1
|
Arnaiz-Villena A, Juarez I, Vaquero-Yuste C, Lledo T, Martin-Villa JM, Suarez-Trujillo F. Complex Interactions between the Human Major Histocompatibility Complex (MHC) and Microbiota: Their Roles in Disease Pathogenesis and Immune System Regulation. Biomedicines 2024; 12:1928. [PMID: 39200390 PMCID: PMC11352054 DOI: 10.3390/biomedicines12081928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
The relationship between microbiota and the immune system is complex and characterized by the ways in which microbiota directs immune function interactions, both innate and acquired and also keeps activating the immune system throughout an individual's life. In this respect, the human Major Histocompatibility Complex (MHC, referred to as HLA in humans) plays a crucial role and is also established in self-defense against microbes by presenting microbial-derived peptides to the immune cells. However, this assumption has some unclear aspects that should be investigated. For example, how is the microbiota shaped by microbe species diversity, quantity and functions of the immune system, as well as the role and molecular mechanisms of the HLA complex during this process. There are autoimmune diseases related to both HLA and specific microbiota changes or alterations, many of which are mentioned in the present review. In addition, the HLA peptide presenting function should be put in a framework together with its linkage to diseases and also with HLA compatibility necessary for transplants to be successful. These are still quite an enigmatically statistical and phenomenological approach, but no firm pathogenic mechanisms have been described; thus, HLA's real functioning is still to be fully unveiled. After many years of HLA single-genes studies, firm pathogenesis mechanisms underlying disease linkage have been discovered. Finally, microbiota has been defined as conformed by bacteria, protozoa, archaea, fungi, and viruses; notwithstanding, endogenous viral sequences integrated into the human genome and other viral particles (obelisks) recently found in the digestive mucosa should be taken into account because they may influence both the microbiome and the immune system and their interactions. In this context, we propose to integrate these microbial-genetic particle components into the microbiome concept and designate it as "microgenobiota".
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Ignacio Juarez
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Christian Vaquero-Yuste
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Tomás Lledo
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - José Manuel Martin-Villa
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Fabio Suarez-Trujillo
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| |
Collapse
|
2
|
Nakamura A, Jo S, Nakamura S, Aparnathi MK, Boroojeni SF, Korshko M, Park YS, Gupta H, Vijayan S, Rockel JS, Kapoor M, Jurisica I, Kim TH, Haroon N. HIF-1α and MIF enhance neutrophil-driven type 3 immunity and chondrogenesis in a murine spondyloarthritis model. Cell Mol Immunol 2024; 21:770-786. [PMID: 38839914 PMCID: PMC11214626 DOI: 10.1038/s41423-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The hallmarks of spondyloarthritis (SpA) are type 3 immunity-driven inflammation and new bone formation (NBF). Macrophage migration inhibitory factor (MIF) was found to be a key driver of the pathogenesis of SpA by amplifying type 3 immunity, yet MIF-interacting molecules and networks remain elusive. Herein, we identified hypoxia-inducible factor-1 alpha (HIF1A) as an interacting partner molecule of MIF that drives SpA pathologies, including inflammation and NBF. HIF1A expression was increased in the joint tissues and synovial fluid of SpA patients and curdlan-injected SKG (curdlan-SKG) mice compared to the respective controls. Under hypoxic conditions in which HIF1A was stabilized, human and mouse neutrophils exhibited substantially increased expression of MIF and IL-23, an upstream type 3 immunity-related cytokine. Similar to MIF, systemic overexpression of IL-23 induced SpA pathology in SKG mice, while the injection of a HIF1A-selective inhibitor (PX-478) into curdlan-SKG mice prevented or attenuated SpA pathology, as indicated by a marked reduction in the expression of MIF and IL-23. Furthermore, genetic deletion of MIF or HIF1A inhibition with PX-478 in IL-23-overexpressing SKG mice did not induce evident arthritis or NBF, despite the presence of psoriasis-like dermatitis and blepharitis. We also found that MIF- and IL-23-expressing neutrophils infiltrated areas of the NBF in curdlan-SKG mice. These neutrophils potentially increased chondrogenesis and cell proliferation via the upregulation of STAT3 in periosteal cells and ligamental cells during endochondral ossification. Together, these results provide supporting evidence for an MIF/HIF1A regulatory network, and inhibition of HIF1A may be a novel therapeutic approach for SpA by suppressing type 3 immunity-mediated inflammation and NBF.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, K7L, 2V6, Canada.
- Translational Institute of Medicine, School of Medicine, Queen's University, Kingston, ON, K7L 2V6, Canada.
- Division of Rheumatology, Kingston Health Science Centre, Kingston, ON, K7L 2V6, Canada.
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mansi K Aparnathi
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mariia Korshko
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, 11293, Republic of Korea
| | - Himanshi Gupta
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Sandra Vijayan
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Departments of Medical Biophysics and Comp. Science and Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 85410, Bratislava, Slovakia
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, Republic of Korea
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Yemula N, Sheikh R. Gut microbiota in axial spondyloarthritis : genetics, medications and future treatments. ARP RHEUMATOLOGY 2024; 3:216-225. [PMID: 39243363 DOI: 10.63032/wuii1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Axial spondyloarthritis, also referred to as ankylosing spondylitis, is a chronic inflammatory condition that predominantly affects the axial spine but may also present with peripheral arthritis. It falls within the umbrella of disorders known as spondyloarthropathies. In addition to axial spondyloarthritis, this group includes psoriatic arthritis, enteropathic arthritis, reactive arthritis, and undifferentiated spondyloarthropathy, with axial spondyloarthritis being one of the most common. The overall mechanisms underlying the development of axial spondyloarthritis are complex and multifactorial. There is a significant and well-recognized association between axial spondyloarthritis and the HLA-B27 gene, but there have also been non-HLA genes identified in the disease process, as well as certain inflammatory cytokines that play a role in the inflammatory process, such as tumor necrosis factor (TNF). More recently, there has been research and new evidence linking changes in the gut microbiota to the disease process of axial spondyloarthritis. Research into the role of the gut microbiota and gut dysbiosis is a large, ever-growing field. It has been associated with a multitude of conditions, including axial spondyloarthritis. This mini-review highlights the symbiotic relationship of the gut microbiota with the pathogenesis, therapeutic agents and future treatments of axial spondyloarthritis.
Collapse
|
4
|
Navid F, Gill T, Fones L, Allbritton-King JD, Zhou K, Shen I, Van Doorn J, LiCausi F, Cougnoux A, Randazzo D, Brooks SR, Colbert RA. CHOP-mediated IL-23 overexpression does not drive colitis in experimental spondyloarthritis. Sci Rep 2024; 14:12293. [PMID: 38811719 PMCID: PMC11137091 DOI: 10.1038/s41598-024-62940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
HLA-B27 is a major risk factor for spondyloarthritis (SpA), yet the underlying mechanisms remain unclear. HLA-B27 misfolding-induced IL-23, which is mediated by endoplasmic reticulum (ER) stress has been hypothesized to drive SpA pathogenesis. Expression of HLA-B27 and human β2m (hβ2m) in rats (HLA-B27-Tg) recapitulates key SpA features including gut inflammation. Here we determined whether deleting the transcription factor CHOP (Ddit3-/-), which mediates ER-stress induced IL-23, affects gut inflammation in HLA-B27-Tg animals. ER stress-mediated Il23a overexpression was abolished in CHOP-deficient macrophages. Although CHOP-deficiency also reduced Il23a expression in immune cells isolated from the colon of B27+ rats, Il17a levels were not affected, and gut inflammation was not reduced. Rather, transcriptome analysis revealed increased expression of pro-inflammatory genes, including Il1a, Ifng and Tnf in HLA-B27-Tg colon tissue in the absence of CHOP, which was accompanied by higher histological Z-scores. RNAScope localized Il17a mRNA to the lamina propria of the HLA-B27-Tg rats and revealed similar co-localization with Cd3e (CD3) in the presence and absence of CHOP. This demonstrates that CHOP-deficiency does not improve, but rather exacerbates gut inflammation in HLA-B27-Tg rats, indicating that HLA-B27 is not promoting gut disease through ER stress-induced IL-23. Hence, CHOP may protect rats from more severe HLA-B27-induced gut inflammation.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Lilah Fones
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | | | - Kelly Zhou
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Isabel Shen
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Jinny Van Doorn
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Francesca LiCausi
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, 20892, USA
| | | | - Stephen R Brooks
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Wang H, Yang C, Li G, Wang B, Qi L, Wang Y. A review of long non-coding RNAs in ankylosing spondylitis: pathogenesis, clinical assessment, and therapeutic targets. Front Cell Dev Biol 2024; 12:1362476. [PMID: 38590778 PMCID: PMC10999594 DOI: 10.3389/fcell.2024.1362476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Ankylosing spondylitis (AS) is a chronic immune-mediated type of inflammatory arthritis characterized by inflammation, bone erosion, and stiffness of the spine and sacroiliac joints. Despite great efforts put into the investigation of the disease, the pathogenesis of AS remains unclear, posing challenges in identifying ideal targets for diagnosis and treatment. To enhance our understanding of AS, an increasing number of studies have been conducted. Some of these studies reveal that long non-coding RNAs (lncRNAs) play crucial roles in the etiology of AS. Some certain lncRNAs influence the development of AS by regulating inflammatory responses, autophagy, apoptosis, and adipogenesis, as well as the proliferation and differentiation of cells. Additionally, some lncRNAs demonstrate potential as biomarkers, aiding in monitoring disease progression and predicting prognosis. In this review, we summarize recent studies concerning lncRNAs in AS to elucidate the underlying mechanisms in which lncRNAs are involved and their potential values as biomarkers for disease assessment and druggable targets for therapy.
