1
|
Tiano SML, Landi N, Marano V, Ragucci S, Bianco G, Cacchiarelli D, Swuec P, Silva M, De Cegli R, Sacco F, Di Maro A, Cortese M. Quinoin, type 1 ribosome inactivating protein alters SARS-CoV-2 viral replication organelle restricting viral replication and spread. Int J Biol Macromol 2024:135700. [PMID: 39288862 DOI: 10.1016/j.ijbiomac.2024.135700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
SARS-CoV-2 pandemic clearly demonstrated the lack of preparation against novel and emerging viral diseases. This prompted an enormous effort to identify antiviral to curb viral spread and counteract future pandemics. Ribosome Inactivating Proteins (RIPs) and Ribotoxin-Like Proteins (RL-Ps) are toxin enzymes isolated from edible plants and mushrooms, both able to inactivate protein biosynthesis. In the present study, we combined imaging analyses, transcriptomic and proteomic profiling to deeper investigate the spectrum of antiviral activity of quinoin, type 1 RIP from quinoa seeds. Here, we show that RIPs, but not RL-Ps, acts on a post-entry step and impair SARS-CoV-2 replication, potentially by direct degradation of viral RNA. Interestingly, the inhibitory activity of quinoin was conserved also against other members of the Coronaviridae family suggesting a broader antiviral effect. The integration of mass spectrometry (MS)-based proteomics with transcriptomics, provided a comprehensive picture of the quinoin dependent remodeling of crucial biological processes, highlighting an unexpected impact on lipid metabolism. Thus, direct and indirect mechanisms can contribute to the inhibitory mechanism of quinoin, making RIPs family a promising candidate not only for their antiviral activity, but also as an effective tool to better understand the cellular functions and factors required during SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Sofia Maria Luigia Tiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy
| | - Nicola Landi
- Institute of Crystallography, National Research Council, Caserta, Italy; Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valentina Marano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Ragucci
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gennaro Bianco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Paolo Swuec
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, Milan, Italy
| | - Malan Silva
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, Milan, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesca Sacco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antimo Di Maro
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
2
|
Radrizzani S, Kudla G, Izsvák Z, Hurst LD. Selection on synonymous sites: the unwanted transcript hypothesis. Nat Rev Genet 2024; 25:431-448. [PMID: 38297070 DOI: 10.1038/s41576-023-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 02/02/2024]
Abstract
Although translational selection to favour codons that match the most abundant tRNAs is not readily observed in humans, there is nonetheless selection in humans on synonymous mutations. We hypothesize that much of this synonymous site selection can be explained in terms of protection against unwanted RNAs - spurious transcripts, mis-spliced forms or RNAs derived from transposable elements or viruses. We propose not only that selection on synonymous sites functions to reduce the rate of creation of unwanted transcripts (for example, through selection on exonic splice enhancers and cryptic splice sites) but also that high-GC content (but low-CpG content), together with intron presence and position, is both particular to functional native mRNAs and used to recognize transcripts as native. In support of this hypothesis, transcription, nuclear export, liquid phase condensation and RNA degradation have all recently been shown to promote GC-rich transcripts and suppress AU/CpG-rich ones. With such 'traps' being set against AU/CpG-rich transcripts, the codon usage of native genes has, in turn, evolved to avoid such suppression. That parallel filters against AU/CpG-rich transcripts also affect the endosomal import of RNAs further supports the unwanted transcript hypothesis of synonymous site selection and explains the similar design rules that have enabled the successful use of transgenes and RNA vaccines.
Collapse
Affiliation(s)
- Sofia Radrizzani
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| |
Collapse
|
3
|
Zechendorf E, Beckers C, Frank N, Kraemer S, Neu C, Breuer T, Dreher M, Dahl E, Marx G, Martin L, Simon TP. A Potential Association between Ribonuclease 1 Dynamics in the Blood and the Outcome in COVID-19 Patients. Int J Mol Sci 2023; 24:12428. [PMID: 37569802 PMCID: PMC10419077 DOI: 10.3390/ijms241512428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The COVID-19 pandemic caused by the new SARS-CoV-2 coronavirus is the most recent and well-known outbreak of a coronavirus. RNase 1 is a small endogenous antimicrobial polypeptide that possesses antiviral activity against viral diseases. In this study, we investigated a potential association between ribonuclease 1 and the outcome in COVID-19 patients and the impact of increased and decreased RNase 1 levels serum during the course of the disease. Therefore, two patient populations, Cohort A (n = 35) and B (n = 80), were subclassified into two groups, in which the RNase 1 concentration increased or decreased from time point one to time point two. We show that the RNase 1 serum levels significantly increased in the increasing group of both cohorts (p = 0.0171; p < 0.0001). We detect that patients in the increasing group who died had significantly higher RNase 1 serum levels at both time points in Cohort A (p = 0.0170; p = 0.0393) and Cohort B (p = 0.0253; p = 0.0034) than patients who survived. Additionally, we measured a significant correlation of RNase 1 serum levels with serum creatinine as well as creatinine clearance in the increasing and decreasing group at both time points of Cohort A. Based on these results, there is now good evidence that RNase 1 may play a role in renal dysfunction associated with ICU COVID-19 patients and that increasing RNase 1 serum level may be a potential biomarker to predict outcome in COVID-19 patients.
