1
|
Gharagozlou M, Elmi Fard N, Ghahari M, Tavakkoli Yaraki M. Bimetal Cu/Ni-BTC@SiO 2 metal-organic framework as high performance photocatalyst for degradation of azo dyes under visible light irradiation. ENVIRONMENTAL RESEARCH 2024; 256:119229. [PMID: 38797465 DOI: 10.1016/j.envres.2024.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
There has been significant attention on the efficient degradation of pollutants in wastewater using metal-organic frameworks (MOFs) photocatalytic methods over the past decade. Herein, we examined the elimination of two different types of water-contaminating dyes, specifically cationic dye methylene blue (MB) and anionic dye methyl orange (MO), through the application of bimetal Cu/Ni-BTC@SiO2 MOF as high performance photocatalyst. The bimetal Cu/Ni-BTC@SiO2 photocatalyst was synthesized and characterized by XRD, FTIR, SEM, TEM, TGA, BET, DRS, and VSM techniques. The examination of the impact of different operational factors on the elimination of pollutants involved a comprehensive analysis of variables including the photocatalyst type, initial pollutant concentration, quantity of photocatalyst, and pH levels. The highest removal efficiency for MO and MB dyes by the photocatalyst was found to be 98 and 71%, respectively, within 60 min. In the fifth reaction stage, degradation efficiency for MO and MB was 76 and 56% respectively. Kinetic investigations demonstrated that, in the context of the uptake of MB and MO dyes, the interparticle diffusion, and pseudo-second-order models emerged as possessing the most robust correlation coefficients with the experimental data, registering values of 0.988 and 0.961, respectively. The examination of isotherms reveals that the isotherm models proposed by BET, and Anderson (V) demonstrate the highest level of conformity with the empirical data for the decomposition of MB and MO dyes, correspondingly. The TOC levels decreased significantly from 51 to 14 and 47 to 3 mg/L for MB and MO dyes, indicating the effective mineralization process using Cu/Ni-BTC@SiO2.
Collapse
Affiliation(s)
- Mehrnaz Gharagozlou
- Department of Nanomaterials and Nanocoatings, Institute for Color, Science, and Technology, P.O. Box 654-16765, Tehran, Iran.
| | - Narges Elmi Fard
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ghahari
- Department of Nanomaterials and Nanocoatings, Institute for Color, Science, and Technology, P.O. Box 654-16765, Tehran, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
2
|
Fard NE, Ali NS, Saady NMC, Albayati TM, Salih IK, Zendehboudi S, Harharah HN, Harharah RH. A review on development and modification strategies of MOFs Z-scheme heterojunction for photocatalytic wastewater treatment, water splitting, and DFT calculations. Heliyon 2024; 10:e32861. [PMID: 39027550 PMCID: PMC11255594 DOI: 10.1016/j.heliyon.2024.e32861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Increasing water pollution and decreasing energy reserves have emerged as growing concerns for the environment. These pollution are due to the dangerous effects of numerous pollutants on humans and aquatic organisms, such as hydrocarbons, biphenyls, pesticides, dyes, pharmaceuticals, and metal ions. On the other hand, the need for a clean environment, finding alternatives to fossil and renewable fuels is very important. Hydrogen (H2) is regarded as a viable and promising substitute for fossil fuels, and a range of methodologies have been devised to generate this particular source of energy. Metal-organic frameworks (MOFs) are a new generation of nanoporous coordination polymers whose crystal structure is composed of the juxtaposition of organic and inorganic constituent units. Due to their flexible nature, regular structure, and high surface area, these materials have attracted much attention for removing various pollutants from water and wastewater, and water splitting. MOFs Z-scheme heterojunctions have been identified as an economical and eco-friendly method for eliminating pollutants from wastewater systems, and producing H2. Their low-cost synthesis and unique properties increase their application in various energy and environment fields. The heterojunctions possess diverse properties, such as exceptional surface area, making them ideal for degradation and separation. The development and formulation of Z-scheme heterojunctions photocatalytic systems using MOFs, which possess stable and potent redox capability, have emerged as a successful approach for addressing environmental pollution and energy shortages in recent times. Through the utilization of the benefits offered by MOFs Z-scheme heterojunctions photocatalysts, such as efficient separation and migration of charge carriers, extensive spectrum of light absorption, among other advantages, notable enhancements can be attained. This review encompasses the synthesis techniques, structure, and properties of MOFs Z-scheme heterojunctions, and their extensive use in treating various wastewaters, including dyes, pharmaceuticals, and heavy metals, and water splitting. Also, it provides an overview of the mechanisms, pathways, and various theoretical and practical aspects for MOFs Z-scheme heterojunctions. Finally, it thoroughly assesses existing challenges and suggests further research on the promising applications of MOFs Z-scheme in industrial-scale wastewater treatment.