Collapse
Affiliation(s)
- Hanji Wang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Chengxian Yang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Ge Li
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Boning Wang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Longtao Qi
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Yu Wang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Grando K, Bessho S, Harrell K, Kyrylchuk K, Pantoja AM, Olubajo S, Albicoro FJ, Klein-Szanto A, Tükel Ç. Bacterial amyloid curli activates the host unfolded protein response via IRE1α in the presence of HLA-B27. Gut Microbes 2024; 16:2392877. [PMID: 39189642 DOI: 10.1080/19490976.2024.2392877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis. To determine whether curli exacerbates HLA-B27-induced UPR, bone marrow-derived macrophages (BMDMs) isolated from HLA-B27 transgenic (tg) mice were used. BMDMs treated with purified curli exhibited elevated UPR compared to C57BL/6, and curli-induced IL-6 was reduced by pre-treating macrophages with inhibitors of the IRE1α branch of the UPR. In BMDMs, intracellular curli colocalized with GRP78, a regulator of the UPR. In vivo, acute infection with wild-type STm increased UPR markers in the ceca of HLA-B27tg mice compared to C57BL/6. STm biofilms that contain curli were visible in the lumen of cecal tissue sections. Furthermore, curli was associated with macrophages in the lamina propria, colocalizing with GRP78. Together, these results suggest that UPR plays a role in the curli-induced inflammatory response, especially in the presence of HLA-B27, a possible mechanistic link between STm infection and genetic susceptibility to ReA.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shingo Bessho
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kayla Harrell
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathrine Kyrylchuk
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alejandro M Pantoja
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sophia Olubajo
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Francisco J Albicoro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | | | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Chen Y, Wu Y, Fang L, Zhao H, Xu S, Shuai Z, Yu H, Cai G, Zhan HQ, Pan F. METTL14-m6A-FOXO3a axis regulates autophagy and inflammation in ankylosing spondylitis. Clin Immunol 2023; 257:109838. [PMID: 37935312 DOI: 10.1016/j.clim.2023.109838] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The role of m6A in ankylosing spondylitis (AS) remains largely obscure. In this study, we found that m6A modification was decreased in T cells of AS, and the abnormal m6A modification was attributed to the downregulation of methyltransferase-like 14 (METTL14). METTL14 exerted a critical role in regulating autophagy activity and inflammation via targeting Forkhead box O3a (FOXO3a). Mechanistically, the loss of METTL14 decreased the expression of FOXO3a, leading to the damage of autophagic flux and the aggravation of inflammation. Inversely, the forced expression of METTL14 upregulated the expression of FOXO3a, thereby activating autophagy and alleviating inflammation. Furthermore, our results revealed that METTL14 targeted FOXO3a mRNA and regulated its expression and stability in a m6A-dependent manner. These findings uncovered the functional importance of m6A methylation mechanisms in the regulation of autophagy and inflammation, which expanded our understanding of this interaction and was critical for the development of therapeutic strategies for AS.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shenqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui 236000, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
8
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
van de Sande MGH, Elewaut D. Pathophysiology and immunolgical basis of axial spondyloarthritis. Best Pract Res Clin Rheumatol 2023; 37:101897. [PMID: 38030467 DOI: 10.1016/j.berh.2023.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Over the recent years the wider availability and application of state-of-the-art immunological technologies greatly advanced the insight into the mechanisms that play an important role in axial spondyloarthritis (axSpA) pathophysiology. This increased understanding has facilitated the development of novel treatments that target disease relevant pathways, hereby improving outcome for axSpA patients. In axSpA pathophysiology genetic and environmental factors as well as immune activation by mechanical or bacterial stress resulting in a chronic inflammatory response have a central role. The TNF and IL-23/IL-17 immune pathways play a pivotal role in these disease mechanisms. This review provides an outline of the immunological basis of axSpA with a focus on key genetic risk factors and their link to activation of the pathological immune response, as well as on the role of the gut and entheses in the initiation of inflammation with subsequent new bone formation in axSpA.
Collapse
Affiliation(s)
- Marleen G H van de Sande
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands.
| | - Dirk Elewaut
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, C. Heymanslaan 10, Ghent, 9000, Belgium.
| |
Collapse
|
10
|
Riitano G, Recalchi S, Capozzi A, Manganelli V, Misasi R, Garofalo T, Sorice M, Longo A. The Role of Autophagy as a Trigger of Post-Translational Modifications of Proteins and Extracellular Vesicles in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:12764. [PMID: 37628944 PMCID: PMC10454292 DOI: 10.3390/ijms241612764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, characterized by persistent joint inflammation, leading to cartilage and bone destruction. Autoantibody production is directed to post-translational modified (PTM) proteins, i.e., citrullinated or carbamylated. Autophagy may be the common feature in several types of stress (smoking, joint injury, and infections) and may be involved in post-translational modifications (PTMs) in proteins and the generation of citrullinated and carbamylated peptides recognized by the immune system in RA patients, with a consequent breakage of tolerance. Interestingly, autophagy actively provides information to neighboring cells via a process called secretory autophagy. Secretory autophagy combines the autophagy machinery with the secretion of cellular content via extracellular vesicles (EVs). A role for exosomes in RA pathogenesis has been recently demonstrated. Exosomes are involved in intercellular communications, and upregulated proteins and RNAs may contribute to the development of inflammatory arthritis and the progression of RA. In RA, most of the exosomes are produced by leukocytes and synoviocytes, which are loaded with PTM proteins, mainly citrullinated proteins, inflammatory molecules, and enzymes that are implicated in RA pathogenesis. Microvesicles derived from cell plasma membrane may also be loaded with PTM proteins, playing a role in the immunopathogenesis of RA. An analysis of changes in EV profiles, including PTM proteins, could be a useful tool for the prevention of inflammation in RA patients and help in the discovery of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (S.R.); (A.C.); (V.M.); (R.M.); (T.G.); (A.L.)
| | | |
Collapse
|
11
|
Yi L, Song C, Liu Y, Li D, Xiao T, Guo X, Wu Y. Down-regulation of long noncoding RNA HULC inhibits the inflammatory response in ankylosing spondylitis by reducing miR-556-5p-mediated YAP1 expression. J Orthop Surg Res 2023; 18:551. [PMID: 37525215 PMCID: PMC10388530 DOI: 10.1186/s13018-023-04003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is a progressive systemic disease characterized by a chronic inflammatory response in the sacroiliac joints and spine. Long noncoding RNAs suggest significant actions in the progression of AS. Therefore, a specific lncRNA, highly upregulated in liver cancer (HULC), was studied here regarding its functions and related mechanisms in AS. METHODS Measurements of miR-556-5p, HULC, and YAP1 expression were performed on AS cartilage tissues and chondrocytes. The interaction between miR-556-5p and HULC or YAP1 was verified. CCK-8, flow cytometry and enzyme-linked immunosorbent assay were used to evaluate the effects of HULC, miR-556-5p, and YAP1 on the proliferation, apoptosis, and inflammatory response of AS chondrocytes. Furthermore, the action of HULC/miR-556-5p/YAP1 was experimentally observed in AS mice. RESULTS HULC and YAP1 levels were augmented, while miR-556-5p levels were suppressed in AS cartilage tissues and chondrocytes. Downregulating HULC or upregulating miR-556-5p stimulated chondrocyte proliferation and inhibited apoptosis and inflammation in AS. miR-556-5p was a downstream factor of HULC, and YAP1 was a potential target of miR-556-5p. The improvement effect of downregulated HULC on AS chondrocytes was saved when YAP1 expression was forced. In addition, silence of HULC improved the pathological injury of spinal cartilage in AS mice by enhancing miR-556-5p-related regulation of YAP1. CONCLUSION HULC inhibition relieves the inflammatory response in AS by reducing miR-556-5p-mediated YAP1 expression.
Collapse
Affiliation(s)
- LuLu Yi
- Department of Rheumatology, Ganzhou People's Hospital, Ganzhou City, 341000, Jiangxi Province, China
| | - ChangJun Song
- Department of Emergency, Ganzhou People's Hospital, Ganzhou City, 341000, Jiangxi Province, China
| | - YuanYuan Liu
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou City, 341000, Jiangxi Province, China
| | - DongSheng Li
- Department of Rheumatology, Ganzhou People's Hospital, Ganzhou City, 341000, Jiangxi Province, China
| | - TianTian Xiao
- Department of Rheumatology, Ganzhou People's Hospital, Ganzhou City, 341000, Jiangxi Province, China
| | - XuQin Guo
- Department of Rheumatology, Ganzhou People's Hospital, Ganzhou City, 341000, Jiangxi Province, China
| | - YiCai Wu
- Department of Nephrology, Ganzhou People's Hospital, No. 17, Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
12
|
Liang L, Saunders C, Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci Nutr 2023; 11:1671-1704. [PMID: 37051344 PMCID: PMC10084985 DOI: 10.1002/fsn3.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 03/09/2023] Open
Abstract
Dysfunction of gut barrier is known as "leaky gut" or increased intestinal permeability. Numerous recent scientific evidences showed the association between gut dysfunction and multiple gastrointestinal tract (GI) and non-GI diseases. Research also demonstrated that food plays a crucial role to cause or remedy gut dysfunction related to diseases. We reviewed recent articles from electronic databases, mainly PubMed. The data were based on animal models, cell models, and human research in vivo and in vitro models. In this comprehensive review, our aim focused on the relationship between dietary factors, intestinal permeability dysfunction, and related diseases. This review synthesizes currently available literature and is discussed in three parts: (a) the mechanism of gut barrier and function, (b) food and dietary supplements that may promote gut health, and food or medication that may alter gut function, and (c) a table that organizes the synthesized information by general mechanisms for diseases related to leaky gut/intestinal permeability and associated dietary influences. With future research, dietary intervention could be a new target for individualized disease prevention and management.