Collapse
Affiliation(s)
- Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Christian Beckers
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Nadine Frank
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Sandra Kraemer
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Carolina Neu
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Thomas Breuer
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Edgar Dahl
- RWTH Centralized Biomaterial Bank (RWTH cBMB) at the Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| | - Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.-P.S.)
| |
Collapse
|
4
|
Wang YN, Lee HH, Jiang Z, Chan LC, Hortobagyi GN, Yu D, Hung MC. Ribonuclease 1 Enhances Antitumor Immunity against Breast Cancer by Boosting T cell Activation. Int J Biol Sci 2023; 19:2957-2973. [PMID: 37416781 PMCID: PMC10321278 DOI: 10.7150/ijbs.84592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
The secretory enzyme human ribonuclease 1 (RNase1) is involved in innate immunity and anti-inflammation, achieving host defense and anti-cancer effects; however, whether RNase1 contributes to adaptive immune response in the tumor microenvironment (TME) remains unclear. Here, we established a syngeneic immunocompetent mouse model in breast cancer and demonstrated that ectopic RNase1 expression significantly inhibited tumor progression. Overall changes in immunological profiles in the mouse tumors were analyzed by mass cytometry and showed that the RNase1-expressing tumor cells significantly induced CD4+ Th1 and Th17 cells and natural killer cells and reduced granulocytic myeloid-derived suppressor cells, supporting that RNase1 favors an antitumor TME. Specifically, RNase1 increased expression of T cell activation marker CD69 in a CD4+ T cell subset. Notably, analysis of cancer-killing potential revealed that T cell-mediated antitumor immunity was enhanced by RNase1, which further collaborated with an EGFR-CD3 bispecific antibody to protect against breast cancer cells across molecular subtypes. Our results uncover a tumor-suppressive role of RNase1 through adaptive immune response in breast cancer in vivo and in vitro, providing a potential treatment strategy of combining RNase1 with cancer immunotherapies for immunocompetent patients.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
5
|
Biniaz Y, Khalesi M, Niazi A, Afsharifar A. Purification of an antiviral protein from the seeds of quinoa (Chenopodium quinoa Willd.) and characterization of its antiviral properties. Amino Acids 2023; 55:19-31. [PMID: 36348073 DOI: 10.1007/s00726-022-03200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
Plant viral pathogens cause damaging diseases in many agriculture systems, and emerging viral infections are a serious threat for providing adequate food to a continuously growing population. Recent studies of biogenic substances have provided new opportunities for producing novel antiviral agents. The present work has been conducted to evaluate the antiviral activity of quinoa (Chenopodium quinoa Willd.) seeds crude extract. The antiviral activity was retained in different buffer solutions of various pH ranges (5.2-8.5) and remained after the diafiltration process. The putative virus inhibitor was sensitive to treatment with sodium dodecyl sulfate and trichloroacetic acid. An antiviral protein with ~ 25 kDa molecular weight was isolated from the seed quinoa extract using ammonium sulfate precipitation, anion and cation exchange chromatography. The purified protein (Quinoin-I) significantly inhibited TMV on tobacco leaves with an IC50 value at a 6.81 μg/ml concentration. Enzyme activity assay revealed the RNase activity of Quinoin-I, and this feature was retained in the presence of β-mercaptoethanol and ethylene diamine tetraacetic acid. This antiviral protein has been shown as a promising leading molecule for further development as a novel antiviral agent.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammadreza Khalesi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Manjunatha L, Rajashekara H, Uppala LS, Ambika DS, Patil B, Shankarappa KS, Nath VS, Kavitha TR, Mishra AK. Mechanisms of Microbial Plant Protection and Control of Plant Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3449. [PMID: 36559558 PMCID: PMC9785281 DOI: 10.3390/plants11243449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Plant viral diseases are major constraints causing significant yield losses worldwide in agricultural and horticultural crops. The commonly used methods cannot eliminate viral load in infected plants. Many unconventional methods are presently being employed to prevent viral infection; however, every time, these methods are not found promising. As a result, it is critical to identify the most promising and sustainable management strategies for economically important plant viral diseases. The genetic makeup of 90 percent of viral diseases constitutes a single-stranded RNA; the most promising way for management of any RNA viruses is through use ribonucleases. The scope of involving beneficial microbial organisms in the integrated management of viral diseases is of the utmost importance and is highly imperative. This review highlights the importance of prokaryotic plant growth-promoting rhizobacteria/endophytic bacteria, actinomycetes, and fungal organisms, as well as their possible mechanisms for suppressing viral infection in plants via cross-protection, ISR, and the accumulation of defensive enzymes, phenolic compounds, lipopeptides, protease, and RNase activity against plant virus infection.