Collapse
Affiliation(s)
- Narges Elmi Fard
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nisreen S. Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Noori M. Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M. Albayati
- Department of Chemical Engineering, University of Technology- Iraq, 52 Alsinaa St., PO Box, 35010, Baghdad, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Hamed N. Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Kingdom of Saudi Arabia
| | - Ramzi H. Harharah
- Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Raeisi I, Derakhshi P, Azar PA, Tehrani MS. Novel photocatalyst system to deep desulfurization of petroleum model and gas condensate by Box–Behnken design. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this research, cobalt (Co)/molybdenum (Mo) and nickel (Ni) doped with titanium dioxide (TiO2) were loaded onto multi-walled carbon nanotubes (MWCNTs). Then, the magnetization catalyst, iron oxide (Fe3O4), was loaded on them, which was used for the deep desulfurization of dibenzothiophene (DBT). These catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential reflectance spectroscopy, and Brunauer–Emmett–Teller, Barrett–Joyner–Halenda, and vibrating sample magnetometer techniques. The photocatalytic activity of these catalysts was experienced under visible light using DBT. The response surface methodology based on the Box–Behnken design was used to evaluate parameters, including catalyst dosage (g), time (min), and concentration of DBT (mg L−1). The highest degradation efficiency under optimal conditions for CoMoNi/TiO2/MWCNTs/Fe3O4 catalysts with a catalyst dosage of 0.3 g, a time of 180 min, and a concentration of 50 mg L−1 was 99.99%. Optimum conditions were studied for desulfurization of the gas condensate. The highest desulfurization efficiency (90.33%) was obtained by the CoMoNi/TiO2/MWCNTs/Fe3O4 catalyst.
Collapse
Affiliation(s)
- Ilnaz Raeisi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Pirouz Derakhshi
- Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mohammad Saber Tehrani
- Department of Chemistry, Islamic Azad University Science and Research Branch, Tehran, Iran
| |
Collapse
|
4
|
Elmi Fard N, Fazaeli R. Fabrication of superhydrophobic
CoFe
2
O
4
/polyaniline/covalent organic frameworks/cotton fabric membrane and evaluation of its efficiency in separation of olive oil from water. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Narges Elmi Fard
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Reza Fazaeli
- Department of Chemical Engineering, Faculty of Engineering, South Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
5
|
Wu L, Pei X, Mei M, Li Z, Lu S. Study on Photocatalytic Performance of Ag/TiO2 Modified Cement Mortar. MATERIALS 2022; 15:ma15114031. [PMID: 35683336 PMCID: PMC9182574 DOI: 10.3390/ma15114031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
In this paper, Ag-TiO2 photocatalysts with different Ag contents (1 mol%–5 mol%) were prepared and applied to cement mortar. The photocatalytic performance of Ag-TiO2 and photocatalytic cement mortar under UV light and simulated solar light was evaluated. The results showed that Ag loading on the surface of TiO2 could reduce its band gap width and increase its absorbance in the visible region, and 2% Ag-TiO2 had the highest photocatalytic activity under UV light, the degradation rate of methyl orange (MO) was 95.5% at 30 min, and the first-order reaction constant k was 0.0980 min−1, which was 61.7% higher than that of TiO2, and 5% Ag-TiO2 had the highest photocatalytic activity under solar light, the degradation rate of methylene blue (MB) was 69.8% at 40 min, and the first-order reaction constant k was 0.0294 min−1, which was 90.9% higher than that of TiO2. The photocatalytic mortar prepared by the spraying method has high photocatalytic performance, The MO degradation rate of sample S2 under UV light was 87.5% after 120 min, MB degradation rate of sample S5 under solar light was 75.4% after 120 min. The photocatalytic reaction conforms to the zero-order reaction kinetics, which was 1.5 times–3.3 times higher than that of the mixed samples and has no effect on the mechanical properties of mortar.
