1
|
Mishra D, Shekhar S, Subba P, Prasad TSK, Chakraborty S, Chakraborty N. Wheat TaNACα18 functions as a positive regulator of high-temperature adaptive responses and improves cell defense machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2217-2235. [PMID: 38961633 DOI: 10.1111/tpj.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.
Collapse
Affiliation(s)
- Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
2
|
Kapadia C, Datta R, Mahammad SM, Tomar RS, Kheni JK, Ercisli S. Genome-Wide Identification, Quantification, and Validation of Differentially Expressed miRNAs in Eggplant ( Solanum melongena L.) Based on Their Response to Ralstonia solanacearum Infection. ACS OMEGA 2023; 8:2648-2657. [PMID: 36687045 PMCID: PMC9851032 DOI: 10.1021/acsomega.2c07097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), a type of short noncoding RNA molecule (21-23 nucleotides), mediate repressive gene regulation through RNA silencing at the posttranscriptional level and play an important role in the defense response to abiotic and biotic stresses. miRNAs of the plant system have been studied in model crops for their diverse regulatory role while less is known about their significance in other plants whose genome and transcriptome data are scarce in the database, including eggplant (Solanum melongena L.). In the present study, a next-generation sequencing platform was used for the sequencing of miRNA, and real-time quantitative PCR for miRNAs was used to validate the gene expression patterns of miRNAs in Solanum melongena plantlets infected with the bacterial wilt-causing pathogen Ralstonia solanacearum (R. solanacearum). Sequence analyses showed the presence of 375 miRNAs belonging to 29 conserved families. The miR414 is highly conserved miRNA across the plant system while miR5658 and miR5021 were found exclusively in Arabidopsis thaliana surprisingly, these miRNAs were found in eggplants too. The most abundant families were miR5658 and miR414. Ppt-miR414, hvu-miR444b, stu-miR8020, and sly miR5303 were upregulated in Pusa purple long (PPL) (susceptible) at 48 h postinfection, followed by a decline after 96 h postinfection. A similar trend was obtained in ath-miR414, stu-mir5303h, alymiR847-5p, far-miR1134, ath-miR5021, ath-miR5658, osa-miR2873c, lja-miR7530, stu-miR7997c, and gra-miR8741 but at very low levels after infection in the susceptible variety, indicating their negative role in the suppression of host immunity. On the other hand, osa-miR2873c was found to be slightly increased after 96 hpi from 48 hpi. Most of the miRNAs under study showed relatively lower expression in the resistant variety Arka Nidhi after infection than in the susceptible variety. These results shed light on a deeper regulatory role of miRNAs and their targets in regulation of the plant response to bacterial infection. The present experiment and their results suggested that the higher expression of miRNA leads to a decline in host mRNA and thus shows susceptibility.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Saiyed Mufti Mahammad
- Department
of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture
and Forestry, Navsari Agricultural University, Navsari 396450, India
| | - Rukam Singh Tomar
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Jasmin Kumar Kheni
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh 362 001, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
3
|
Zhong Z, Wang X, Yin X, Tian J, Komatsu S. Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. Int J Mol Sci 2021; 22:12239. [PMID: 34830127 PMCID: PMC8618018 DOI: 10.3390/ijms222212239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023] Open
Abstract
Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Xiaojian Yin
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, China;
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
4
|
Gateau H, Blanckaert V, Veidl B, Burlet-Schiltz O, Pichereaux C, Gargaros A, Marchand J, Schoefs B. Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry 2020; 137:107588. [PMID: 33147566 DOI: 10.1016/j.bioelechem.2020.107588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
This study aims to employ a pulsed electric field (PEF) treatment for the biocompatible (non-destructive) extraction of proteins from living cells of the green microalga Haematococcus pluvialis. Using a field strength of 1 kV cm-1, we achieved the extraction of 10.2 µg protein per mL of culture, which corresponded to 46% of the total amount of proteins that could be extracted by complete destructive extraction (i.e. the grinding of biomass with glass beads). We found that the extraction yield was not improved by stronger field strengths and was not dependent on the pulse frequency. A biocompatibility index (BI) was defined as the relative abundance of cells that remained alive after the PEF treatment. This index relied on measurements of several physiological parameters after a PEF treatment. It was found that at 1 kV cm-1 that cultures recovered after 72 h. Therefore, these PEF conditions constituted a good compromise between protein extraction efficiency and culture survival. To characterize the PEF treatment further at a molecular level, mass spectrometry-based proteomics analyses of PEF-prepared extracts was used. This led to the identification of 52 electro-extracted proteins. Of these, only 16 proteins were identified when proteins were extracted with PEF at 0.5 cm-1. They belong to core metabolism, stress response and cell movement. Unassigned proteins were also extracted. Their physiological implications and possible utilization in food as alimentary complements are discussed.
