1
|
Yuan B, Wang Y, Chu Y, Yuan X. Do the monocyte-derived dendritic cells exert a pivotal role in the early onset of experimental autoimmune uveitis? BMC Ophthalmol 2025; 25:165. [PMID: 40175949 PMCID: PMC11963667 DOI: 10.1186/s12886-025-04014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Eyes are recognized as immunological privileged site. However, the onset of autoimmune uveitis (AU) prompts an influx of dendritic cells (DCs) into the retinas, tasked with presenting auto-antigens, thereby exacerbating the inflammatory response. Monocyte-derived DCs (moDCs) implicated in various autoimmune disorders, but their specific involvement in AU remains unclear. This study aims to investigate the constitution and dynamics of retinal DCs subsequent to the induction of experimental autoimmune uveitis (EAU). METHODS In our study, an EAU model was established in C57BL/6J mice, and prednisolone acetate (PA) eye drops were administrated unilaterally to the right eye from 5 days post-immunization (dpi). The infiltration of Gr-1+CD115+CD11c-MHC-II- cells (monocytes), Gr-1+CD115+CD11c+MHC-II+ cells (moDCs) and Gr-1-CD115-CD11c+MHC-II+ cells (conventional dendritic cells, cDCs) within retina were detected by flow cytometry and immunofluorescence stain at 7, 10, 13, and 16 dpi. Additionally, the protein expression and mRNA expression of pivotal cytokines associated with moDCs and inflammation were analysed by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. RESULTS Our findings unveiled a notable rise in moDCs infiltration and differentiation from 7 to 13 dpi. The administration of PA eye drops did not yield a significant variance in either the quantity or the differentiation rate of moDCs. Throughout the initial stages of EAU, the expression of GM-CSF remained consistent, while TGF-β1 exhibited a sustained increase until 13 dpi in the control group and until 10 dpi following PA treatment. Anti-inflammatory cytokines Il-10 and Il-4 displayed no significant increase until 16 dpi after PA administration. CONCLUSIONS Our results indicate that moDCs exhibited an earlier and more substantial infiltration into the inflamed retina compared to cDCs. This heightened presence of moDCs appeared to play a dominant role in the presentation of auto-antigens during the initial stages of EAU, consequently contributing to the exaggerated autoimmune response within the ocular milieu. The administration of PA exhibited no discernible impact on either the differentiation or the infiltration of moDCs.
Collapse
Affiliation(s)
- Bo Yuan
- School of Medicine, Nankai University, Tianjin, China
- Aier Eye Hospital, Tianjin University, Tianjin, China
| | - Yajie Wang
- Tianjin Eye Hospital, Tianjin, China
- Tianjin key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Yanhua Chu
- Tianjin Eye Hospital, Tianjin, China
- Tianjin key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Xiaoyong Yuan
- School of Medicine, Nankai University, Tianjin, China.
- Tianjin Eye Hospital, Tianjin, China.
- Tianjin key Lab of Ophthalmology and Visual Science, Tianjin, China.
| |
Collapse
|
2
|
Bidgood GM, Keating N, Meza Guzman L, Li K, Leong E, Kueh A, Babon JJ, Hockings C, Doggett K, Nicholson SE. The Ability of SOCS1 to Cross-Regulate GM-CSF Signaling is Dose Dependent. J Interferon Cytokine Res 2025; 45:53-67. [PMID: 39787022 DOI: 10.1089/jir.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Suppressor of cytokine signaling (SOCS) 1 is a key negative regulator of interferon (IFN), interleukin (IL)12, and IL-2 family cytokine signaling through inhibition of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. To investigate the temporal induction of SOCS1 in response to cytokine in live cells and its selective regulation of signaling pathways, we generated a mouse expressing a Halo-tag-SOCS1 fusion protein (Halo-SOCS1) under control of the endogenous Socs1 promoter. Homozygous Halo-SOCS1 mice (Halo-Socs1KI/KI) were viable with minor T cell abnormalities, most likely due to enhanced Halo-SOCS1 expression in thymocytes compared with the untagged protein. IFNγ and IL-4 induced Halo-SOCS1 expression in macrophages derived from Halo-Socs1KI/KI mice, and a critical level of SOCS1 expression was required for inhibition of both IFNγ and granulocyte macrophage-colony stimulating factor (GM-CSF)-driven JAK-STAT signaling. In contrast, IFNγ priming to induce SOCS1 did not cross-regulate IL-4 signaling. This study indicates that while SOCS1 expression needs to exceed a critical threshold to inhibit IFNγ signaling, its selective regulation of cytokine signaling results from an as yet undetermined, level of regulatory control.
Collapse
Affiliation(s)
- Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Lizeth Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Colin Hockings
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Worth C, Al-Mossawi MH, Macdonald J, Fisher BA, Chan A, Sengupta R, Packham J, Gaffney K, Gullick N, Cook JA, Corn TH, Teh J, Machado PM, Taylor PC, Bowness P. Granulocyte-macrophage colony-stimulating factor neutralisation in patients with axial spondyloarthritis in the UK (NAMASTE): a randomised, double-blind, placebo-controlled, phase 2 trial. THE LANCET. RHEUMATOLOGY 2024; 6:e537-e545. [PMID: 38942047 DOI: 10.1016/s2665-9913(24)00099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a proinflammatory cytokine overproduced in several inflammatory and autoimmune diseases, including axial spondyloarthritis. Namilumab is a human IgG1 monoclonal anti-GM-CSF antibody that potently neutralises human GM-CSF. We aimed to assess the efficacy of namilumab in participants with moderate-to-severe active axial spondyloarthritis. METHODS This proof-of-concept, randomised, double-blind, placebo-controlled, phase 2, Bayesian (NAMASTE) trial was done at nine hospitals in the UK. Participants aged 18-75 years with axial spondyloarthritis, meeting the Assessment in SpondyloArthritis international Society (ASAS) criteria and the ASAS-defined MRI criteria, with active disease as defined by a Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), were eligible. Those who had inadequately responded or had intolerance to previous treatment with an anti-TNF agent were included. Participants were randomly assigned (6:1) to receive subcutaneous namilumab 150 mg or placebo at weeks 0, 2, 6, and 10. Participants, site staff (except pharmacy staff), and central study staff were masked to treatment assignment. The primary endpoint was the proportion of participants who had an ASAS ≥20% improvement (ASAS20) clinical response at week 12 in the full analysis set (all randomly assigned participants). This trial is registered with ClinicalTrials.gov (NCT03622658). FINDINGS From Sept 6, 2018, to July 25, 2019, 60 patients with moderate-to-severe active axial spondyloarthritis were assessed for eligibility and 42 were randomly assigned to receive namilumab (n=36) or placebo (n=six). The mean age of participants was 39·5 years (SD 13·3), 17 were women, 25 were men, 39 were White, and seven had previously received anti-TNF therapy. The primary endpoint was not met. At week 12, the proportion of patients who had an ASAS20 clinical response was lower in the namilumab group (14 of 36) than in the placebo group (three of six; estimated between-group difference 6·8%). The Bayesian posterior probability η was 0·72 (>0·927 suggests high clinical significance). The rates of any treatment-emergent adverse events in the namilumab group were similar to those in the placebo group (31 vs five). INTERPRETATION Namilumab did not show efficacy compared with placebo in patients with active axial spondyloarthritis, but the treatment was generally well tolerated. FUNDING Izana Bioscience, NIHR Oxford Biomedical Research Centre (BRC), NIHR Birmingham BRC, and Clinical Research Facility.