Collapse
Affiliation(s)
- Lakshmaiah Manjunatha
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research (IIHR), Bengaluru 560089, Karnataka, India
| | - Hosahatti Rajashekara
- Division of Crop Protection, ICAR-Directorate of Cashew Research (DCR), Dakshina Kannada 574202, Karnataka, India
| | - Leela Saisree Uppala
- Cranberry Station, East Wareham, University of Massachusetts, Amherst, MA 02538, USA
| | - Dasannanamalige Siddesh Ambika
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | - Balanagouda Patil
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga 577255, Karnataka, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences (Bagalkot), Bengaluru 560065, Karnataka, India
| | | | - Tiptur Rooplanaik Kavitha
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, Karnataka, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Ranpirnase (OKG-0301), a Novel Ribonuclease, Demonstrates Antiviral Activity against Adenovirus in the Ad5/NZW Rabbit Ocular Replication Model. Pathogens 2022; 11:pathogens11121485. [PMID: 36558819 PMCID: PMC9787402 DOI: 10.3390/pathogens11121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Adenovirus ocular infections are common ocular viral infections seen worldwide, for which there is no approved antiviral therapy available. Ranpirnase is a novel ribonuclease which preferentially degrades tRNA resulting in an inhibition of protein synthesis. The study goal was to determine the anti-adenoviral activity of topical formulations of ranpirnase (OKG-0301) on adenoviral replication in the Ad5/NZW rabbit ocular replication model. NZW rabbits were inoculated in both eyes with human adenovirus type 5 (HAdV5) after corneal scarification. A day later, topical therapy was initiated in both eyes with 0.03% OKG-0301, 0.003% OKG-0301, saline or 0.5% cidofovir. Eyes were cultured to determine HAdV5 eye titers over 2 weeks. OKG-0301 (0.03% and 0.003%) and 0.5% cidofovir decreased viral titers compared to saline. Furthermore, both OKG-0301 formulations and 0.5% cidofovir shortened the duration of the HAdV5 infection compared to saline. Both 0.03% OKG-0301 and 0.003% OKG-0301 demonstrated increased antiviral activity compared to saline in the Ad5/NZW rabbit ocular replication model. The antiviral activity of the OKG-0301 groups was similar to that of the positive antiviral control, 0.5% cidofovir. Ranpirnase (OKG-0301) may be a potential candidate for a topical antiviral for adenoviral eye infections. Further clinical development is warranted.
Collapse
|
8
|
A Novel Approach of Antiviral Drugs Targeting Viral Genomes. Microorganisms 2022; 10:microorganisms10081552. [PMID: 36013970 PMCID: PMC9414836 DOI: 10.3390/microorganisms10081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of viral diseases, which cause morbidity and mortality in animals and humans, are increasing annually worldwide. Vaccines, antiviral drugs, and antibody therapeutics are the most effective tools for combating viral infection. The ongoing coronavirus disease 2019 pandemic, in particular, raises an urgent need for the development of rapid and broad-spectrum therapeutics. Current antiviral drugs and antiviral antibodies, which are mostly specific at protein levels, have encountered difficulties because the rapid evolution of mutant viral strains resulted in drug resistance. Therefore, degrading viral genomes is considered a novel approach for developing antiviral drugs. The current article highlights all potent candidates that exhibit antiviral activity by digesting viral genomes such as RNases, RNA interference, interferon-stimulated genes 20, and CRISPR/Cas systems. Besides that, we introduce a potential single-chain variable fragment (scFv) that presents antiviral activity against various DNA and RNA viruses due to its unique nucleic acid hydrolyzing characteristic, promoting it as a promising candidate for broad-spectrum antiviral therapeutics.
Collapse
|
9
|
Abengózar MÁ, Fernández-Reyes M, Salazar VA, Torrent M, de la Torre BG, Andreu D, Boix E, Rivas L. Essential Role of Enzymatic Activity in the Leishmanicidal Mechanism of the Eosinophil Cationic Protein (RNase 3). ACS Infect Dis 2022; 8:1207-1217. [PMID: 35731709 PMCID: PMC9274760 DOI: 10.1021/acsinfecdis.1c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The recruitment of
eosinophils into Leishmania lesions is frequently
associated with a favorable evolution. A feasible
effector for this process is eosinophil cationic protein (ECP, RNase
3), one of the main human eosinophil granule proteins, endowed with
a broad spectrum of antimicrobial activity, including parasites. ECP
was active on Leishmania promastigotes and axenic
amastigotes (LC50’s = 3 and 16 μM, respectively)
but, in contrast to the irreversible membrane damage caused on bacteria
and reproduced by its N-terminal peptides, it only
induced a mild and transient plasma membrane destabilization on Leishmania donovani promastigotes. To assess the
contribution of RNase activity to the overall leishmanicidal activity
of ECP, parasites were challenged in parallel with a single-mutant
version, ECP-H15A, devoid of RNase activity, that fully preserves
the conformation and liposome permeabilization ability. ECP-H15A showed
a similar uptake to ECP on promastigotes, but with higher LC50’s (>25 μM) for both parasite stages. ECP-treated
promastigotes
showed a degraded RNA pattern, absent in ECP-H15A-treated samples.
Moreover ECP, but not ECP-H15A, reduced more than 2-fold the parasite
burden of infected macrophages. Altogether, our results suggest that
ECP enters the Leishmania cytoplasm by an endocytic
pathway, ultimately leading to RNA degradation as a key contribution
to the leishmanicidal mechanism. Thus, ECP combines both membrane
destabilization and enzymatic activities to effect parasite killing.
Taken together, our data highlight the microbicidal versatility of
ECP as an innate immunity component and support the development of
cell-penetrating RNases as putative leishmanicidal agents.
Collapse
Affiliation(s)
- María Ángeles Abengózar
- Department of Structural and Chemical Biology, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Fernández-Reyes
- Department of Structural and Chemical Biology, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogota, Colorado 111711, Colombia
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Beatriz G de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Luis Rivas
- Department of Structural and Chemical Biology, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
10
|
Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. Int J Mol Sci 2022; 23:ijms23126556. [PMID: 35742999 PMCID: PMC9223570 DOI: 10.3390/ijms23126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022] Open
Abstract
The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.