Collapse
Affiliation(s)
- Hélène Gateau
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Vincent Blanckaert
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, IUT de Laval, Le Mans University, Le Mans, France
| | - Brigitte Veidl
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - Carole Pichereaux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France; Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (FRAIB), CNRS, Toulouse, France
| | | | - Justine Marchand
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Molecules from Microalgae and Applications (MIMMA), Mer Molécules Santé, IUML - FR 3473 CNRS, Le Mans University, Le Mans, France.
| |
Collapse
|
5
|
Singhal N, Sharma A, Kumari S, Garg A, Rai R, Singh N, Kumar M, Goel M. Biophysical and Biochemical Characterization of Nascent Polypeptide-Associated Complex of Picrophilus torridus and Elucidation of Its Interacting Partners. Front Microbiol 2020; 11:915. [PMID: 32528429 PMCID: PMC7264160 DOI: 10.3389/fmicb.2020.00915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Neelja Singhal
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Archana Sharma
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Shobha Kumari
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Ruchica Rai
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi, New Delhi, India
- *Correspondence: Manisha Goel,
| |
Collapse
|
6
|
Fíla J, Klodová B, Potěšil D, Juříček M, Šesták P, Zdráhal Z, Honys D. The beta Subunit of Nascent Polypeptide Associated Complex Plays A Role in Flowers and Siliques Development of Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2065. [PMID: 32192231 PMCID: PMC7139743 DOI: 10.3390/ijms21062065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/06/2023] Open
Abstract
The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosomes. NAC function was widely described in yeast and several information are also available about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes encoding NACα subunit, and two genes encoding NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Both NACβ genes were characterized in more detail-the phenotype of the double homozygous mutant was complemented by a functional NACβ copy. Then, both NACβ genes were localized to nuclei and cytoplasm and their promoters were active in many organs (leaves, cauline leaves, flowers, pollen grains, and siliques together with seeds). Since flowers were the most affected organs by nacβ mutation, the flower buds' transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses, male gametophyte development, and photosynthesis.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Miloslav Juříček
- Station of Apple Breeding for Disease Resistance, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic;
| | - Petr Šesták
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (D.P.); (Z.Z.)
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Praha 6, Czech Republic; (B.K.); (D.H.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12800 Praha 2, Czech Republic
| |
Collapse
|
7
|
Carvalho A, Viaene J, Vandenbussche G, De Braekeleer K, Masereel B, Wouters J, Souard F, Vander Heyden Y, Van Antwerpen P, Delporte C, Mathieu V. A new potential anti-cancer beta-carboline derivative decreases the expression levels of key proteins involved in glioma aggressiveness: A proteomic investigation. Drug Dev Res 2019; 81:32-42. [PMID: 31498913 DOI: 10.1002/ddr.21600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/08/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Abstract
Gliomas remain highly fatal due to their high resistance to current therapies. Deregulation of protein synthesis contributes to cancer onset and progression and is a source of rising interest for new drugs. CM16, a harmine derivative with predicted high blood-brain barrier penetration, exerts antiproliferative effects partly through translation inhibition. We evaluated herein how CM16 alters the proteome of glioma cells. The analysis of the gel-free LC/MS and auto-MS/MS data showed that CM16 induces time- and concentration-dependent significant changes in the total ion current chromatograms. In addition, we observed spontaneous clustering of the samples according to their treatment condition and their proper classification by unsupervised and supervised analyses, respectively. A two-dimensional gel-based approach analysis allowed us to identify that treatment with CM16 may downregulate four key proteins involved in glioma aggressiveness and associated with poor patient survival (HspB1, BTF3, PGAM1, and cofilin), while it may upregulate galectin-1 and Ebp1. Consistently with the protein synthesis inhibition properties of CM16, HspB1, Ebp1, and BTF3 exert known roles in protein synthesis. In conclusion, the downregulation of HspB1, BTF3, PGAM1 and cofilin bring new insights in CM16 antiproliferative effects, further supporting CM16 as an interesting protein synthesis inhibitor to combat glioma.