Collapse
Affiliation(s)
- Claudia Worth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - M Hussein Al-Mossawi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Joanne Macdonald
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, Department of Rheumatology, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, UK
| | - Antoni Chan
- Royal Berkshire, NHS Foundation Trust, Reading, UK
| | | | | | - Karl Gaffney
- Norfolk and Norwich University Hospitals, NHS Foundation Trust, Norwich, UK
| | - Nicola Gullick
- University Hospitals Coventry and Warwickshire, Warwick Medical School, University of Warwick, Warwick, UK
| | - Jonathan A Cook
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Tim H Corn
- Asclepius Consulting (Izana Bioscience), London, UK
| | - James Teh
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Pedro M Machado
- Centre for Rheumatology and Department of Neuromuscular Diseases, University College London, London, UK; NIHR, University College London Hospitals, Biomedical Research Centre, NHS Foundation Trust, London, UK; Department of Rheumatology, Northwick Park Hospital, London North West University Healthcare, NHS Trust, London, UK
| | - Peter C Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Lee YE, Lee SH, Kim WU. Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis. Immune Netw 2024; 24:e10. [PMID: 38455464 PMCID: PMC10917575 DOI: 10.4110/in.2024.24.e10] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
In this review, we will explore the intricate roles of cytokines and vascular endothelial growth factors in autoimmune diseases (ADs), with a particular focus on rheumatoid arthritis (RA) and multiple sclerosis (MS). AD is characterized by self-destructive immune responses due to auto-reactive T lymphocytes and Abs. Among various types of ADs, RA and MS possess inflammation as a central role but in different sites of the patients. Other common aspects among these two ADs are their chronicity and relapsing-remitting symptoms requiring continuous management. First factor inducing these ADs are cytokines, such as IL-6, TNF-α, and IL-17, which play significant roles in the pathogenesis by contributing to inflammation, immune cell activation, and tissue damage. Secondly, vascular endothelial growth factors, including VEGF and angiopoietins, are crucial in promoting angiogenesis and inflammation in these two ADs. Finally, placental growth factor (PlGF), an emerging factor with bi-directional roles in angiogenesis and T cell differentiation, as we introduce as an "angio-lymphokine" is another key factor in ADs. Thus, while angiogenesis recruits more inflammatory cells into the peripheral sites, cytokines secreted by effector cells play critical roles in the pathogenesis of ADs. Various therapeutic interventions targeting these soluble molecules have shown promise in managing autoimmune pathogenic conditions. However, delicate interplay between cytokines, angiogenic factors, and PlGF has more to be studied when considering their complementary role in actual pathogenic conditions. Understanding the complex interactions among these factors provides valuable insights for the development of innovative therapies for RA and MS, offering hope for improved patient outcomes.
Collapse
Affiliation(s)
- Young eun Lee
- Graduate School of Medical Science and Engineering (GSMSE), Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering (GSMSE), Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
5
|
Wang Z, Zhang J, An F, Zhang J, Meng X, Liu S, Xia R, Wang G, Yan C. The mechanism of dendritic cell-T cell crosstalk in rheumatoid arthritis. Arthritis Res Ther 2023; 25:193. [PMID: 37798668 PMCID: PMC10552435 DOI: 10.1186/s13075-023-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by joint pain and swelling, synovial hyperplasia, cartilage damage, and bone destruction. The mechanisms of dendritic cell (DC) and T cell-mediated crosstalk have gradually become a focus of attention. DCs regulate the proliferation and differentiation of CD4+ T cell subtypes through different cytokines, surface molecules, and antigen presentation. DC-T cell crosstalk also blocks antigen presentation by DCs, ultimately maintaining immune tolerance. DC-T cell crosstalk mainly involves chemokines, surface molecules (TonEBP, NFATc1), the PD-L1/PD-1 signalling axis, and the TGF-β signalling axis. In addition, DC-T cell crosstalk in RA is affected by glycolysis, reactive oxygen species, vitamin D, and other factors. These factors lead to the formation of an extremely complex regulatory network involving various mechanisms. This article reviews the key immune targets of DC-T cell crosstalk and elucidates the mechanism of DC-T cell crosstalk in RA to provide a basis for the treatment of patients with RA.
Collapse
Affiliation(s)
- Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jinlong Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Shiqing Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Gang Wang
- Rheumatism and Orthopaedics Department, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
6
|
Toghi M, Bitarafan S, Ghafouri-Fard S. Pathogenic Th17 cells in autoimmunity with regard to rheumatoid arthritis. Pathol Res Pract 2023; 250:154818. [PMID: 37729783 DOI: 10.1016/j.prp.2023.154818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Th17 cells contribute the pathobiology of autoimmune diseases, including rheumatoid arthritis (RA). However, it was shown that differentiated Th17 cells display a high degree of plasticity under the influence of inflammatory conditions. In some autoimmune diseases, the majority of Th17 cells, especially at sites of inflammation, have a phenotype that is intermediate between Th17 and Th1. These cells, which are described as Th17.1 or exTh17 cells, are hypothesized to be more pathogenic than classical Th17 cells. In this review, the involvement of Th17.1 lymphocytes in RA, and potential features that might render these cells to be more pathogenic are discussed.
Collapse
Affiliation(s)
- Mehdi Toghi
- Department of Immune and Infectious Diseases, Université Laval, Quebec City, Quebec, Canada
| | - Sara Bitarafan
- Department of Molecular Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yamada H. The Search for the Pathogenic T Cells in the Joint of Rheumatoid Arthritis: Which T-Cell Subset Drives Autoimmune Inflammation? Int J Mol Sci 2023; 24:ijms24086930. [PMID: 37108093 PMCID: PMC10138952 DOI: 10.3390/ijms24086930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting systemic synovial tissues, leading to the destruction of multiple joints. Its etiology is still unknown, but T-cell-mediated autoimmunity has been thought to play critical roles, which is supported by experimental as well as clinical observations. Therefore, efforts have been made to elucidate the functions and antigen specificity of pathogenic autoreactive T cells, which could be a therapeutic target for disease treatment. Historically, T-helper (Th)1 and Th17 cells are hypothesized to be pathogenic T cells in RA joints; however, lines of evidence do not fully support this hypothesis, showing polyfunctionality of the T cells. Recent progress in single-cell analysis technology has led to the discovery of a novel helper T-cell subset, peripheral helper T cells, and attracted attention to the previously unappreciated T-cell subsets, such as cytotoxic CD4 and CD8 T cells, in RA joints. It also enables a comprehensive view of T-cell clonality and function. Furthermore, the antigen specificity of the expanded T-cell clones can be determined. Despite such progress, which T-cell subset drives inflammation is yet known.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Clinical Immunology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Sardana Y, Bhatti GK, Singh C, Sharma PK, Reddy PH, Bhatti JS. Progression of pre-rheumatoid arthritis to clinical disease of joints: Potential role of mesenchymal stem cells. Life Sci 2023; 321:121641. [PMID: 36997059 DOI: 10.1016/j.lfs.2023.121641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Rheumatoid arthritis (RA) related autoimmunity is developed at mucosal sites due to the interplay between genetic risk factors and environmental triggers. The pre-RA phase that leads to anti-citrullinated protein antibodies, rheumatoid factor, and other autoantibodies spread in the systemic circulation may not affect articular tissue for years until a mysterious second hit triggers the localization of RA-related autoimmunity in joints. Several players in the joint microenvironment mediate the synovial innate and adaptive immunological processes, eventually leading to clinical synovitis. There still exists a gap in the early phase of RA pathogenesis, i.e., the progression of diseases from the systemic circulation to joints. The lack of better understanding of these events results in the inability to answer questions about why only after a certain point of time the disease appears in joints and why in some cases, it simply remains latent and doesn't affect joints at all. In the current review, we focused on the immunomodulatory and regenerative role of mesenchymal stem cells and associated exosomes in RA pathology. We also highlighted the age-related dysregulations in activities of mesenchymal stem cells and how that might trigger homing of systemic autoimmunity to joints.
Collapse
Affiliation(s)
- Yogesh Sardana
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University, Uttarakhand, India
| | | | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
9
|
The Flavonoid Naringenin Alleviates Collagen-Induced Arthritis through Curbing the Migration and Polarization of CD4 + T Lymphocyte Driven by Regulating Mitochondrial Fission. Int J Mol Sci 2022; 24:ijms24010279. [PMID: 36613721 PMCID: PMC9820519 DOI: 10.3390/ijms24010279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease. Due to local infiltration and damage to the joints, activated CD4+ T cells play a crucial role in the progression of RA. However, the exact regulatory mechanisms are perplexing, which makes the effective management of RA frustrating. This study aimed to investigate the effect of mitochondria fission on the polarization and migration of CD4+ T cells as well as the regulatory mechanism of NAR, so as to provide enlightenment on therapeutic targets and novel strategies for the treatment of RA. In this study, a collagen-induced arthritis (CIA) model was established, and rats were randomly given saline or naringenin (NAR, 10 mg/kg, 20 mg/kg, 50 mg/kg, i.p.) once a day, before being euthanized on the 42nd day of primary immunization. The pain-like behavior, articular index scores, account of synovial-infiltrated CD4+ T cells, and inflammatory factors were investigated in each group. In vitro, spleen CD4+ T lymphocytes were derived from each group. In addition, mitochondrial division inhibitor 1 (Mdivi-1) or NAR was added to the cell medium containing C-X-C motif chemokine ligand 12 (CXCL12) in order to induce CD4+ T lymphocytes, respectively. The polarization capacity of CD4+ T cells was evaluated through the immunofluorescence intensity of the F-actin and myosin light chain phosphorylated at Ser19 (pMLC S19), and the mitochondrial distribution was determined by co-localization analysis of the translocase of outer mitochondrial membrane 20 (TOM20, the mitochondrial marker) and intercellular adhesion molecule 1 (ICAM1, the uropod marker). The mitochondrial fission was investigated by detecting dynamin-related protein 1 (Drp1) and mitochondrial fission protein 1 (Fis1) using Western blot and immunofluorescence. This study revealed that high-dose NAR (50 mg/kg, i.p.) alleviated pain-like behavior and articular index scores, reduced the serum level of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), and accounted for CD4+ T lymphocytes that infiltrated into the synovial membrane of the CIA group. Meanwhile, NAR (50 mg/kg, i.p.) suppressed the polarization of spleen CD4+ T lymphocytes, reduced the redistribution of mitochondria in the uropod, and inhibited the expression of Drp1 and Fis1 in the CIA model. Furthermore, the in vitro experiments confirmed that NAR reduced mitochondrial fission, which in turn inhibited the CXCL12-induced polarization and migration of CD4+ T lymphocytes. Our results demonstrated that the flavonoid NAR was a promising drug for the treatment of RA, which could effectively interfere with mitochondrial fission, thus inhibiting the polarization and migration of CD4+ T cells in the synovial membrane.