Collapse
|
11
|
Guelman S, Zhou Y, Brady A, Peng K. A Fit-for-Purpose Method to Measure Circulating Levels of the mRNA Component of a Liposomal-Formulated Individualized Neoantigen-Specific Therapy for Cancer. AAPS J 2022; 24:64. [PMID: 35501406 DOI: 10.1208/s12248-022-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Autogene cevumeran is an individualized neoantigen-specific therapy (iNeST) under development for the treatment of various solid tumors. It consists of an RNA-Lipoplex (RNA-LPX) in which the encapsulated mRNA molecule encodes up to ten neoepitopes identified from each individual patient. In association with major histocompatibility complex (MHC) class I and MHC class II, these neoantigens can potentially stimulate and expand neoantigen-specific CD4+ and CD8+ T cells, leading to antitumor responses. As part of the pharmacokinetic (PK) property assessment of Autogene cevumeran in patients, both the lipid and mRNA content in circulation are measured. This work focused on our efforts to establish a sensitive and robust method for the measurement of mRNA levels of RNA-LPX in plasma. Due to the chemical characteristics of mRNA, extra precautions are required in order to effectively preserve mRNA integrity in human plasma during sample collection, handling and storage. To this end, a number of sample collection tubes and storage conditions were evaluated in order to inform the most optimal and operationally feasible conditions by which to preserve mRNA integrity during sample collection and upon freeze-thaw. PAXgene Blood ccfDNA tubes successfully prevented mRNA degradation and were subsequently selected for patient sample collection in the clinical trial. A branched DNA (bDNA)-based mRNA PK assay was developed to achieve the desired assay performance. Here, we discuss the evaluation of various sample collection and processing conditions as well as the optimization of the work flow during bDNA PK method development.
Collapse
Affiliation(s)
- Sebastian Guelman
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA.
| | - Ying Zhou
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA
| | - Ann Brady
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA
| | - Kun Peng
- Department of BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080-4990, USA
| |
Collapse
|
12
|
Kimbley LM, Parker R, Harrington J, Walker RC, Grace B, West JJ, Underwood TJ, Rose-Zerilli MJ. Comparison of optimized methodologies for isolating nuclei from esophageal tissue. Biotechniques 2022; 72:104-109. [PMID: 35152705 DOI: 10.2144/btn-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Single-nuclei RNA sequencing allows single cell-based analysis in frozen tissue, ameliorating cell recovery biases associated with enzymatic dissociation methods. The authors present two optimized methods for isolating and sequencing nuclei from esophageal tissue using a commercial EZ and citric acid (CA)-based method. Despite high endogenous RNase activity, these protocols produced libraries of expected fragment length (average length EZ: 745 bp; CA: 1232 bp) with comparable complexity (median Transcript/Gene number, EZ: 496/254; CA: 483/256). CA nuclei showed a higher proportion of ribosomal gene reads, potentially reflecting co-isolation of nuclei and adherent ribosomes. The authors identified 11 cell lineages in the combined datasets, with differences in cell type recovery between the two methods, providing utility dependent on experimental needs.
Collapse
Affiliation(s)
- Lucy M Kimbley
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rachel Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jack Harrington
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Robert C Walker
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ben Grace
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan J West
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Centre for Hybrid Biodevices, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim J Underwood
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Matthew Jj Rose-Zerilli
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol 2021; 57:244-260. [PMID: 34886717 DOI: 10.1080/10409238.2021.2004577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.
Collapse
Affiliation(s)
- Emily R Garnett
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
15
|
Shilova O, Kotelnikova P, Proshkina G, Shramova E, Deyev S. Barnase-Barstar Pair: Contemporary Application in Cancer Research and Nanotechnology. Molecules 2021; 26:molecules26226785. [PMID: 34833876 PMCID: PMC8625414 DOI: 10.3390/molecules26226785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Correspondence: (O.S.); (S.D.)
| | - Polina Kotelnikova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Galina Proshkina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Elena Shramova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
| | - Sergey Deyev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.); (G.P.); (E.S.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
16
|
Ambroggio EE, Costa Navarro GS, Pérez Socas LB, Bagatolli LA, Gamarnik AV. Dengue and Zika virus capsid proteins bind to membranes and self-assemble into liquid droplets with nucleic acids. J Biol Chem 2021; 297:101059. [PMID: 34375636 PMCID: PMC8397897 DOI: 10.1016/j.jbc.2021.101059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/02/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) capsid proteins efficiently recruit and surround the viral RNA at the endoplasmic reticulum (ER) membrane to yield nascent viral particles. However, little is known either about the molecular mechanisms by which multiple copies of capsid proteins assemble into nucleocapsids (NCs) or how the NC is recruited and wrapped by the ER membrane during particle morphogenesis. Here, we measured relevant interactions concerning this viral process using purified DENV and ZIKV capsid proteins, membranes mimicking the ER lipid composition, and nucleic acids in in vitro conditions to understand the biophysical properties of the RNA genome encapsidation process. We found that both ZIKV and DENV capsid proteins bound to liposomes at liquid-disordered phase regions, docked exogenous membranes, and RNA molecules. Liquid-liquid phase separation is prone to occur when positively charged proteins interact with nucleic acids, which is indeed the case for the studied capsids. We characterized these liquid condensates by measuring nucleic acid partition constants and the extent of water dipolar relaxation, observing a cooperative process for the formation of the new phase that involves a distinct water organization. Our data support a new model in which capsid-RNA complexes directly bind the ER membrane, seeding the process of RNA recruitment for viral particle assembly. These results contribute to our understanding of the viral NC formation as a stable liquid-liquid phase transition, which could be relevant for dengue and Zika gemmation, opening new avenues for antiviral intervention.
