1
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Huang AP, Espina Rey A, Cherian CG, Livingston FR. Clinical Outcomes Following SARS-CoV-2 Infection in Pediatric Cystic Fibrosis Patients. Cureus 2024; 16:e62821. [PMID: 39036102 PMCID: PMC11260353 DOI: 10.7759/cureus.62821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Background Cystic fibrosis (CF) is a genetic disorder of the cystic fibrosis transmembrane conductance regulator chloride channel that leads to impaired mucus clearance in the airways, which leads to deteriorations in lung function and chronic respiratory infection. These effects of CF contribute to the hypothesis that patients with CF may be at increased risk of complications when they catch coronavirus disease 2019 (COVID-19), which swept the world in a global pandemic starting in 2019. Overall, however, the role of CF in COVID-19 has not been well studied, particularly in pediatric patients. Methods In this retrospective review, pediatric patients with CF who contracted COVID-19 (3/1/2020-3/1/2023) (N=69) were compared to two equally sized control cohorts of patients with only CF or COVID-19 matched based on demographics and clinical baselines. Occurrences of adverse outcomes (emergency room visits, hospitalizations, CF pulmonary exacerbations, etc.) were assessed for each subject. The mean percentage of predicted forced expiratory volume in 1 second (FEV1%pred) was also assessed for CF patients. Fisher's exact test assessed differences between the proportions of subjects who experienced each outcome. Independent two-variable t-testing assessed mean FEV1%pred differences. Analysis was conducted using IBM SPSS Statistics for Windows, Version 29 (Released 2023; IBM Corp., Armonk, New York, United States) with a significance α=0.05. Ad hoc power analysis was conducted using G*Power v3.1. Results Overall, CF/COVID subjects fared similarly to control groups without either CF or COVID-19 history, including among subgroups stratified based on baseline respiratory function, P. aeruginosa colonization status, and COVID-19 vaccination status. One notable finding was that CF/COVID subjects experienced significantly fewer pulmonary exacerbations compared to CF-only subjects (p=0.004). Conclusion In conclusion, pediatric CF patients performed similarly to their peers without CF with regard to COVID-19 and generally did not demonstrate significant deteriorations in pulmonary function following infection. Lower incidence of pulmonary exacerbations in CF/COVID subjects could be explained by stringent monitoring by parents, quarantine, or close pulmonology follow-up. These findings will provide guidance on management and care for pediatric CF patients with COVID-19.
Collapse
Affiliation(s)
- Andy P Huang
- Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Andrea Espina Rey
- Statistics, University of Central Florida College of Medicine, Orlando, USA
| | | | | |
Collapse
|
3
|
Thornton CS, Caverly LJ, Kalikin LM, Carmody LA, McClellan S, LeBar W, Sanders DB, West NE, Goss CH, Flume PA, Heltshe SL, VanDevanter DR, LiPuma JJ. Prevalence and Clinical Impact of Respiratory Viral Infections from the STOP2 Study of Cystic Fibrosis Pulmonary Exacerbations. Ann Am Thorac Soc 2024; 21:595-603. [PMID: 37963297 PMCID: PMC10995546 DOI: 10.1513/annalsats.202306-576oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023] Open
Abstract
Rationale: Rates of viral respiratory infection (VRI) are similar in people with cystic fibrosis (CF) and the general population; however, the associations between VRI and CF pulmonary exacerbations (PEx) require further elucidation.Objectives: To determine VRI prevalence during CF PEx and evaluate associations between VRI, clinical presentation, and treatment response.Methods: The STOP2 (Standardized Treatment of Pulmonary Exacerbations II) study was a multicenter randomized trial to evaluate different durations of intravenous antibiotic therapy for PEx. In this ancillary study, participant sputum samples from up to three study visits were tested for respiratory viruses using multiplex polymerase chain reactions. Baselines and treatment-associated changes in mean lung function (percent predicted forced expiratory volume in 1 s), respiratory symptoms (Chronic Respiratory Infection Symptom Score), weight, and C-reactive protein were compared as a function of virus detection. Odds of PEx retreatment within 30 days and future PEx hazard were modeled by logistic and Cox proportional hazards regression, respectively.Results: A total of 1,254 sputum samples from 621 study participants were analyzed. One or more respiratory viruses were detected in sputum samples from 245 participants (39.5%). Virus-positive participants were more likely to be receiving CF transmembrane conductance regulator modulator therapy (45% vs. 34%) and/or chronic azithromycin therapy (54% vs. 44%) and more likely to have received treatment for nontuberculous Mycobacterium infection in the preceding 2 years (7% vs. 3%). At study visit 1, virus-positive participants were more symptomatic (mean Chronic Respiratory Infection Symptom Score, 53.8 vs. 51.1), had evidence of greater systemic inflammation (log10 C-reactive protein concentration, 1.32 log10 mg/L vs. 1.23 log10 mg/L), and had a greater drop in percent predicted forced expiratory volume in 1 second from the prior 6-month baseline (5.8 vs. 3.6). Virus positivity was associated with reduced risk of future PEx (hazard ratio, 0.82; 95% confidence interval, 0.69-0.99; P = 0.034) and longer median time to next PEx (255 d vs. 172 d; P = 0.021) compared with virus negativity.Conclusions: More than one-third of STOP2 participants treated for a PEx had a positive test result for a respiratory virus with more symptomatic initial presentation compared with virus-negative participants, but favorable long-term outcomes. More refined phenotyping of PEx, taking VRIs into account, may aid in optimizing personalized management of PEx.Clinical trial registered with www.clinicaltrials.gov (NCT02781610).
Collapse
Affiliation(s)
| | | | | | | | - Scott McClellan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - William LeBar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Don B. Sanders
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Natalie E. West
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christopher H. Goss
- Department of Medicine and
- Department of Pediatrics, University of Washington, Seattle, Washington
- CF Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington
| | - Patrick A. Flume
- Department of Medicine and
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; and
| | - Sonya L. Heltshe
- Department of Pediatrics, University of Washington, Seattle, Washington
- CF Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington
| | - Donald R. VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | |
Collapse
|
4
|
Carreno-Florez GP, Kocak BR, Hendricks MR, Melvin JA, Mar KB, Kosanovich J, Cumberland RL, Delgoffe GM, Shiva S, Empey KM, Schoggins JW, Bomberger JM. Interferon signaling drives epithelial metabolic reprogramming to promote secondary bacterial infection. PLoS Pathog 2023; 19:e1011719. [PMID: 37939149 PMCID: PMC10631704 DOI: 10.1371/journal.ppat.1011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.
Collapse
Affiliation(s)
- Grace P. Carreno-Florez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Brian R. Kocak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey A. Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Kosanovich
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
| | - Rachel L. Cumberland
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Greg M. Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
5
|
Marques LS, Boschiero MN, Sansone NMS, Brienze LR, Marson FAL. Epidemiological Profile of Hospitalized Patients with Cystic Fibrosis in Brazil Due to Severe Acute Respiratory Infection during the COVID-19 Pandemic and a Systematic Review of Worldwide COVID-19 in Those with Cystic Fibrosis. Healthcare (Basel) 2023; 11:1936. [PMID: 37444770 DOI: 10.3390/healthcare11131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Since the onset of the coronavirus disease, COVID-19 pandemic, concern arose for those who might be at higher risk of a worse COVID-19 prognosis, such as those with cystic fibrosis (CF). In this context, we evaluated the features of hospitalized patients with CF due to severe acute respiratory infection (SARI) in Brazil and we also performed a systematic review including all the studies published from the beginning of the first case of COVID-19 (17 November 2019) to the date of this search (23 May 2022) which included, concomitantly, patients with CF and COVID-19 in the worldwide population. In our Brazilian data, we evaluated the period from December 2019 to March 2022, and we included 33 demographical and clinical patients' features. We classified the patients into groups: (G1) SARI due to another viral infection than severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (23; 5.4%), (G2) SARI due to an unknown etiological agent (286; 67.1%), and (G3) SARI due to SARS-CoV-2 infection (117; 27.5%). The individuals in G3 tended to be older, especially over 50 years old, and presented a higher prevalence of dyspnea, peripheral capillary oxygen saturation (SpO2) <95%, and cardiopathy. The highest prevalence for intensive care unit (ICU) treatment (52; 44.4%) and invasive mechanical ventilation (29; 24.8%) was for patients in G3. Almost half of the patients in G3 died (51; 43.6%); in contrast, none in G1 died. However, we observed 43 (15.0%) deaths in G2. In addition, 12 (4.2%) and one (0.9%) death not associated with SARI occurred, respectively, in the G2 and G3. The patients who died due to SARS-CoV-2 infection had a higher frequency of SpO2 <95% (46; 90.2%), ICU treatment (34; 66.7%), and invasive mechanical ventilation (27; 52.9%) when compared to those who recovered. The systematic review comprised a total of 31 papers published as observational studies. These studies comprised 661,386 patients in total, including children, adults, and elderly age groups. However, only 19,150 (2.9%) patients were diagnosed with CF and, from these patients, 2523 (0.4%) were diagnosed with both CF and COVID-19. It was observed that the most common outcome was the need for hospitalization (n = 322 patients with CF), and the need for oxygen support (n = 139 patients with CF). One hundred patients with CF needed intensive care units, fifty patients needed non-invasive mechanical ventilation support, and only three patients were described as receiving invasive mechanical ventilation support. Deaths were described in 38 patients with CF. Importantly, lung-transplanted patients with CF represented an increased risk of death in one publication; in accordance, another study described that lung transplantation and moderate to severe lung disease were independent risk factors for severe outcomes after SARS-CoV-2 infection. In contrast with the literature, in conclusion, Brazilian patients in G3 presented a severe phenotype, even though most of the other studies did not observe worse outcomes in patients with CF and COVID-19.