Collapse
|
10
|
Hu X, Li F, Zeng J, Zhou Z, Wang Z, Chen J, Cao D, Hong Y, Huang L, Chen Y, Xu J, Dong F, Yu R, Zheng H. Noninvasive Low-Frequency Pulsed Focused Ultrasound Therapy for Rheumatoid Arthritis in Mice. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0013. [PMID: 39290964 PMCID: PMC11407525 DOI: 10.34133/research.0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/31/2022] [Indexed: 10/16/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic and progressive inflammation of the synovium. Focused ultrasound therapy is an increasingly attractive alternative for treating RA owing to its noninvasiveness; however, it remains unclear which immune subsets respond to ultrasound stimulation. In this study, we showed that spleen-targeted low-frequency pulsed focused ultrasound (LFPFU) effectively improved the severity of arthritis in an arthritis mouse model established in DBA/1J mice. Additionally, we performed in-depth immune profiling of spleen samples from RA mice, RA mice that underwent ultrasound therapy, and healthy controls using mass cytometry along with extensive antibody panels and identified the immune composition of 14 cell populations, including CD4+/CD8+ T cells, B cells, natural killer cells, and dendritic cells. Moreover, multidimensional analysis according to cell-surface markers and phenotypes helped in identifying 4 and 5 cell subpopulations among T and myeloid cells, respectively, with 6 T cell subsets and 3 myeloid cell subsets responsive to ultrasound therapy among the 3 groups. Of these cell subsets, CD8+ T cell subsets showed a unique response to ultrasound stimulation in RA mice. Specifically, CD8+ T cells show a noticeable correlation with the degree of arthritis progression and could serve as an indicator for spleen-focused ultrasound-based therapy. Furthermore, single-cell RNA sequencing of spleen cells revealed the importance of T, B, and myeloid cell populations in the anti-inflammatory pathway. These results elucidated the unique cell subsets and transcriptome of splenic cells responsive to LFPFU and demonstrated the potential of spleen-focused ultrasound stimulation in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xuqiao Hu
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Jieying Zeng
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Zhenru Zhou
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Zhaoyang Wang
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Jing Chen
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Dongyan Cao
- Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yifan Hong
- Institute of Molecular Physiology, Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
| | - Laixin Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Yongsheng Chen
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Jinfeng Xu
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Fajin Dong
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Rongmin Yu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| |
Collapse
|
11
|
Liang Z, Wang N, Shang L, Wang Y, Feng M, Liu G, Gao C, Luo J. Evaluation of the immune feature of ACPA-negative rheumatoid arthritis and the clinical value of matrix metalloproteinase-3. Front Immunol 2022; 13:939265. [PMID: 35967336 PMCID: PMC9363571 DOI: 10.3389/fimmu.2022.939265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-citrullinated protein antibodies (ACPAs) are highly specific for the diagnosis of rheumatoid arthritis (RA). However, about one-third of RA patients are negative for ACPAs, which presents a challenge to the early diagnosis of RA. The purpose of this study was to analyze differences in lymphocyte subsets and CD4+ T cell subsets between ACPA+ and ACPA- RA patients, and to evaluate the value of matrix metalloproteinase-3 (MMP-3) as a diagnostic and monitoring marker in ACA- RA patients. A total of 145 ACPA+ RA patients, 145 ACPA- RA patients, and 38 healthy controls (HCs) were included in this study. Peripheral lymphocyte subsets were detected using flow cytometry, and serum MMP-3 was detected using chemiluminescence. Information about joint symptoms, other organ involvement, and related inflammatory markers was also collected. The results showed that, compared to ACPA- RA patients, ACPA+ cases had greater imbalances between peripheral CD4+ T cell subsets, mainly manifested as an increase in T-helper 1 (Th1) cells (p < 0.001) and decrease in regulatory T (Treg) cells (p = 0.029). This makes these patients more prone to inflammatory reactions and joint erosion. MMP-3 levels in ACPA+ and ACPA- RA patients were significantly higher than in HCs (p < 0.001), and MMP-3 could effectively distinguish between ACPA- RA patients and HCs (area under the curve [AUC] = 0.930, sensitivity 84.14%, specificity 92.11%). MMP-3 was also a serum marker for distinguishing between RA patients with low and high disease activities. Further analysis showed that MMP-3 was positively correlated with the levels of inflammatory markers and disease activity, and negatively correlated with the levels of lymphocyte subsets. In addition, with improvements in the disease, MMP-3 levels decreased, and further increased as the patients started to deteriorate. In summary, our research showed that there was a mild imbalance between peripheral CD4+ T cell subsets in ACPA- RA patients. MMP-3 may be used as a potential marker for early diagnosis of ACPA- RA. MMP-3 was an important index for RA disease evaluation, disease activity stratification, and prognosis.
Collapse
Affiliation(s)
- Zhaojun Liang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Nan Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Lili Shang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Yanlin Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Min Feng
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Guangying Liu
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
12
|
Kurose R, Satoh T, Kurose A, Satoh YI, Ishibashi Y, Wakai Y, Sasaki T, Ishida K, Ogasawara K, Sawai T. Association of CD90 Expression by CD14 + Dendritic-Shaped Cells in Rheumatoid Arthritis Synovial Tissue With Chronic Inflammation. ACR Open Rheumatol 2022; 4:603-612. [PMID: 35488383 PMCID: PMC9274357 DOI: 10.1002/acr2.11440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Objective CD14+ dendritic‐shaped cells show a dendritic morphology under the electron microscopy and engage in a pseudoemperipolesis phenomenon with lymphocytes. CD90 has been used as a marker of a major subset of fibroblast‐like synoviocytes in rheumatoid arthritis (RA). In this study, we investigated the significance of CD90 expression in CD14+ dendritic‐shaped cells and its correlation with RA chronic inflammation. Methods Double immunofluorescence staining for CD14 and CD90 was performed in the collected tissues, including 12 active RA synovial tissues. The localization of CD14+CD90+ cells, the percentages of CD14+CD90+ cells and vascular areas, the degree of synovitis, and clinical data were investigated. Furthermore, CD14+CD90+ cells analyzed by flow cytometry (CD14highCD90intermediate (int) cells) were sorted from RA synovial cells, and we examined their potential to differentiate into dendritic cells. Results Double immunofluorescence staining showed that CD14+CD90+ cells were abundant in RA synovial tissues. The percentages of CD14+CD90+ cells and vascular areas correlated with some of the Krenn synovitis scores, but neither showed a strong correlation with RA disease activity parameters. Flow cytometry analysis indicated that CD14highCD90int cells were more abundant in both peripheral blood samples and synovial tissues in patients with active RA. CD14highCD90int cells were more likely to differentiate into dendritic cells in vitro. Conclusion CD14+ dendritic‐shaped cells expressed CD90 in the perivascular areas of RA synovial tissues. These findings suggest that CD14+CD90+ dendritic‐shaped cells migrate from the peripheral blood to the synovial tissue, the site of inflammation, and may contribute to the chronic inflammation of RA as dendritic progenitor cells.