Collapse
Affiliation(s)
- Linsong Wu
- School of Urban Construction, Yangtze University, Jingzhou 434023, China; (L.W.); (X.P.); (M.M.); (Z.L.)
| | - Xiaofang Pei
- School of Urban Construction, Yangtze University, Jingzhou 434023, China; (L.W.); (X.P.); (M.M.); (Z.L.)
| | - Mengjun Mei
- School of Urban Construction, Yangtze University, Jingzhou 434023, China; (L.W.); (X.P.); (M.M.); (Z.L.)
| | - Zhen Li
- School of Urban Construction, Yangtze University, Jingzhou 434023, China; (L.W.); (X.P.); (M.M.); (Z.L.)
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China
| | - Shiwei Lu
- School of Urban Construction, Yangtze University, Jingzhou 434023, China; (L.W.); (X.P.); (M.M.); (Z.L.)
- Correspondence:
| |
Collapse
|
6
|
Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M. Adsorption isotherm models: A comprehensive and systematic review (2010-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151334. [PMID: 34748826 DOI: 10.1016/j.scitotenv.2021.151334] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Among numerous methods developed in purification and separation industries, the adsorption process has received considerable attention due to its inexpensive, facile, and eco-friendly nature. The importance of the adsorption process causes extraordinary endeavors for modeling the adsorption isotherms during the years; thus, myriads of research have been conducted and many reviews have been published. In this paper, we have attempted to gather the most widely used adsorption isotherms and their related definitions, along with examples of correlated work of the recent decade. In the present review, 37 adsorption isotherms with about 400 references have been collected from the research published in the period of 2010-2020. The adsorption isotherms utilized are alphabetically organized for ease of access. The parameters of each isotherm, as well as the applicable definitions, are presented in the table, in addition to being discussed in the text. Another table is provided for the practical use of researchers, featuring the usage of the related isotherms in peer-reviewed studies.
Collapse
Affiliation(s)
- Mahdieh Mozaffari Majd
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Vahid Kordzadeh-Kermani
- Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Vahab Ghalandari
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Anis Askari
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
Khamani S, Ghorbani MH, Torkian L, Fazaeli R, Khodadadi Z. Preparation of NiO/WO3 Heterostructure and Photocatalytic Properties in Removal of Lincomycin Antibiotic: Experimental Study and Molecular Dynamic Simulation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Fekra SS, Fard NE, Fazaeli R. Photocatalytic Degradation of Antibiotic Norfloxacin Aqueous Solution by Ce/Bi2WO6: Optimization and Simulation of Process by RSM. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221060161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Fard NE, Fazaeli R, Yousefi M, Abdolmohammadi S. Oxidative Desulfurization of Dibenzothiophene Using M/TiO2/MWW (M = Cu, Ag, and Au) Composite. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421140065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Elham Ahangaran, Aghaie H, Fazaeli R. Study of Amoxicillin Adsorption on the Silanized Multiwalled Carbon Nanotubes: Isotherms, Kinetics, and Thermodynamics Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420130038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Behravesh S, Mirghaffari N, Alemrajabi AA, Davar F, Soleimani M. Photocatalytic degradation of acetaminophen and codeine medicines using a novel zeolite-supported TiO 2 and ZnO under UV and sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26929-26942. [PMID: 32385818 DOI: 10.1007/s11356-020-09038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical compounds are considered as emerging contaminants in the aquatic environments that are not easily eliminated by conventional treatment processes. In the present study, the photocatalytic oxidation of acetaminophen and codeine medicines under UV and solar irradiation was investigated in the aqueous solutions using a novel synthesized zeolite from stone cutting sludge as a support for TiO2 and ZnO. The effect of photocatalyst synthesis conditions including catalyst dose, mixing time, calcination time, and temperature on the efficiency of the pharmaceutical removal were optimized using Taguchi process optimization method. The prepared photocatalysts were characterized using X-ray diffractometer, field emission scanning electron microscopy, energy-dispersive X-ray, the BET surface area, and the Fourier transformation infrared. The results indicated that the performance of ZnO-zeolite for the removal of acetaminophen-codeine under UV and solar radiation with 58.7% and 45.7% was better than that of TiO2-zeolite with 44.3% and 39.2% efficiency, respectively. Removal efficiency under UV and solar radiation was comparable, suggesting that sunlight could be a promising source for treatment of contaminated water by acetaminophen and codeine using photocatalytic degradation. Regeneration of the prepared photocatalysts after 4 cycles revealed a slight decrease in their efficiency. Overall, photocatalytic degradation of the medicines in the water and wastewater using the ZnO-zeolite and TiO2-zeolite could be developed as an efficient treatment process.
Collapse
Affiliation(s)
- Samira Behravesh
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | | | - Ali Akbar Alemrajabi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|