1
|
Dębski A, Pęska M, Dworecka-Wójcik J, Gąsior W, Gierlotka W, Chulist R, Cerny R, Wyrębska I, Terlicka S, Polański M. Mechanical Synthesis and Calorimetric Studies of the Enthalpies of Formation of Chosen Mg-Pd Alloys. Molecules 2024; 29:5734. [PMID: 39683893 DOI: 10.3390/molecules29235734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Despite many years of research and continuous improvements in scientific equipment, some of the thermodynamic properties of binary systems are still unknown, or are only theoretically predicted or calculated. This situation often arises from the difficulties in preparing alloys for experimental measurements. The alloys from the Mg-Pd system, especially for the Pd-rich side, are difficult to produce, and the availability of thermodynamic data is very limited. Therefore, this paper presents calorimetric studies on the standard enthalpy of formation of alloys from the Mg-Pd system, which were prepared using mechanical alloying. Three alloys (S1, S2, and S3) were synthesized, homogenized, and subjected to X-ray diffraction (XRD) analysis to investigate their phase composition. The XRD studies showed that the alloys designated as S1 and S2 were the intermetallic phases Mg6Pd and Mg0.9Pd1.1, and the S3 sample was a mixture of MgPd and MgPd3 intermetallic phases. Their heat effects, measured by drop calorimetry, were used to calculate the values of the standard enthalpies of formation of the prepared phases. The values obtained were as follows: -27.5 ± 1.1 kJ/mol at. for the Mg6Pd intermetallic phase, -72.7 ± 1.0 kJ/mol at. for the Mg0.9Pd1.1 intermetallic phase, and -46.8 ± 1.5 kJ/mol at. for the alloy which was a mixture of MgPd and MgPd3. These data were compared with values from the existing literature on the enthalpy of formation of alloys, as well as with data calculated using Miedema's model.
Collapse
Affiliation(s)
- Adam Dębski
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków, Poland
| | - Magda Pęska
- Department of Functional Materials and Hydrogen Technology, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
| | - Julita Dworecka-Wójcik
- Department of Functional Materials and Hydrogen Technology, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
| | - Władysław Gąsior
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków, Poland
| | - Wojciech Gierlotka
- Materials Science and Engineering Department, National Dong Hwa University, Hualien 970024, Taiwan
| | - Robert Chulist
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków, Poland
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Radovan Cerny
- DQMP-Department of Quantum Matter Physics, Université de Genève, 24, Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Iwona Wyrębska
- Department of Functional Materials and Hydrogen Technology, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
| | - Sylwia Terlicka
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków, Poland
| | - Marek Polański
- Department of Functional Materials and Hydrogen Technology, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
| |
Collapse
|
2
|
Quaranta C, d'Anciães Almeida Silva I, Moos S, Bartalucci E, Hendrickx L, Fahl BMD, Pasqualini C, Puccetti F, Zobel M, Bolm C, Wiegand T. Molecular Recognition in Mechanochemistry: Insights from Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202410801. [PMID: 39007361 DOI: 10.1002/anie.202410801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Molecular-recognition events are highly relevant in biology and chemistry. In the present study, we investigated such processes in the solid state under mechanochemical conditions using the formation of racemic phases upon reacting enantiopure entities as example. As test systems, α-(trifluoromethyl)lactic acid (TFLA) and the amino acids serine and alanine were used. The effects of ball-milling and resonant acoustic mixing (RAM) on the formation of racemic phases were probed by using solid-state Nuclear Magnetic Resonance (NMR) spectroscopy. In a mixer mill, a highly efficient and fast racemic phase formation occurred for both TFLA and the two amino acids. RAM led to the racemic phase for TFLA also, and this process was facilitated upon employing pre-milled enantiopure entities. In contrast, under comparable conditions RAM did not result in the formation of racemic phases for serine and alanine.