Collapse
Affiliation(s)
- Rie Kurose
- Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Satoh
- Iwate Medical University School of Medicine, Morioka, Japan
| | - Akira Kurose
- Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yo-Ichi Satoh
- Iwate Medical University School of Medicine, Morioka, Japan
| | | | - Yuji Wakai
- Hirosaki Memorial Hospital, Hirosaki, Japan
| | | | - Kinji Ishida
- Iwate Medical University School of Medicine, Morioka, Japan
| | | | | |
Collapse
|
13
|
Pourgholaminejad A, Pahlavanneshan S, Basiri M. COVID-19 immunopathology with emphasis on Th17 response and cell-based immunomodulation therapy: Potential targets and challenges. Scand J Immunol 2021; 95:e13131. [PMID: 34936112 DOI: 10.1111/sji.13131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
The role of the immune system against coronavirus disease 2019 (COVID-19) is unknown in many aspects, and the protective or pathologic mechanisms of the immune response are poorly understood. Pro-inflammatory cytokine release and a consequent cytokine storm can lead to acute respiratory distress syndrome (ARDS) and result in multi-organ failure. There are many T cell subsets during anti-viral immunity. The Th17-associated response, as a pro-inflammatory pathway, and its consequent outcomes in many autoimmune disorders play a fundamental role in progression of systemic hyper-inflammation during COVID-19. Therapeutic strategies based on immunomodulation therapy could be helpful for targeting hyper-inflammatory immune responses in COVID-19, especially Th17-related inflammation and hyper-cytokinemia. Cell-based immunotherapeutic approaches including mesenchymal stem cells (MSCs), tolerogenic dendritic cells (tolDCs) and regulatory T cells (Tregs) seem to be promising strategies as orchestrators of the immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we highlight Th17-related immunopathology of SARS-CoV-2 infection and discuss cell-based immunomodulatory strategies and their mechanisms for regulation of the hyper-inflammation during COVID-19.
Collapse
Affiliation(s)
- Arash Pourgholaminejad
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saghar Pahlavanneshan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Shaping of Monocyte-Derived Dendritic Cell Development and Function by Environmental Factors in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222413670. [PMID: 34948462 PMCID: PMC8708154 DOI: 10.3390/ijms222413670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Dendritic cells (DC) are heterogeneous cell populations essential for both inducing immunity and maintaining immune tolerance. Chronic inflammatory contexts, such as found in rheumatoid arthritis (RA), severely affect the distribution and the function of DC, contributing to defective tolerance and fueling inflammation. In RA, the synovial fluid of patients is enriched by a subset of DC that derive from monocytes (Mo-DC), which promote deleterious Th17 responses. The characterization of environmental factors in the joint that impact on the development and the fate of human Mo-DC is therefore of great importance in RA. When monocytes leave the blood and infiltrate inflamed synovial tissues, the process of differentiation into Mo-DC can be influenced by interactions with soluble factors such as cytokines, local acidosis and dysregulated synoviocytes. Other molecular factors, such as the citrullination process, can also enhance osteoclast differentiation from Mo-DC, favoring bone damages in RA. Conversely, biotherapies used to control inflammation in RA, modulate also the process of monocyte differentiation into DC. The identification of the environmental mediators that control the differentiation of Mo-DC, as well as the underlying molecular signaling pathways, could constitute a major breakthrough for the development of new therapies in RA.
Collapse
|
15
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
16
|
Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation. Semin Immunol 2021; 54:101518. [PMID: 34763973 DOI: 10.1016/j.smim.2021.101518] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022]
Abstract
The role of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sequentially redefined during the past decades. Originally described as a hematopoietic growth factor for myelopoiesis, GM-CSF was recognized as a central mediator of inflammation bridging the innate and adaptive arms of the immune system. Phagocytes sensing GM-CSF adapt an inflammatory phenotype and facilitate pathogen clearance. However, in the context of chronic tissue inflammation, GM-CSF secreted by tissue-invading lymphocytes has detrimental effects by licensing tissue damage and hyperinflammation. Accordingly, therapeutic intervention at the T cell-phagocyte interface represents an attractive target to ameliorate disease progression and immunopathology. Although GM-CSF is largely dispensable for steady state myelopoiesis, dysregulation, as seen in chronic inflammatory diseases, may however lead to disrupted haematopoiesis and long-term effects on bone marrow output. Here, we will survey the role of GM-CSF during inflammation, discuss the extent to which GM-CSF-secreting T cells, debate their introduction as a separate T cell lineage and explore current and future clinical implications of GM-CSF in human disease settings.
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Abstract
In this issue of JEM, Gschwend et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210745) reveal the indispensable role of alveolar epithelial cells type 2 in controlling the density of alveolar macrophages. This study highlights the intricate crosstalk that lung stroma and macrophages undergo to maintain homeostasis.
Collapse
Affiliation(s)
| | - Juliana Idoyaga
- Microbiology & Immunology Department and Immunology Program, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
18
|
Roszkowski L, Ciechomska M. Tuning Monocytes and Macrophages for Personalized Therapy and Diagnostic Challenge in Rheumatoid Arthritis. Cells 2021; 10:cells10081860. [PMID: 34440629 PMCID: PMC8392289 DOI: 10.3390/cells10081860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Monocytes/macrophages play a central role in chronic inflammatory disorders, including rheumatoid arthritis (RA). Activation of these cells results in the production of various mediators responsible for inflammation and RA pathogenesis. On the other hand, the depletion of macrophages using specific antibodies or chemical agents can prevent their synovial tissue infiltration and subsequently attenuates inflammation. Their plasticity is a major feature that helps the switch from a pro-inflammatory phenotype (M1) to an anti-inflammatory state (M2). Therefore, understanding the precise strategy targeting pro-inflammatory monocytes/macrophages should be a powerful way of inhibiting chronic inflammation and bone erosion. In this review, we demonstrate potential consequences of different epigenetic regulations on inflammatory cytokines production by monocytes. In addition, we present unique profiles of monocytes/macrophages contributing to identification of new biomarkers of disease activity or predicting treatment response in RA. We also outline novel approaches of tuning monocytes/macrophages by biologic drugs, small molecules or by other therapeutic modalities to reduce arthritis. Finally, the importance of cellular heterogeneity of monocytes/macrophages is highlighted by single-cell technologies, which leads to the design of cell-specific therapeutic protocols for personalized medicine in RA in the future.
Collapse
|
19
|
Abstract
Adaptive immunity plays central roles in the pathogenesis of rheumatoid arthritis (RA), as it is regarded as an autoimmune disease. Clinical investigations revealed infiltrations of B cells in the synovium, especially those with ectopic lymphoid neogenesis, associate with disease severity. While some B cells in the synovium differentiate into plasma cells producing autoantibodies such as anti-citrullinated protein antibody, others differentiate into effector B cells producing proinflammatory cytokines and expressing RANKL. Synovial B cells might also be important as antigen-presenting cells. Synovial T cells are implicated in the induction of antibody production as well as local inflammation. In the former, a recently identified CD4 T cell subset, peripheral helper T (Tph), which is characterized by the expression of PD-1 and production of CXCL13 and IL-21, is implicated, while the latter might be mediated by Th1-like CD4 T cell subsets that can produce multiple proinflammatory cytokines, including IFN-γ, TNF-α, and GM-CSF, and express cytotoxic molecules, such as perforin, granzymes and granulysin. CD8 T cells in the synovium are able to produce large amount of IFN-γ. However, the involvement of those lymphocytes in the pathogenesis of RA still awaits verification. Their antigen-specificity also needs to be clarified.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Arthritis and Immunology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Wang C, Huandike M, Yang Y, Zhang H, Feng G, Meng X, Zhang P, Liu J, Li J, Chai L. Glycosides of Caulis Lonicerae inhibits the inflammatory proliferation of IL-1β-mediated fibroblast-like synovial cells cocultured with lymphocytes. Phytother Res 2021; 35:2807-2823. [PMID: 33484196 DOI: 10.1002/ptr.7026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023]
Abstract
Caulis Lonicerae, the dried stem of Lonicera japonica, has been confirmed to have antiinflammatory and antioxidant therapeutic effects. In the present study, we aimed to evaluate the functional mechanism of glycosides extracted from Caulis Lonicerae on the inflammatory proliferation of interleukin-1 beta (IL-1β)-mediated fibroblast-like synoviocytes (FLSs) from rats. Rat FLSs (RSC-364) co-cultured with lymphocytes induced by IL-1β were used as a cell model. Glycosides in a freeze-dried powder of aqueous extract from Caulis Lonicerae were identified using high-performance liquid chromatography-electrospray ionization/mass spectrometry. After treatment with glycosides, the inflammatory proliferation of FLS, induced by IL-1β, decreased significantly. Flow cytometry analysis showed that treatment with glycosides restored the abnormal balance of T cells by intervening in the proliferation and differentiation of helper T (Th) cells. Glycosides also inhibited the activation of Janus kinase signal transducer and activator of transcription (JAK-STAT) and nuclear factor (NF)-κB signaling pathways by suppressing the protein expression of key molecules in these pathways. Therefore, we concluded that the glycosides of Caulis Lonicerae can intervene in the differentiation of Th cells, suppressing the activation of JAK-STAT and NF-κB signaling pathways, contributing to the inhibitory effect on inflammatory proliferation of FLS co-cultured with lymphocytes induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Changzhi Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyier Huandike
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingxia Yang
- Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Allaeys I, Ribeiro de Vargas F, Bourgoin SG, Poubelle PE. Human Inflammatory Neutrophils Express Genes Encoding Peptidase Inhibitors: Production of Elafin Mediated by NF-κB and CCAAT/Enhancer-Binding Protein β. THE JOURNAL OF IMMUNOLOGY 2021; 206:1943-1956. [PMID: 33762327 DOI: 10.4049/jimmunol.2000852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 11/19/2022]
Abstract
The concept of plasticity of neutrophils is highlighted by studies showing their ability to transdifferentiate into APCs. In this regard, transdifferentiated neutrophils were found at inflammatory sites of autoimmune arthritis (AIA). Exposure of neutrophils to inflammatory stimuli prolongs their survival, thereby favoring the acquisition of pathophysiologically relevant phenotypes and functions. By using microarrays, quantitative RT-PCR, and ELISAs, we showed that long-lived (LL) neutrophils obtained after 48 h of culture in the presence of GM-CSF, TNF, and IL-4 differentially expressed genes related to apoptosis, MHC class II, immune response, and inflammation. The expression of anti-inflammatory genes mainly of peptidase inhibitor families is upregulated in LL neutrophils. Among these, the PI3 gene encoding elafin was the most highly expressed. The de novo production of elafin by LL neutrophils depended on a synergism between GM-CSF and TNF via the activation and cooperativity of C/EBPβ and NF-κB pathways, respectively. Elafin concentrations were higher in synovial fluids (SF) of patients with AIA than in SF of osteoarthritis. SF neutrophils produced more elafin than blood counterparts. These results are discussed with respect to implications of neutrophils in chronic inflammation and the potential influence of elafin in AIA.