Collapse
Affiliation(s)
- Linda Liang
- University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Nerses Sanossian
- Department of NeurologyMedical School of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
14
|
ERAP1 and the return of the UPR in ankylosing spondylitis. Nat Rev Rheumatol 2023; 19:134-135. [PMID: 36725927 DOI: 10.1038/s41584-023-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
16
|
Song ZY, Yuan D, Zhang SX. Role of the microbiome and its metabolites in ankylosing spondylitis. Front Immunol 2022; 13:1010572. [PMID: 36311749 PMCID: PMC9608452 DOI: 10.3389/fimmu.2022.1010572] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS), a chronic condition that commonly influences the spine and sacroiliac joints, usually progresses to stiffness and progressive functional limitation. Its fundamental etiology and pathogenesis are likely multifactorial and remain elusive. As environmental factors, gut microbiota performs critical functions in the pathogenesis of AS through various mechanisms, including interacting with genes, enhancing intestinal permeability, activating the gut mucosa immune system, and affecting the intestinal microbiota metabolites. This review provides an overview of recent advances in investigating gut microbiota in AS pathogenesis and discusses potential methods for future therapeutic intervention.
Collapse
Affiliation(s)
- Zi-Yi Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Duo Yuan
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Han Y, Zhou Y, Li H, Gong Z, Liu Z, Wang H, Wang B, Ye X, Liu Y. Identification of diagnostic mRNA biomarkers in whole blood for ankylosing spondylitis using WGCNA and machine learning feature selection. Front Immunol 2022; 13:956027. [PMID: 36172367 PMCID: PMC9510835 DOI: 10.3389/fimmu.2022.956027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common inflammatory spondyloarthritis affecting the spine and sacroiliac joint that finally results in sclerosis of the axial skeleton. Aside from human leukocyte antigen B27, transcriptomic biomarkers in blood for AS diagnosis still remain unknown. Hence, this study aimed to investigate credible AS-specific mRNA biomarkers from the whole blood of AS patients by analyzing an mRNA expression profile (GSE73754) downloaded Gene Expression Omnibus, which includes AS and healthy control blood samples. Weighted gene co-expression network analysis was performed and revealed three mRNA modules associated with AS. By performing gene set enrichment analysis, the functional annotations of these modules revealed immune biological processes that occur in AS. Several feature mRNAs were identified by analyzing the hubs of the protein-protein interaction network, which was based on the intersection between differentially expressed mRNAs and mRNA modules. A machine learning-based feature selection method, SVM-RFE, was used to further screen out 13 key feature mRNAs. After verifying by qPCR, IL17RA, Sqstm1, Picalm, Eif4e, Srrt, Lrrfip1, Synj1 and Cxcr6 were found to be significant for AS diagnosis. Among them, Cxcr6, IL17RA and Lrrfip1 were correlated with severity of AS symptoms. In conclusion, our findings provide a framework for identifying the key mRNAs in whole blood of AS that is conducive for the development of novel diagnostic markers for AS.
Collapse
Affiliation(s)
- Yaguang Han
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yiqin Zhou
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haobo Li
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ziye Liu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| | - Xiaojian Ye
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| | - Yi Liu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| |
Collapse
|
18
|
Thakur AK, Luthra-Guptasarma M. Differences in Cellular Clearing Mechanisms of Aggregates of Two Subtypes of HLA-B27. Front Immunol 2022; 12:795053. [PMID: 35082784 PMCID: PMC8785436 DOI: 10.3389/fimmu.2021.795053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Ankylosing spondylitis (AS) belongs to a group of diseases, called spondyloarthropathies (SpA), that are strongly associated with the genetic marker HLA-B27. AS is characterized by inflammation of joints and primarily affects the spine. Over 160 subtypes of HLA-B27 are known, owing to high polymorphism. Some are strongly associated with disease (e.g., B*2704), whereas others are not (e.g., B*2709). Misfolding of HLA-B27 molecules [as dimers, or as high-molecular-weight (HMW) oligomers] is one of several hypotheses proposed to explain the link between HLA-B27 and AS. Our group has previously established the existence of HMW species of HLA-B27 in AS patients. Still, very little is known about the mechanisms underlying differences in pathogenic outcomes of different HLA-B27 subtypes. We conducted a proteomics-based evaluation of the differential disease association of HLA B*2704 and B*2709, using stable transfectants of genes encoding the two proteins. A clear difference was observed in protein clearance mechanisms: whereas unfolded protein response (UPR), autophagy, and aggresomes were involved in the degradation of B*2704, the endosome–lysosome machinery was primarily involved in B*2709 degradation. These differences offer insights into the differential disease association of B*2704 and B*2709.
Collapse
Affiliation(s)
- Amit Kumar Thakur
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
19
|
Rezaiemanesh A, Mahmoudi M, Amirzargar AA, Vojdanian M, Babaie F, Mahdavi J, Rajabinejad M, Jamshidi AR, Nicknam MH. Upregulation of Unfolded Protein Response and ER Stress-Related IL-23 Production in M1 Macrophages from Ankylosing Spondylitis Patients. Inflammation 2022; 45:665-676. [PMID: 35112266 DOI: 10.1007/s10753-021-01575-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
The inflammatory interleukin (IL)-23/IL-17 axis plays an important role in the pathogenesis of ankylosing spondylitis (AS), but with an unknown regulatory mechanism. This study aimed to investigate the role of endoplasmic reticulum (ER) stress and autophagy pathway in the expression of IL-23 in peripheral blood-derived macrophages in AS patients. Peripheral blood samples were obtained from 15 AS and 15 healthy control subjects. MACS was used to isolate monocytes from PBMCs. Then, M-CSF was used to differentiate monocytes to M2 macrophages. IFN-γ and/or LPS were used to activate macrophages and M2 polarization towards M1 macrophages. Thapsigargin was used to induce ER stress and 3-MA to inhibit autophagy. The purity of extracted monocytes and macrophage markers was evaluated by flow cytometry. mRNA expression of HLA-B and-B27, ER stress-related genes, autophagy-related genes, and IL-23p19 was performed using RT-qPCR. Soluble levels of IL-23p19 were measured using ELISA. Significant increase in mRNA expression of HLA-B, HLA-B27, BiP, XBP1, CHOP, and PERK mRNAs was observed in macrophages of AS patients before and after stimulation with IFN-γ and LPS. No significant change in autophagy gene expression was detected. mRNA and soluble levels of IL-23p19 demonstrated a significant increase in macrophages of AS patients compared to healthy subjects. ER stress induction led to a significant increase in IL-23p19 in macrophages. Inhibition of autophagy did not affect IL-23 expression. ER stress, unlike autophagy, is associated with increased IL-23 levels in macrophages of AS patients.Key Messages ER stress in macrophages from AS patients plays a role in the increased production of IL-23. The autophagy pathway is not involved in the modulation of IL-23 production by AS macrophages.
Collapse
Affiliation(s)
- Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jila Mahdavi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Reza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
The gut-enthesis axis and the pathogenesis of Spondyloarthritis. Semin Immunol 2021; 58:101607. [PMID: 35850909 DOI: 10.1016/j.smim.2022.101607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
Subclinical inflammation is associated with Spondylarthritis (SpA). SpA patients show features of dysbiosis, altered gut barrier function, and local expansion of innate and innate-like cells involved in type 3 immune response. The recirculation of intestinal primed immune cells into the bloodstream and, in some cases, in the joints and the inflamed bone marrow of SpA patients gave the basis of the gut-joint axis theory. In the light of the critical role of enthesis in the pathogenesis of SpA and the identification of mucosal-derived immune cells residing into the normal human enthesis, a gut-enthesis axis is also likely to exist. This work reviews the current knowledge on enthesis-associated innate immune cells' primary involvement in enthesitis development, questions their origin, and critically discusses the clues supporting the existence of a gut-enthesis axis contributing to SpA development.