Collapse
Affiliation(s)
- Leonardo Souza Marques
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | | | - Letícia Rulli Brienze
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | | |
Collapse
|
6
|
Brackenborough K, Ellis H, Flight WG. Respiratory Viruses and Cystic Fibrosis. Semin Respir Crit Care Med 2023; 44:196-208. [PMID: 36535663 DOI: 10.1055/s-0042-1758728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The threat of respiratory virus infection to human health and well-being has been clearly highlighted by the coronavirus disease 2019 (COVID-19) pandemic. For people with cystic fibrosis (CF), the clinical significance of viral infections long predated the emergence of severe acute respiratory syndrome coronavirus 2. This article reviews the epidemiology, diagnosis, and treatment of respiratory virus infection in the context of CF as well as the current understanding of interactions between viruses and other microorganisms in the CF lung. The incidence of respiratory virus infection in CF varies by age with young children typically experiencing more frequent episodes than adolescents and adults. At all ages, respiratory viruses are very common in CF and are associated with pulmonary exacerbations. Respiratory viruses are identified at up to 69% of exacerbations, while viruses are also frequently detected during clinical stability. The full impact of COVID-19 in CF is yet to be established. Early studies found that rates of COVID-19 were lower in CF cohorts than in the general population. The reasons for this are unclear but may be related to the effects of shielding, infection control practices, maintenance CF therapies, or the inflammatory milieu in the CF lung. Observational studies have consistently identified that prior solid organ transplantation is a key risk factor for poor outcomes from COVID-19 in CF. Several key priorities for future research are highlighted. First, the impact of highly effective CFTR modulator therapy on the epidemiology and pathophysiology of viral infections in CF requires investigation. Second, the impact of respiratory viruses on the development and dynamics of the CF lung microbiota is poorly understood and viral infection may have important interactions with bacteria and fungi in the airway. Finally, bacteriophages represent a key focus of future investigation both for their role in transmission of antimicrobial resistance and as a promising treatment modality for multiresistant pathogens.
Collapse
Affiliation(s)
- Kate Brackenborough
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Huw Ellis
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - William G Flight
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom.,Research and Development, GlaxoSmithKline plc, Brentford, United Kingdom
| |
Collapse
|
7
|
Haas AL, Zemke AC, Melvin JA, Armbruster CR, Hendricks MR, Moore J, Nouraie SM, Thibodeau PH, Lee SE, Bomberger JM. Iron bioavailability regulates Pseudomonas aeruginosa interspecies interactions through type VI secretion expression. Cell Rep 2023; 42:112270. [PMID: 36930643 PMCID: PMC10586262 DOI: 10.1016/j.celrep.2023.112270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The cystic fibrosis (CF) respiratory tract harbors pathogenic bacteria that cause life-threatening chronic infections. Of these, Pseudomonas aeruginosa becomes increasingly dominant with age and is associated with worsening lung function and declining microbial diversity. We aimed to understand why P. aeruginosa dominates over other pathogens to cause worsening disease. Here, we show that P. aeruginosa responds to dynamic changes in iron concentration, often associated with viral infection and pulmonary exacerbations, to become more competitive via expression of the TseT toxic effector. However, this behavior can be therapeutically targeted using the iron chelator deferiprone to block TseT expression and competition. Overall, we find that iron concentration and TseT expression significantly correlate with microbial diversity in the respiratory tract of people with CF. These findings improve our understanding of how P. aeruginosa becomes increasingly dominant with age in people with CF and provide a therapeutically targetable pathway to help prevent this shift.
Collapse
Affiliation(s)
- Allison L Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Anna C Zemke
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Catherine R Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - John Moore
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Patrick H Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stella E Lee
- Division of Otolaryngology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
8
|
Gonzalez-Rosales N, Kasi AS, McCracken CE, Silva GL, Starks M, Stecenko A, Guglani L. Impact of viral respiratory infections on pulmonary exacerbations in children with cystic fibrosis. Pediatr Pulmonol 2023; 58:871-877. [PMID: 36479634 DOI: 10.1002/ppul.26267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Viral respiratory infections trigger pulmonary exacerbations (PEs) in children with cystic fibrosis (CF), but their clinical impact is not well understood. METHODS A retrospective review of pediatric patients with CF who underwent nasopharyngeal respiratory viral panel testing during hospitalization for a PE between 2011 and 2018 was conducted. Patients were dichotomized into viral-positive and viral-negative groups. The results of spirometry, respiratory cultures, duration of hospitalization, and risk for subsequent PEs were analyzed. RESULTS Ninety-five patients had 210 hospitalizations for PE (viral-positive = 71/210, 34%) during the study period. Rhinovirus/enterovirus was the most common virus (52/71, 73%) identified. Viral-positive patients were younger (p < 0.001), had higher baseline forced expiratory volume in 1 s (FEV1) (p = 0.037), continued to maintain higher FEV1 at 3 and 6 months following PE (p = 0.003 and 0.002, respectively), and had a shorter duration of hospitalization (p = 0.006) compared to the viral-negative group. There was no difference between the two groups in the rate of recovery of FEV1 at 3 and 6 months following PE (p = 0.71 and 0.405, respectively), time to the next PE (hazard ratio = 1.34, p = 0.157), number of subsequent PEs in 6 months (p = 0.99), or Pseudomonas aeruginosa (PA) acquisition (p = 0.707). CONCLUSIONS In this single pediatric CF center cohort, one-third of PEs requiring hospitalization were associated with a viral infection, with rhinovirus/enterovirus being the most common. Viral-positive PEs were not associated with a greater decline or delayed recovery of lung function, increased risk for PA acquisition, shortened duration to next PE, longer hospital stay, or an increase in the frequency of subsequent PEs in 6 months compared to viral-negative PEs.
Collapse
Affiliation(s)
- Noel Gonzalez-Rosales
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia, USA
| | - Ajay S Kasi
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia, USA
| | - Courtney E McCracken
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - George L Silva
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia, USA
| | - Miah Starks
- Children's Healthcare of Atlanta and Emory University Cystic Fibrosis Care Center, Atlanta, Georgia, USA
| | - Arlene Stecenko
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia, USA
| | - Lokesh Guglani
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Sanders DB, Deschamp AR, Hatch JE, Slaven JE, Gebregziabher N, Corput MKVD, Tiddens HAWM, Rosenow T, Storch GA, Hall GL, Stick SM, Ranganathan S, Ferkol TW, Davis SD. Association between early respiratory viral infections and structural lung disease in infants with cystic fibrosis. J Cyst Fibros 2022; 21:1020-1026. [PMID: 35523715 PMCID: PMC10564322 DOI: 10.1016/j.jcf.2022.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Infants with cystic fibrosis (CF) develop structural lung disease early in life, and viral infections are associated with progressive lung disease. We hypothesized that the presence of respiratory viruses would be associated with structural lung disease on computed tomography (CT) of the chest in infants with CF. METHODS Infants with CF were enrolled before 4 months of age. Multiplex PCR assays were performed on nasal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent CT imaging at approximately 12 months of age. Associations between Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) CT scores and respiratory viruses and symptoms were assessed with Spearman correlation coefficients. RESULTS Sixty infants were included for analysis. Human rhinovirus was the most common virus detected, on 28% of tested nasal swabs and in 85% of participants. The median (IQR) extent of lung fields that was healthy based on PRAGMA-CF was 98.7 (0.8)%. There were no associations between PRAGMA-CF and age at first virus, or detection of any virus, including rhinovirus, respiratory syncytial virus, or parainfluenza. The extent of airway wall thickening was associated with ever having wheezed (ρ = 0.31, p = 0.02) and number of encounters with cough (ρ = 0.25, p = 0.0495). CONCLUSIONS Infants with CF had minimal structural lung disease. We did not find an association between respiratory viruses and CT abnormalities. Wheezing and frequency of cough were associated with early structural changes.
Collapse
Affiliation(s)
- Don B Sanders
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Ashley R Deschamp
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, USA
| | - Joseph E Hatch
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - James E Slaven
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Netsanet Gebregziabher
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mariette Kemner-van de Corput
- Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands
| | - Harm A W M Tiddens
- Department of Paediatrics, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC - Sophia Children's Hospital, University Medial Center Rotterdam, Netherlands
| | - Tim Rosenow
- The Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, Western Australia; Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Gregory A Storch
- Department of Pediatrics, Washington University, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Graham L Hall
- Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - Stephen M Stick
- Department of Pediatrics, University of Western Australia, Telethon Kids Institute, Perth, Australia
| | - Sarath Ranganathan
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Thomas W Ferkol
- Department of Pediatrics, Washington University, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Stephanie D Davis
- Department of Pediatrics, UNC Children's, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
10
|
The Effect of CFTR Modulators on Airway Infection in Cystic Fibrosis. Int J Mol Sci 2022; 23:ijms23073513. [PMID: 35408875 PMCID: PMC8998472 DOI: 10.3390/ijms23073513] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
The advent of Cystic fibrosis transmembrane receptor (CFTR) modulators in 2012 was a critical event in the history of cystic fibrosis (CF) treatment. Unlike traditional therapies that target downstream effects of CFTR dysfunction, CFTR modulators aim to correct the underlying defect at the protein level. These genotype-specific therapies are now available for an increasing number of CF patients, transforming the way we view the condition from a life-limiting disease to one that can be effectively managed. Several studies have demonstrated the vast improvement CFTR modulators have on normalization of sweat chloride, CFTR function, clinical endpoints, and frequency of pulmonary exacerbation. However, their impact on other aspects of the disease, such as pathogenic burden and airway infection, remain under explored. Frequent airway infections as a result of increased susceptibility and impaired innate immune response are a serious problem within CF, often leading to accelerated decline in lung function and disease progression. Current evidence suggests that CFTR modulators are unable to eradicate pathogenic organisms in those with already established lung disease. However, this may not be the case for those with relatively low levels of disease progression and conserved microbial diversity, such as young patients. Furthermore, it remains unknown whether the restorative effects exerted by CFTR modulators extend to immune cells, such as phagocytes, which have the potential to modulate the response of people with CF (pwCF) to infection. Throughout this review, we look at the potential impact of CFTR modulators on airway infection in CF and their ability to shape impaired pulmonary defences to pathogens.
Collapse
|
11
|
Cystic Fibrosis: Systems Biology Analysis from Homozygous p.Phe508del Variant Patients' Samples Reveals Perturbations in Tissue-Specific Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5262000. [PMID: 34901273 PMCID: PMC8660202 DOI: 10.1155/2021/5262000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder, caused by diverse genetic variants for the CF transmembrane conductance regulator (CFTR) protein. Among these, p.Phe508del is the most prevalent variant. The effects of this variant on the physiology of each tissue remains unknown. This study is aimed at predicting cell signaling pathways present in different tissues of fibrocystic patients, homozygous for p.Phe508del. The study involved analysis of two microarray datasets, E-GEOD-15568 and E-MTAB-360 corresponding to the rectal and bronchial epithelium, respectively, obtained from the ArrayExpress repository. Particularly, differentially expressed genes (DEGs) were predicted, protein-protein interaction (PPI) networks were designed, and centrality and functional interaction networks were analyzed. The study reported that p.Phe508del-mutated CFTR-allele in homozygous state influenced the whole gene expression in each tissue differently. Interestingly, gene ontology (GO) term enrichment analysis revealed that only “neutrophil activation” was shared between both tissues; however, nonshared DEGs were grouped into the same GO term. For further verification, functional interaction networks were generated, wherein no shared nodes were reported between these tissues. These results suggested that the p.Phe508del-mutated CFTR-allele in homozygous state promoted tissue-specific pathways in fibrocystic patients. The generated data might further assist in prediction diagnosis to define biomarkers or devising therapeutic strategies.