Collapse
Affiliation(s)
- Calogero Quaranta
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Sven Moos
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Benjamin M D Fahl
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Claudia Pasqualini
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro, 2, I-53100, Siena, Italy
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Mirijam Zobel
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
3
|
Uspenskaya EV, Kuzmina E, Quynh HTN, Komkova MA, Kazimova IV, Timofeev AA. Influence of Mechanical Loading on the Process of Tribochemical Action on Physicochemical and Biopharmaceutical Properties of Substances, Using Lacosamide as an Example: From Micronisation to Mechanical Activation. Pharmaceutics 2024; 16:798. [PMID: 38931919 PMCID: PMC11207894 DOI: 10.3390/pharmaceutics16060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Many physical and chemical properties of solids, such as strength, plasticity, dispersibility, solubility and dissolution are determined by defects in the crystal structure. The aim of this work is to study in situ dynamic, dispersion, chemical, biological and surface properties of lacosamide powder after a complete cycle of mechanical loading by laser scattering, electron microscopy, FR-IR and biopharmaceutical approaches. The SLS method demonstrated the spontaneous tendency toward surface-energy reduction due to aggregation during micronisation. DLS analysis showed conformational changes of colloidal particles as supramolecular complexes depending on the loading time on the solid. SEM analysis demonstrated the conglomeration of needle-like lacosamide particles after 60 min of milling time and the transition to a glassy state with isotropy of properties by the end of the tribochemistry cycle. The following dynamic properties of lacosamide were established: elastic and plastic deformation boundaries, region of inhomogeneous deformation and fracture point. The ratio of dissolution-rate constants in water of samples before and after a full cycle of loading was 2.4. The lacosamide sample, which underwent a full cycle of mechanical loading, showed improved kinetics of API release via analysis of dissolution profiles in 0.1 M HCl medium. The observed activation-energy values of the cell-death biosensor process in aqueous solutions of the lacosamide samples before and after the complete tribochemical cycle were 207 kJmol-1 and 145 kJmol-1, respectively. The equilibrium time of dissolution and activation of cell-biosensor death corresponding to 20 min of mechanical loading on a solid was determined. The current study may have important practical significance for the transformation and management of the properties of drug substances in solid form and in solutions and for increasing the strength of drug matrices by pre-strain hardening via structural rearrangements during mechanical loading.
Collapse
Affiliation(s)
- Elena V. Uspenskaya
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (E.K.); (H.T.N.Q.); (M.A.K.); (I.V.K.)
| | - Ekaterina Kuzmina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (E.K.); (H.T.N.Q.); (M.A.K.); (I.V.K.)
| | - Hoang Thi Ngoc Quynh
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (E.K.); (H.T.N.Q.); (M.A.K.); (I.V.K.)
| | - Maria A. Komkova
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (E.K.); (H.T.N.Q.); (M.A.K.); (I.V.K.)
| | - Ilaha V. Kazimova
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia; (E.K.); (H.T.N.Q.); (M.A.K.); (I.V.K.)
| | - Aleksey A. Timofeev
- Scientific and Educational Resource Centre “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
| |
Collapse
|
4
|
Carta M, Delogu F. Mechanochemical ignition of self-propagating reactions in equimolar Al-Ni powder mixtures and multilayers. Phys Chem Chem Phys 2024; 26:12316-12323. [PMID: 38619339 DOI: 10.1039/d3cp05401b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
This work addresses a long standing question in the field of mechanochemistry, namely the role of mesostructure in the initiation of self-propagating high-temperature reactions in exothermic chemical systems, commonly referred to as ignition. In an attempt to find robust evidence in this regard, we compare the ignition behaviour of equimolar Al-Ni powder mixtures and equimolar Al-Ni multilayers. To achieve the best possible control of experimental conditions and allowing high reproducibility, we used elemental powders sieved in the range between 20 μm and 44 μm, and multilayers with bi-layer thickness between 10 nm and 800 nm. We carried out systematic ball milling experiments involving pristine powder mixtures and multilayers as well as a mix of pristine material and material prone to ignition suitably prepared. Experimental findings suggest that pristine powder mixtures and multilayers with bi-layer thickness of 240 nm have analogous ignition behaviour. Along the same lines, data suggest that pristine powder mixtures undergo ignition when they attain a mesostructure similar to that of multilayers with bi-layer thickness of 10 nm.