Collapse
|
21
|
Simone D, Stingo A, Ciccia F. Genetic and Environmental Determinants of T Helper 17 Pathogenicity in Spondyloarthropathies. Front Genet 2021; 12:703242. [PMID: 34630512 PMCID: PMC8492997 DOI: 10.3389/fgene.2021.703242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
In Spondyloarthropathies (SpA), a common group of immune-mediated diseases characterised by excessive inflammation of musculo-skeletal structures and extra-articular organs, T helper 17 (Th17) cells are widely considered the main drivers of the disease. Th17 are able to modulate their genes according to the immune environment: upon differentiation, they can adopt either housekeeping, anti-bacterial gene modules or inflammatory, pathogenic functions, and only the latter would mediate immune diseases, such as SpA. Experimental work aimed at characterising Th17 heterogeneity is largely performed on murine cells, for which the in vitro conditions conferring pathogenic potential have been identified and replicated. Interestingly, Th17 recognising different microorganisms are able to acquire specific cytokine signatures. An emerging area of research associates this heterogeneity to the preferential metabolic needs of the cell. In summary, the tissue environment could be determinant for the acquisition of pathogenetic features; this is particularly important at barrier sites, such as the intestine, considered one of the key target organs in SpA, and likely a site of immunological changes that initiate the disease. In this review, we briefly summarise genetic, environmental and metabolic factors that could explain how homeostatic, anti-microbial Th17 could turn into disease-causing cells in Spondyloarthritis.
Collapse
Affiliation(s)
- Davide Simone
- Dipartimento di Medicina di Precisione, Section of RheumatologyUniversità degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Alessia Stingo
- Dipartimento di Medicina di Precisione, Section of RheumatologyUniversità degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of RheumatologyUniversità degli Studi della Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
22
|
Romero-López JP, Elewaut D, Pacheco-Tena C, Burgos-Vargas R. Inflammatory Foot Involvement in Spondyloarthritis: From Tarsitis to Ankylosing Tarsitis. Front Med (Lausanne) 2021; 8:730273. [PMID: 34692724 PMCID: PMC8531414 DOI: 10.3389/fmed.2021.730273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Spondyloarthritis (SpA) is a group that includes a wide spectrum of clinically similar diseases manifested by oligoarticular arthritis and axial or peripheral ankylosis. Although axial SpA is predominant in Caucasians and adult-onset patients, juvenile-onset and Latin American patients are characterized by severe peripheral arthritis and particularly foot involvement. The peripheral involvement of SpA can vary from tarsal arthritis to the most severe form named ankylosing tarsitis (AT). Although the cause and etiopathogenesis of axSpA are often studied, the specific characteristics of pSpA are unknown. Several animal models of SpA develop initial tarsitis and foot ankylosis as the main signs, emphasizing the role of foot inflammation in the overall SpA spectrum. In this review, we attempt to highlight the clinical characteristics of foot involvement in SpA and update the knowledge regarding its pathogenesis, focusing on animal models and the role of mechanical forces in inflammation.
Collapse
Affiliation(s)
- José Pablo Romero-López
- Laboratorio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
- Laboratorio de Inmunología Clínica 1, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional de México, Ciudad de México, Mexico
| | - Dirk Elewaut
- Ghent University Hospital, Ghent University, Ghent, Belgium
| | - César Pacheco-Tena
- Facultad de Medicina, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Rubén Burgos-Vargas
- Department of Rheumatology, Hospital General de México, “Dr. Eduardo Liceaga”, Ciudad de México, Mexico
| |
Collapse
|
23
|
Zheng Y, Cai B, Ren C, Xu H, Du W, Wu Y, Lin F, Zhang H, Quan R. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis. PeerJ 2021; 9:e12125. [PMID: 34589304 PMCID: PMC8432305 DOI: 10.7717/peerj.12125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023] Open
Abstract
Background Ankylosing spondylitis (AS) is a progressive rheumatic disease and studies reveal that the immune system is critical for the pathogenesis of AS. In the present study, various bioinformatics analysis methods were comprehensively applied, designed to identify potential key genes and inflammation states of AS. Methods The transcriptome profiles of GSE25101 and GSE73754 obtained from the Gene Expression Omnibus (GEO) database were merged for subsequent analyses. The differentially expressed genes (DEGs) were identified using the Bioconductor package Limma and threshold values. Functional enrichment and pathway enrichment analyses were performed using the clusterProfiler package and Gene Set Enrichment Analysis (GSEA). Next, protein-protein interaction (PPI) network of the identified DEGs was constructed by the online database, the Search Tool for the Retrieval of Interacting Genes (STRING), visualization and analysis were performed through Cytoscape software. Subsequently, we applied CIBERSORT algorithm to identify subpopulation proportions of immune cells in peripheral blood samples. Finally, we validated the hub genes with the GSE18781 dataset. Samples were collected from patients to validate gene and protein expression using qRT-PCR and ELISA. Results A total of 334 DEGs were identified, including 182 upregulated and 152 downregulated DEGs, between AS patients and normal human controls, which were primarily involved in immune response, autophagy, and natural killer cell-mediated cytotoxicity. The most prominent module and candidate biomarkers were identified from the PPI network. Biomarkers were selected for validation and their expressions were significantly decreased in peripheral blood samples which was consistent with transcriptome sequencing results. Nine genes with AUC > 0.70 were considered to be AS hub genes for ROC curve analysis, including GZMA, GZMK, PRF1, GNLY, NKG7, KLRB1, KLRD1, IL2RB and CD247. Furthermore, CIBERSORT results suggest that AS contained a higher proportion of CD8+ T cells, naive CD4+ T cells, neutrophils, and lower levels of gamma delta T cells compared with the normal controls. Conclusion In this study, we identified DEGs combined with their closely related biological functions and propose that granule-associated proteins and immune infiltration maybe involved in the progression of ankylosing spondylitis. These validated hub genes may provide new perspectives for understanding the molecular mechanisms of ankylosing spondylitis.
Collapse
Affiliation(s)
- Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingbing Cai
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haipeng Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weibin Du
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yijiang Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Fu Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Helou Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Renfu Quan
- Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China.,Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Intestinal Microbial Metabolites in Ankylosing Spondylitis. J Clin Med 2021; 10:jcm10153354. [PMID: 34362137 PMCID: PMC8347740 DOI: 10.3390/jcm10153354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by inflammation of axial joints and the pelvis. It is known that intestinal dysbiosis may exert direct pathogenic effects on gut homeostasis and may act as a triggering factor for the host innate immune system to activate and cause inflammation in extraintestinal sites in the so-called "gut-joint axis", contributing to AS pathogenesis. However, although the intestinal microbiota's influence on the clinical manifestation of AS is widely accepted, the mechanisms mediating the cross-talk between the intestinal lumen and the immune system are still not completely defined. Recent evidence suggests that the metabolism of microbial species may be a source of metabolites and small molecules participating in the complex network existing between bacteria and host cells. These findings may give inputs for further research of novel pharmacological targets and pave the way to applying dietary interventions to prevent the onset and ameliorate the clinical presentation of the disease. In this review, we discuss the role of some of the biological mediators of microbial origin, with a particular focus on short-chain fatty acids, tryptophan and vitamin B derivatives, and their role in barrier integrity and type 3 immunity in the context of AS.
Collapse
|
25
|
Ma M, Li H, Wang P, Yang W, Mi R, Zhuang J, Jiang Y, Lu Y, Shen X, Wu Y, Shen H. ATF6 aggravates angiogenesis-osteogenesis coupling during ankylosing spondylitis by mediating FGF2 expression in chondrocytes. iScience 2021; 24:102791. [PMID: 34296071 PMCID: PMC8281657 DOI: 10.1016/j.isci.2021.102791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Although angiogenesis-osteogenesis coupling is important in ankylosing spondylitis (AS), therapeutic agents targeting the vasculature remain elusive. Here, we identified activating transcription factor 6 (ATF6) as an important regulator of angiogenesis in the pathogenesis of AS. First, we found that ATF6 and fibroblast growth factor 2 (FGF2) levels were higher in SKG mice and in cartilage of pateints with AS1. The proangiogenic activity of human chondrocytes was enhanced by the activation of the ATF6-FGF2 axis following 7 days of stimulation with inflammatory factors, e.g., tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ) or interleukin-17 (IL-17). Mechanistically, ATF6 interacted with the FGF2 promotor and promoted its transcription. Treatment with the ATF6 inhibitor Ceapin-A7 inhibited angiogenesis in vitro and angiogenesis-osteogenesis coupling in vivo. ATF6 may aggravate angiogenesis-osteogenesis coupling during AS by mediating FGF2 transcription in chondrocytes, implying that ATF6 represents a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
26
|
Mandour M, Chen S, van de Sande MGH. The Role of the IL-23/IL-17 Axis in Disease Initiation in Spondyloarthritis: Lessons Learned From Animal Models. Front Immunol 2021; 12:618581. [PMID: 34267743 PMCID: PMC8276000 DOI: 10.3389/fimmu.2021.618581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Spondyloarthritis (SpA) is a spectrum of chronic inflammatory joint diseases that frequently presents with inflammation of the axial skeleton, peripheral joints, entheses, skin, and gut. Understanding SpA pathogenesis has been proven challenging due to the limited availability of human target tissues. In recent years, the interleukin (IL)-23/IL-17 pathway has been implicated in the pathogenesis of SpA, in addition to the Tumor Necrosis Factor Alpha (TNF-α) cytokine. The underlying molecular mechanisms by which the IL-23/IL-17 pathway triggers disease initiation, both in the joints as well as at extra-musculoskeletal sites, are not precisely known. Animal models that resemble pathological features of human SpA have provided possibilities for in-depth molecular analyses of target tissues during various phases of the disease, including the pre-clinical initiation phase of the disease before arthritis and spondylitis are clinically present. Herein, we summarize recent insights gained in SpA animal models on the role of the IL-23/IL-17 pathway in immune activation across affected sites in SpA, which include the joint, entheses, gut and skin. We discuss how local activation of the IL-23/IL-17 axis may contribute to the development of tissue inflammation and the onset of clinically manifest SpA. The overall aim is to provide the reader with an overview of how the IL-23/IL-17 axis could contribute to the onset of SpA pathogenesis. We discuss how insights from animal studies into the initiation phase of disease could instruct validation studies in at-risk individuals and thereby provide a perspective for potential future preventive treatment.