Collapse
Affiliation(s)
- Annelise Carvalho
- Department of Pharmacotherapy and Pharmaceutics, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.,ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Johan Viaene
- VUB - Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Pharmaceutical Institute, Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Guy Vandenbussche
- Laboratory for the Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Kris De Braekeleer
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Bernard Masereel
- NAMEDIC, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Johan Wouters
- NAMEDIC, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Florence Souard
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.,Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - Yvan Vander Heyden
- VUB - Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Pharmaceutical Institute, Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Pierre Van Antwerpen
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.,Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.,Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.,ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Salvato F, Loziuk P, Kiyota E, Daneluzzi GS, Araújo P, Muddiman DC, Mazzafera P. Label-Free Quantitative Proteomics of Enriched Nuclei from Sugarcane (Saccharum ssp) Stems in Response to Drought Stress. Proteomics 2019; 19:e1900004. [PMID: 31172662 DOI: 10.1002/pmic.201900004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/31/2019] [Indexed: 11/09/2022]
Abstract
Drought is considered the major abiotic stress limiting crop productivity. This study seeks to identify proteins involved in the drought response in sugarcane stems submitted to drought stress. The integration of nuclei enrichment sample preparation with the shotgun proteomic approach results in great coverage of the sugarcane stem proteome with 5381 protein groups identified. A total of 1204 differentially accumulated proteins are detected in response to drought, among which 586 and 618 are increased and reduced in abundance, respectively. A total of 115 exclusive proteins are detected, being 41 exclusives of drought-stressed plants and 74 exclusives of control plants. In the control plants, most of these proteins are related to cell wall metabolism, indicating that drought affects negatively the cell wall metabolism. Also, 37 transcription factors (TFs) are identified, which are low abundant nuclear proteins and are differentially accumulated in response to drought stress. These TFs are associated to protein domains such as leucine-rich (bZIP), C2H2, NAC, C3H, LIM, Myb-related, heat shock factor (HSF) and auxin response factor (ARF). Increased abundance of chromatin remodeling and RNA processing proteins are also observed. It is suggested that these variations result from an imbalance of protein synthesis and degradation processes induced by drought.
Collapse
Affiliation(s)
- Fernanda Salvato
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil
| | - Philip Loziuk
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil
| | - Gabriel Silva Daneluzzi
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418, Brazil
| | - Pedro Araújo
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil
| | - David C Muddiman
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil.,Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418, Brazil
| |
Collapse
|
9
|
Martin EM, Jackson MP, Gamerdinger M, Gense K, Karamonos TK, Humes JR, Deuerling E, Ashcroft AE, Radford SE. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J Biol Chem 2018; 293:8554-8568. [PMID: 29650757 PMCID: PMC5986199 DOI: 10.1074/jbc.ra117.001568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide-associated complex (NAC) is a ribosome-associated chaperone that is important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI-MS), limited proteolysis, NMR, and cross-linking, we analyzed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates with unrelated sequences and structures, independently of actively translating ribosomes.
Collapse
Affiliation(s)
- Esther M Martin
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Matthew P Jackson
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Martin Gamerdinger
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Karina Gense
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Theodoros K Karamonos
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Julia R Humes
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Elke Deuerling
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Alison E Ashcroft
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
10
|
Garcia CH, Depoix D, Queiroz RM, Souza JM, Fontes W, de Sousa MV, Santos MD, Carvalho PC, Grellier P, Charneau S. Dynamic molecular events associated to Plasmodium berghei gametogenesis through proteomic approach. J Proteomics 2018; 180:88-98. [DOI: 10.1016/j.jprot.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
11
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
12
|
Bossi F, Fan J, Xiao J, Chandra L, Shen M, Dorone Y, Wagner D, Rhee SY. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction. BMC Genomics 2017; 18:480. [PMID: 28651538 PMCID: PMC5485742 DOI: 10.1186/s12864-017-3853-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. RESULTS To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. CONCLUSIONS Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.