Collapse
Affiliation(s)
- Maria Carta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
- Center for Colloid and Surface Science (CSGI), Cagliari Research Unit, Department of Chemistry, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Francesco Delogu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
- Center for Colloid and Surface Science (CSGI), Cagliari Research Unit, Department of Chemistry, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
5
|
Sun CJ, Gau SH, Huang YK, Li MG, Wang J. Removal of heavy metals in water-extracted solution through adsorption by palygorskite and stabilization by comilling. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241237107. [PMID: 38497604 DOI: 10.1177/0734242x241237107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Removing water-soluble chlorides (WSCs) through water extraction is a common pretreatment technology for recycling municipal solid waste incineration (MSWI) fly ash (FA). However, the extracted solution often contains heavy metals, the concentrations of which exceed standards for effluent. This study aims to investigate the adsorption of heavy metals by palygorskite in water-extracted solution and explore the feasibility of stabilizing heavy metals through comilling palygorskite-adsorbed heavy metals (PAHMs) with water-extracted fly ash (WFA). The experimental parameters include: two-stage water extraction with a liquid-to-solid ratio of 5, adding 0, 0.125, 0.25, 0.5, 1, 2 or 3 g of palygorskite to 100 mL of water-extracted solution, and comilling the mixture of PAHMs and WFA for 0, 0.5, 1, 2, 4, 8, 12, 24 or 96 hours. The experimental results revealed that 3 g of palygorskite in 100 mL of extracted solution could absorb Pb, Cd, Cr, Cu and Zn, meeting the effluent standards. The total amount of Pb, Cd, Cr, Cu and Zn removal rate reached 99.7%. Moreover, 98.44% of the WSCs were not adsorbed, the water extraction process for removing WSCs was not compromised. After the comilling of PAHMs and WFA, the distribution of the heavy metals in the milled blended powder was greater than 99.44%; moreover, toxicity characteristic leaching procedure concentrations were determined to conform to regulatory standards, and the sequential extraction procedure revealed that the heavy metals tended to be in stable fractions. This achieves the goal of preventing secondary pollution from heavy metals during the MSWI FA recycling process.
Collapse
Affiliation(s)
- Chang-Jung Sun
- Department of Environmental Engineering, Dongguan City University, Guangdong, China
| | - Sue-Huai Gau
- Department of Water Resources and Environmental Engineering, Tamkang University, Tamsui, Taipei, Taiwan
| | - Yu-Kai Huang
- Taiwan Semiconductor Manufacturing Co., Ltd., Hsinchu, Taiwan
| | - Ming-Guo Li
- Department of Water Resources and Environmental Engineering, Tamkang University, Tamsui, Taipei, Taiwan
| | - Jing Wang
- Department of Environmental Engineering, Dongguan City University, Guangdong, China
| |
Collapse
|
6
|
Potanin AY, Bashkirov EA, Kovalev DY, Sviridova TA, Levashov EA. Phase Formation during the Synthesis of the MAB Phase from Mo-Al-B Mixtures in the Thermal Explosion Mode. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1025. [PMID: 38473497 DOI: 10.3390/ma17051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
This work focused on the production of the MoAlB MAB phase through self-propagating, high-temperature synthesis in the thermal explosion mode. The influence of the method of a Mo-Al-B-powder reaction mixture preparation on the combustion temperature, mechanism, and stages of the MAB phase formation in the combustion process was investigated. The combustion temperatures of the mixtures obtained in the rotary ball mill and high-speed planetary ball mill were 1234 and 992 °C, respectively. The formation of intermediate compounds Mo3Al8 and α-MoB in the combustion front, along with MoAlB, was established using the time-resolved X-ray diffraction method. In the case of the mixture prepared in a ball mill, the primary interaction in the combustion front occurred through the Al melt, and in the case of using a planetary mill, solid-phase reactions played an important role. The mechanical activation of the mixture in a planetary mill also accelerated the processes of phase formation. The method of a reaction mixture preparation has virtually no effect on the MoAlB MAB phase content in combustion products (92-94%), but it does affect their structure. The synthesis products have a lamellar structure composed of MAB grains with a thickness of ~0.4 μm and a length of ~2-10 μm.