Collapse
Affiliation(s)
- Mohamed Mandour
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sijia Chen
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Marleen G. H. van de Sande
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Wu X, Wang G, Zhang L, Xu H. Genetics of Ankylosing Spondylitis-Focusing on the Ethnic Difference Between East Asia and Europe. Front Genet 2021; 12:671682. [PMID: 34194471 PMCID: PMC8236852 DOI: 10.3389/fgene.2021.671682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
Ankylosing spondylitis (AS) is a common, highly heritable inflammatory arthritis affecting the mainly axial joints in both East Asia and Europe. To date, the pathogenesis of AS is still unknown, although we know that genetics play a vital role in it. The HLA-B27 allele is found in over 85% of AS patients. However, strong evidence suggests that other major histocompatibility complex (MHC) and non-MHC genes are also involved in the pathogenesis. In addition, current data showed that there were significant differences in both genomics and metagenomics among the different ethnic populations. The investigation of the key role of the microbiome in AS pathogenesis also highlighted the host–microbiome genetic interactions. Here, we systematically review current AS genetic research data and further compare genetic differences, especially between East Asian and European groups, which may highlight the challenge in future genetic studies.
Collapse
Affiliation(s)
- Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Geng Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Luding Zhang
- Department of Health Management, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.,School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol 2021; 17:387-404. [PMID: 34113018 DOI: 10.1038/s41584-021-00625-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder of unknown aetiology. Unlike other systemic autoimmune diseases, in AS, the innate immune system has a dominant role characterized by aberrant activity of innate and innate-like immune cells, including γδ T cells, group 3 innate lymphoid cells, neutrophils, mucosal-associated invariant T cells and mast cells, at sites predisposed to the disease. The intestine is involved in disease manifestations, as it is at the forefront of the interaction between the mucosal-associated immune cells and the intestinal microbiota. Similarly, biomechanical factors, such as entheseal micro-trauma, might also be involved in the pathogenesis of the articular manifestation of AS, and sentinel immune cells located in the entheses could provide links between local damage, genetic predisposition and the development of chronic inflammation. Although these elements might support the autoinflammatory nature of AS, studies demonstrating the presence of autoantibodies (such as anti-CD74, anti-sclerostin and anti-noggin antibodies) and evidence of activation and clonal expansion of T cell populations support an autoimmune component to the disease. This Review presents the evidence for autoinflammation and the evidence for autoimmunity in AS and, by discussing the pathophysiological factors associated with each, aims to reconcile the two hypotheses.
Collapse
|
29
|
Romand X, Liu X, Rahman MA, Bhuyan ZA, Douillard C, Kedia RA, Stone N, Roest D, Chew ZH, Cameron AJ, Rehaume LM, Bozon A, Habib M, Armitage CW, Nguyen MVC, Favier B, Beagley K, Maurin M, Gaudin P, Thomas R, Wells TJ, Baillet A. Mediation of Interleukin-23 and Tumor Necrosis Factor-Driven Reactive Arthritis by Chlamydia-Infected Macrophages in SKG Mice. Arthritis Rheumatol 2021; 73:1200-1210. [PMID: 33452873 DOI: 10.1002/art.41653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE ZAP-70W163C BALB/c (SKG) mice develop reactive arthritis (ReA) following infection with Chlamydia muridarum. Since intracellular pathogens enhance their replicative fitness in stressed host cells, we examined how myeloid cells infected with C muridarum drive arthritis. METHODS SKG, Il17a-deficient SKG, and BALB/c female mice were infected with C muridarum or C muridarum luciferase in the genitals. C muridarum dissemination was assessed by in vivo imaging or genomic DNA amplification. Macrophages were depleted using clodronate liposomes. Anti-tumor necrosis factor (anti-TNF) and anti-interleukin-23p19 (anti-IL-23p19) were administered after infection or arthritis onset. Gene expression of Hspa5, Tgtp1, Il23a, Il17a, Il12b, and Tnf was compared in SKG mice and BALB/c mice. RESULTS One week following infection with C muridarum, macrophages and neutrophils were observed to have infiltrated the uteri of mice and were also shown to have carried C muridarum DNA to the spleen. C muridarum load was higher in SKG mice than in BALB/c mice. Macrophage depletion was shown to reduce C muridarum load and prevent development of arthritis. Compared with BALB/c mice, expression of Il23a and Il17a was increased in the uterine and splenic neutrophils of SKG mice. The presence of anti-IL-23p19 during infection or Il17a deficiency suppressed arthritis. Tnf was overexpressed in the joints of SKG mice within 1 week postinfection, and persisted beyond the first week. TNF inhibition during infection or at arthritis onset suppressed the development of arthritis. Levels of endoplasmic reticulum stress were constitutively increased in the joints of SKG mice but were induced, in conjunction with immunity-related GTPase, by C muridarum infection in the uterus. CONCLUSION C muridarum load is higher in SKG mice than in BALB/c mice. Whereas proinflammatory IL-23 produced by neutrophils contributes to the initiation of C muridarum-mediated ReA, macrophage depletion reduces C muridarum dissemination to other tissues, tissue burden, and the development of arthritis. TNF inhibition was also shown to suppress arthritis development. Our data suggest that enhanced bacterial dissemination in macrophages of SKG mice drives the TNF production needed for persistent arthritis.
Collapse
Affiliation(s)
- Xavier Romand
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Xiao Liu
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - M Arifur Rahman
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Zaied Ahmed Bhuyan
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia, and North South University, Dhaka, Bangladesh
| | - Claire Douillard
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Reena Arora Kedia
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nathan Stone
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Dominique Roest
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Zi Huai Chew
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Amy J Cameron
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Linda M Rehaume
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aurélie Bozon
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Mohammed Habib
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Charles W Armitage
- Queensland University of Technology, Brisbane, Queensland, Australia, and King's College London, London, UK
| | | | - Bertrand Favier
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Kenneth Beagley
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Max Maurin
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Philippe Gaudin
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Timothy J Wells
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Athan Baillet
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| |
Collapse
|
30
|
Tay SH, Yeo JG, Leong JY, Albani S, Arkachaisri T. Juvenile Spondyloarthritis: What More Do We Know About HLA-B27, Enthesitis, and New Bone Formation? Front Med (Lausanne) 2021; 8:666772. [PMID: 34095174 PMCID: PMC8174582 DOI: 10.3389/fmed.2021.666772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Juvenile spondyloarthritis (JSpA) refers to a diverse spectrum of immune-mediated inflammatory arthritides whose onset occurs in late childhood and adolescence. Like its adult counterpart, JSpA is typified by a strong association with human leukocyte antigen-B27 (HLA-B27) and potential axial involvement, while lacking rheumatoid factor (RF) and distinguishing autoantibodies. A characteristic manifestation of JSpA is enthesitis (inflammation of insertion sites of tendons, ligaments, joint capsules or fascia to bone), which is commonly accompanied by bone resorption and new bone formation at affected sites. In this Review, advances in the role of HLA-B27, enthesitis and its associated osteoproliferation in JSpA pathophysiology and treatment options will be discussed. A deeper appreciation of how these elements contribute to the JSpA disease mechanism will better inform diagnosis, prognosis and therapy, which in turn translates to an improved quality of life for patients.