Collapse
Affiliation(s)
- Ernesto E Ambroggio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | - Luis Benito Pérez Socas
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, CIQUIBIC, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis A Bagatolli
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | |
Collapse
|
17
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Eller CH, Raines RT. Antimicrobial Synergy of a Ribonuclease and a Peptide Secreted by Human Cells. ACS Infect Dis 2020; 6:3083-3088. [PMID: 33054163 DOI: 10.1021/acsinfecdis.0c00594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LL-37 is a secretory peptide that has antimicrobial activity. Ribonuclease 1 (RNase 1) is a secretory enzyme that is not cytotoxic. We find that human LL-37 and human RNase 1 can act synergistically to kill Gram-negative bacterial cells. In the presence of nontoxic concentrations of LL-37, RNase 1 is toxic to Escherichia coli cells at picomolar levels. Using wild-type RNase 1 and an inactive variant labeled with a fluorophore, we observe the adherence of RNase 1 to E. coli cells and its cellular entry in the presence of LL-37. These data suggest a natural means of modulating the human microbiome via the cooperation of an endogenous peptide (37 residues) and small enzyme (128 residues).
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Anti-Influenza Activity of the Ribonuclease Binase: Cellular Targets Detected by Quantitative Proteomics. Int J Mol Sci 2020; 21:ijms21218294. [PMID: 33167434 PMCID: PMC7663932 DOI: 10.3390/ijms21218294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable influenza pandemics, annual epidemics, and sporadic poultry-to-human avian influenza virus infections with high morbidity and mortality rates dictate a need to develop new antiviral approaches. Targeting cellular pathways and processes is a promising antiviral strategy shown to be effective regardless of viral subtypes or viral evolution of drug-resistant variants. Proteomics-based searches provide a tool to reveal the druggable stages of the virus life cycle and to understand the putative antiviral mode of action of the drug(s). Ribonucleases (RNases) of different origins not only demonstrate antiviral effects that are mediated by the direct RNase action on viral and cellular RNAs but can also exert their impact by signal transduction modulation. To our knowledge, studies of the RNase-affected cell proteome have not yet been performed. To reveal cellular targets and explain the mechanisms underlying the antiviral effect employed by the small extra-cellular ribonuclease of Bacillus pumilus (binase) both in vitro and in vivo, qualitative shotgun and quantitative targeted proteomic analyses of the influenza A virus (IAV) H1N1pdm09-infected A549 cells upon binase treatment were performed. We compared proteomes of mock-treated, binase-treated, virus-infected, and virus-infected binase-treated cells to determine the proteins affected by IAV and/or binase. In general, IAV demonstrated a downregulating strategy towards cellular proteins, while binase had an upregulating effect. With the help of bioinformatics approaches, coregulated cellular protein sets were defined and assigned to their biological function; a possible interconnection with the progression of viral infection was conferred. Most of the proteins downregulated by IAV (e.g., AKR1B1, AKR1C1, CCL5, PFN1, RAN, S100A4, etc.) belong to the processes of cellular metabolism, response to stimulus, biological regulation, and cellular localization. Upregulated proteins upon the binase treatment (e.g., AKR1B10, CAP1, HNRNPA2B1, PFN1, PPIA, YWHAB, etc.) are united by the processes of biological regulation, cellular localization, and immune and metabolic processes. The antiviral activity of binase against IAV was expressed by the inversion of virus-induced proteomic changes, resulting in the inhibition of virus-associated processes, including nuclear ribonucleoprotein export (NCL, NPM1, Nup205, and Bax proteins involved) and cytoskeleton remodeling (RDX, PFN1, and TUBB) induced by IAV at the middle stage of single-cycle infection in A549 cells. Modulation of the immune response could be involved as well. Overall, it seems possible that binase exerts its antiviral effects in multiple ways.
Collapse
|
20
|
Evaluation of the Effectiveness of Metabolites of Bacterial Strains Bacillus thuringiensis against Human Influenza Virus A/Aichi/2/68 (H3N2) In Vitro and In Vivo. Bull Exp Biol Med 2020; 169:653-656. [PMID: 32986206 PMCID: PMC7520618 DOI: 10.1007/s10517-020-04947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 11/17/2022]
Abstract
The morphological and physiological characteristics of Bacillus thuringiensis strains were analyzed and conditions for obtaining culture fluid with maximum yield of secreted RNases were determined. Zymographic analysis showed that culture fluid of B. thuringiensis strains along with low-molecular-weight (15-20 kDa) RNases contained enzymes with a molecular weight ~55 kDa and their content depended on the duration and conditions of culturing. Preparations based on B. thuringiensis culture fluid were effective against human influenza virus A/Aichi/2/68 (H3N2). In experiments on mice infected with 10 LD50 influenza virus strain A/Aichi/2/68 (H3N2), we selected effective variants of preparations based on culture fluid of B. thuringiensi strains for preventive administration that provided reliable protection of infected animals (protection coefficient 50%), close to that of the reference drug Tamiflu.
Collapse
|
21
|
Rasoulpour R, Izadpanah K, Afsharifar A. Opuntin B, the antiviral protein isolated from prickly pear (Opuntia ficus-indica (L.) Miller) cladode exhibits ribonuclease activity. Microb Pathog 2019; 140:103929. [PMID: 31846744 DOI: 10.1016/j.micpath.2019.103929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
An antiviral protein, designated Opuntin B, was purified from Prickly Pear (Opuntia ficus-indica (L.) Miller) Cladode by heat treatment of the extract, protein precipitation by ammonium sulfate treatment followed by ion-exchange chromatography. Assessment of enzymatic activity of the purified protein showed that it degrades total plant genomic RNA, while causing electrophoretic mobility shifting of Cucumber mosaic virus (CMV) RNAs. However, heat-denatured viral RNA became sensitive to degradation upon treatment with antiviral protein. Opuntin B had no DNase activity on native and heat-denatured apricot genomic DNA, and on PCR-amplified coat protein gene of CMV. Using CMV as prey protein and Opuntin B as bait protein, no interaction was found between the antiviral protein and viral coat protein in far western dot blot analysis.