Collapse
|
12
|
Unexpected associations between respiratory viruses and bacteria with Pulmonary Function Testing in children suffering from Cystic Fibrosis (MUCOVIB study). J Cyst Fibros 2021; 21:e158-e164. [PMID: 34756681 DOI: 10.1016/j.jcf.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Various bacterial and viral assemblages composing Cystic Fibrosis (CF) lung microbiota contribute to long-term lung function decline over time. Yet, the impact of individual microorganisms on pulmonary functions remains uncertain in children with CF. METHODS As part of the 'Mucoviscidosis, respiratory VIruses, intracellular Bacteria and fastidious organisms'' project, children with CF were longitudinally followed in a Swiss multicentric study. Respiratory samples included mainly throat swabs and sputa samples for bacterial culture and 16S rRNA metagenomics and nasopharyngeal swabs for respiratory virus detection by molecular assays. Percentage of predicted Forced Expiratory Volume in one second (FEV1%) and Lung Clearance Index (LCI) were recorded. RESULTS Sixty-one children, of whom 20 (32.8%) presented with at least one pulmonary exacerbation, were included. Almost half of the 363 nasopharyngeal swabs tested by RT-PCR were positive for a respiratory virus, mainly rhinovirus (26.5%). From linear mixed-effects regression models, P. aeruginosa (-11.35, 95%CI [-17.90; -4.80], p = 0.001) was significantly associated with a decreased FEV1%, whereas rhinovirus was associated with a significantly higher FEV1% (+4.24 95%CI [1.67; 6.81], p = 0.001). Compared to conventional culture, 16S rRNA metagenomics showed a sensitivity and specificity of 80.0% and 85.4%, respectively for detection of typical CF pathogens. However, metagenomics detected a bacteria almost twice more often than culture. CONCLUSIONS As expected, P. aeruginosa impacted negatively on FEV1% while rhinovirus was surprisingly associated with better FEV1%. Culture-free assays identifies significantly more pathogens than standard culture, with disputable clinical correlation.
Collapse
|
13
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|
14
|
Helling BA, Sobreira DR, Hansen GT, Sakabe NJ, Luo K, Billstrand C, Laxman B, Nicolae RI, Nicolae DL, Bochkov YA, Gern JE, Nobrega MA, White SR, Ober C. Altered transcriptional and chromatin responses to rhinovirus in bronchial epithelial cells from adults with asthma. Commun Biol 2020; 3:678. [PMID: 33188283 PMCID: PMC7666152 DOI: 10.1038/s42003-020-01411-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
There is a life-long relationship between rhinovirus (RV) infection and the development and clinical manifestations of asthma. In this study we demonstrate that cultured primary bronchial epithelial cells from adults with asthma (n = 9) show different transcriptional and chromatin responses to RV infection compared to those without asthma (n = 9). Both the number and magnitude of transcriptional and chromatin responses to RV were muted in cells from asthma cases compared to controls. Pathway analysis of the transcriptionally responsive genes revealed enrichments of apoptotic pathways in controls but inflammatory pathways in asthma cases. Using promoter capture Hi-C we tethered regions of RV-responsive chromatin to RV-responsive genes and showed enrichment of these regions and genes at asthma GWAS loci. Taken together, our studies indicate a delayed or prolonged inflammatory state in cells from asthma cases and highlight genes that may contribute to genetic risk for asthma.
Collapse
Affiliation(s)
- Britney A Helling
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Grace T Hansen
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Bharathi Laxman
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Raluca I Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Dan L Nicolae
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
15
|
Fainardi V, Longo F, Chetta A, Esposito S, Pisi G. Sars-CoV-2 infection in patients with cystic fibrosis. An overview. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020035. [PMID: 32921729 PMCID: PMC7716958 DOI: 10.23750/abm.v91i3.10391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
The novel coronavirus SARS-CoV-2 was first identified in China in December 2019 and has since spread worldwide. People with Cystic Fibrosis (CF) have reduced survival mainly because of respiratory failure due to chronic pulmonary infections. Therefore, CF patients should be considered to have an increased risk of developing severe manifestations in case of SARS-CoV-2 infection. Surprisingly, the results of recent studies concerning SARS-CoV-2 infection in patients with CF show that in these patients the infection rate was lower than that of the general population. Various factors have been considered to explain a possible protective effect of CF against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Francesco Longo
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy.
| | - Alfredo Chetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy..
| | | | - Giovanna Pisi
- Cystic Fibrosis Unit, Children University Hospital, Parma.
| |
Collapse
|
16
|
Villeret B, Solhonne B, Straube M, Lemaire F, Cazes A, Garcia-Verdugo I, Sallenave JM. Influenza A Virus Pre-Infection Exacerbates Pseudomonas aeruginosa-Mediated Lung Damage Through Increased MMP-9 Expression, Decreased Elafin Production and Tissue Resilience. Front Immunol 2020; 11:117. [PMID: 32117268 PMCID: PMC7031978 DOI: 10.3389/fimmu.2020.00117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Individuals with impaired immune responses, such as ventilated and cystic fibrosis patients are often infected with Pseudomonas aeruginosa (P.a) bacteria, and a co-infection with the Influenza virus (IAV) is often present. It has been known for many years that infection with IAV predisposes the host to secondary bacterial infections (such as Streptococcus pneumoniae or Staphylococcus aureus), and there is an abundance of mechanistic studies, including those studying the role of desensitization of TLR signaling, type I IFN- mediated impairment of neutrophil chemokines and antimicrobial production, attenuation of IL1β production etc., showing this. However, little is known about the mechanistic events underlying the potential deleterious synergy between Influenza and P.a co-infections. We demonstrate here in vitro in epithelial cells and in vivo in three independent models (two involving mice given IAV +/– P.a, and one involving mice given IAV +/– IL-1β) that IAV promotes secondary P.a-mediated lung disease or augmented IL-1β-mediated inflammation. We show that IAV-P.a-mediated deleterious responses includes increased matrix metalloprotease (MMP) activity, and MMP-9 in particular, and that the use of the MMP inhibitor improves lung resilience. Furthermore, we show that IAV post-transcriptionally inhibits the antimicrobial/anti-protease molecule elafin/trappin-2, which we have shown previously to be anti-inflammatory and to protect the host against maladaptive neutrophilic inflammation in P.a infections. Our work highlights the capacity of IAV to promote further P.a-mediated lung damage, not necessarily through its interference with host resistance to the bacterium, but by down-regulating tissue resilience to lung inflammation instead. Our study therefore suggests that restoring tissue resilience in clinical settings where IAV/P.a co-exists could prove a fruitful strategy.
Collapse
Affiliation(s)
- Berengère Villeret
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Brigitte Solhonne
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Marjolène Straube
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Flora Lemaire
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Aurélie Cazes
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Ignacio Garcia-Verdugo
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Jean-Michel Sallenave
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| |
Collapse
|
17
|
Abstract
Cystic fibrosis (CF) is a genetic, multisystem disease due to defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an anion channel responsible for chloride and bicarbonate trafficking. Although this channel is expressed in many tissues, its impaired function in airway epithelial cells leads to hyperviscous mucous secretions impeding effective mucociliary clearance. Impaired clearance of inhaled microorganisms results in the establishment of chronic infection, triggering an overexaggerated inflammatory response. The resulting release of inflammatory cytokines and enzymes causes pulmonary damage in the form of bronchiectasis, further impairing mucociliary action, forming a vicious cycle. Subsequent respiratory failure remains the leading cause of death in individuals with CF.
Collapse
Affiliation(s)
- Stephanie Duggins Davis
- The University of North Carolina at Chapel Hill, Department of Pediatrics, UNC Children’s Hospital, Chapel Hill, NC USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Division of Pulmonary and Sleep Medicine Seattle Children’s Hospital, Seattle, WA USA
| | - James Chmiel
- Department of Pediatrics, Indiana University School of Medicine, Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children at IU Health, Indianapolis, IN USA
| |
Collapse
|
18
|
Abstract
CFTR protein malfunction results in thick, copious mucus, causes poor mucociliary clearance and, ultimately, structural lung damage such as bronchiectasis. All of these manifestations of cystic fibrosis contribute to a rich milieu for lower respiratory pathogens in patients affected by the disease. CF patients are, therefore, highly susceptible to chronic colonization with many pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. They are also uniquely prone to acute infections with respiratory pathogens, which tend to persist longer and cause more impairment in lung function than in patients without CF. Tailored strategies for managing infectious complications of CF patients include chronic prophylactic antibiotics, use of systemic as well as inhaled antibiotics, mechanical assistance with mucus clearance, and scrupulous infection control measures.
Collapse
|
19
|
Abstract
Although survival of individuals with cystic fibrosis (CF) has been continuously improving for the past 40 years, respiratory failure secondary to recurrent pulmonary infections remains the leading cause of mortality in this patient population. Certain pathogens such as Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and species of the Burkholderia cepacia complex continue to be associated with poorer clinical outcomes including accelerated lung function decline and increased mortality. In addition, other organisms such as anaerobes, viruses, and fungi are increasingly recognized as potential contributors to disease progression. Culture-independent molecular methods are also being used for diagnostic purposes and to examine the interaction of microorganisms in the CF airway. Given the importance of CF airway infections, ongoing initiatives to promote understanding of the epidemiology, clinical course, and treatment options for these infections are needed.
Collapse
Affiliation(s)
- Ana C Blanchard
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Early respiratory viral infections in infants with cystic fibrosis. J Cyst Fibros 2019; 18:844-850. [PMID: 30826285 PMCID: PMC6711838 DOI: 10.1016/j.jcf.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. METHODS Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. RESULTS Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0-10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. CONCLUSIONS Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF.