Collapse
Affiliation(s)
- Shi Huan Tay
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Joo Guan Yeo
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jing Yao Leong
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Salvatore Albani
- SingHealth Duke-National University of Singapore Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-National University of Singapore Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
31
|
Cardoneanu A, Cozma S, Rezus C, Petrariu F, Burlui AM, Rezus E. Characteristics of the intestinal microbiome in ankylosing spondylitis. Exp Ther Med 2021; 22:676. [PMID: 33986841 PMCID: PMC8112129 DOI: 10.3892/etm.2021.10108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The importance of intestinal microbiota in the development of various systemic diseases has been highlighted over time. Ankylosing spondylitis (AS) is a systemic disease with a complex pathogenesis involving a particular genetic marker and distinctive environmental triggers such as a specific gut dysbiosis. We conducted a prospective case-control study which included 60 subjects from Iasi Rehabilitation Hospital: 28 AS cases and 32 healthy controls. Intestinal microbiota analysis was performed by real-time polymerase chain reaction (qPCR) in stool samples. We performed the quantitative analysis of gut microbiome, focusing both on anti-inflammatory (Bifidobacterium, Lactobacillus, Faecalibacterium prausnitzii) and pro-inflammatory (Bacteroides, Escherichia coli) species. Overall, intestinal bacterial diversity in the AS group was decreased compared to that noted in the control. A significantly decreased level of Clostridium leptum was observed, associated with an increased level of Escherichia coli. We showed correlations between laboratory tests (liver and kidney functional tests, inflammatory syndrome), the presence of HLA-B27, smoker status, the forms of AS with peripheral arthritis vs. pure axial forms and bacterial structures. No significant correlations were shown for disease activity scores, radiological stage of sacroiliitis or for body mass index. Our findings support that the intestinal microbiome in AS patients has a special signature characterized by an inflammatory status. Numerous environmental, genetical, clinical and paraclinical factors can lead to changes in gut bacterial diversity in these cases.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Sebastian Cozma
- Department of Surgery (II), Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Florin Petrariu
- Department of Preventive Medicine and Interdisciplinarity, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Alexandra Maria Burlui
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| |
Collapse
|
32
|
Nakamura A, Haroon N. Recent Updates in the Immunopathology of Type 3 Immunity-Mediated Enthesitis. Curr Rheumatol Rep 2021; 23:31. [PMID: 33893896 DOI: 10.1007/s11926-021-00995-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Enthesitis is a cardinal feature of spondyloarthritis (SpA). Despite increasing available treatments, challenges remain in adequately controlling inflammation and subsequent new bone formation (NBF) in entheses; thus, a better understanding of the immunopathogenesis is warranted. RECENT FINDINGS Increasing evidence has identified immune cells playing key roles in enthesitis such as γδ T cells and group 3 innate lymphoid cells (ILC3), possibly with site-specific regulatory systems. The presence of T cells producing interleukin (IL)-17 independent of IL-23 in human spinal entheses was recently reported, which may corroborate the discrepancy between recent clinical trials and pre-clinical studies. In addition, the contribution of myeloid cells has also been focused in both human and pre-clinical SpA models. Moreover, not only the IL-23/IL-17 signaling, but other key type 3 immunity mediators, such as IL-22 and granulocyte-macrophage colony-stimulating factor (GM-CSF), have been reported as pivotal cytokines in inflammation and NBF of entheses. Immune cells demonstrating distinct features orchestrate entheses, leading to the complex landscape of enthesitis. However, recent advances in understanding the immunopathogenesis may provide new therapeutic targets and future research directions.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Gut microbiota-microRNA interactions in ankylosing spondylitis. Autoimmun Rev 2021; 20:102827. [PMID: 33864943 DOI: 10.1016/j.autrev.2021.102827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disability that is part of the rheumatic disease group of spondyloarthropathies. AS commonly influences the joints of the axial skeleton. The contributions to AS pathogenesis of genetic susceptibility (particularly HLA-B27 and ERAP-1) and epigenetic modifications, like non-coding RNAs, as well as environmental factors, have been investigated over the last few years. But the fundamental etiology of AS remains elusive to date. The evidence summarized here indicates that in the immunopathogenesis of AS, microRNAs and the gut microbiome perform critical functions. We discuss significant advances in the immunological mechanisms underlying AS and address potential cross-talk between the gut microbiome and host microRNAs. This critical interaction implicates a co-evolutionary symbiotic link between host immunity and the gut microbiome.
Collapse
|
34
|
Kavadichanda CG, Geng J, Bulusu SN, Negi VS, Raghavan M. Spondyloarthritis and the Human Leukocyte Antigen (HLA)-B *27 Connection. Front Immunol 2021; 12:601518. [PMID: 33763060 PMCID: PMC7982681 DOI: 10.3389/fimmu.2021.601518] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
Heritability of Spondyloarthritis (SpA) is highlighted by several familial studies and a high association with the presence of human leukocyte antigen (HLA)-B*27. Though it has been over four decades since the association of HLA-B*27 with SpA was first determined, the pathophysiological roles played by specific HLA-B*27 allotypes are not fully understood. Popular hypotheses include the presentation of arthritogenic peptides, triggering of endoplasmic reticulum (ER) stress by misfolded HLA-B*27, and the interaction between free heavy chains or heavy chain homodimers of HLA-B*27 and immune receptors to drive IL-17 responses. Several non-HLA susceptibility loci have also been identified for SpA, including endoplasmic reticulum aminopeptidases (ERAP) and those related to the IL-23/IL-17 axes. In this review, we summarize clinical aspects of SpA including known characteristics of gut inflammation, enthesitis and new bone formation and the existing models for understanding the association of HLA-B*27 with disease pathogenesis. We also examine newer insights into the biology of HLA class I (HLA-I) proteins and their implications for expanding our understanding of HLA-B*27 contributions to SpA pathogenesis.
Collapse
Affiliation(s)
- Chengappa G Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jie Geng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sree Nethra Bulusu
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Wordsworth BP, Cohen CJ, Davidson C, Vecellio M. Perspectives on the Genetic Associations of Ankylosing Spondylitis. Front Immunol 2021; 12:603726. [PMID: 33746951 PMCID: PMC7977288 DOI: 10.3389/fimmu.2021.603726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common form of inflammatory spinal arthritis with a complex polygenic aetiology. Genome-wide association studies have identified more than 100 loci, including some involved in antigen presentation (HLA-B27, ERAP1, and ERAP2), some in Th17 responses (IL6R, IL23R, TYK2, and STAT3), and others in macrophages and T-cells (IL7R, CSF2, RUNX3, and GPR65). Such observations have already helped identify potential new therapies targeting IL-17 and GM-CSF. Most AS genetic associations are not in protein-coding sequences but lie in intergenic regions where their direct relationship to particular genes is difficult to assess. They most likely reflect functional polymorphisms concerned with cell type-specific regulation of gene expression. Clarifying the nature of these associations should help to understand the pathogenic pathways involved in AS better and suggest potential cellular and molecular targets for drug therapy. However, even identifying the precise mechanisms behind the extremely strong HLA-B27 association with AS has so far proved elusive. Polygenic risk scores (using all the known genetic associations with AS) can be effective for the diagnosis of AS, particularly where there is a relatively high pre-test probability of AS. Genetic prediction of disease outcomes and response to biologics is not currently practicable.
Collapse
Affiliation(s)
- B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Institute of Musculoskeletal Sciences, Oxford, United Kingdom.,Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Carla J Cohen
- Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Institute of Musculoskeletal Sciences, Oxford, United Kingdom.,Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Mauro D, Simone D, Bucci L, Ciccia F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semin Immunopathol 2021; 43:265-277. [PMID: 33569634 PMCID: PMC7990868 DOI: 10.1007/s00281-021-00837-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Spondyloarthritis (SpA) is a heterogeneous group of chronic inflammatory diseases of unknown etiology. Over time, the plethora of cellular elements involved in its pathogenesis has progressively enriched together with the definition of specific cytokine pathways. Recent evidence suggests the involvement of new cellular mediators of inflammation in the pathogenesis of SpA or new subgroups of known cellular mediators. The research in this sense is ongoing, and it is clear that this challenge aimed at identifying new cellular actors involved in the perpetuation of the inflammatory process in AxSpA is not a mere academic exercise but rather aims to define a clear cellular hierarchy. Such a definition could pave the way for new targeted therapies, which could interfere with the inflammatory process and specific pathways that trigger immune system dysregulation and stromal cell activity, ultimately leading to significant control of the inflammation and new bone formation in a significant number of patients. In this review, we will describe the recent advances in terms of new cellular actors involved in the pathogenesis of SpA, focusing our attention on stromal cells and innate and adaptive immunity cells.
Collapse
Affiliation(s)
- Daniele Mauro
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Davide Simone
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Laura Bucci
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
37
|
Nakamura A, Boroojeni SF, Haroon N. Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis. Semin Immunopathol 2021; 43:245-253. [PMID: 33532928 DOI: 10.1007/s00281-020-00833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
The strong association of HLA-B*27 with ankylosing spondylitis (AS) was first reported nearly 50 years ago. However, the mechanistic link between HLA-B*27 and AS has remained an enigma. While 85-90% of AS patients possess HLA-B*27, majority of HLA-B*27 healthy individuals do not develop AS. This suggests that additional genes and genetic regions interplay with HLA-B*27 to cause AS. Previous genome-wide association studies (GWAS) identified key genes that are distinctively expressed in AS, including the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and ERAP2. As these gene-encoding molecules are primarily implicated in the process of peptide processing and presentation, potential pathological interaction of these molecules with HLA-B*27 may operate to cause AS by activating downstream immune responses. The aberrant peptide processing also gives rise to the accumulation of unstable protein complex in endoplasmic reticulum (ER), which drives endoplasmic reticulum-associated protein degradation (ERAD) and unfolded protein response (UPR) and activates autophagy. In this review, we describe the current hypotheses of AS pathogenesis, focusing on antigen processing and presentation operated by HLA-B*27 and associated molecules that may contribute to the disease initiation and progression of AS.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
38
|
Sharip A, Kunz J. Understanding the Pathogenesis of Spondyloarthritis. Biomolecules 2020; 10:biom10101461. [PMID: 33092023 PMCID: PMC7588965 DOI: 10.3390/biom10101461] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Spondyloarthritis comprises a group of inflammatory diseases of the joints and spine, with various clinical manifestations. The group includes ankylosing spondylitis, reactive arthritis, psoriatic arthritis, arthritis associated with inflammatory bowel disease, and undifferentiated spondyloarthritis. The exact etiology and pathogenesis of spondyloarthritis are still unknown, but five hypotheses explaining the pathogenesis exist. These hypotheses suggest that spondyloarthritis is caused by arthritogenic peptides, an unfolded protein response, HLA-B*27 homodimer formation, malfunctioning endoplasmic reticulum aminopeptidases, and, last but not least, gut inflammation and dysbiosis. Here we discuss the five hypotheses and the evidence supporting each. In all of these hypotheses, HLA-B*27 plays a central role. It is likely that a combination of these hypotheses, with HLA-B*27 taking center stage, will eventually explain the development of spondyloarthritis in predisposed individuals.