Collapse
Affiliation(s)
- Rasoul Rasoulpour
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Keramat Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
22
|
Ghosh S, Alam S, Rathore AS, Khare SK. Stability of Therapeutic Enzymes: Challenges and Recent Advances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:131-150. [DOI: 10.1007/978-981-13-7709-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Leinisch F, Mariotti M, Hägglund P, Davies MJ. Structural and functional changes in RNAse A originating from tyrosine and histidine cross-linking and oxidation induced by singlet oxygen and peroxyl radicals. Free Radic Biol Med 2018; 126:73-86. [PMID: 30031072 DOI: 10.1016/j.freeradbiomed.2018.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
Abstract
Oxidation can be induced by multiple processes in biological samples, with proteins being important targets due to their high abundance and reactivity. Oxidant reactions with proteins are not comprehensively understood, but it is known that structural and functional changes may be a cause, or a consequence, of disease. The mechanisms of oxidation of the model protein RNAse A by singlet oxygen (1O2) were examined and compared to peroxyl radical (ROO•) oxidation, both common biological oxidants. This protein is a prototypic member of the RNAse family that exhibits antiviral activity by cleaving single-stranded RNA. RNAse A lacks tryptophan and cysteine residues which are major oxidant targets, but contains multiple histidine, tyrosine and methionine residues; these were therefore hypothesized to be the major sites of damage. 1O2 and ROO• induce different patterns and extents of damage; both induce cross-links and side-chain oxidation, and 1O2 exposure modulates enzymatic activity. Multiple products have been characterized including methionine sulfoxide and sulfone, alcohols, DOPA, 2-oxohistidine, histidine-derived ring-opened species and inter- and intra-molecular cross-links (di-tyrosine, histidine-lysine, histidine-arginine, tyrosine-lysine). In addition to methionine modification, which appears not to be causative to activity loss, singlet oxygen also induces alteration to specific histidine, tyrosine and proline residues, including modification and cross-linking of the active site histidine, His12. The high homology among the RNAse family suggests that similar modifications may occur in humans, and be associated with the increased risk of viral infections in people with diabetes, as markers for 1O2 have been found in early stages of this pathology.
Collapse
Affiliation(s)
- Fabian Leinisch
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Per Hägglund
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Roumiantseva ML, Muntyan VS, Cherkasova ME, Saksaganskaya AS, Andronov EE, Simarov BV. Genomic Islands in Sinorhizobium meliloti Rm1021, Nitrogen-Fixing Symbiont of Alfalfa. RUSS J GENET+ 2018. [DOI: 10.1134/s102279541807013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Shah Mahmud R, Mostafa A, Müller C, Kanrai P, Ulyanova V, Sokurenko Y, Dzieciolowski J, Kuznetsova I, Ilinskaya O, Pleschka S. Bacterial ribonuclease binase exerts an intra-cellular anti-viral mode of action targeting viral RNAs in influenza a virus-infected MDCK-II cells. Virol J 2018; 15:5. [PMID: 29304825 PMCID: PMC5756404 DOI: 10.1186/s12985-017-0915-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Influenza is a severe contagious disease especially in children, elderly and immunocompromised patients. Beside vaccination, the discovery of new anti-viral agents represents an important strategy to encounter seasonal and pandemic influenza A virus (IAV) strains. The bacterial extra-cellular ribonuclease binase is a well-studied RNase from Bacillus pumilus. Treatment with binase was shown to improve survival of laboratory animals infected with different RNA viruses. Although binase reduced IAV titer in vitro and in vivo, the mode of action (MOA) of binase against IAV at the molecular level has yet not been studied in depth and remains elusive. METHODS To analyze whether binase impairs virus replication by direct interaction with the viral particle we applied a hemagglutination inhibition assay and monitored the integrity of the viral RNA within the virus particle by RT-PCR. Furthermore, we used Western blot and confocal microscopy analysis to study whether binase can internalize into MDCK-II cells. By primer extension we examined the effect of binase on the integrity of viral RNAs within the cells and using a mini-genome system we explored the effect of binase on the viral expression. RESULTS We show that (i) binase does not to attack IAV particle-protected viral RNA, (ii) internalized binase could be detected within the cytosol of MDCK-II cells and that (iii) binase impairs IAV replication by specifically degrading viral RNA species within the infected MDCK-II cells without obvious effect on cellular mRNAs. CONCLUSION Our data provide novel evidence suggesting that binase is a potential anti-viral agent with specific intra-cellular MOA.
