which are involved in the regulation of the circulatory system, water and electrolyte metabolism, and adipose tissue metabolism. Brain natriuretic peptide (BNP) is secreted by the ventricles during congestion and signals heart failure. This study showed that the presence of BNP in the growth medium of human symbiont bacteria affects their growth characteristics, survival, and stress resistance, including antibiotic resistance. It was concluded that bacterial populations that develop in a healthy person at a BNP level of up to 250 pg/mL will be more stress resistant than in a person suffering from heart failure. Our findings are promising to be used both in clinical medical practice and in the production of bacterial preparations for cosmetology, agriculture, and waste management. Abstract Brain natriuretic peptide (BNP) is secreted by the ventricles of the heart during overload to signal heart failure. Slight bilateral skin itching induced by BNP has been associated with response activity of the skin microbiota. In this work, we studied the effect of 25–250,000 pg BNP/mL on the growth, long-term survival, and stress (H2O2, antibiotics, salinity, heat and pH shock) resistance of human symbiont bacteria: Gram-positive Micrococcus luteus C01 and Gram-negative Alcaligenes faecalis DOS7. The effect of BNP turned out to be dose-dependent. Up to 250 pg BNP/mL made bacteria more stress resistant. At 2500 pg BNP/mL (heart failure) the thermosensitivity of the bacteria increased. Almost all considered BNP concentrations increased the resistance of bacteria to the action of tetracycline and ciprofloxacin. Both bacteria survived 1.3–1.7 times better during long-term (up to 4 months) storage. Our findings are important both for clinical medical practice and for practical application in other areas. For example, BNP can be used to obtain stress-resistant bacteria, which is important in the collection of microorganisms, as well as for the production of bacterial preparations and probiotics for cosmetology, agriculture, and waste management.
Collapse
|
8
|
Gannesen A, Schelkunov M, Geras'kina O, Makarova N, Sukhacheva M, Danilova N, Ovcharova M, Mart'yanov S, Pankratov T, Muzychenko D, Zhurina M, Feofanov A, Botchkova E, Plakunov V. Epinephrine affects gene expression levels and has a complex effect on biofilm formation in M icrococcus luteus strain C01 isolated from human skin. Biofilm 2021; 3:100058. [PMID: 34729469 PMCID: PMC8543384 DOI: 10.1016/j.bioflm.2021.100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, the effect of epinephrine on the biofilm formation of Micrococcus luteus C01 isolated from human skin was investigated in depth for the first time. This hormone has a complex effect on biofilms in various systems. In a system with polytetrafluoroethylene (PTFE) cubes, treatment with epinephrine at a physiological concentration of 4.9 × 10-9 M increased the total amount of 72-h biofilm biomass stained with crystal violet and increased the metabolic activity of biofilms, but at higher and lower concentrations, the treatment had no significant effect. On glass fiber filters, treatment with the hormone decreased the number of colony forming units (CFUs) and changed the aggregation but did not affect the metabolic activity of biofilm cells. In glass bottom plates examined by confocal microscopy, epinephrine notably inhibited the growth of biofilms. RNA-seq analysis and RT-PCR demonstrated reproducible upregulation of genes encoding Fe-S cluster assembly factors and cyanide detoxification sulfurtransferase, whereas genes encoding the co-chaperone GroES, the LysE superfamily of lysine exporters, short-chain alcohol dehydrogenase and the potential c-di-GMP phosphotransferase were downregulated. Our results suggest that epinephrine may stimulate matrix synthesis in M. luteus biofilms, thereby increasing the activity of NAD(H) oxidoreductases. Potential c-di-GMP pathway proteins are essential in these processes.