Collapse
|
21
|
Abstract
Respiratory viral infections including human rhinovirus (RV) infection have been identified as the most important environmental trigger of exacerbations of chronic lung diseases. While well established as the most common viral infections associated with exacerbations of asthma and chronic obstructive pulmonary disease, RVs and other respiratory viruses are also now thought to be important in triggering exacerbations of cystic fibrosis and the interstitial lung diseases. Here, we summarize the epidemiological evidence the supports respiratory viruses including RV as triggers of exacerbations of chronic lung diseases. We propose that certain characteristics of RVs may explain why they are the most common trigger of exacerbations of chronic lung diseases. We further highlight the latest mechanistic evidence supporting how and why common respiratory viral infections may enhance and promote disease triggering exacerbation events, through their interactions with the host immune system, and may be affected by ongoing treatments. We also provide a commentary on how new treatments may better manage the disease burden associated with respiratory viral infections and the exacerbation events that they trigger.
Collapse
|
22
|
Kiedrowski MR, Bomberger JM. Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Front Immunol 2018; 9:3067. [PMID: 30619379 PMCID: PMC6306490 DOI: 10.3389/fimmu.2018.03067] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
A majority of the morbidity and mortality associated with the genetic disease Cystic Fibrosis (CF) is due to lung disease resulting from chronic respiratory infections. The CF airways become chronically colonized with bacteria in childhood, and over time commensal lung microbes are displaced by bacterial pathogens, leading to a decrease in microbial diversity that correlates with declining patient health. Infection with the pathogen Pseudomonas aeruginosa is a major predictor of morbidity and mortality in CF, with CF individuals often becoming chronically colonized with P. aeruginosa in early adulthood and thereafter having an increased risk of hospitalization. Progression of CF respiratory disease is also influenced by infection with respiratory viruses. Children and adults with CF experience frequent respiratory viral infections with respiratory syncytial virus (RSV), rhinovirus, influenza, parainfluenza, and adenovirus, with RSV and influenza infection linked to the greatest decreases in lung function. Along with directly causing severe respiratory symptoms in CF populations, the impact of respiratory virus infections may be more far-reaching, indirectly promoting bacterial persistence and pathogenesis in the CF respiratory tract. Acquisition of P. aeruginosa in CF patients correlates with seasonal respiratory virus infections, and CF patients colonized with P. aeruginosa experience increased severe exacerbations and declines in lung function during respiratory viral co-infection. In light of such observations, efforts to better understand the impact of viral-bacterial co-infections in the CF airways have been a focus of clinical and basic research in recent years. This review summarizes what has been learned about the interactions between viruses and bacteria in the CF upper and lower respiratory tract and how co-infections impact the health of individuals with CF.
Collapse
Affiliation(s)
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Ling KM, Garratt LW, Lassmann T, Stick SM, Kicic A. Elucidating the Interaction of CF Airway Epithelial Cells and Rhinovirus: Using the Host-Pathogen Relationship to Identify Future Therapeutic Strategies. Front Pharmacol 2018; 9:1270. [PMID: 30464745 PMCID: PMC6234657 DOI: 10.3389/fphar.2018.01270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023] Open
Abstract
Chronic lung disease remains the primary cause of mortality in cystic fibrosis (CF). Growing evidence suggests respiratory viral infections are often more severe in CF compared to healthy peers and contributes to pulmonary exacerbations (PEx) and deterioration of lung function. Rhinovirus is the most prevalent respiratory virus detected, particularly during exacerbations in children with CF <5 years old. However, even though rhinoviral infections are likely to be one of the factors initiating the onset of CF lung disease, there is no effective targeted treatment. A better understanding of the innate immune responses by CF airway epithelial cells, the primary site of infection for viruses, is needed to identify why viral infections are more severe in CF. The aim of this review is to present the clinical impact of virus infection in both young children and adults with CF, focusing on rhinovirus infection. Previous in vitro and in vivo investigations looking at the mechanisms behind virus infection will also be summarized. The review will finish on the potential of transcriptomics to elucidate the host-pathogen responses by CF airway cells to viral infection and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Kak-Ming Ling
- Paediatrics, Medical School, Faculty of Healthy and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Timo Lassmann
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Stephen M Stick
- Paediatrics, Medical School, Faculty of Healthy and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Paediatrics, Medical School, Faculty of Healthy and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA, Australia.,Occupation and Environment, School of Public Health, Curtin University, Bentley, WA, Australia
| | | | | | | |
Collapse
|
24
|
Staphylococcus aureus Biofilm Growth on Cystic Fibrosis Airway Epithelial Cells Is Enhanced during Respiratory Syncytial Virus Coinfection. mSphere 2018; 3:3/4/e00341-18. [PMID: 30111629 PMCID: PMC6094059 DOI: 10.1128/msphere.00341-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The airways of individuals with cystic fibrosis (CF) are commonly chronically infected, and Staphylococcus aureus is the dominant bacterial respiratory pathogen in CF children. CF patients also experience frequent respiratory virus infections, and it has been hypothesized that virus coinfection increases the severity of S. aureus lung infections in CF. We investigated the relationship between S. aureus and the CF airway epithelium and observed that coinfection with respiratory syncytial virus (RSV) enhances S. aureus biofilm growth. However, iron, which was previously found to be a significant factor influencing Pseudomonas aeruginosa biofilms during virus coinfection, plays a minor role in S. aureus coinfections. Transcriptomic analyses provided new insight into how bacterial and viral pathogens alter host defense and suggest potential pathways by which dampening of host responses to one pathogen may favor persistence of another in the CF airways, highlighting complex interactions occurring between bacteria, viruses, and the host during polymicrobial infections. Staphylococcus aureus is a major cause of chronic respiratory infection in patients with cystic fibrosis (CF). We recently showed that Pseudomonas aeruginosa exhibits enhanced biofilm formation during respiratory syncytial virus (RSV) coinfection on human CF airway epithelial cells (AECs). The impact of respiratory viruses on other bacterial pathogens during polymicrobial infections in CF remains largely unknown. To investigate if S. aureus biofilm growth in the CF airways is impacted by virus coinfection, we evaluated S. aureus growth on CF AECs. Initial studies showed an increase in S. aureus growth over 24 h, and microscopy revealed biofilm-like clusters of bacteria on CF AECs. Biofilm growth was enhanced when CF AECs were coinfected with RSV, and this observation was confirmed with S. aureus CF clinical isolates. Apical conditioned medium from RSV-infected cells promoted S. aureus biofilms in the absence of the host epithelium, suggesting that a secreted factor produced during virus infection benefits S. aureus biofilms. Exogenous iron addition did not significantly alter biofilm formation, suggesting that it is not likely the secreted factor. We further characterized S. aureus-RSV coinfection in our model using dual host-pathogen RNA sequencing, allowing us to observe specific contributions of S. aureus and RSV to the host response during coinfection. Using the dual host-pathogen RNA sequencing approach, we observed increased availability of nutrients from the host and upregulation of S. aureus genes involved in growth, protein translation and export, and amino acid metabolism during RSV coinfection. IMPORTANCE The airways of individuals with cystic fibrosis (CF) are commonly chronically infected, and Staphylococcus aureus is the dominant bacterial respiratory pathogen in CF children. CF patients also experience frequent respiratory virus infections, and it has been hypothesized that virus coinfection increases the severity of S. aureus lung infections in CF. We investigated the relationship between S. aureus and the CF airway epithelium and observed that coinfection with respiratory syncytial virus (RSV) enhances S. aureus biofilm growth. However, iron, which was previously found to be a significant factor influencing Pseudomonas aeruginosa biofilms during virus coinfection, plays a minor role in S. aureus coinfections. Transcriptomic analyses provided new insight into how bacterial and viral pathogens alter host defense and suggest potential pathways by which dampening of host responses to one pathogen may favor persistence of another in the CF airways, highlighting complex interactions occurring between bacteria, viruses, and the host during polymicrobial infections.
Collapse
|
25
|
Purcaro G, Rees CA, Melvin JA, Bomberger JM, Hill JE. Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model. J Breath Res 2018; 12:046001. [PMID: 29735804 DOI: 10.1088/1752-7163/aac2f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Volatile molecules in exhaled breath represent potential biomarkers in the setting of infectious diseases, particularly those affecting the respiratory tract. In particular, Pseudomonas aeruginosa is a critically important respiratory pathogen in specific subsets of the population, such as those with cystic fibrosis (CF). Infections caused by P. aeruginosa can be particularly problematic when co-infection with respiratory syncytial virus (RSV) occurs, as this is correlated with the establishment of chronic P. aeruginosa infection. In the present study, we evaluate the volatile metabolites produced by P. aeruginosa (PAO1)-infected, RSV-infected, co-infected, or uninfected CF bronchial epithelial (CFBE) cells, in vitro. We identified a volatile metabolic signature that could discriminate between P. aeruginosa-infected and non-P. aeruginosa-infected CFBE with an area under the receiver operating characteristic curve (AUROC) of 0.850, using the machine learning algorithm random forest (RF). Although we could not discriminate between RSV-infected and non-RSV-infected CFBE (AUROC = 0.431), we note that sample classification probabilities for RSV-infected cell, generated using RF, were between those of uninfected CFBE and P. aeruginosa-infected CFBE, suggesting that RSV infection may result in a volatile metabolic profile that shares attributes with both of these groups. To more precisely elucidate the biological origins of the volatile metabolites that were discriminatory between P. aeruginosa-infected and non-P. aeruginosa-infected CFBE, we measured the volatile metabolites produced by P. aeruginosa grown in the absence of CFBE. Our findings suggest that the discriminatory metabolites produced likely result from the interaction of P. aeruginosa with the CFBE cells, rather than the metabolism of media components by the bacterium. Taken together, our findings support the notion that P. aeruginosa interacting with CFBE yields a particular volatile metabolic signature. Such a signature may have clinical utility in the monitoring of individuals with CF.