Collapse
Affiliation(s)
- Isabelle Allaeys
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Flavia Ribeiro de Vargas
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Patrice E Poubelle
- Infectious Diseases and Immunity Research Division, Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|
22
|
Tański W, Chabowski M, Jankowska-Polańska B, Jankowska EA. Anaemia and iron deficiency in patients with
rheumatoid arthritis and other chronic diseases. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.7838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaemia is one of the most common symptoms accompanying many chronic diseases, e.g.
collagenases, neoplasms, and chronic inflammations (inflammatory bowel disease, chronic
kidney disease and heart failure). Iron deficiency anaemia is the most common type of anaemia
(80%). It affects 1% to 2% of the population. Iron deficiency (ID) – absolute or functional
– is characterised by reduced ferritin levels and transferrin saturation (TSAT) of less than
20%. Iron deficiency is the most common dietary deficiency. However, iron deficiency might
be one of the common causes of anaemia of chronic disease (ACD). Anaemia affects 33%
to 60% of patients with RA. Rheumatoid arthritis (RA) is a chronic immune-mediated systemic
connective tissue disease, in which chronic inflammation of the synovial tissue of the
joints damages articular cartilages, bones and other joint structures. The prevalence of RA is
approximately 0.3% to 2%. Low haemoglobin levels in RA patients are significantly correlated
with disability, activity and duration of the disease as well as damage to joints and joint pain.
Treatment of anaemia in RA patients includes iron supplementation, blood transfusions, the
use of erythropoiesis-stimulating agents, and treatment of the underlying condition. Biological
treatments used in RA patients, such as e.g. infliximab, tocilizumab and anakinra, not only
slow the progression of joint involvement but also prevent anaemia.
Collapse
Affiliation(s)
- Wojciech Tański
- Department of Internal Medicine, 4th Military Teaching Hospital, Wrocław, Poland
| | - Mariusz Chabowski
- Division of Oncology and Palliative Care, Department of Clinical Nursing, Faculty of Health Science, Wrocław Medical University, Wrocław, Poland
| | - Beata Jankowska-Polańska
- Division of Nursing in Internal Medicine, Department of Clinical Nursing, Faculty of Health Science, Wrocław Medical University, Wrocław, Poland
| | - Ewa Anita Jankowska
- Dept of Cardiology, Wrocław Medical University, Faculty of Medicine, Wrocław, Poland
| |
Collapse
|
23
|
Louis C, Souza-Fonseca-Guimaraes F, Yang Y, D'Silva D, Kratina T, Dagley L, Hediyeh-Zadeh S, Rautela J, Masters SL, Davis MJ, Babon JJ, Ciric B, Vivier E, Alexander WS, Huntington ND, Wicks IP. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J Exp Med 2020; 217:133838. [PMID: 32097462 PMCID: PMC7201918 DOI: 10.1084/jem.20191421] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
Despite increasing recognition of the importance of GM-CSF in autoimmune disease, it remains unclear how GM-CSF is regulated at sites of tissue inflammation. Using GM-CSF fate reporter mice, we show that synovial NK cells produce GM-CSF in autoantibody-mediated inflammatory arthritis. Synovial NK cells promote a neutrophilic inflammatory cell infiltrate, and persistent arthritis, via GM-CSF production, as deletion of NK cells, or specific ablation of GM-CSF production in NK cells, abrogated disease. Synovial NK cell production of GM-CSF is IL-18–dependent. Furthermore, we show that cytokine-inducible SH2-containing protein (CIS) is crucial in limiting GM-CSF signaling not only during inflammatory arthritis but also in experimental allergic encephalomyelitis (EAE), a murine model of multiple sclerosis. Thus, a cellular cascade of synovial macrophages, NK cells, and neutrophils mediates persistent joint inflammation via production of IL-18 and GM-CSF. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor. These findings shed new light on GM-CSF biology in sterile tissue inflammation and identify several potential therapeutic targets.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Yuyan Yang
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Damian D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Tobias Kratina
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Laura Dagley
- Medical Biology, University of Melbourne, Parkville, Australia.,Systems Biology and Personalized Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Soroor Hediyeh-Zadeh
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jai Rautela
- Medical Biology, University of Melbourne, Parkville, Australia.,Molecular Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Seth Lucian Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia
| | - Melissa J Davis
- Medical Biology, University of Melbourne, Parkville, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jeffrey J Babon
- Medical Biology, University of Melbourne, Parkville, Australia.,Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University. Philadelphia, PA
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Warren S Alexander
- Medical Biology, University of Melbourne, Parkville, Australia.,Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nicholas D Huntington
- Medical Biology, University of Melbourne, Parkville, Australia.,Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Medical Biology, University of Melbourne, Parkville, Australia.,Rheumatology Unit, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
24
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Abstract
Inflammatory arthritis (IA) refers to a group of chronic diseases, including rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and other spondyloarthritis (SpA). IA is characterized by autoimmune-mediated joint inflammation and is associated with inflammatory cytokine networks. Innate lymphocytes, including innate-like lymphocytes (ILLs) expressing T or B cell receptors and innate lymphoid cells (ILCs), play important roles in the initiation of host immune responses against self-antigens and rapidly produce large amounts of cytokines upon stimulation. TNF (Tumor Necrosis Factor)-α, IFN (Interferon)-γ, Th2-related cytokines (IL-4, IL-9, IL-10, and IL-13), IL-17A, IL-22, and GM-CSF are involved in IA and are secreted by ILLs and ILCs. In this review, we focus on the current knowledge of ILL and ILC phenotypes, cytokine production and functions in IA. A better understanding of the roles of ILLs and ILCs in IA initiation and development will ultimately provide insights into developing effective strategies for the clinical treatment of IA patients.
Collapse
Affiliation(s)
- Xunyao Wu
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Piseddu I, Röhrle N, Knott MML, Moder S, Eiber S, Schnell K, Vetter V, Meyer B, Layritz P, Kühnemuth B, Wiedemann GM, Gruen J, Perleberg C, Rapp M, Endres S, Anz D. Constitutive Expression of CCL22 Is Mediated by T Cell-Derived GM-CSF. THE JOURNAL OF IMMUNOLOGY 2020; 205:2056-2065. [PMID: 32907996 DOI: 10.4049/jimmunol.2000004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
CCL22 is a key mediator of leukocyte trafficking in inflammatory immune responses, allergy, and cancer. It acts by attracting regulatory T cells and Th2 cells via their receptor CCR type 4 (CCR4). Beyond its role in inflammation, CCL22 is constitutively expressed at high levels in lymphoid organs during homeostasis, where it controls immunity by recruiting regulatory T cells to dendritic cells (DCs). In this study, we aimed to identify the mechanisms responsible for constitutive CCL22 expression. We confirmed that CD11c+ DCs are the exclusive producers of CCL22 in secondary lymphatic organs during homeostasis. We show that in vitro both murine splenocytes and human PBMCs secrete CCL22 spontaneously without any further stimulation. Interestingly, isolated DCs alone, however, are unable to produce CCL22, but instead require T cell help. In vitro, only the coculture of DCs with T cells or their supernatants resulted in CCL22 secretion, and we identified T cell-derived GM-CSF as the major inducer of DC-derived CCL22 expression. In vivo, Rag1 -/- mice, which lack functional T cells, have low CCL22 levels in lymphoid organs, and this can be restored by adoptive transfer of wild-type T cells or administration of GM-CSF. Taken together, we uncover T cell-derived GM-CSF as a key inducer of the chemokine CCL22 and thus, to our knowledge, identify a novel role for this cytokine as a central regulator of immunity in lymphatic organs. This knowledge could contribute to the development of new therapeutic interventions in cancer and autoimmunity.