Collapse
Affiliation(s)
- Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Center (NRC), El-Buhouth Street 87, 12311 Dokki, Cairo, Egypt
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
| | - Pumaree Kanrai
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Present address: Department I - Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Yulia Sokurenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Julia Dzieciolowski
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
- Present address: Department of Biochemistry and Molecular Biology, Institute of Nutritional Science, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Irina Kuznetsova
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya Street 18, 420008, Kazan, Russia
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
26
|
Mitkevich VA, Burnysheva KM, Petrushanko IY, Adzhubei AA, Schulga AA, Chumakov PM, Makarov AA. Binase treatment increases interferon sensitivity and apoptosis in SiHa cervical carcinoma cells by downregulating E6 and E7 human papilloma virus oncoproteins. Oncotarget 2017; 8:72666-72675. [PMID: 29069817 PMCID: PMC5641160 DOI: 10.18632/oncotarget.20199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we determined whether binase, a ribonuclease from Bacillus pumilus, increases interferon sensitivity and apoptosis in SiHa cervical cancer cells infected with high-risk human papilloma virus (HPV) strain 16. Binase treatment increased SiHa cell apoptosis in a time- and concentration-dependent manner, as determined by flow cytometry, WST tests and real time xCelligence cell index analysis. Binase-treated SiHa cells showed reduced expression of E6 and E7 viral oncoproteins and increased expression of their intracellular targets, p53 and pRb. Combined treatment with binase and IFNα2b enhanced the interferon sensitivity of HPV-positive SiHa cells. By contrast, combined treatment with binase and IFNα2b in HPV-negative C33A cervical cancer cells, which do no expess E6 and E7, elicited no changes in interferon sensitivity or p53 and pRb expression. These findings suggest binase enhances interferon sensitivity and apoptosis in HPV-positive SiHa cervical cancer cells by suppressing E6 and E7 viral protein expression.
Collapse
Affiliation(s)
- Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ksenia M. Burnysheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A. Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
27
|
Shah Mahmud R, Garifulina KI, Ulyanova VV, Evtugyn VG, Mindubaeva LN, Khazieva LR, Dudkina EV, Vershinina VI, Kolpakov AI, Ilinskaya ON. Bacteriophages of soil bacilli: A new multivalent phage of Bacillus altitudinis. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2017. [DOI: 10.3103/s0891416817020082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front Microbiol 2017; 8:1666. [PMID: 28919884 PMCID: PMC5586196 DOI: 10.3389/fmicb.2017.01666] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Current studies of human gut microbiome usually do not consider the special functional role of transient microbiota, although some of its members remain in the host for a long time and produce broad spectrum of biologically active substances. Getting into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium blurring the boundaries between resident and transient microbiota. Despite their minor proportion in the microbiome composition, these bacteria can significantly affect both the intestinal microbiota and the entire body thanks to a wide range of secreted compounds. Recently, insufficiency and limitations of pure genome-based analysis of gut microbiota became known. Thus, the need for intense functional studies is evident. This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the functional roles of the components released by these members of microbial intestinal community. Complex of their secreted compounds is referred by us as the "bacillary secretome." The composition of the bacillary secretome, its biological effects in GIT and role in counteraction to infectious diseases and oncological pathologies in human organism is the subject of the review.
Collapse
Affiliation(s)
| | - Vera V. Ulyanova
- Department of Microbiology, Kazan Federal UniversityKazan, Russia
| | | | - Ilgiz G. Gataullin
- Department of Surgery and Oncology, Regional Clinical Cancer CenterKazan, Russia
| |
Collapse
|
29
|
Shah Mahmud R, Müller C, Romanova Y, Mostafa A, Ulyanova V, Pleschka S, Ilinskaya O. Ribonuclease from Bacillus Acts as an Antiviral Agent against Negative- and Positive-Sense Single Stranded Human Respiratory RNA Viruses. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5279065. [PMID: 28546965 PMCID: PMC5435908 DOI: 10.1155/2017/5279065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/04/2017] [Indexed: 01/17/2023]
Abstract
Bacillus pumilus ribonuclease (binase) was shown to be a promising antiviral agent in animal models and cell cultures. However, the mode of its antiviral action remains unknown. To assess the binase effect on intracellular viral RNA we have selected single stranded negative- and positive-sense RNA viruses, influenza virus, and rhinovirus, respectively, which annually cause respiratory illnesses and are characterized by high contagious nature, mutation rate, and antigen variability. We have shown that binase exerts an antiviral effect on both viruses at the same concentration, which does not alter the spectrum of A549 cellular proteins and expression of housekeeping genes. The titers of influenza A (H1N1pdm) virus and human rhinovirus serotype 1A were reduced by 40% and 65%, respectively. A preincubation of influenza virus with binase before infection significantly reduced viral titer after single-cycle replication of the virus. Using influenza A virus mini genome system we showed that binase reduced GFP reporter signaling indicating a binase action on the expression of viral mRNA. Binase reduced the level of H1N1pdm viral NP mRNA accumulation in A549 cells by 20%. Since the viral mRNA is a possible target for binase this agent could be potentially applied in the antiviral therapy against both negative- and positive-sense RNA viruses.