Collapse
Affiliation(s)
- Artem Yu Potanin
- National University of Science and Technology "MISIS", Leninsky Prospect 4, bldg. 1, 119049 Moscow, Russia
| | - Evgeny A Bashkirov
- National University of Science and Technology "MISIS", Leninsky Prospect 4, bldg. 1, 119049 Moscow, Russia
| | - Dmitry Yu Kovalev
- Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Science, 142432 Chernogolovka, Russia
| | - Tatiana A Sviridova
- National University of Science and Technology "MISIS", Leninsky Prospect 4, bldg. 1, 119049 Moscow, Russia
| | - Evgeny A Levashov
- National University of Science and Technology "MISIS", Leninsky Prospect 4, bldg. 1, 119049 Moscow, Russia
| |
Collapse
|
7
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
8
|
Svetlakova KI, Mediankina IS, Pasechnik LA, Yu. Buldakova L, Yanchenko MY. Synthesis and photocatalytic activity of the Co-containing materials based on amorphous SiO2. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Boldyreva E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday Discuss 2023; 241:9-62. [PMID: 36519434 DOI: 10.1039/d2fd00149g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper presents a view on the achievements, challenges and prospects of mechanochemistry. The extensive reference list can serve as a good entry point to a plethora of mechanochemical literature.
Collapse
Affiliation(s)
- Elena Boldyreva
- Boreskov Institute of Catalysis SB RAS & Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
10
|
Uspenskii SA, Khaptakhanova PA. Boron nanoparticles in chemotherapy and radiotherapy: the synthesis, state-of-the-art, and prospects. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
11
|
Bazhin PM, Konstantinov AS, Chizhikov AP, Antipov MS, Kostitsyna EV, Stolin AM. Influence of Conditions of Self-Propagating High-Temperature Synthesis on Phase Composition and Structure of Materials Based on Ti–B. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Modeling of the mechanical treatment of a solid reactant under active gas in the high-energy mill on the example of the titanium-gaseous nitrogen system. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Martinez V, Stolar T, Karadeniz B, Brekalo I, Užarević K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat Rev Chem 2022; 7:51-65. [PMID: 37117822 DOI: 10.1038/s41570-022-00442-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Owing to its efficiency and unique reactivity, mechanochemical processing of bulk solids has developed into a powerful tool for the synthesis and transformation of various classes of materials. Nevertheless, mechanochemistry is primarily based on simple techniques, such as milling in comminution devices. Recently, mechanochemical reactivity has started being combined with other energy sources commonly used in solution-based chemistry. Milling under controlled temperature, light irradiation, sound agitation or electrical impulses in newly developed experimental setups has led to reactions not achievable by conventional mechanochemical processing. This Perspective describes these unique reactivities and the advances in equipment tailored to synthetic mechanochemistry. These techniques - thermo-mechanochemistry, sono-mechanochemistry, electro-mechanochemistry and photo-mechanochemistry - represent a notable advance in modern mechanochemistry and herald a new level of solid-state reactivity: mechanochemistry 2.0.
Collapse
|
14
|
De Bellis J, Petersen H, Ternieden J, Pfänder N, Weidenthaler C, Schüth F. Direct Dry Synthesis of Supported Bimetallic Catalysts: A Study on Comminution and Alloying of Metal Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202208016. [PMID: 35972468 PMCID: PMC9804192 DOI: 10.1002/anie.202208016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Ball milling is growing increasingly important as an alternative synthetic tool to prepare catalytic materials. It was recently observed that supported metal catalysts could be directly obtained upon ball milling from the coarse powders of metal and oxide support. Moreover, when two compatible metal sources are simultaneously subjected to the mechanochemical treatment, bimetallic nanoparticles are obtained. A systematic investigation was extended to different metals and supports to understand better the mechanisms involved in the comminution and alloying of metal nanoparticles. Based on this, a model describing the role of metal-support interactions in the synthesis was developed. The findings will be helpful for the future rational design of supported metal catalysts via dry ball milling.