Collapse
Affiliation(s)
- Giorgia Purcaro
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States of America
| | | | | | | | | |
Collapse
|
26
|
Korten I, Kieninger E, Klenja S, Mack I, Schläpfer N, Barbani MT, Regamey N, Kuehni CE, Hilty M, Frey U, Gorgievski M, Casaulta C, Latzin P. Respiratory viruses in healthy infants and infants with cystic fibrosis: a prospective cohort study. Thorax 2017; 73:13-20. [PMID: 28778921 DOI: 10.1136/thoraxjnl-2016-209553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Acute viral respiratory tract infections in children with cystic fibrosis (CF) are known causes of disease exacerbation. The role of viral infections during infancy is, however, less known, although early infancy is thought to be a crucial period for CF disease development.We prospectively assessed symptomatic and asymptomatic viral detection in the first year of life in infants with CF and healthy controls. METHODS In a prospective cohort study, we included 31 infants with CF from the Swiss Cystic Fibrosis Infant Lung Development Cohort and 32 unselected, healthy infants from the Basel Bern Infant Lung Development Cohort and followed them throughout the first year of life. Respiratory symptoms were assessed by weekly telephone interviews. Biweekly nasal swabs were analysed for 10 different viruses and two atypical bacteria with real-time seven duplex PCR (CF=561, controls=712). MEASUREMENTS AND RESULTS Infants with CF and healthy controls showed similar numbers of swabs positive for virus (mean 42% vs 44%; OR 0.91, 95% CI 0.66 to 1.26, p=0.6). Virus-positive swabs were less often accompanied by respiratory symptoms in infants with CF (17% vs 23%; OR 0.64, 95% CI 0.43 to 0.95, p=0.026). This finding was pronounced for symptomatic human rhinovirus detection (7% vs 11%; OR 0.52, 95% CI 0.31 to 0.9, p=0.02). CONCLUSIONS Viral detection is not more frequent in infants with CF and respiratory symptoms during viral detection occur even less often than in healthy controls. It is likely an interplay of different factors such as local epithelial properties and immunological mechanisms that contribute to our findings.
Collapse
Affiliation(s)
- Insa Korten
- Department of Pediatrics, Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- University Children's Hospital (UKBB), Basel, Switzerland
| | - Elisabeth Kieninger
- Department of Pediatrics, Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shkipe Klenja
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ines Mack
- Department of Pediatrics, Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University Children's Hospital (UKBB), Basel, Switzerland
| | - Njima Schläpfer
- Department of Pediatrics, Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Nicolas Regamey
- Department of Pediatrics, Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Respiratory Medicine, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Claudia E Kuehni
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Infectious Diseases, University Hospital, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), Basel, Switzerland
| | - Meri Gorgievski
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Department of Pediatrics, Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Department of Pediatrics, Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Billard L, Le Berre R, Pilorgé L, Payan C, Héry-Arnaud G, Vallet S. Viruses in cystic fibrosis patients' airways. Crit Rev Microbiol 2017; 43:690-708. [PMID: 28340310 DOI: 10.1080/1040841x.2017.1297763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although bacteria have historically been considered to play a major role in cystic fibrosis (CF) airway damage, a strong impact of respiratory viral infections (RVI) is also now recognized. Emerging evidence confirms that respiratory viruses are associated with deterioration of pulmonary function and exacerbation and facilitation of bacterial colonization in CF patients. The aim of this review is to provide an overview of the current knowledge on respiratory viruses in CF airways, to discuss the resulting inflammation and RVI response, to determine how to detect the viruses, and to assess their clinical consequences, prevalence, and interactions with bacteria. The most predominant are Rhinoviruses (RVs), significantly associated with CF exacerbation. Molecular techniques, and especially multiplex PCR, help to diagnose viral infections, and the coming rise of metagenomics will extend knowledge of viral populations in the complex ecosystem of CF airways. Prophylaxis and vaccination are currently available only for Respiratory syncytial and Influenza virus (IV), but antiviral molecules are being tested to improve CF patients' care. All the points raised in this review highlight the importance of taking account of RVIs and their potential impact on the CF airway ecosystem.
Collapse
Affiliation(s)
- Lisa Billard
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France
| | - Rozenn Le Berre
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,b Département de Médecine Interne et Pneumologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Léa Pilorgé
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Christopher Payan
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Geneviève Héry-Arnaud
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Sophie Vallet
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| |
Collapse
|
28
|
McGirr AA, Schwartz KL, Allen U, Solomon M, Sander B. The cost-effectiveness of palivizumab in infants with cystic fibrosis in the Canadian setting: A decision analysis model. Hum Vaccin Immunother 2017; 13:599-606. [PMID: 27768505 PMCID: PMC5360124 DOI: 10.1080/21645515.2016.1235670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Children with cystic fibrosis (CF) are at higher risk of severe respiratory syncytial virus (RSV) infection, which can lead to a decline in lung function. A monoclonal antibody, palivizumab (PMB), effectively prevents RSV hospitalizations; however, the high cost of PMB, approximately C$10,000 per patient per RSV season, limits its widespread use. We assess the cost-effectiveness of PMB prophylaxis in CF children less than 2 y of age from the Canadian healthcare payer's perspective. METHODS In 2014, a Markov cohort model of CF disease and infant RSV infections in the Canadian setting was developed based on literature data. Infants were treated with monthly PMB injections over the 5-month RSV season. Lifetime health outcomes, quality-adjusted life years (QALYs) and 2013 $CAD costs, discounted at 5%, were estimated. Findings are summarized as incremental cost-effectiveness ratios (ICERs) and budget impact. Deterministic sensitivity analysis was conducted to assess parameter uncertainty. RESULTS Implementation of a hypothetical Canadian RSV prophylaxis program resulted in ICERs of C$652,560 (all CF infants) and C$157,332 (high-risk CF infants) per QALY gained and an annual budget impact of C$1,400,000 (all CF infants) and C$285,000 (high-risk CF infants). The analysis was highly sensitive to the probability of severe RSV, the degree of lung deterioration following infection, and the cost of PMB. CONCLUSIONS Our results suggest PMB is not cost-effective in Canada by commonly used thresholds. However, given the rarity of CF and relatively small budget impact, consideration may be given for the selective use of PMB for immunoprophylaxis of RSV in high-risk CF infants on a case-by-case scenario basis.
Collapse
Affiliation(s)
- Ashleigh A. McGirr
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Kevin L. Schwartz
- Division of Infectious Disease, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Upton Allen
- Division of Infectious Disease, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Melinda Solomon
- Division of Respirology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Beate Sander
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Public Health Ontario, Toronto, ON, Canada
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| |
Collapse
|
29
|
Flight W, Jones A. The diagnosis and management of respiratory viral infections in cystic fibrosis. Expert Rev Respir Med 2017; 11:221-227. [PMID: 28132571 DOI: 10.1080/17476348.2017.1288102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Respiratory viruses, such as those that cause influenza and the common cold, are a regular feature of life for the entire human population. Among people with CF, these viruses are associated with prolonged respiratory illness and show a clear association with pulmonary exacerbations which in turn are associated with lung function decline and risk of death. Human rhinovirus is the most commonly encountered respiratory viral pathogen in CF although adenovirus, bocavirus, coronavirus, influenza, parainfluenza, metapneumovirus and respiratory syncytial virus are all also responsible for infections in this population. Areas covered: This article reviews the epidemiology, clinical impact and therapeutic options for respiratory virus infection in both children and adults with CF. Expert commentary: The management of CF to date has largely focused on airway clearance strategies, nutritional support and aggressive antibacterial therapy. We highlight the significant role that respiratory viruses play in CF lung disease and argue that these pathogens represent an under-exploited target in the battle to control patients' symptoms and disease progression.
Collapse
Affiliation(s)
- William Flight
- a Oxford Adult Cystic Fibrosis Centre, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Andrew Jones
- b Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust , Manchester , UK.,c Institute of Inflammation & Repair, University of Manchester , Manchester , UK
| |
Collapse
|
30
|
|
31
|
Performance of a Taqman Assay for Improved Detection and Quantification of Human Rhinovirus Viral Load. Sci Rep 2016; 6:34855. [PMID: 27721388 PMCID: PMC5056400 DOI: 10.1038/srep34855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/21/2016] [Indexed: 11/08/2022] Open
Abstract
Human rhinovirus (HRV) is the major aetiology of respiratory tract infections. HRV viral load assays are available but limitations that affect accurate quantification exist. We developed a one-step Taqman assay using oligonucleotides designed based on a comprehensive list of global HRV sequences. The new oligonucleotides targeting the 5′-UTR region showed high PCR efficiency (E = 99.6%, R2 = 0.996), with quantifiable viral load as low as 2 viral copies/μl. Assay evaluation using an External Quality Assessment (EQA) panel yielded a detection rate of 90%. When tested on 315 human enterovirus-positive specimens comprising at least 84 genetically distinct HRV types/serotypes (determined by the VP4/VP2 gene phylogenetic analysis), the assay detected all HRV species and types, as well as other non-polio enteroviruses. A commercial quantification kit, which failed to detect any of the EQA specimens, produced a detection rate of 13.3% (42/315) among the clinical specimens. Using the improved assay, we showed that HRV sheds in the upper respiratory tract for more than a week following acute infection. We also showed that HRV-C had a significantly higher viral load at 2–7 days after the onset of symptoms (p = 0.001). The availability of such assay is important to facilitate disease management, antiviral development, and infection control.
Collapse
|
32
|
Abstract
Pulmonary exacerbations treated with intravenous antibiotics have significant, well-characterized negative consequences on clinical outcomes in cystic fibrosis (CF). The impact of milder exacerbations in children with CF, commonly treated with oral antibiotics, are less well defined. Pulmonary exacerbations have multiple triggers, but viral infections are particularly common in children. Children with CF and healthy control subjects have similar frequencies of viral respiratory infections, but there is evidence of greater virus-related morbidity in patients with CF, likely due to a combination of increased viral load, more pronounced inflammatory response, and more pronounced impairment in mucociliary clearance. In recent clinical trials in children, definitions have been used that are more symptom based rather than intervention based. These studies have demonstrated differences in the spectrum of symptoms between children and older patients but have also shown that, despite low threshold definitions, a considerable number of patients receive treatment for events not fulfilling the pulmonary exacerbation criteria. Additional research is needed to determine the impact of these milder exacerbations on lung function recovery and time to subsequent exacerbation as well as long-term outcomes such as mortality.
Collapse
|
33
|
Boikos C, Joseph L, Martineau C, Papenburg J, Scheifele D, Lands LC, De Serres G, Chilvers M, Quach C. Influenza Virus Detection Following Administration of Live-Attenuated Intranasal Influenza Vaccine in Children With Cystic Fibrosis and Their Healthy Siblings. Open Forum Infect Dis 2016; 3:ofw187. [PMID: 27747255 PMCID: PMC5063549 DOI: 10.1093/ofid/ofw187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
Background. We aimed to explore the detection profile of influenza viruses following live-attenuated intranasal influenza vaccination (LAIV) in children aged 2-19 years with and without cystic fibrosis (CF). Methods. Before the 2013-2014 influenza season, flocked nasal swabs were obtained before vaccination and 4 times in the week of follow-up from 76 participants (nCF: 57; nhealthy: 19). Influenza was detected by reverse transcription polymerase chain reaction (RT-PCR) assays. A Bayesian hierarchical logistic regression model was used to estimate the effect of CF status and age on influenza detection. Results. Overall, 69% of the study cohort shed influenza RNA during follow-up. The mean duration of RT-PCR detection was 2.09 days (95% credible interval [CrI]: 1.73-2.48). The odds of influenza RNA detection on day 1 following vaccination decreased with age in years (odds ratio [OR]: 0.82 per year; 95% CrI: 0.70-0.95), and subjects with CF had higher odds of influenza RNA detection on day 1 of follow-up (OR: 5.09; 95% CrI: 1.02-29.9). Conclusion. Despite the small sample size, our results indicate that LAIV vaccine strains are detectable during the week after LAIV, mainly in younger individuals and vaccinees with CF. It remains unclear whether recommendations for avoiding contact with severely immunocompromised patients should differ for these groups.