Collapse
Affiliation(s)
- Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jue Fan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Lilyana Chandra
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Max Shen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
- Department of Biology, Stanford University, Stanford, California, 94305 USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| |
Collapse
|
13
|
Sang W, Huang ZR, Yang LT, Guo P, Ye X, Chen LS. Effects of High Toxic Boron Concentration on Protein Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by a 2-DE Based MS Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:180. [PMID: 28261239 PMCID: PMC5313502 DOI: 10.3389/fpls.2017.00180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 05/02/2023]
Abstract
Citrus are sensitive to boron (B)-toxicity. In China, B-toxicity occurs in some citrus orchards. So far, limited data are available on B-toxicity-responsive proteins in higher plants. Thirteen-week-old seedlings of "Sour pummelo" (Citrus grandis) and "Xuegan" (Citrus sinensis) was fertilized every other day until dripping with nutrient solution containing 10 μM (control) or 400 μM (B-toxicity) H3BO3 for 15 weeks. The typical B-toxic symptom only occurred in 400 μM B-treated C. grandis leaves, and that B-toxicity decreased root dry weight more in C. grandis seedlings than in C. sinensis ones, demonstrating that C. sinensis was more tolerant to B-toxicity than C. grandis. Using a 2-dimensional electrophoresis (2-DE) based MS approach, we identified 27 up- and four down-accumulated, and 28 up- and 13 down-accumulated proteins in B-toxic C. sinensis and C. grandis roots, respectively. Most of these proteins were isolated only from B-toxic C. sinensis or C. grandis roots, only nine B-toxicity-responsive proteins were shared by the two citrus species. Great differences existed in B-toxicity-induced alterations of protein profiles between C. sinensis and C. grandis roots. More proteins related to detoxification were up-accumulated in B-toxic C. grandis roots than in B-toxic C. sinensis roots to meet the increased requirement for the detoxification of the more reactive oxygen species and other toxic compounds such as aldehydes in the former. For the first time, we demonstrated that the active methyl cycle was induced and repressed in B-toxic C. sinensis and C. grandis roots, respectively, and that C. sinensis roots had a better capacity to keep cell wall and cytoskeleton integrity than C. grandis roots in response to B-toxicity, which might be responsible for the higher B-tolerance of C. sinensis. In addition, proteins involved in nucleic acid metabolism, biological regulation and signal transduction might play a role in the higher B-tolerance of C. sinensis.
Collapse
Affiliation(s)
- Wen Sang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Agriculture, Forestry and Water Conservancy Bureau of Xinzhou DistrictShangrao, China
| | - Zeng-Rong Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Li-Song Chen
| |
Collapse
|
14
|
Azri W, Barhoumi Z, Chibani F, Borji M, Bessrour M, Mliki A. Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1028-1047. [PMID: 32480524 DOI: 10.1071/fp16114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 06/11/2023]
Abstract
Salinity is an environmental constraint that limits agricultural productivity worldwide. Studies on the halophytes provide valuable information to describe the physiological and molecular mechanisms of salinity tolerance. Therefore, because of genetic relationships of Aeluropus littoralis (Willd) Parl. with rice, wheat and barley, the present study was conducted to investigate changes in shoot proteome patterns in response to different salt treatments using proteomic methods. To examine the effect of salinity on A. littoralis proteome pattern, salt treatments (0, 200 and 400mM NaCl) were applied for 24h and 7 and 30 days. After 24h and 7 days exposure to salt treatments, seedlings were fresh and green, but after 30 days, severe chlorosis was established in old leaves of 400mM NaCl-salt treated plants. Comparative proteomic analysis of the leaves revealed that the relative abundance of 95 and 120 proteins was significantly altered in 200 and 400mM NaCl treated plants respectively. Mass spectrometry-based identification was successful for 66 out of 98 selected protein spots. These proteins were mainly involved in carbohydrate, energy, amino acids and protein metabolisms, photosynthesis, detoxification, oxidative stress, translation, transcription and signal transduction. These results suggest that the reduction of proteins related to photosynthesis and induction of proteins involved in glycolysis, tricarboxylic acid (TCA) cycle, and energy metabolism could be the main mechanisms for salt tolerance in A. littoralis. This study provides important information about salt tolerance, and a framework for further functional studies on the identified proteins in A. littoralis.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Zouhaier Barhoumi
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Farhat Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Manel Borji
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Mouna Bessrour
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
15
|
Yin X, Nishimura M, Hajika M, Komatsu S. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean. J Proteome Res 2016; 15:2008-25. [PMID: 27132649 DOI: 10.1021/acs.jproteome.6b00196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Minoru Nishimura
- Graduate School of Life and Food Sciences, Niigata University , Niigata 950-2181, Japan
| | - Makita Hajika