Collapse
Affiliation(s)
- Jacopo De Bellis
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Hilke Petersen
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Jan Ternieden
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Norbert Pfänder
- Department of Heterogeneous ReactionsMax-Planck-Institut für Chemische EnergiekonversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Claudia Weidenthaler
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Ferdi Schüth
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
15
|
Antipov MS, Bazhin PM, Chizhikov AP, Konstantinov AS, Stolin AM, Khomenko NY. Formability, Phase Composition, and Microstructure of TiC–(5–50 wt %) NiCr–Based Materials Obtained by Free SHS Compression. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
De Bellis J, Petersen H, Ternieden J, Pfänder N, Weidenthaler C, Schüth F. Direct Dry Synthesis of Supported Bimetallic Catalysts: A Study on Comminution and Alloying of Metal Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacopo De Bellis
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | - Hilke Petersen
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | - Jan Ternieden
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | - Norbert Pfänder
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Department of Heterogeneous Reactions Stiftstrasse 34-36 NRW Mülheim an der Ruhr GERMANY
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | - Ferdi Schüth
- Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim GERMANY
| |
Collapse
|
17
|
Sanna AL, Carta M, Pia G, Garroni S, Porcheddu A, Delogu F. Chemical effects induced by the mechanical processing of granite powder. Sci Rep 2022; 12:9445. [PMID: 35676307 PMCID: PMC9177845 DOI: 10.1038/s41598-022-12962-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Starting from 1970s, the use of mechanical forces to induce chemical transformations has radically changed vast areas of metallurgy and materials science. More recently, mechanochemistry has expanded to core sectors of chemistry, showing the promise to deeply innovate chemical industry while enhancing its sustainability and competitiveness. We are still far, however, from unveiling the full potential of mechanical activation. This study marks a step forward in this direction focusing on the chemical effects induced on the surrounding gaseous phase by the mechanical processing of granite. We show that fracturing granite blocks in oxygen can result in the generation of ozone. The refinement of coarse granite particles and the friction between fine ones are also effective in this regard. Combining experimental evidence related to the crushing of large granite samples by uniaxial compression and the ball milling of coarse and fine granite powders, we develop a model that relates mechanochemical ozone generation to the surface area effectively affected by fracture and frictional events taking place during individual impacts. We also extend the investigation to gaseous phases involving methane, oxygen, benzene and water, revealing that chemical transformations occur as well.
Collapse
Affiliation(s)
- Anna Laura Sanna
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali - CSGI Cagliari research unit, Università degli Studi di Cagliari, via Marengo 2, 09123, Cagliari, Italy
| | - Maria Carta
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali - CSGI Cagliari research unit, Università degli Studi di Cagliari, via Marengo 2, 09123, Cagliari, Italy
| | - Giorgio Pia
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali - CSGI Cagliari research unit, Università degli Studi di Cagliari, via Marengo 2, 09123, Cagliari, Italy
| | - Sebastiano Garroni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100, Sassari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042, Monserrato, CA, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali - CSGI Cagliari research unit, Università degli Studi di Cagliari, via Marengo 2, 09123, Cagliari, Italy.
| |
Collapse
|
18
|
Kalinkin AM, Kuz’menkov OA, Kalinkina EV, Semushin VV. Mechanically Activated Solid-State Synthesis of Nanocrystalline Yb4Zr3O12. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222060172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
The Influence of Physical Activation of Portland Cement in the Electromagnetic Vortex Layer on the Structure Formation of Cement Stone: The Effect of Extended Storage Period and Carbon Nanotubes Modification. BUILDINGS 2022. [DOI: 10.3390/buildings12060711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The article presents research of the influence of the electromagnetic vortex layer on the structure formation of cement stone during the activation of portland cement, both without additives and with carbon nanotubes modification. It has been shown that the storage of portland cement powders in open air for 60 days after activation in the electromagnetic mill leads to partial carbonization, wherein the role in absorption reducing of the super plasticizer additive is increased since there is more uniformly localization of the additive on the surface of the portland cement particles. The processing of portland cement in the electromagnetic mill leads to the physical activation of portland cement, which is accompanied by an increase in the amount of heat generated by the hydration of portland cement and the rate of hydration. Thus, the rate of hydration of compositions activated in the electromagnetic mill isincreased 1.615 times at the temperature of the thermostat 22 °C; 1.85 times at 40 °C; 2.71 times at 60 °C; 2.3 times at 80 °C. The modification of cement stonewith carbon nanotubes, which was obtained from portland cement activated in an electromagnetic mill, leads to a higher quantity of silicate phase of portland cement (by 12–39%), as confirmed by a decrease in the number of portlandite in these compositions by 8% in comparison with control composition.