Collapse
Affiliation(s)
- Constantina Boikos
- Department of Epidemiology , Biostatistics & Occupational Health, McGill University , Montreal
| | - Lawrence Joseph
- Department of Epidemiology , Biostatistics & Occupational Health, McGill University , Montreal
| | - Christine Martineau
- Laboratoire de santé publique du Québec , Institut national de santé publique du Québec
| | - Jesse Papenburg
- Department of Pediatrics, Division of Infectious Diseases, Montreal Children's Hospital, McGill University; McGill University Health Centre, Vaccine Study Centre, Research Institute of the MUHC, Montreal, Quebec
| | - David Scheifele
- Vaccine Evaluation Center, Child & Family Research Institute, University of British Columbia
| | - Larry C Lands
- Meakins Christie Laboratories, Department of Pediatrics, Division of Respiratory Medicine , Montreal Children's Hospital, McGill University , Montreal , Quebec
| | - Gaston De Serres
- Direction des risques biologiques et de la santé au travail , Institut national de santé publique du Québec
| | - Mark Chilvers
- Division of Respiratory Medicine, Department of Pediatrics, Faculty of Medicine , University of British Columbia , Canada
| | - Caroline Quach
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal; Department of Pediatrics, Division of Infectious Diseases, Montreal Children's Hospital, McGill University; McGill University Health Centre, Vaccine Study Centre, Research Institute of the MUHC, Montreal, Quebec; Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec
| |
Collapse
|
34
|
Abstract
Human rhinovirus (HRV) and coronavirus (HCoV) infections are associated with both upper respiratory tract illness (“the common cold”) and lower respiratory tract illness (pneumonia). New species of HRVs and HCoVs have been diagnosed in the past decade. More sensitive diagnostic tests such as reverse transcription-polymerase chain reaction have expanded our understanding of the role these viruses play in both immunocompetent and immunosuppressed hosts. Recent identification of severe acute respiratory syndrome and Middle East respiratory syndrome viruses causing serious respiratory illnesses has led to renewed efforts for vaccine development. The role these viruses play in patients with chronic lung disease such as asthma makes the search for antiviral agents of increased importance.
Collapse
Affiliation(s)
- Stephen B Greenberg
- Department of Medicine, Ben Taub Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
35
|
Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, Downer VS, Fliege J, Hazle LA, Jain M, Marshall BC, O’Malley C, Pattee SR, Potter-Bynoe G, Reid S, Robinson KA, Sabadosa KA, Schmidt HJ, Tullis E, Webber J, Weber DJ. Infection Prevention and Control Guideline for Cystic Fibrosis: 2013 Update. Infect Control Hosp Epidemiol 2016; 35 Suppl 1:S1-S67. [DOI: 10.1086/676882] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 2013 Infection Prevention and Control (IP&C) Guideline for Cystic Fibrosis (CF) was commissioned by the CF Foundation as an update of the 2003 Infection Control Guideline for CF. During the past decade, new knowledge and new challenges provided the following rationale to develop updated IP&C strategies for this unique population:1.The need to integrate relevant recommendations from evidence-based guidelines published since 2003 into IP&C practices for CF. These included guidelines from the Centers for Disease Control and Prevention (CDC)/Healthcare Infection Control Practices Advisory Committee (HICPAC), the World Health Organization (WHO), and key professional societies, including the Infectious Diseases Society of America (IDSA) and the Society for Healthcare Epidemiology of America (SHEA). During the past decade, new evidence has led to a renewed emphasis on source containment of potential pathogens and the role played by the contaminated healthcare environment in the transmission of infectious agents. Furthermore, an increased understanding of the importance of the application of implementation science, monitoring adherence, and feedback principles has been shown to increase the effectiveness of IP&C guideline recommendations.2.Experience with emerging pathogens in the non-CF population has expanded our understanding of droplet transmission of respiratory pathogens and can inform IP&C strategies for CF. These pathogens include severe acute respiratory syndrome coronavirus and the 2009 influenza A H1N1. Lessons learned about preventing transmission of methicillin-resistantStaphylococcus aureus(MRSA) and multidrug-resistant gram-negative pathogens in non-CF patient populations also can inform IP&C strategies for CF.
Collapse
|
36
|
Digging through the Obstruction: Insight into the Epithelial Cell Response to Respiratory Virus Infection in Patients with Cystic Fibrosis. J Virol 2016; 90:4258-4261. [PMID: 26865718 DOI: 10.1128/jvi.01864-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory virus infections are common but generally self-limiting infections in healthy individuals. Although early clinical studies reported low detection rates, the development of molecular diagnostic techniques by PCR has led to an increased recognition that respiratory virus infections are associated with morbidity and acute exacerbations of chronic lung diseases, such as cystic fibrosis (CF). The airway epithelium is the first barrier encountered by respiratory viruses following inhalation and the primary site of respiratory viral replication. Here, we describe how the airway epithelial response to respiratory viral infections contributes to disease progression in patients with CF and other chronic lung diseases, including the role respiratory viral infections play in bacterial acquisition in the CF patient lung.
Collapse
|
37
|
Frequency and Duration of Rhinovirus Infections in Children With Cystic Fibrosis and Healthy Controls: A Longitudinal Cohort Study. Pediatr Infect Dis J 2016; 35:379-83. [PMID: 26658528 DOI: 10.1097/inf.0000000000001014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Respiratory viral infections are an important cause of morbidity in patients with chronic respiratory diseases, such as cystic fibrosis (CF). We hypothesized that patients with CF are more susceptible to human rhinovirus (HRV) infections than healthy controls. METHODS In a 6-month winter period, 20 young children with CF (0-7 years) and 18 age-matched healthy controls were sampled biweekly for HRV-polymerase chain reaction using nasopharyngeal swabs, irrespective of respiratory symptoms. Respiratory symptoms were scored twice a week. If any symptom was present, an additional sample was obtained. All HRV-positive samples were genotyped to distinguish HRV subtypes. RESULTS We analyzed 645 samples, with comparable total numbers of samples in both groups. HRV was detected in 40.8% of all analyzed samples. Children with CF had significantly more HRV-positive samples compared with healthy controls, with a mean number (± standard deviation) of 8.1 ± 2.3 versus 5.7 ± 2.9 positive samples per individual (P < 0.01). Prolonged detection (>2 weeks) with the same HRV subtype occurred more frequently in the CF patients (P < 0.01). The genetic distribution and pattern of phylogenetic diversity of the different HRV subtypes were similar in both groups. CONCLUSIONS This is the first in vivo longitudinal study showing that HRV is detected more frequently and persists for longer periods in CF patients compared with healthy controls. This might indicate increased viral replication and/or decreased antiviral defense in patients with CF.
Collapse
|
38
|
Jagannath VA, Asokan GV, Fedorowicz Z, Lee TWR. Neuraminidase inhibitors for the treatment of influenza infection in people with cystic fibrosis. Cochrane Database Syst Rev 2016; 2:CD008139. [PMID: 26905631 PMCID: PMC7199381 DOI: 10.1002/14651858.cd008139.pub4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cystic fibrosis is the most common, life-threatening, recessively inherited disease of Caucasian populations. It is a multisystem disorder caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator protein which is important in producing sweat, digestive juices and mucus.The impaired or absent function of this protein results in the production of viscous mucus within the lungs and an environment that is susceptible to chronic airway obstruction and pulmonary colonization by a range of pathogenic bacteria. Morbidity and mortality of cystic fibrosis is related to chronic pulmonary sepsis and its complications by these bacteria.Influenza can worsen the course of the disease in cystic fibrosis by increasing the risk of pneumonia and secondary respiratory complications. Antiviral agents form an important part of influenza management and include the neuraminidase inhibitors zanamivir and oseltamivir. These inhibitors can limit the infection and prevent the spread of the virus. OBJECTIVES To assess the effects of neuraminidase inhibitors for the treatment of influenza infection in people with cystic fibrosis. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Most recent search: 02 November 2015. SELECTION CRITERIA Randomised controlled trials and quasi-randomised controlled trials comparing neuraminidase inhibitors with placebo or other antiviral drugs. DATA COLLECTION AND ANALYSIS Two review authors had planned to independently screen studies, extract data and assess risk of bias using standard Cochrane methodologies. No studies were identified for inclusion. MAIN RESULTS No relevant studies were retrieved after a comprehensive search of the literature. AUTHORS' CONCLUSIONS We were unable to identify any randomised controlled studies or quasi-randomised controlled studies on the efficacy of neuraminidase inhibitors for the treatment of influenza infection in people with cystic fibrosis. The absence of high level evidence for the effectiveness of these interventions emphasises the need for well-designed, adequately powered, randomised controlled clinical studies.