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
16
|
Parreira J, Bouraada J, Fitzpatrick M, Silvestre S, Bernardes da Silva A, Marques da Silva J, Almeida A, Fevereiro P, Altelaar A, Araújo S. Differential proteomics reveals the hallmarks of seed development in common bean ( Phaseolus vulgaris L.). J Proteomics 2016; 143:188-198. [DOI: 10.1016/j.jprot.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
|
17
|
Li S, Peng W, Chen X, Geng X, Sun J. Identification and characterization of nascent polypeptide-associated complex alpha from Chinese mitten crab (Eriocheir sinensis): A novel stress and immune response gene in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2016; 48:54-61. [PMID: 26578251 DOI: 10.1016/j.fsi.2015.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/16/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Disease in aquatic animals is tightly linked to environmental challenges and their immune responses are greatly modified by their external environment. The chaperone protein nascent polypeptide-associated complex alpha (NACA) has been suggested to play important roles in the cellular response to stress and immune challenges, while the related biological functions remain largely unknown in invertebrates. In the present study we identified a NACA gene (termed EsNACA) from Chinese mitten crab Eriocheir sinensis and analyzed its expression changes in response to ambient (salinity and pH) stresses and immune challenges. The EsNACA protein is comprised of 209 amino acid residues with a conserved DNA binding domain, a C-Jun binding domain, a NAC domain and an ubiquitin-associated domain and shows the highest sequence identity (87%) with its counterpart in shrimp Penaeus monodon. EsNACA mRNA transcripts are presented in all tested normal tissues with predominant expression in hepatopancreas and lower expression in hemocytes. In addition, EsNACA expression was significantly altered in response to the ambient salinity (15‰ and 30‰ salinities) and pH (pH 6 and 8.5) stresses in gill, hepatopancreas, muscle, hemocytes and intestine tissues. Furthermore, EsNACA gene expression was substantially induced upon LPS and Poly(I:C) immune stimulations in E. sinensis hemocytes in vitro. Finally, EsNACA expression was up-regulated in E. sinensis hemocytes, gill, hepatopancreas, intestine and muscle tissues in response to Vibrio anguillarum challenges in vivo. Taken together, our findings for the first time show that EsNACA is an inducible gene involved in stress and immune response in crustaceans.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
18
|
Li S, Chen X, Geng X, Zhan W, Sun J. Identification and expression analysis of nascent polypeptide-associated complex alpha gene in response to immune challenges in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2015; 46:261-267. [PMID: 26142144 DOI: 10.1016/j.fsi.2015.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
Nascent polypeptide-associated complex (NAC) is a conserved heterodimeric protein consisting of alpha and beta subunits. In addition to acting as a protein translation chaperone by forming a heterodimer with the beta subunit, NAC alpha (NACA) also shows important immune significance independent of NAC beta in mammalian cells. In lower vertebrates, however, the immunological relevance of NACA has not been revealed yet. In the present study, we identified and characterized a NACA gene (termed poNACA) involved in innate immune response in Japanese flounder Paralichthys olivaceus. poNACA encodes a 215-amino-acid protein, with an apparent molecular weight of 23.5 kDa and an isoelectric point of 4.51. Tissue distribution analysis revealed that poNACA gene was constitutively expressed in all examined tissues and showed dominant expression in hepatopancreas and gonad tissues. In enriched Japanese flounder head kidney macrophages and peripheral blood leucocytes, the expression of poNACA mRNA transcript was significantly induced by LPS, Poly(I:C) and zymosan stimulations. In vivo experiments further revealed that poNACA gene expression was up-regulated in head kidney, gill and spleen tissues in response to Edwardsiella tarda challenges. Furthermore, overexpression of poNACA in Japanese flounder FG-9307 cells resulted in increased gene expression of IL-1beta, IL-11 and TNF-alpha, and myxovirus resistance (Mx). Taken together, our findings indicate that an immune response gene, poNACA, involved in innate immune regulation in P. olivaceus has been identified.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, LMMEC, Ocean University of China, Qingdao 266003, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
19
|
Dufoo-Hurtado MD, Huerta-Ocampo JÁ, Barrera-Pacheco A, Barba de la Rosa AP, Mercado-Silva EM. Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome. FRONTIERS IN PLANT SCIENCE 2015; 6:332. [PMID: 26029231 PMCID: PMC4429546 DOI: 10.3389/fpls.2015.00332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.
Collapse
Affiliation(s)
- Miguel D. Dufoo-Hurtado
- Laboratorio de Fisiología y Bioquímica Poscosecha de Frutas y Hortalizas, Departamento de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de QuerétaroQuerétaro, Mexico
| | - José Á. Huerta-Ocampo
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Ana P. Barba de la Rosa
- Laboratorio de Proteómica y Biomedicina Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C.San Luis Potosí, Mexico
| | - Edmundo M. Mercado-Silva
- Laboratorio de Fisiología y Bioquímica Poscosecha de Frutas y Hortalizas, Departamento de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de QuerétaroQuerétaro, Mexico
| |
Collapse
|