Collapse
|
20
|
Michalchuk AAL, Emmerling F. Time-Resolved In Situ Monitoring of Mechanochemical Reactions. Angew Chem Int Ed Engl 2022; 61:e202117270. [PMID: 35128778 PMCID: PMC9400867 DOI: 10.1002/anie.202117270] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Mechanochemical transformations offer environmentally benign synthesis routes, whilst enhancing both the speed and selectivity of reactions. In this regard, mechanochemistry promises to transform the way in which chemistry is done in both academia and industry but is greatly hindered by a current lack of mechanistic understanding. The continued development and use of time-resolved in situ (TRIS) approaches to monitor mechanochemical reactions provides a new dimension to elucidate these fascinating transformations. We here discuss recent trends in method development that have pushed the boundaries of mechanochemical research. New features of mechanochemical reactions obtained by TRIS techniques are subsequently discussed, which sheds light on how different TRIS approaches have been used. Emphasis is placed on the strength of combining complementary techniques. Finally, we outline our views on the potential of TRIS methods in mechanochemical research, towards establishing a new, environmentally benign paradigm in the chemical sciences.
Collapse
Affiliation(s)
- Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse1112489BerlinGermany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and TestingRichard-Willstätter-Strasse1112489BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
21
|
Buzanov GA, Stroganova EA, Bykov AY, Zhizhin KY, Kuznetsov NT. Hydride Intercalation of Lithium into Ni3GaTe2. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622050035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
In order to expand the methods of lithium intercalation into layered multicomponent matrices, the reaction of lithium hydride with layered telluride Ni3GaTe2 through the stage of formation of mechanocomposites has been studied. Intercalation compounds LixNi3GaTe2 (0 ≤ x ≤ 0.3) have been shown to form when annealing mechanocomposites of the matrix and intercalating agent (LiH) in argon. The channels of hydride ion conversion have been studied and transformations involving the matrix have been described at various temperatures and molar ratios of the matrix and intercalating agent.
Collapse
|
22
|
Lapshin O, Ivanova O. Macrokinetic mechanosynthesis model comprising multidirectional factors characterizing the effect of mechanical treatment on the combustion of activated mixtures. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Michalchuk AAL, Emmerling F. Zeitaufgelöste In‐Situ‐Untersuchungen von mechanochemischen Reaktionen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam A. L. Michalchuk
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11 12489 Berlin Deutschland
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Straße 11 12489 Berlin Deutschland
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
24
|
Aksenova VV, Kanunnikova OM, Burnyshev IN, Lad’yanov VI. Structural Phase Transformations in Titanium Powders during Mechanosynthesis in Liquid Hydrocarbons. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Tóthová E, Düvel A, Witte R, Brand RA, Sarkar A, Kruk R, Senna M, Da Silva KL, Menzel D, Girman V, Hegedüs M, Baláž M, Makreski P, Kubuki S, Kaňuchová M, Valíček J, Hahn H, Šepelák V. A Unique Mechanochemical Redox Reaction Yielding Nanostructured Double Perovskite Sr 2FeMoO 6 With an Extraordinarily High Degree of Anti-Site Disorder. Front Chem 2022; 10:846910. [PMID: 35372274 PMCID: PMC8967169 DOI: 10.3389/fchem.2022.846910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Strontium ferromolybdate, Sr2FeMoO6, is an important member of the family of double perovskites with the possible technological applications in the field of spintronics and solid oxide fuel cells. Its preparation via a multi-step ceramic route or various wet chemistry-based routes is notoriously difficult. The present work demonstrates that Sr2FeMoO6 can be mechanosynthesized at ambient temperature in air directly from its precursors (SrO, α-Fe, MoO3) in the form of nanostructured powders, without the need for solvents and/or calcination under controlled oxygen fugacity. The mechanically induced evolution of the