Collapse
Affiliation(s)
- Ignazio Piseddu
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Natascha Röhrle
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Maximilian Martin Ludwig Knott
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Stefan Moder
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Stephan Eiber
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Konstantin Schnell
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Viola Vetter
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Bastian Meyer
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Patrick Layritz
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Benjamin Kühnemuth
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Gabriela Maria Wiedemann
- Department of Medicine II, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; and
| | - Juliane Gruen
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Carolin Perleberg
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Moritz Rapp
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany
| | - David Anz
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Department of Internal Medicine IV, University Hospital of Munich, 80337 Munich, Germany; .,Department of Internal Medicine II (Gastroenterology and Hepatology), University Hospital of Munich, 81377 Munich, Germany
| |
Collapse
|
27
|
Guo C, Tian X, Han F, Liu L, Gao J, Ma X. Copy Number Variation of Multiple Genes in SAPHO Syndrome. J Rheumatol 2020; 47:1323-1329. [PMID: 31615912 DOI: 10.3899/jrheum.181393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome is a type of rare chronic aseptic inflammation of unknown etiology. To date, no research to our knowledge has reported copy number variation (CNV) of genes that could affect predisposition to SAPHO syndrome. We investigated the association between CNV profile and SAPHO syndrome. METHODS We used array comparative genomic hybridization (CGH) to screen for CNV in a nuclear family including 2 patients and a healthy control. We then validated the copy numbers of candidate genes found in the array CGH assay and other candidate genes by TaqMan real-time PCR in 360 case and control samples. RESULTS Ten regions from 8 chromosomes were found to have abnormal gene copies in the nuclear family, so the CNV of candidate genes (ADAM5, CSF2RA, IL3RA, and 9 other genes) were tested by TaqMan PCR. Significant copy number loss of CSF2RA (p = 0.000) and NOD2 (p = 0.005), and significant copy number gain of MEGF6 (p = 0.002) and ADAM5 (p = 0.000) were seen in patients with SAPHO compared with controls at the a = 0.05 level. There were no differences in the other 8 candidate genes between patient and control samples (p > 0.05). CONCLUSION Our study established the first association between CNV in CSF2RA, NOD2, MEGF6, and ADAM5 and SAPHO syndrome. These findings may offer insight into the pathogenesis of SAPHO and provide the basis for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Changlong Guo
- From the National Research Institute for Family Planning, Beijing; The No. 1 Hospital of Shijiazhuang, Shijiazhuang; Shijiazhuang Maternity Hospital, Shijiazhuang; and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,C. Guo, MD, PhD, National Research Institute for Family Planning; X. Tian, BS, The No. 1 Hospital of Shijiazhuang, Shijiazhuang Maternity Hospital; F. Han, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; L. Liu, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; J. Gao, MD, PhD, National Research Institute for Family Planning; X. Ma, MD, PhD, National Research Institute for Family Planning
| | - Xin Tian
- From the National Research Institute for Family Planning, Beijing; The No. 1 Hospital of Shijiazhuang, Shijiazhuang; Shijiazhuang Maternity Hospital, Shijiazhuang; and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,C. Guo, MD, PhD, National Research Institute for Family Planning; X. Tian, BS, The No. 1 Hospital of Shijiazhuang, Shijiazhuang Maternity Hospital; F. Han, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; L. Liu, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; J. Gao, MD, PhD, National Research Institute for Family Planning; X. Ma, MD, PhD, National Research Institute for Family Planning
| | - Feifei Han
- From the National Research Institute for Family Planning, Beijing; The No. 1 Hospital of Shijiazhuang, Shijiazhuang; Shijiazhuang Maternity Hospital, Shijiazhuang; and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,C. Guo, MD, PhD, National Research Institute for Family Planning; X. Tian, BS, The No. 1 Hospital of Shijiazhuang, Shijiazhuang Maternity Hospital; F. Han, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; L. Liu, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; J. Gao, MD, PhD, National Research Institute for Family Planning; X. Ma, MD, PhD, National Research Institute for Family Planning
| | - Lihong Liu
- From the National Research Institute for Family Planning, Beijing; The No. 1 Hospital of Shijiazhuang, Shijiazhuang; Shijiazhuang Maternity Hospital, Shijiazhuang; and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,C. Guo, MD, PhD, National Research Institute for Family Planning; X. Tian, BS, The No. 1 Hospital of Shijiazhuang, Shijiazhuang Maternity Hospital; F. Han, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; L. Liu, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; J. Gao, MD, PhD, National Research Institute for Family Planning; X. Ma, MD, PhD, National Research Institute for Family Planning
| | - Jianen Gao
- From the National Research Institute for Family Planning, Beijing; The No. 1 Hospital of Shijiazhuang, Shijiazhuang; Shijiazhuang Maternity Hospital, Shijiazhuang; and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China. .,C. Guo, MD, PhD, National Research Institute for Family Planning; X. Tian, BS, The No. 1 Hospital of Shijiazhuang, Shijiazhuang Maternity Hospital; F. Han, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; L. Liu, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; J. Gao, MD, PhD, National Research Institute for Family Planning; X. Ma, MD, PhD, National Research Institute for Family Planning.
| | - Xu Ma
- From the National Research Institute for Family Planning, Beijing; The No. 1 Hospital of Shijiazhuang, Shijiazhuang; Shijiazhuang Maternity Hospital, Shijiazhuang; and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,C. Guo, MD, PhD, National Research Institute for Family Planning; X. Tian, BS, The No. 1 Hospital of Shijiazhuang, Shijiazhuang Maternity Hospital; F. Han, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; L. Liu, MD, PhD, Beijing Chao-Yang Hospital, Capital Medical University; J. Gao, MD, PhD, National Research Institute for Family Planning; X. Ma, MD, PhD, National Research Institute for Family Planning
| |
Collapse
|
28
|
Higashioka K, Kikushige Y, Ayano M, Kimoto Y, Mitoma H, Kikukawa M, Akahoshi M, Arinobu Y, Horiuchi T, Akashi K, Niiro H. Generation of a novel CD30 + B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis. Clin Exp Immunol 2020; 201:233-243. [PMID: 32538493 PMCID: PMC7419935 DOI: 10.1111/cei.13477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a T helper type 2 (Th2)-associated autoimmune disease characterized by vasculopathy and fibrosis. Efficacy of B cell depletion therapy underscores antibody-independent functions of B cells in SSc. A recent study showed that the Th2 cytokine interleukin (IL)-4 induces granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing effector B cells (GM-Beffs ) in humans. In this study, we sought to elucidate the generation mechanism of GM-Beffs and also determine a role of this subset in SSc. Among Th-associated cytokines, IL-4 most significantly facilitated the generation of GM-Beffs within memory B cells in healthy controls (HCs). In addition, the profibrotic cytokine transforming growth factor (TGF)-β further potentiated IL-4- and IL-13-induced GM-Beffs . Of note, tofacitinib, a Janus kinase (JAK) inhibitor, inhibited the expression of GM-CSF mRNA and protein in memory B cells induced by IL-4, but not by TGF-β. GM-Beffs were enriched within CD20+ CD30+ CD38-/low cells, a distinct population from plasmablasts, suggesting that GM-Beffs exert antibody-independent functions. GM-Beffs were also enriched in a CD30+ fraction of freshly isolated B cells. GM-Beffs generated under Th2 conditions facilitated the differentiation from CD14+ monocytes to DC-SIGN+ CD1a+ CD14- CD86+ cells, which significantly promoted the proliferation of naive T cells. CD30+ GM-Beffs were more pronounced in patients with SSc than in HCs. A subpopulation of SSc patients with the diffuse type and concomitant interstitial lung disease exhibited high numbers of GM-Beffs . Together, these findings suggest that human GM-Beffs are enriched in a CD30+ B cell subset and play a role in the pathogenesis of SSc.