Collapse
MESH Headings
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/pathology
- Arthritis, Reactive/genetics
- Arthritis, Reactive/immunology
- Arthritis, Reactive/metabolism
- Arthritis, Reactive/pathology
- HLA-B27 Antigen/genetics
- HLA-B27 Antigen/immunology
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammatory Bowel Diseases/genetics
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Joints/immunology
- Joints/pathology
- Spine/immunology
- Spine/pathology
- Spondylarthritis/genetics
- Spondylarthritis/immunology
- Spondylarthritis/metabolism
- Spondylarthritis/pathology
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Spondylitis, Ankylosing/metabolism
- Spondylitis, Ankylosing/pathology
- Unfolded Protein Response/genetics
- Unfolded Protein Response/immunology
Collapse
|
39
|
Ma Y, Fan D, Xu S, Deng J, Gao X, Guan S, Pan F. Calprotectin in spondyloarthritis: A systematic review and meta-analysis. Int Immunopharmacol 2020; 88:106948. [PMID: 32892074 DOI: 10.1016/j.intimp.2020.106948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There is still an unmet need for a simple and reliable biomarker for diagnosis and disease activity of spondyloarthritis. Recent studies indicated that calprotectin could act as a biomarker for spondyloarthritis. Therefore, this systematic review and meta-analysis aims to evaluate the levels of serum and fecal calprotectin in spondyloarthritis and the associations with disease activity. METHODS PubMed, Web of Science and Cochrane Library were comprehensively searched from inception to July 1st, 2019. The pooled standard mean differences (SMDs) were used to estimate the differences of the levels of serum and fecal calprotectin between spondyloarthritis patients and controls. Spearman correlation coefficients were used for evaluating the associations between the levels of serum and fecal calprotectin and disease activity of spondyloarthritis patients. The use of fixed-effect or random-effects model depended on heterogeneity. RESULTS Among 257 searched studies, 20 studies were finally included for analysis. Serum and fecal calprotectin were both significantly increased in spondyloarthritis patients compared to matched controls (SMD = 1.49, 95% CI = 0.91 to 2.08; SMD = 2.29, 95% CI = 0.25 to 4.33). The pooled correlation coefficients between serum or fecal calprotectin and CRP, ESR, BASDAI and BASFI were 0.353, 0.228, 0.225, 0.131 and 0.185, 0.163, 0.280, 0.196 respectively. CONCLUSION Our study indicated that serum and fecal calprotectin were significantly increased in spondyloarthritis patients, and associated with disease activity. Serum and fecal calprotectin were potential biomarkers for the diagnosis and disease activity of spondyloarthritis.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
40
|
Abstract
Human leukocyte antigen (HLA) B27 is the key laboratory parameter for axial spondyloarthritis (axSpA). Its prevalence is variable across different geographic zones and ethnicities, and often mirrors the prevalence of axSpA. HLA-B27 plays a role in axSpA physiopathology. It is correlated with spondyloarthritis phenotype with a consistent positive association with family history, early disease onset, shorter diagnostic delay, hip involvement, and acute anterior uveitis. HLA-B27 has a pivotal role in many referral strategies. However, these strategies were developed in European populations and need to be evaluated in populations with lower HLA-B27 background prevalence, and where additional parameters might be needed.
Collapse
|
41
|
Babaie F, Hosseinzadeh R, Ebrazeh M, Seyfizadeh N, Aslani S, Salimi S, Hemmatzadeh M, Azizi G, Jadidi-Niaragh F, Mohammadi H. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol Immunol 2020; 121:7-19. [PMID: 32135401 DOI: 10.1016/j.molimm.2020.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Autoimmunity and cancer affect millions worldwide and both, in principal, result from dysregulated immune responses. There are many well-known molecules involved in immunological process playing as a double-edged sword, by which associating autoimmune diseases and cancer. In this regard, Endoplasmic reticulum aminopeptidases (ERAP) 1, which belongs to the M1 family of aminopeptidases, plays a central role as a "molecular ruler", proteolyzing of N-terminal of the antigenic peptides before their loading onto HLA-I molecules for antigen presentation in the Endoplasmic Reticulum (ER). Several genome-wide association studies (GWAS) highlighted the significance of ERAP1 and ERAP2 in autoimmune diseases, including Ankylosing spondylitis, Psoriasis, Bechet's disease, and Birdshot chorioretinopathy, as well as in cancers. The expression of ERAP1/2 is mostly altered in different cancers compared to normal cells, but how this affects anti-cancer immune responses and cancer growth has been little explored. Recent studies on the immunological outcomes and the catalytic functions of ERAP1 and ERAP2 have provided a better understanding of their potential pathogenetic role in autoimmunity and cancer. In this review, we summarize the role of ERAP1 and ERAP2 in the autoimmune diseases and cancer immunity based on the recent advances in GWAS studies.
Collapse
Affiliation(s)
- Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrazeh
- Department of Biology, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Salimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
42
|
Busch R, Kollnberger S, Mellins ED. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 2020; 15:364-381. [PMID: 31092910 DOI: 10.1038/s41584-019-0219-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Robert Busch
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK.
| | - Simon Kollnberger
- School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, UK
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
43
|
Pang DD, Cai L, Zhang JR, Dai SM. IL-23 induces the expression of pro-osteogenic factors in
osteoclasts. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1099-9028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Background The mechanism for the new bone formation in ankylosing
spondylitis (AS) is still unclear. Although it has been demonstrated that
IL-23 plays a pivotal role in the pathophysiology of AS, IL-23 has no direct
effects on osteoblasts but modulates the function of osteoclasts.
Aims To explore whether IL-23 indirectly facilitates new bone
formation through osteoclasts in AS, here we analyzed whether IL-23 enhances
the expression levels of pro-osteogenic factors by osteoclasts.
Methods Mononuclear cells were harvested from mouse bone marrow and
cultured in the presence of M-CSF (50 ng/ml) and RANKL
(30 ng/ml) to trigger the production of osteoclasts. Protein
and mRNA expression levels of Semaphorin 4D, Ephrin B2, BMP2, BMP6, SPHK1,
HtrA1 and Wnt10b were measured using Western blot and qRT-PCR.
Results Primary mononuclear cells were transformed into osteoclasts
with RANKL and M-CSF. The increased expression of NFATc1 and TRAP together
with TRAP staining of>3 nuclei were used to identify mature
osteoclasts. The mRNA expression levels of BMP2, Ephrin B2 and SPHK1 were
enhanced by 1.46, 2.1 and 2.46 folds after exposure to IL-23. Confirmation
of increased levels of Ephrin B2 and SPHK1 in IL-23-stimulated osteoclasts
was provided by Western blot analysis. IL-23 had no effects on the
expression of BMP6 or Wnt10b, or on the anti-osteogenic factors Semaphorin
4D or HtrA1.
Conclusions IL-23 induces osteoclasts to express pro-osteogenic
factors rather than anti-osteogenic factors, suggesting IL-23 might
indirectly promote the differentiation of osteoblasts through activated
osteoclasts in ankylosing spondylitis.
Collapse
Affiliation(s)
- Dan-Dan Pang
- Department of Rheumatology & Immunology, Changhai Hospital,
Second Military Medical University, Shanghai, China
- Department of Rheumatology & Immunology, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Li Cai
- Department of Rheumatology & Immunology, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Jing-Ru Zhang
- Department of Rheumatology & Immunology, Changhai Hospital,
Second Military Medical University, Shanghai, China
- Department of Rheumatology & Immunology, First Affiliated
Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng-Ming Dai
- Department of Rheumatology & Immunology, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai,
China
| |
Collapse
|
44
|
HLA risk alleles and gut microbiome in ankylosing spondylitis and rheumatoid arthritis. Best Pract Res Clin Rheumatol 2019; 33:101499. [DOI: 10.1016/j.berh.2020.101499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology (Oxford) 2019; 57:vi4-vi9. [PMID: 30445483 PMCID: PMC6238220 DOI: 10.1093/rheumatology/key001] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
AS is a common rheumatic condition characterized by inflammation and new bone formation. The pathogenesis of AS is likely multifactorial and has not been fully elucidated to date. A major genetic role has been demonstrated. The strongest genetic association is with HLA B27. Numerous other associated genetic polymorphisms have been identified, including those affecting the type 17 immune pathway, although the precise link between genetics and pathogenesis remains unexplained. Several immunological alterations, together with recent therapeutic advances, support a central role for IL-23- and IL-17-producing immune cells in disease pathogenesis. Recently, perturbations of gut microbiota of AS patients have further catalysed research and offer potential for future therapeutic intervention. In this review we outline the genetic basis of AS and describe the current hypotheses for disease pathogenesis. We synthesize recent experimental research data and clinical studies to support a central role for the type 17/23 immune axis in AS.