Sr2FeMoO6 phase and the far-from-equilibrium structural state of the reaction product are systematically monitored with XRD and a variety of spectroscopic techniques including Raman spectroscopy, 57Fe Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. The unique extensive oxidation of iron species (Fe0 → Fe3+) with simultaneous reduction of Mo cations (Mo6+ → Mo5+), occuring during the mechanosynthesis of Sr2FeMoO6, is attributed to the mechanically triggered formation of tiny metallic iron nanoparticles in superparamagnetic state with a large reaction surface and a high oxidation affinity, whose steady presence in the reaction mixture of the milled educts initiates/promotes the swift redox reaction. High-resolution transmission electron microscopy observations reveal that the mechanosynthesized Sr2FeMoO6, even after its moderate thermal treatment at 923 K for 30 min in air, exhibits the nanostructured nature with the average particle size of 21(4) nm. At the short-range scale, the nanostructure of the as-prepared Sr2FeMoO6 is characterized by both, the strongly distorted geometry of the constituent FeO6 octahedra and the extraordinarily high degree of anti-site disorder. The degree of anti-site disorder ASD = 0.5, derived independently from the present experimental XRD, Mössbauer, and SQUID magnetization data, corresponds to the completely random distribution of Fe3+ and Mo5+ cations over the sites of octahedral coordination provided by the double perovskite structure. Moreover, the fully anti-site disordered Sr2FeMoO6 nanoparticles exhibit superparamagnetism with the blocking temperature T B = 240 K and the deteriorated effective magnetic moment μ = 0.055 μ B per formula unit.
Collapse
Affiliation(s)
- Erika Tóthová
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - André Düvel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ralf Witte
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Richard A. Brand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Abhishek Sarkar
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Robert Kruk
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mamoru Senna
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Klebson Lucenildo Da Silva
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Physics, State University of Maringá, Maringá, Brazil
| | - Dirk Menzel
- Institute of Condensed Matter Physics, Braunschweig University of Technology, Braunschweig, Germany
| | - Vladimír Girman
- Institute of Physics, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| | | | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Shiro Kubuki
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Mária Kaňuchová
- Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Košice, Slovakia
| | - Jan Valíček
- Faculty of Technology, College of Technology and Business in České Budějovice, České Budějovice, Czechia
- Faculty of Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Vladimír Šepelák
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Technology, College of Technology and Business in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
26
|
In Situ Analytical Methods for the Characterization of Mechanochemical Reactions. CRYSTALS 2022. [DOI: 10.3390/cryst12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interest in mechanochemical reactions and their fields of application have increased enormously in recent times. Mechanically activated reactions offer the advantage of cost-efficiency as well as environmentally friendly syntheses routes. In contrast to thermally induced processes, the energy transfer via the milling media takes place on a local scale. This leads to unique reaction pathways, which often also result in the formation of metastable phases. For the understanding of reaction pathways on a mechanistic level, it is very important to follow the processes taking place in the grinding jar during milling. Besides the measurement of pressure and temperature changes during a mechanochemical reaction, in situ high energy synchrotron X-ray powder diffraction and Raman spectroscopy experiments have been successfully implemented over the last 10 years. This review will highlight the developments which were achieved in the field of in situ monitoring of mechanochemical reactions and their input to the understanding of mechanochemistry.