Collapse
Affiliation(s)
- A.V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
- Corresponding author.
| | - M.I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - O.V. Geras'kina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N.E. Makarova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - M.V. Sukhacheva
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - N.D. Danilova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.A. Ovcharova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - S.V. Mart'yanov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - T.A. Pankratov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - D.S. Muzychenko
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.V. Zhurina
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - A.V. Feofanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E.A. Botchkova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - V.K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Zdorovenko EL, Gannesen AV, Dmitrenok AS, Zhurina MV, Mart'yanov SV, Shashkov AS. Structure of cell-wall glycopolymers of Micrococcus luteus C01. Carbohydr Res 2021; 506:108356. [PMID: 34087653 DOI: 10.1016/j.carres.2021.108356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Glycopolymers of two types were isolated from the cell wall of Micrococcus luteus C01 by stepwise extraction with cold and hot 10% aq CCl3CO2H. The following structures of the glycopolymers were established by compositional analysis and 1D and 2D NMR spectroscopy: where L-Glu indicates glutamic acid.
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Andrey V Gannesen
- Federal Research Center "Fundamentals of Biotechnology" of Russian Academy of Sciences, Moscow, Russia
| | - Andrey S Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Marina V Zhurina
- Federal Research Center "Fundamentals of Biotechnology" of Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Mart'yanov
- Federal Research Center "Fundamentals of Biotechnology" of Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
11
|
Ovcharova MA, Geraskina OV, Danilova ND, Botchkova EA, Martyanov SV, Feofanov AV, Plakunov VK, Gannesen AV. Atrial Natriuretic Peptide Affects Skin Commensal Staphylococcus epidermidis and Cutibacterium acnes Dual-Species Biofilms. Microorganisms 2021; 9:552. [PMID: 33800171 PMCID: PMC7999105 DOI: 10.3390/microorganisms9030552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/11/2023] Open
Abstract
The first evidence of the atrial natriuretic peptide (ANP) effect on mono-species and dual-species biofilms of skin commensals Cutibacterium acnes and Staphylococcus epidermidis was obtained in different model systems. Elucidation of the mechanism of action of hormones on the microbial communities of human skin is an important physiological and medical aspect. Under anaerobic conditions, ANP at a concentration of 6.5 × 10-10 M inhibits the growth of S. epidermidis biofilms and stimulates the growth of C. acnes biofilms, and a lesser effect has been demonstrated on planktonic cultures. In biofilms, ANP stimulates aggregation in C. acnes and aggregate dispersion of S. epidermidis, while in S. epidermidis, ANP also stimulates the metabolic activity of cells. Analysis of dual-species biofilms has shown the dominance of S. epidermidis, while ANP increases the ratio of C. acnes biomass in the community. ANP decreases the growth rate of S. epidermidis biofilms and increases that of C. acnes. The effect of ANP is not dependent on the surface type and probably affects other targets in microbial cells. Thus, the potential regulatory effect of human ANP on skin microbe dual-species communities has been shown, and its potential has been demonstrated to change microbiota homeostasis on the skin.
Collapse
Affiliation(s)
- Maria Alekseevna Ovcharova
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Olga Vyacheslavovna Geraskina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.V.G.); (A.V.F.)
| | - Natalya Dmitrievna Danilova
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Ekaterina Alexandrovna Botchkova
- Laboratory of Microbiology of Anthropogenic Habitats, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Sergey Vladislavovich Martyanov
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Alexey Valeryevich Feofanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.V.G.); (A.V.F.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladimir Konstantinovich Plakunov
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Andrei Vladislavovich Gannesen
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| |
Collapse
|
12
|