Collapse
Affiliation(s)
- Vanitha A Jagannath
- Department of Paediatrics, American Mission Hospital, Manama, Manama, Bahrain, PO Box 1
| | | | | | | |
Collapse
|
39
|
Bucher J, Boelle PY, Hubert D, Lebourgeois M, Stremler N, Durieu I, Bremont F, Deneuville E, Delaisi B, Corvol H, Bassinet L, Grenet D, Remus N, Vodoff MV, Boussaud V, Troussier F, Leruez-Ville M, Treluyer JM, Launay O, Sermet-Gaudelus I. Lessons from a French collaborative case-control study in cystic fibrosis patients during the 2009 A/H1N1 influenza pandemy. BMC Infect Dis 2016; 16:55. [PMID: 26830335 PMCID: PMC4736161 DOI: 10.1186/s12879-016-1352-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/15/2016] [Indexed: 11/18/2022] Open
Abstract
Background Viral infections such as influenza are thought to impact respiratory parameters and to promote infection with Pseudomonas aeruginosa in patients with cystic fibrosis (CF). However, the real morbidity of the influenza virus in CF needs to be further investigated because previous studies were only observational. Methods CF patients were included in a case–control study (n = 44 cases and n = 371 controls) during the 2009 pandemic A/H1N1 influenza. Cases were patients with polymerase reaction chain-confirmed influenza A/H1N1 infection. Controls did not report any influenza symptoms during the same period. Sputum colonization and lung function were monitored during 1 year after inclusion. Results Cases were significantly younger than controls (mean(SD) 14.9 years(11) versus 20.1 years (13.2) and significantly less frequently colonized with P. aeruginosa (34 % versus 53 %). During influenza infection, 74 % of cases had pulmonary exacerbation, 92 % had antibiotics adapted to their usual sputum colonization and 82 % were treated with oseltamivir. Two cases required lung transplantation after A/H1N1 infection (one had not received oseltamivir and the other one had been treated late). The cases received a mean number of antibiotic treatments significantly higher during the year after the influenza infection (mean(SD) 2.8 (2.4) for cases versus 1.8(2.1) for controls; p = 0.002). An age-matched comparison did not demonstrate any significant modification of bronchopulmonary bacterial colonization during the year after influenza infection nor any significant change in FEV1 at months 1, 3 and 12 after A/H1N1 infection. Conclusions Our results do not demonstrate any change in sputum colonization nor significant lung disease progression after pandemic A/H1N1 influenza. Trial registration Clinical Trials.gov registration number: NCT01499914
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Isabelle Sermet-Gaudelus
- Hôpital Necker Enfants Malades, Paris, France. .,Service de PneumoAllergologie Pédiatrique; INSERM U 1151, Hôpital Necker, 149 rue de Sévres, 75015, Paris, France.
| |
Collapse
|
40
|
Cousin M, Molinari N, Foulongne V, Caimmi D, Vachier I, Abely M, Chiron R. Rhinovirus-associated pulmonary exacerbations show a lack of FEV1 improvement in children with cystic fibrosis. Influenza Other Respir Viruses 2016; 10:109-12. [PMID: 26493783 PMCID: PMC4746558 DOI: 10.1111/irv.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Respiratory viral infections lead to bronchial inflammation in patients with cystic fibrosis, especially during pulmonary exacerbations. The aim of this study was to determine the impact of viral-associated pulmonary exacerbations in children with cystic fibrosis and failure to improve forced expiratory volume in 1 s (FEV1 ) after an appropriate treatment. METHODS We lead a pilot study from January 2009 until March 2013. Children with a diagnosis of cystic fibrosis were longitudinally evaluated three times: at baseline (Visit 1), at the diagnosis of pulmonary exacerbation (Visit 2), and after exacerbation treatment (Visit 3). Nasal and bronchial samples were analyzed at each visit with multiplex viral respiratory PCR panel (qualitative detection of 16 viruses). Pulmonary function tests were recorded at each visit, in order to highlight a possible failure to improve them after treatment. Lack of improvement was defined by an increase in FEV1 less than 5% between Visit 2 and Visit 3. RESULTS Eighteen children were analyzed in the study. 10 patients failed to improve by more than 5% their FEV1 between Visit 2 and Visit 3. Rhinovirus infection at Visit 2 or Visit 3 was the only risk factor significantly associated with such a failure (OR, 12; 95% CI, 1·3-111·3), P = 0·03. CONCLUSIONS Rhinovirus infection seems to play a role in the FEV1 recovery after pulmonary exacerbation treatment in children with cystic fibrosis. Such an association needs to be confirmed by a large-scale study because this finding may have important implications for pulmonary exacerbation management.
Collapse
Affiliation(s)
- Mathias Cousin
- Centre de Ressources et de Compétences pour la Mucoviscidose, Hôpital Arnaud de Villeneuve, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,Centre Hospitalier Régional Universitaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Nicolas Molinari
- Centre Hospitalier Régional Universitaire de Montpellier, Université de Montpellier, Montpellier, France.,Département de Statistiques, U1046 INSERM, UMR9214 CNRS, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Vincent Foulongne
- Centre Hospitalier Régional Universitaire de Montpellier, Université de Montpellier, Montpellier, France.,Laboratoire de virologie, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France.,INSERM, U1058, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Davide Caimmi
- Centre de Ressources et de Compétences pour la Mucoviscidose, Hôpital Arnaud de Villeneuve, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Isabelle Vachier
- Centre de Ressources et de Compétences pour la Mucoviscidose, Hôpital Arnaud de Villeneuve, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Michel Abely
- Centre de Ressources et de Compétences pour la Mucoviscidose, American Memorial Hospital, Reims Cedex, France
| | - Raphael Chiron
- Centre de Ressources et de Compétences pour la Mucoviscidose, Hôpital Arnaud de Villeneuve, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| |
Collapse
|
41
|
Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci U S A 2016; 113:1642-7. [PMID: 26729873 DOI: 10.1073/pnas.1516979113] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients' acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.
Collapse
|
42
|
Magalhães AP, Azevedo NF, Pereira MO, Lopes SP. The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy. Appl Microbiol Biotechnol 2015; 100:1163-1181. [PMID: 26637419 DOI: 10.1007/s00253-015-7177-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.
Collapse
Affiliation(s)
- Andreia P Magalhães
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Maria O Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Susana P Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
43
|
Martin C, Burgel PR, Lepage P, Andréjak C, de Blic J, Bourdin A, Brouard J, Chanez P, Dalphin JC, Deslée G, Deschildre A, Gosset P, Touqui L, Dusser D. Host-microbe interactions in distal airways: relevance to chronic airway diseases. Eur Respir Rev 2015; 24:78-91. [PMID: 25726559 PMCID: PMC9487770 DOI: 10.1183/09059180.00011614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host–microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways. Understanding host–microbe interactions in distal airways may lead to novel therapies for chronic airway diseaseshttp://ow.ly/HfENz
Collapse
Affiliation(s)
- Clémence Martin
- Hôpital Cochin, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre-Régis Burgel
- Hôpital Cochin, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patricia Lepage
- UMR1913-Microbiologie de l'Alimentation au Service de la Santé, l'Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Claire Andréjak
- Respiratory Intensive Care Unit, Centre Hospitalier Universitaire Sud, Amiens, France
| | - Jacques de Blic
- Hôpital Necker-Enfants Malades, AP-HP, Université Paris Descartes, Paris, France
| | - Arnaud Bourdin
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Jacques Brouard
- Dept of Pediatrics, CHU de Caen, Research Unit EA 4655 U2RM, Caen, France
| | - Pascal Chanez
- Dépt des Maladies Respiratoires, AP-HM, Laboratoire d'immunologie INSERM CNRS U 1067, UMR 7733, Aix Marseille Université, Marseille, France
| | | | - Gaetan Deslée
- Dept of Pulmonary Medicine, University Hospital of Reims, Reims, France
| | | | - Philippe Gosset
- Unité de défense innée et inflammation, Institut Pasteur, Paris, France INSERM U874, Paris, France
| | - Lhousseine Touqui
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Daniel Dusser
- Hôpital Cochin, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
44
|
Connett GJ, Pike KC, Legg JP, Cathie K, Dewar A, Foote K, Harris A, Faust SN. Ciprofloxacin during upper respiratory tract infections to reduce Pseudomonas aeruginosa infection in paediatric cystic fibrosis: a pilot study. Ther Adv Respir Dis 2015; 9:272-80. [PMID: 26341118 DOI: 10.1177/1753465815601571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Acute viral respiratory illnesses are associated with acquisition of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients. This study aimed to pilot a protocol for a randomized controlled trial to determine whether oral antipseudomonal antibiotics used at the onset of such episodes might delay onset of infection with this organism. METHODS A total of 41 children with CF aged 2-14 years, without chronic Pseudomonas infection, were randomized to receive ciprofloxacin (n = 28) or placebo (n = 13) at the onset of acute viral respiratory infections on an intention to treat basis, during a study period of up to 32 months. RESULTS There were no unexpected adverse events believed related to the use of the study medication. The rate of withdrawal from the study was low (approximately 7%) and did not differ between groups. Randomization was effective and acceptable to participants. Primary and secondary outcome measures all favoured active treatment, but there were no significant between group differences. The median rate of Pseudomonas isolates was 0/patient/year (interquartile range 0-0.38) in both the active and placebo groups. Kaplan-Meier survival curves showed no significant difference in time to first Pseudomonas isolate between groups. CONCLUSIONS This study demonstrated the clinical feasibility of using oral ciprofloxacin in CF patients at times of viral infection. Within this sample size, no significant association was found between active treatment and decreased growth of Pseudomonas in follow-up microbiological samples. A definitive study would require at least 320 children to demonstrate significant differences in the rate of pseudomonal isolates.