Collapse
Affiliation(s)
- K. Higashioka
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Kikushige
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Ayano
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Kimoto
- Department of Internal MedicineKyushu University Beppu HospitalTsurumiharaBeppuOitaJapan
| | - H. Mitoma
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Kikukawa
- Department of Medical EducationFaculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - M. Akahoshi
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Y. Arinobu
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - T. Horiuchi
- Department of Internal MedicineKyushu University Beppu HospitalTsurumiharaBeppuOitaJapan
| | - K. Akashi
- Department of Medicine and Biosystemic ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - H. Niiro
- Department of Medical EducationFaculty of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
29
|
Cren M, Nziza N, Carbasse A, Mahe P, Dufourcq-Lopez E, Delpont M, Chevassus H, Khalil M, Mura T, Duroux-Richard I, Apparailly F, Jeziorski E, Louis-Plence P. Differential Accumulation and Activation of Monocyte and Dendritic Cell Subsets in Inflamed Synovial Fluid Discriminates Between Juvenile Idiopathic Arthritis and Septic Arthritis. Front Immunol 2020; 11:1716. [PMID: 32849606 PMCID: PMC7411147 DOI: 10.3389/fimmu.2020.01716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Despite their distinct etiology, several lines of evidence suggest that innate immunity plays a pivotal role in both juvenile idiopathic arthritis (JIA) and septic arthritis (SA) pathophysiology. Indeed, monocytes and dendritic cells (DC) are involved in the first line of defense against pathogens and play a critical role in initiating and orchestrating the immune response. The aim of this study was to compare the number and phenotype of monocytes and DCs in peripheral blood (PB) and synovial fluid (SF) from patients with JIA and SA to identify specific cell subsets and activation markers associated with pathophysiological mechanisms and that could be used as biomarkers to discriminate both diseases. The proportion of intermediate and non-classical monocytes in the SF and PB, respectively, were significantly higher in JIA than in SA patients. In contrast the proportion of classical monocytes and their absolute numbers were higher in the SF from SA compared with JIA patients. Higher expression of CD64 on non-classical monocyte was observed in PB from SA compared with JIA patients. In SF, higher expression of CD64 on classical and intermediate monocyte as well as higher CD163 expression on intermediate monocytes was observed in SA compared with JIA patients. Moreover, whereas the number of conventional (cDC), plasmacytoid (pDC) and inflammatory (infDC) DCs was comparable between groups in PB, the number of CD141+ cDCs and CD123+ pDCs in the SF was significantly higher in JIA than in SA patients. CD14+ infDCs represented the major DC subset in the SF of both groups with potent activation assessed by high expression of HLA-DR and CD86 and significant up-regulation of HLA-DR expression in SA compared with JIA patients. Finally, higher activation of SF DC subsets was monitored in SA compared with JIA with significant up-regulation of CD86 and PDL2 expression on several DC subsets. Our results show the differential accumulation and activation of innate immune cells between septic and inflammatory arthritis. They strongly indicate that the relative high numbers of CD141+ cDC and CD123+ pDCs in SF are specific for JIA while the over-activation of DC and monocyte subsets is specific for SA.
Collapse
Affiliation(s)
- Maïlys Cren
- IRMB, INSERM, Université Montpellier, Montpellier, France
| | - Nadège Nziza
- IRMB, INSERM, Université Montpellier, Montpellier, France.,Arthritis R&D, Neuilly sur Seine, France
| | - Aurélia Carbasse
- CHU Montpellier, Pediatric Department, Université Montpellier, Montpellier, France
| | - Perrine Mahe
- CHU Montpellier, Pediatric Department, Université Montpellier, Montpellier, France
| | | | - Marion Delpont
- CHU Montpellier, Pediatric Orthopedic Surgery Unit, Université Montpellier, Montpellier, France
| | - Hugues Chevassus
- CHU Montpellier, Centre d'Investigation Clinique, Université Montpellier, Montpellier, France.,Inserm, CIC1411, Montpellier, France
| | - Mirna Khalil
- CHU Montpellier, Centre d'Investigation Clinique, Université Montpellier, Montpellier, France.,Inserm, CIC1411, Montpellier, France
| | - Thibault Mura
- CHU Montpellier, Clinical Research and Epidemiology Unit, Université Montpellier, Montpellier, France
| | | | - Florence Apparailly
- IRMB, INSERM, Université Montpellier, Montpellier, France.,CHU Montpellier, Clinical Department for Osteoarticular Diseases, Université Montpellier, Montpellier, France
| | - Eric Jeziorski
- CHU Montpellier, Pediatric Department, Université Montpellier, Montpellier, France.,PCCI, INSERM, University of Montpellier, Montpellier, France
| | | |
Collapse
|
30
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
31
|
Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J 2020; 44:172-182. [PMID: 32798211 PMCID: PMC8178572 DOI: 10.1016/j.bj.2020.06.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease affecting ∼1% of the general population. This disease is characterized by persistent articular inflammation and joint damage driven by the proliferating synovial tissue fibroblasts as well as neutrophil, monocyte and lymphocyte trafficking into the synovium. The factors leading to RA pathogenesis remain poorly elucidated although genetic and environmental factors have been proposed to be the main contributors to RA. The majority of the early studies focused on the role of lymphocytes and adaptive immune responses in RA. However, in the past two decades, emerging studies showed that the innate immune system plays a critical role in the onset and progression of RA pathogenesis. Various innate immune cells including monocytes, macrophages and dendritic cells are involved in inflammatory responses seen in RA patients as well as in driving the activation of the adaptive immune system, which plays a major role in the later stages of the disease. Here we focus the discussion on the role of different innate immune cells and components in initiation and progression of RA. New therapeutic approaches targeting different inflammatory pathways and innate immune cells will be highlighted here. Recent emergence and the significant roles of innate lymphoid cells and inflammasomes will be also discussed.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Akram
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario Canada; The University Health Network, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario Canada.
| |
Collapse
|
32
|
Marzaioli V, Canavan M, Floudas A, Wade SC, Low C, Veale DJ, Fearon U. Monocyte-Derived Dendritic Cell Differentiation in Inflammatory Arthritis Is Regulated by the JAK/STAT Axis via NADPH Oxidase Regulation. Front Immunol 2020; 11:1406. [PMID: 32733468 PMCID: PMC7358435 DOI: 10.3389/fimmu.2020.01406] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
Monocyte-derived Dendritic cells (Mo-DC) are a distinct DC subset, involved in inflammation and infection, they originate from monocytes upon stimulation in the circulation and their activation and function may vary in autoimmune diseases. In this study we investigate the differences in Mo-DC differentiation and function in patients with Rheumatoid (RA) compared to Psoriatic arthritis (PsA). A significant increase in the Mo-DC differentiation marker CD209, paralleled by a corresponding decrease in the monocytic marker CD14, was demonstrated in RA compared to PsA, as early as 1 day post Mo-DC differentiation. RA monocytes ex-vivo were phenotypically different to PsA, displaying a more mature phenotype associated with altered cellular-morphology, early dendrite formation, and a significant increase in the CD40 marker. In addition, SPICE algorithm flow cytometric analysis showed distinct differences in chemokine receptors distribution in HC compared to PsA and RA CD14+ cells in the blood, with increased expression of the chemokine receptors CCR7 and CXCR4 observed in PsA and RA. In addition CD14+ cells at the site of inflammation showed a different chemokine receptor pattern between PsA and RA patients, with higher expression of CXCR3 and CXCR5 in RA when compared to PsA. The early priming observed in RA resulted in monocyte-endocytosis and antigen-uptake mechanisms to be impaired, effects that were not observed in PsA where phagocytosis capacity remained highly functional. Tofacitinib inhibited early Mo-DC differentiation, decreasing both CD209 and CD40 activation markers in RA. Inhibition of Mo-DC differentiation in response to Tofacitinib was mediated via an imbalance in the activation of NADPH-oxidases NOX5 and NOX2. This effect was reversed by NOX5 inhibition, but not NOX2, resulting in suppression of NOX5-dependent ROS production. In conclusion, RA monocytes are already primed ex vivo to become DC, evident by increased expression of activation markers, morphological appearance and impaired endocytosis capacity. Furthermore, we demonstrated for the first time that NOX5 mediates Mo-DC differentiation and function in response to Tofacitinib, which may alter DC functions.
Collapse
Affiliation(s)
- Viviana Marzaioli
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Siobhan C. Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Candice Low
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Douglas J. Veale
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol 2020; 20:507-514. [PMID: 32576980 PMCID: PMC7309428 DOI: 10.1038/s41577-020-0357-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte–macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches. Recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as antibodies targeted at GM-CSF or its receptor are being tested in clinical trials for coronavirus disease 2019 (COVID-19). This Perspective introduces the pleiotropic functions of GM-CSF and explores the rationale behind these different approaches.