Collapse
Affiliation(s)
- Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Schubert Street 81, 35392 Giessen, Germany
| | - Yulia Romanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University, Schubert Street 81, 35392 Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), El-Buhouth Street 87, Dokki, Cairo 12311, Egypt
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, Schubert Street 81, 35392 Giessen, Germany
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| |
Collapse
|
30
|
Mg2+ Enhances the Formation of 2′,3′-cGMP, an Intermediate of RNA Cleavage by Binase. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Efimova MA, Shah Mahmud R, Zelenikhin PV, Sabirova MI, Kolpakov AI, Ilinskaya ON. Exogenous Bacillus pumilus RNase (binase) suppresses the reproduction of reovirus serotype 1. Mol Biol 2017. [DOI: 10.1134/s0026893316060042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Sokurenko Y, Ulyanova V, Zelenikhin P, Kolpakov A, Blokhin D, Müller D, Klochkov V, Ilinskaya O. The Role of Metals in the Reaction Catalyzed by Metal-Ion-Independent Bacillary RNase. Bioinorg Chem Appl 2016; 2016:4121960. [PMID: 28096759 PMCID: PMC5209602 DOI: 10.1155/2016/4121960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Extracellular enzymes of intestinal microbiota are the key agents that affect functional activity of the body as they directly interact with epithelial and immune cells. Several species of the Bacillus genus, like Bacillus pumilus, a common producer of extracellular RNase binase, can populate the intestinal microbiome as a colonizing organism. Without involving metal ions as cofactors, binase depolymerizes RNA by cleaving the 3',5'-phosphodiester bond and generates 2',3'-cyclic guanosine phosphates in the first stage of a catalytic reaction. Maintained in the reaction mixture for more than one hour, such messengers can affect the human intestinal microflora and the human body. In the present study, we found that the rate of 2',3'-cGMP was growing in the presence of transition metals that stabilized the RNA structure. At the same time, transition metal ions only marginally reduced the amount of 2',3'-cGMP, blocking binase recognition sites of guanine at N7 of nucleophilic purine bases.
Collapse
Affiliation(s)
- Yulia Sokurenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Alexey Kolpakov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Dmitriy Blokhin
- Institute of Physics, Kazan Federal University, Kremlevskaya Str. 16a, Kazan 420008, Russia
| | - Dieter Müller
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, Aulweg 123, 35385 Giessen, Germany
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya Str. 16a, Kazan 420008, Russia
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
33
|
Müller C, Ulyanova V, Ilinskaya O, Pleschka S, Shah Mahmud R. A Novel Antiviral Strategy against MERS-CoV and HCoV-229E Using Binase to Target Viral Genome Replication. BIONANOSCIENCE 2016; 7:294-299. [PMID: 32219056 PMCID: PMC7090624 DOI: 10.1007/s12668-016-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA viruses cause most of the dangerous communicable diseases. Due to their high mutation rates, RNA viruses quickly evade selective pressures and can adapt to a new host. Therefore, new antiviral approaches are urgently needed, which target more than one specific virus variant and which would optimally prevent development of viral resistance. Among the family of coronaviruses (CoV), several human pathogenic strains (HCoV) are known to cause respiratory diseases and are implied in enteric diseases. While most strains contribute to common cold-like illnesses, others lead to severe infections. One of these viruses is the newly emerged (2012), highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) of zoonotic origin. MERS-CoV causes a severe respiratory infection with a high mortality rate of 35 %. There is no specific treatment or infection prevention available. Here, we show that the bacterial ribonuclease Binase is able to inhibit the replication of MERS-CoV and of the low-pathogenic human coronavirus 229E (HCoV-229E) in cell culture. We demonstrate that at non-toxic concentrations, Binase decreased the titers of MERS-CoV and HCoV-229E. On a molecular level, Binase treatment reduced (i) the viral subgenomic RNAs and (ii) the viral nucleocapsidprotein (N) and non-structural protein 13 (nsp13) accumulation. Furthermore, we show that the quantity of the replication/transcription complexes within the infected cells is diminished. Thus, the data obtained might allow further development of new anti-coronaviral approaches affecting viral replication, independent of the specific virus strain.
Collapse
Affiliation(s)
- Christin Müller
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, Kazan, 420008 Russia
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, Kazan, 420008 Russia
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Raihan Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str, Kazan, 420008 Russia
| |
Collapse
|
34
|
Antiviral Activity of Bacterial Extracellular Ribonuclease Against Single-, Double-Stranded RNA and DNA Containing Viruses in Cell Cultures. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0279-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Sokurenko Y, Nadyrova A, Ulyanova V, Ilinskaya O. Extracellular Ribonuclease from Bacillus licheniformis (Balifase), a New Member of the N1/T1 RNase Superfamily. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4239375. [PMID: 27656652 PMCID: PMC5021464 DOI: 10.1155/2016/4239375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022]
Abstract
The N1/T1 RNase superfamily comprises enzymes with well-established antitumor effects, such as ribotoxins secreted by fungi, primarily by Aspergillus and Penicillium species, and bacterial RNase secreted by B. pumilus (binase) and B. amyloliquefaciens (barnase). RNase is regarded as an alternative to classical chemotherapeutic agents due to its selective cytotoxicity towards tumor cells. New RNase with a high degree of structural similarity with binase (73%) and barnase (74%) was isolated and purified from Bacillus licheniformis (balifase, calculated molecular weight 12421.9 Da, pI 8.91). The protein sample with enzymatic activity of 1.5 × 106 units/A280 was obtained. The physicochemical properties of balifase are similar to those of barnase. However, in terms of its gene organization and promoter activity, balifase is closer to binase. The unique feature of balifase gene organization consists in the fact that genes of RNase and its inhibitor are located in one operon. Similarly to biosynthesis of binase, balifase synthesis is induced under phosphate starvation; however, in contrast to binase, balifase does not form dimers under natural conditions. We propose that the highest stability of balifase among analyzed RNase types allows the protein to retain its structure without oligomerization.
Collapse
Affiliation(s)
- Yulia Sokurenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Alsu Nadyrova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Vera Ulyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
36
|
Mitkevich VA, Pace CN, Koschinski A, Makarov AA, Ilinskaya ON. Cytotoxicity mechanism of the RNase Sa cationic mutants involves inhibition of potassium current through Ca2+-activated channels. Mol Biol 2015. [DOI: 10.1134/s0026893315060199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|