Collapse
|
27
|
Belenguer AM, Michalchuk AAL, Lampronti GI, Sanders JKM. Using Solid Catalysts in Disulfide-Based Dynamic Combinatorial Solution- and Mechanochemistry. CHEMSUSCHEM 2022; 15:e202102416. [PMID: 34863026 DOI: 10.1002/cssc.202102416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Indexed: 06/13/2023]
Abstract
It was shown for the first time that solid amines can act as catalysts for disulfide-based dynamic combinatorial chemistry (DCC) by ball mill grinding. The mechanochemical equilibrium for the two disulfide reactions studied was reached within 1-3 h using ten different amine catalysts. This contrasts with the weeks to months to achieve solution equilibrium for most solid amine catalysts at 2 %mol mol-1 concentration in a 2 mMolar disulfide dynamic combinatorial library in a suitable solvent. The final mechanochemical equilibrium was independent of the catalyst used but varied with other ball mill grinding factors such as the presence of traces of solvent. The different efficiencies of the amines tested were discussed.
Collapse
Affiliation(s)
- Ana M Belenguer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adam A L Michalchuk
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| | - Giulio I Lampronti
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, United Kingdom
| | - Jeremy K M Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
28
|
Wang G, Jia J, He Y, Wei D, Song M, Zhang L, Li G, Li H, Yuan B. Solid-state molecular oxygen activation using ball milling and a piezoelectric material for aerobic oxidation of thiols. RSC Adv 2022; 12:18407-18411. [PMID: 35799932 PMCID: PMC9214485 DOI: 10.1039/d2ra02255a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
The agitation of BaTiO3via ball milling converts mechanical energy into electrical energy, leading to the reduction of molecular oxygen via a single electron transfer pathway analogous to the photocatalytic reaction. This mechanoredox strategy for the oxidative coupling of thiols could eliminate waste and develop a recyclable methodology to accomplish organic transformations in a greener fashion, exhibiting promising potential for large-scale chemical manufacturing. The agitation of BaTiO3via ball milling converts mechanical energy into electrical energy, leading to the reduction of molecular oxygen via a single electron transfer pathway analogous to the photocatalytic reaction.![]()
Collapse
Affiliation(s)
- Gefei Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jiajia Jia
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu He
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Diandian Wei
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mingyu Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ganzhong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Heng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bingxin Yuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
29
|
Lapshin OV, Boldyrev VV, Boldyreva EV. Theoretical Study of the Grinding and Homogenization of a Binary Mixture of Reactive Powders in a Mechanical Activator. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front Chem 2021; 9:685789. [PMID: 34164379 PMCID: PMC8216082 DOI: 10.3389/fchem.2021.685789] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemical community.
Collapse
Affiliation(s)
| | - Elena V. Boldyreva
- Novosibirsk State University, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - Ana M. Belenguer
- Yusef Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Vladimir V. Boldyrev
- Novosibirsk State University, Novosibirsk, Russia
- Voevodski Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| |
Collapse
|
31
|
Carta M, Delogu F, Porcheddu A. A phenomenological kinetic equation for mechanochemical reactions involving highly deformable molecular solids. Phys Chem Chem Phys 2021; 23:14178-14194. [PMID: 34132305 DOI: 10.1039/d1cp01361k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With its ability to enable solvent-free chemical reactions, mechanochemistry promises to open new and greener synthetic routes to chemical products of industrial interest. Its practical exploitation requires understanding the relationships between processing variables, powders' mechanical behaviour, and chemical reactivity. To this aim, rationalizing experimental kinetics is of paramount importance. In this work, we propose a phenomenological kinetic model that could help experimentalists to disentangle the mechanical, chemical, and statistical factors underlying mechanochemical reactions. The model takes into account the statistical nature of ball milling and relates the global kinetic curve that can be obtained experimentally to the deformation and chemical processes that occur on the mesoscopic and microscopic scales during individual impacts. We show that our model equations can satisfactorily best fit experimental datasets, providing information on the underlying mechanochemistry.
Collapse
Affiliation(s)
- Maria Carta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy. and Center for Colloid and Surface Science (CSGI), Department of Chemistry, University of Florence, via della Lastruccia 3, 50019 - Sesto Fiorentino, FI, Italy
| | - Francesco Delogu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy. and Center for Colloid and Surface Science (CSGI), Department of Chemistry, University of Florence, via della Lastruccia 3, 50019 - Sesto Fiorentino, FI, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, CA, Italy
| |
Collapse
|