Fournière M, Latire T, Souak D, Feuilloley MGJ, Bedoux G. Staphylococcus epidermidis and Cutibacterium acnes: Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics. Microorganisms 2020; 8:E1752. [PMID: 33171837 PMCID: PMC7695133 DOI: 10.3390/microorganisms8111752] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dermatological and cosmetics fields have recently started to focus on the human skin microbiome and microbiota, since the skin microbiota is involved in the health and dysbiosis of the skin ecosystem. Amongst the skin microorganisms, Staphylococcus epidermidis and Cutibacterium acnes, both commensal bacteria, appear as skin microbiota sentinels. These sentinels have a key role in the skin ecosystem since they protect and prevent microbiota disequilibrium by fighting pathogens and participate in skin homeostasis through the production of beneficial bacterial metabolites. These bacteria adapt to changing skin microenvironments and can shift to being opportunistic pathogens, forming biofilms, and thus are involved in common skin dysbiosis, such as acne or atopic dermatitis. The current evaluation methods for cosmetic active ingredient development are discussed targeting these two sentinels with their assets and limits. After identification of these objectives, research of the active cosmetic ingredients and products that maintain and promote these commensal metabolisms, or reduce their pathogenic forms, are now the new challenges of the skincare industry in correlation with the constant development of adapted evaluation methods.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Djouhar Souak
- Laboratoire de Microbiologie Signaux et Microenvironment LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironment LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
| |
Collapse
|
13
|
Danilova ND, Solovyeva TV, Mart’yanov SV, Zhurina MV, Gannesen AV. Stimulatory Effect of Epinephrine on Biofilms of Micrococcus luteus C01. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Racine PJ, Janvier X, Clabaut M, Catovic C, Souak D, Boukerb AM, Groboillot A, Konto-Ghiorghi Y, Duclairoir-Poc C, Lesouhaitier O, Orange N, Chevalier S, Feuilloley MGJ. Dialog between skin and its microbiota: Emergence of "Cutaneous Bacterial Endocrinology". Exp Dermatol 2020; 29:790-800. [PMID: 32682345 DOI: 10.1111/exd.14158] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Microbial endocrinology is studying the response of microorganisms to hormones and neurohormones and the microbiota production of hormones-like molecules. Until now, it was mainly applied to the gut and revealed that the intestinal microbiota should be considered as a real organ in constant and bilateral interactions with the whole human body. The skin harbours the second most abundant microbiome and contains an abundance of nerve terminals and capillaries, which in addition to keratinocytes, fibroblasts, melanocytes, dendritic cells and endothelial cells, release a huge diversity of hormones and neurohormones. In the present review, we will examine recent experimental data showing that, in skin, molecules such as substance P, calcitonin gene-related peptide, natriuretic peptides and catecholamines can directly affect the physiology and virulence of common skin-associated bacteria. Conversely, bacteria are able to synthesize and release compounds including histamine, glutamate and γ-aminobutyric acid or peptides showing partial homology with neurohormones such as α-melanocyte-stimulating hormone (αMSH). The more surprising is that some viruses can also encode neurohormones mimicking proteins. Taken together, these elements demonstrate that there is also a cutaneous microbial endocrinology and this emerging concept will certainly have important consequences in dermatology.
Collapse
Affiliation(s)
- Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Xavier Janvier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Maximilien Clabaut
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Chloe Catovic
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Djouhar Souak
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Amine M Boukerb
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Anne Groboillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| |
Collapse
|
15
|
Gannesen AV, Lesouhaitier O, Racine PJ, Barreau M, Netrusov AI, Plakunov VK, Feuilloley MGJ. Regulation of Monospecies and Mixed Biofilms Formation of Skin Staphylococcus aureus and Cutibacterium acnes by Human Natriuretic Peptides. Front Microbiol 2018; 9:2912. [PMID: 30619105 PMCID: PMC6296281 DOI: 10.3389/fmicb.2018.02912] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus and Cutibacterium acnes are common representatives of the human skin microbiome. However, when these bacteria are organized in biofilm, they could be involved in several skin disorders such as acne or psoriasis. They inhabit in hollows of hair follicles and skin glands, where they form biofilms. There, they are continuously exposed to human hormones, including human natriuretic peptides (NUPs). We first observed that the atrial natriuretic peptide (ANP) and the C-type natriuretic peptide (CNP) have a strong effect S. aureus and C. acnes biofilm formation on the skin. These effects are significantly dependent on the aero-anaerobic conditions and temperature. We also show that both ANP and CNP increased competitive advantages of C. acnes toward S. aureus in mixed biofilm. Because of their temperature-dependent effects, NUPs appear to act as a thermostat, allowing the skin to modulate bacterial development in normal and inflammatory conditions. This is an important step toward understanding how human neuroendocrine systems can regulate the cutaneous microbial community and should be important for applications in fundamental sciences, medicine, dermatology, and cosmetology.
Collapse
Affiliation(s)
- Andrei Vladislavovich Gannesen
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Petroleum Microbiology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir K. Plakunov
- Laboratory of Petroleum Microbiology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| |
Collapse
|