Collapse
Affiliation(s)
- Gary J Connett
- Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Katharine C Pike
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Southampton Children's Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UK Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Julian P Legg
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Southampton Children's Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Katrina Cathie
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Southampton Children's Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UK Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ann Dewar
- Department of Paediatrics, Poole Hospital NHS Foundation Trust, Poole, UK
| | - Keith Foote
- Department of Paediatrics, North Hampshire NHS Foundation Trust, Winchester, UK
| | - Amanda Harris
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Southampton Children's Hospital and University Hospital Southampton NHS Foundation Trust, Southampton, UKSouthampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Saul N Faust
- Southampton Children's Hospital and University Hospital Southampton NHS Foundation Trust Southampton, UK
| |
Collapse
|
45
|
Hofstra JJ, Matamoros S, van de Pol MA, de Wever B, Tanck MW, Wendt-Knol H, Deijs M, van der Hoek L, Wolthers KC, Molenkamp R, Visser CE, Sterk PJ, Lutter R, de Jong MD. Changes in microbiota during experimental human Rhinovirus infection. BMC Infect Dis 2015; 15:336. [PMID: 26271750 PMCID: PMC4659412 DOI: 10.1186/s12879-015-1081-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/04/2015] [Indexed: 01/25/2023] Open
Abstract
Background Human Rhinovirus (HRV) is responsible for the majority of common colds and is frequently accompanied by secondary bacterial infections through poorly understood mechanisms. We investigated the effects of experimental human HRV serotype 16 infection on the upper respiratory tract microbiota. Methods Six healthy volunteers were infected with HRV16. We performed 16S ribosomal RNA-targeted pyrosequencing on throat swabs taken prior, during and after infection. We compared overall community diversity, phylogenetic structure of the ecosystem and relative abundances of the different bacteria between time points. Results During acute infection strong trends towards increases in the relative abundances of Haemophilus parainfluenzae and Neisseria subflava were observed, as well as a weaker trend towards increases of Staphylococcus aureus. No major differences were observed between day-1 and day 60, whereas differences between subjects were very high. Conclusions HRV16 infection is associated with the increase of three genera known to be associated with secondary infections following HRV infections. The observed changes of upper respiratory tract microbiota could help explain why HRV infection predisposes to bacterial otitis media, sinusitis and pneumonia. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1081-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J J Hofstra
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - S Matamoros
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - M A van de Pol
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - B de Wever
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - M W Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - H Wendt-Knol
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - M Deijs
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - L van der Hoek
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - K C Wolthers
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - R Molenkamp
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - C E Visser
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - P J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - R Lutter
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - M D de Jong
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Chimeric rhinoviruses obtained via genetic engineering or artificially induced recombination are viable only if the polyprotein coding sequence derives from the same species. J Virol 2015; 89:4470-80. [PMID: 25653446 DOI: 10.1128/jvi.03668-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Recombination is a widespread phenomenon that ensures both the stability and variation of RNA viruses. This phenomenon occurs with different frequencies within species of the Enterovirus genus. Intraspecies recombination is described frequently among non-rhinovirus enteroviruses but appears to be sporadic in rhinoviruses. Interspecies recombination is even rarer for rhinoviruses and mostly is related to ancient events which contributed to the speciation of these viruses. We reported that artificially engineered 5' untranslated region (UTR) interspecies rhinovirus/rhinovirus or rhinovirus/non-rhinovirus enterovirus recombinants are fully viable. Using a similar approach, we demonstrated in this study that exchanges of the P1-2A polyprotein region between members of the same rhinovirus species, but not between members of different species, give rise to competent chimeras. To further assess the rhinovirus intra- and interspecies recombination potential, we used artificially induced recombination by cotransfection of 5'-end-deleted and 3'-end-deleted and replication-deficient genomes. In this system, intraspecies recombination also resulted in viable viruses with high frequency, whereas no interspecies rhinovirus recombinants could be recovered. Mapping intraspecies recombination sites within the polyprotein highlighted recombinant hotspots in nonstructural genes and at gene boundaries. Notably, all recombinants occurring at gene junctions presented in-frame sequence duplications, whereas most intragenic recombinants were homologous. Taken together, our results suggest that only intraspecies recombination gives rise to viable rhinovirus chimeras in the polyprotein coding region and that recombination hotspots map to nonstructural genes with in-frame duplications at gene boundaries. These data provide new insights regarding the mechanism and limitations of rhinovirus recombination. IMPORTANCE Recombination represents a means to ensure both the stability and the variation of RNA viruses. While intraspecies recombination is described frequently among non-rhinovirus enteroviruses, it seems to occur more rarely in rhinoviruses. Interspecies recombination is even rarer in this virus group and is mostly related to ancient events, which contributed to its speciation. We used engineered chimeric genomes and artificially induced RNA recombination to study experimentally the recombination potential of rhinoviruses and analyze recombination sites. Our results suggest that only intraspecies recombination gives rise to viable chimeras in the polyprotein coding region. Furthermore, characterization of intraspecies chimeras provides new insight into putative recombination hotspots within the polyprotein. In summary, we applied two powerful and complementary experimental approaches to improve current knowledge on rhinovirus recombination.
Collapse
|
47
|
Acute effects of viral respiratory tract infections on sputum bacterial density during CF pulmonary exacerbations. J Cyst Fibros 2014; 14:482-9. [PMID: 25544473 PMCID: PMC7105172 DOI: 10.1016/j.jcf.2014.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 01/01/2023]
Abstract
Background Airway proliferation of Pseudomonas aeruginosa bacteria is thought to trigger CF exacerbations and may be affected by the presence of viral infections. Methods A 2-year prospective study was conducted on 35 adults with CF. P. aeruginosa sputum density was analyzed during stable, exacerbation and post exacerbation assessments. Upon exacerbation, samples were sent for PCR detection of respiratory viruses and the sputum density of P. aeruginosa in patients with a viral infection versus those without was compared. Results Twenty-two patients experienced 30 exacerbations during the study period; 50% were associated with a viral infection. There was no change in sputum density of P. aeruginosa from the stable to exacerbation state when measured by quantitative culture or by PCR. Virus-associated exacerbations did not result in significant increases in P. aeruginosa sputum density compared to non-viral exacerbations. Conclusion Sputum density of P. aeruginosa was not increased at the time of CF exacerbation and was not influenced by the presence of viral infection.
Collapse
|
48
|
Boikos C, De Serres G, Lands LC, Boucher FD, Tapiéro B, Daigneault P, Quach C. Safety of live-attenuated influenza vaccination in cystic fibrosis. Pediatrics 2014; 134:e983-91. [PMID: 25225145 DOI: 10.1542/peds.2014-0887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Given the improved efficacy of the nasal live-attenuated influenza virus vaccine (LAIV) compared with the injectable vaccine in children, we aimed to determine its safety in individuals with cystic fibrosis (CF). METHODS A cohort of 168 study participants, aged 2 to 18 years with CF, vaccinated with LAIV between October 1, 2012, and January 30, 2013, was followed prospectively for 56 days after initial vaccination in 3 pediatric CF clinics across the province of Quebec. Days 0 to 28 post-LAIV were considered the at-risk period for all outcomes of interest, and days 29 to 56 post-LAIV were considered the non-at-risk period. Incident respiratory deteriorations were defined as an unscheduled medical visit, hospitalization, or a new course of oral antibiotics for respiratory complaints. Using a self-controlled design, incidence rate ratios (IRR) were used to compare at-risk and non-at-risk periods. RESULTS Comparing at-risk to non-at-risk periods, there was no significant increase in the rate of incident respiratory deteriorations (IRR, 0.72; 95% confidence interval, 0.11-4.27) or all-cause hospitalizations (IRR, 1.16; 95% confidence interval, 0.30-4.81). A greater proportion of participants reported experiencing at least 1 minor respiratory and/or systemic adverse event after immunization during the at-risk period compared with the non-at-risk period (77% vs 54%, respectively). During the first week after LAIV, 13 of 168 (8%) children reported some wheezing, with the vast majority, 9 of 13 (69%), on the day of vaccination. CONCLUSIONS There was no increased risk of respiratory deterioration or all-cause hospitalization associated with LAIV in our study population. LAIV seems well tolerated in children and adolescents with CF.
Collapse
Affiliation(s)
- Constantina Boikos
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Gaston De Serres
- Department of Social and Preventive Medicine, Laval University, Quebec City, Canada; Institut national de santé publique du Québec, Quebec, Canada
| | | | | | - Bruce Tapiéro
- Division of Infectious Diseases, Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada; and
| | - Patrick Daigneault
- Respiratory Medicine, Department of Pediatrics, Centre Mère-Enfant Soleil du CHU de Québec, Quebec, Canada
| | - Caroline Quach
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada; Institut national de santé publique du Québec, Quebec, Canada; Infectious Diseases, Department of Pediatrics, The Montreal Children's Hospital, McGill University, Montreal, Canada; McGill University Health Centre, Vaccine Study Centre, Research Institute of the MUHC, Montreal, Canada
| |
Collapse
|
49
|
Chen Y, Williams E, Kirk M. Risk factors for acute respiratory infection in the Australian community. PLoS One 2014; 9:e101440. [PMID: 25032810 PMCID: PMC4102462 DOI: 10.1371/journal.pone.0101440] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The objective of this study was to identify the risk factors for ARI in the Australian community. METHODS We used a national survey of 7578 randomly selected respondents in 2008-2009 to identify the risk factors of ARI. A case was defined as a person experiencing cold or flu with one or more symptoms of: fever, chills, sore throat, runny nose, or cough in the previous four weeks. RESULTS There were 19.8% (1505/7578) of respondents who reported ARI in the four weeks prior to the survey. Age was an independent risk factor for ARI, with the risk of acquiring ARI decreasing as age increased. Respondents reporting asthma (OR 1.4, 95%CI: 1.2-1.7) or having someone in their house attending childcare (OR 1.6, 95%CI: 1.2-2.1) were more likely to report ARI. CONCLUSIONS It is important to identify ways of interrupting transmission of ARI amongst children. Improving identification of risk factors will enable targeted interventions for this exceedingly common syndrome.
Collapse
Affiliation(s)
- Yingxi Chen
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Emlyn Williams
- Statistical Consulting Unit, The Australian National University, Canberra, Australia
| | - Martyn Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| |
Collapse
|
50
|
Ramirez IA, Caverly LL, Kalikin LM, Goldsmith AM, Lewis TC, Burke DT, LiPuma JJ, Sajjan US, Hershenson MB. Differential responses to rhinovirus- and influenza-associated pulmonary exacerbations in patients with cystic fibrosis. Ann Am Thorac Soc 2014; 11:554-61. [PMID: 24641803 PMCID: PMC4225796 DOI: 10.1513/annalsats.201310-346oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/26/2014] [Indexed: 12/25/2022] Open
Abstract
RATIONALE The mechanism by which viruses cause exacerbations of chronic airway disease and the capacity of patients with cystic fibrosis (CF) to respond to viral infection are not precisely known. OBJECTIVES To determine the antiviral response to infection in patients with CF. METHODS Sputum was collected from patients with CF with respiratory exacerbation. Viruses were detected in multiplex polymerase chain reaction (PCR)-based assays. Gene expression of 84 antiviral response genes was measured, using a focused quantitative PCR gene array. MEASUREMENTS AND MAIN RESULTS We examined 36 samples from 23 patients with respiratory exacerbation. Fourteen samples tested virus-positive and 22 virus-negative. When we compared exacerbations associated with rhinovirus (RV, n = 9) and influenza (n = 5) with virus-negative specimens, we found distinct patterns of antiviral gene expression. RV was associated with greater than twofold induction of five genes, including those encoding the monocyte-attracting chemokines CXCL10, CXCL11, and CXCL9. Influenza was associated with overexpression of 20 genes, including those encoding the cytokines tumor necrosis factor and IL-12; the kinases MEK, TBK-1, and STAT-1; the apoptosis proteins caspase-8 and caspase-10; the influenza double-stranded RNA receptor RIG-I and its downstream effector MAVS; and pyrin, an IFN-stimulated protein involved in influenza resistance. CONCLUSIONS We conclude that virus-induced exacerbations of CF are associated with immune responses tailored to specific infections. Influenza induced a more potent response consisting of inflammation, whereas RV infection had a pronounced effect on chemokine expression. As far as we are aware, this study is the first to compare specific responses to different viruses in live patients with chronic airway disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|