Collapse
Affiliation(s)
- Davide Simone
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - M Hussein Al Mossawi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Wendling D, Guillot X, Prati C, Miceli-Richard C, Molto A, Lories R, Dougados M. Effect of Gut Involvement in Patients with High Probability of Early Spondyloarthritis: Data from the DESIR Cohort. J Rheumatol 2019; 47:349-353. [PMID: 31154418 DOI: 10.3899/jrheum.181326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is a well-known extraarticular feature of spondyloarthritis (SpA). The aims of this study were to evaluate factors associated with IBD and incidence over 5 years of followup in the DESIR cohort. METHODS DESIR is a prospective observational cohort of patients with recent-onset inflammatory back pain suggestive of axial SpA. All available variables in the database were compared between patients with and without IBD at baseline and 5 years, and occurrence over 5 years of followup, with uni- and then multivariable analysis. RESULTS At baseline, of 708 patients, 35 had IBD (prevalence 4.94%, CI 95% 3.3-6.5). IBD was associated (multivariable) with history of uveitis, levels of Dickkopf-1, and tumor necrosis factor, but not with phenotypic presentation (peripheral arthritis, enthesitis, dactylitis, uveitis) or baseline serum levels of other cytokines. At 5 years, 480 patients were analyzed, 58 with IBD. IBD was associated (multivariable) with fulfillment of modified New York criteria, sick leave, Bath Ankylosing Spondylitis Disease Activity Index, and smoking. There was no association with magnetic resonance imaging scores, enthesitis, psoriasis, and bone mineral density. Twenty-three incident cases of IBD were recorded: estimated occurrence rate of 0.95/100 (95% CI 0.57-1.35) patient-years (PY). Incidence of IBD is associated (multivariable) with HLA-B27 (OR 0.36, 95% CI 0.22-0.59), fulfillment of modified New York criteria (OR 3.35, 95% CI 1.85-6.08), and familial history of IBD (OR 3.31, 95% CI 1.62-6.77). CONCLUSION In early SpA, IBD occurs with an incidence of 1/100 PY, and is associated with poor outcome, familial history of IBD, absence of HLA-B27, and fulfillment of modified New York criteria.
Collapse
Affiliation(s)
- Daniel Wendling
- From Rheumatology, CHRU de Besançon (University Teaching Hospital); Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE, Besançon; Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, European League Against Rheumatism (EULAR) Center Of Excellence; INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven, Leuven, Belgium. .,D. Wendling, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); X. Guillot, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Prati, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Miceli-Richard, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence; A. Molto, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité; R. Lories, MD, PhD, Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven; M. Dougados, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité.
| | - Xavier Guillot
- From Rheumatology, CHRU de Besançon (University Teaching Hospital); Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE, Besançon; Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, European League Against Rheumatism (EULAR) Center Of Excellence; INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven, Leuven, Belgium.,D. Wendling, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); X. Guillot, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Prati, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Miceli-Richard, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence; A. Molto, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité; R. Lories, MD, PhD, Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven; M. Dougados, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité
| | - Clément Prati
- From Rheumatology, CHRU de Besançon (University Teaching Hospital); Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE, Besançon; Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, European League Against Rheumatism (EULAR) Center Of Excellence; INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven, Leuven, Belgium.,D. Wendling, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); X. Guillot, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Prati, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Miceli-Richard, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence; A. Molto, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité; R. Lories, MD, PhD, Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven; M. Dougados, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité
| | - Corinne Miceli-Richard
- From Rheumatology, CHRU de Besançon (University Teaching Hospital); Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE, Besançon; Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, European League Against Rheumatism (EULAR) Center Of Excellence; INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven, Leuven, Belgium.,D. Wendling, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); X. Guillot, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Prati, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Miceli-Richard, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence; A. Molto, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité; R. Lories, MD, PhD, Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven; M. Dougados, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité
| | - Anna Molto
- From Rheumatology, CHRU de Besançon (University Teaching Hospital); Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE, Besançon; Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, European League Against Rheumatism (EULAR) Center Of Excellence; INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven, Leuven, Belgium.,D. Wendling, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); X. Guillot, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Prati, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Miceli-Richard, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence; A. Molto, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité; R. Lories, MD, PhD, Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven; M. Dougados, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité
| | - Rik Lories
- From Rheumatology, CHRU de Besançon (University Teaching Hospital); Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE, Besançon; Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, European League Against Rheumatism (EULAR) Center Of Excellence; INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven, Leuven, Belgium.,D. Wendling, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); X. Guillot, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Prati, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Miceli-Richard, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence; A. Molto, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité; R. Lories, MD, PhD, Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven; M. Dougados, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité
| | - Maxime Dougados
- From Rheumatology, CHRU de Besançon (University Teaching Hospital); Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE, Besançon; Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, European League Against Rheumatism (EULAR) Center Of Excellence; INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité, Paris, France; Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven, Leuven, Belgium.,D. Wendling, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4266 (Pathogens and Inflammation, EPILAB); X. Guillot, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Prati, MD, PhD, Rheumatology, CHRU de Besançon (University Teaching Hospital), and Université Bourgogne Franche-Comté, EA4267 (PEPITE), FHU INCREASE; C. Miceli-Richard, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence; A. Molto, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité; R. Lories, MD, PhD, Division of Rheumatology, Department of Development and Regeneration, University Hospital Leuven, KU Leuven; M. Dougados, MD, PhD, Paris Descartes University, Department of Rheumatology, Hôpital Cochin, AP-HP, EULAR Center Of Excellence, and INSERM (U1153): Clinical Epidemiology and Biostatistics, PRES Sorbonne Paris-Cité
| |
Collapse
|
47
|
Zhang L, Hu Y, Xu Y, Li P, Ma H, Li X, Li M. The correlation between intestinal dysbiosis and the development of ankylosing spondylitis. Microb Pathog 2019; 132:188-192. [PMID: 31039390 DOI: 10.1016/j.micpath.2019.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
Abstract
The pathogenesis and development of ankylosing spondylitis (AS) is concealed and complicated. In recent years, alterations in gut microbiota of AS patients have been largely investigated, although the underlying mechanisms remain unclear. This article reviews the recent studies on changes of gut microbiota in AS patients, and discusses the possible correlation between intestinal dysbiosis and AS development from aspects including genetic factor HLA-B27, mucosal immune responses and the depression accompanying AS.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Yuqi Hu
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Yao Xu
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Pengfei Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Hong Ma
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Xia Li
- Department of Immunology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China
| | - Ming Li
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9 Western Section, Lvshun South Street, Lvshunkou District, 116044, Dalian, China.
| |
Collapse
|
48
|
Vanaki N, Aslani S, Jamshidi A, Mahmoudi M. Role of innate immune system in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother 2018; 105:130-143. [DOI: 10.1016/j.biopha.2018.05.097] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
|
49
|
Romero-López JP, Domínguez-López ML, Burgos-Vargas R, García-Latorre E. Stress proteins in the pathogenesis of spondyloarthritis. Rheumatol Int 2018; 39:595-604. [PMID: 29855675 DOI: 10.1007/s00296-018-4070-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/26/2018] [Indexed: 12/15/2022]
Abstract
Spondyloarthritis is an autoinflammatory rheumatic disease in which arthritis and osteoproliferation lead the patients who suffer from it to chronic disability. This disease is associated with the expression of class I MHC molecule HLA-B27, which tends to be misfolded in the endoplasmic reticulum and, therefore, expressed in aberrant forms. This phenomena lead to endoplasmic reticulum stress, which in time, evokes a whole response to cellular injury. Under these conditions, the molecules involved in restoring cell homeostasis play a key role. Such is the case of the "heat-shock proteins", which usually regulate protein folding, but also have important immunomodulatory functions, as well as some roles in tissue modeling. In this review, we attempt to summarize the involvement of cell stress and heat-shock proteins in the homeostatic disturbances and pathological conditions associated with this disease.
Collapse
Affiliation(s)
- José Pablo Romero-López
- Laboratorio de Inmunoquímica I, Departmento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala SN, CP 11340, Ciudad de México, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Departmento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala SN, CP 11340, Ciudad de México, México
| | - Rubén Burgos-Vargas
- Departamento de Reumatología, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica I, Departmento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Manuel Carpio y Plan de Ayala SN, CP 11340, Ciudad de México, México.
| |
Collapse
|
50
|
Watad A, Cuthbert RJ, Amital H, McGonagle D. Enthesitis: Much More Than Focal Insertion Point Inflammation. Curr Rheumatol Rep 2018; 20:41. [PMID: 29846815 PMCID: PMC5976708 DOI: 10.1007/s11926-018-0751-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purpose of Review Recognition of the importance of enthesitis as the pivotal pathological process underpinning spondyloarthropathies (SpA) has increased in recent years. Thus, we summarized the current knowledge on the pathogenic role of enthesitis on SpA shown by both animal models and human studies in vivo. Recent Findings Experimental models have shown several SpA-like diseases that commence at entheses and are linked to nail disease as well as dactylitis, two important entheseal-associated conditions in humans. Frequently, enthesitis is not the primary outcome measure in studies of peripheral PsA and SpA although arguably it is the key parameter being indirectly assessed in spinal disease in ankylosing spondylitis. The use of different agents including JAK, IL-17, and IL-23 inhibitors contributes significantly to our understanding of enthesitis in terms of involved immune pathways. Summary Enthesitis and enthesis organ inflammation may be the primary pathological process underlying SpA associated skeletal inflammation. Emergent studies are beginning to elucidate the molecular basis for this type of joint inflammatory response.
Collapse
Affiliation(s)
- Abdulla Watad
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Richard J Cuthbert
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Howard Amital
- Department of Medicine 'B', Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dennis McGonagle
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|