Collapse
Affiliation(s)
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria, Australia. .,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Takeshita M, Suzuki K, Kondo Y, Morita R, Okuzono Y, Koga K, Kassai Y, Gamo K, Takiguchi M, Kurisu R, Mototani H, Ebisuno Y, Yoshimura A, Takeuchi T. Multi-dimensional analysis identified rheumatoid arthritis-driving pathway in human T cell. Ann Rheum Dis 2019; 78:1346-1356. [PMID: 31167762 PMCID: PMC6788883 DOI: 10.1136/annrheumdis-2018-214885] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune disease accompanied by lymphocyte infiltration into joint synovium. While T cells are considered to be important for its pathogenesis, the features that are the most relevant to disease and how they change after treatment remain unclear. The aim of this study was to clarify the characteristics of T cells in RA, comprehensively. METHODS We enrolled a total of 311 patients with RA and 73 healthy participants, and carefully classified them by disease state, constructed multiple cohorts and analysed clinical samples from them in a stepwise manner. We performed immunophenotyping with multiple evaluation axes, and two independent transcriptome analyses complementary to each other. RESULTS We identified that 'effector memory-Tfh' subset was specifically expanded in the peripheral blood (PB) of patients with RA in correlation with disease activity, and reverted after treatment. Besides, we revealed distinct features of T cells in synovial fluid (SF) that the expression of Tfh/Tph-related genes and pro-inflammatory cytokines and chemokines, including CXCL13, were significantly enriched, whereas these phenotype were Th1-like. Finally, we identified specific pathways, such as mTORC1, IL-2-stat5, E2F, cell cycle and interferon-related genes, that were significantly enriched in SF, in particular, as well as PB of untreated patients with RA, and notably, these features reverted after treatment. CONCLUSION Our multi-dimensional investigation identified disease relevant T-cell subsets and gene signatures deeply involved in pathogenesis of RA. These findings could aid in our understanding of essential roles of T cells in RA and will facilitate to development better diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yuumi Okuzono
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Keiko Koga
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Yoshiaki Kassai
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Kanae Gamo
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Maiko Takiguchi
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Rina Kurisu
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Hideyuki Mototani
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Yukihiko Ebisuno
- Research, Immunology Unit, Takeda Pharmaceutical Co Ltd, Fujisawa-Shi, Kanagawa, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
35
|
Galea R, Nel HJ, Talekar M, Liu X, Ooi JD, Huynh M, Hadjigol S, Robson KJ, Ting YT, Cole S, Cochlin K, Hitchcock S, Zeng B, Yekollu S, Boks M, Goh N, Roberts H, Rossjohn J, Reid HH, Boyd BJ, Malaviya R, Shealy DJ, Baker DG, Madakamutil L, Kitching AR, O’Sullivan BJ, Thomas R. PD-L1- and calcitriol-dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease. JCI Insight 2019; 4:126025. [PMID: 31487265 PMCID: PMC6795297 DOI: 10.1172/jci.insight.126025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/21/2019] [Indexed: 12/29/2022] Open
Abstract
Autoimmune diseases resulting from MHC class II-restricted autoantigen-specific T cell immunity include the systemic inflammatory autoimmune conditions rheumatoid arthritis and vasculitis. While currently treated with broad-acting immunosuppressive drugs, a preferable strategy is to regulate antigen-specific effector T cells (Teffs) to restore tolerance by exploiting DC antigen presentation. We targeted draining lymph node (dLN) phagocytic DCs using liposomes encapsulating 1α,25-dihydroxyvitamin D3 (calcitriol) and antigenic peptide to elucidate mechanisms of tolerance used by DCs and responding T cells under resting and immunized conditions. PD-L1 expression was upregulated in dLNs of immunized relative to naive mice. Subcutaneous administration of liposomes encapsulating OVA323-339 and calcitriol targeted dLN PD-L1hi DCs of immunized mice and reduced their MHC class II expression. OVA323-339/calcitriol liposomes suppressed expansion, differentiation, and function of Teffs and induced Foxp3+ and IL-10+ peripheral Tregs in an antigen-specific manner, which was dependent on PD-L1. Peptide/calcitriol liposomes modulated CD40 expression by human DCs and promoted Treg induction in vitro. Liposomes encapsulating calcitriol and disease-associated peptides suppressed the severity of rheumatoid arthritis and Goodpasture's vasculitis models with suppression of antigen-specific memory T cell differentiation and function. Accordingly, peptide/calcitriol liposomes leverage DC PD-L1 for antigen-specific T cell regulation and induce antigen-specific tolerance in inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Ryan Galea
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Hendrik J. Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Meghna Talekar
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Xiao Liu
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Joshua D. Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Megan Huynh
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sara Hadjigol
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Kate J. Robson
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Yi Tian Ting
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Suzanne Cole
- Discovery Immunology, Janssen Research & Development LLC, Spring House, Pennsylvania, USA
| | - Karyn Cochlin
- Discovery Immunology, Janssen Research & Development LLC, Spring House, Pennsylvania, USA
| | - Shannon Hitchcock
- Discovery Immunology, Janssen Research & Development LLC, Spring House, Pennsylvania, USA
| | - Bijun Zeng
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Suman Yekollu
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Martine Boks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Natalie Goh
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hugh H. Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Ravi Malaviya
- Discovery Immunology, Janssen Research & Development LLC, Spring House, Pennsylvania, USA
| | - David J. Shealy
- Discovery Immunology, Janssen Research & Development LLC, Spring House, Pennsylvania, USA
| | - Daniel G. Baker
- Discovery Immunology, Janssen Research & Development LLC, Spring House, Pennsylvania, USA
| | - Loui Madakamutil
- Discovery Immunology, Janssen Research & Development LLC, Spring House, Pennsylvania, USA
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
- Departments of Nephrology and Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Brendan J. O’Sullivan
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
36
|
Abstract
Pre-clinical models and clinical trials demonstrate that targeting the action of the cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), can be efficacious in inflammation/autoimmunity reinforcing the importance of understanding how GM-CSF functions; a significant GM-CSF-responding cell in this context is likely to be the monocyte. This article summarizes critically the literature on the downstream cellular pathways regulating GM-CSF interaction with monocytes (and macrophages), highlighting some contentious issues, and conclusions surrounding this biology. It also suggests future directions which could be undertaken so as to more fully understand this aspect of GM-CSF biology. Given the focus of this collection of articles on monocytes, the following discussion in general will be limited to this population or to its more mature progeny, the macrophage, even though GM-CSF biology is broader than this.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
| |
Collapse
|
37
|
Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol 2019; 10:1265. [PMID: 31275302 PMCID: PMC6593264 DOI: 10.3389/fimmu.2019.01265] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Luque-Campos N, Contreras-López RA, Jose Paredes-Martínez M, Torres MJ, Bahraoui S, Wei M, Espinoza F, Djouad F, Elizondo-Vega RJ, Luz-Crawford P. Mesenchymal Stem Cells Improve Rheumatoid Arthritis Progression by Controlling Memory T Cell Response. Front Immunol 2019; 10:798. [PMID: 31040848 PMCID: PMC6477064 DOI: 10.3389/fimmu.2019.00798] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
In the last years, mesenchymal stem cell (MSC)-based therapies have become an interesting therapeutic opportunity for the treatment of rheumatoid arthritis (RA) due to their capacity to potently modulate the immune response. RA is a chronic autoimmune inflammatory disorder with an incompletely understood etiology. However, it has been well described that peripheral tolerance defects and the subsequent abnormal infiltration and activation of diverse immune cells into the synovial membrane, are critical for RA development and progression. Moreover, the imbalance between the immune response of pro-inflammatory and anti-inflammatory cells, in particular between memory Th17 and memory regulatory T cells (Treg), respectively, is well admitted to be associated to RA immunopathogenesis. In this context, MSCs, which are able to alter the frequency and function of memory lymphocytes including Th17, follicular helper T (Tfh) cells and gamma delta (γδ) T cells while promoting Treg cell generation, have been proposed as a candidate of choice for RA cell therapy. Indeed, given the plasticity of memory CD4+ T cells, it is reasonable to think that MSCs will restore the balance between pro-inflammatory and anti-inflammatory memory T cells populations deregulated in RA leading to prompt their therapeutic function. In the present review, we will discuss the role of memory T cells implicated in RA pathogenesis and the beneficial effects exerted by MSCs on the phenotype and functions of these immune cells abnormally regulated in RA and how this regulation could impact RA progression.
Collapse
Affiliation(s)
- Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Rafael A Contreras-López
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Jose Paredes-Martínez
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maria Jose Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mingxing Wei
- Cellvax, SAS, Parc BIOCITECH, Romainville, France
| | | | | | - Roberto Javier Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
39
|
Shabgah AG, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. The role of BAFF and APRIL in rheumatoid arthritis. J Cell Physiol 2019; 234:17050-17063. [PMID: 30941763 DOI: 10.1002/jcp.28445] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell-maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell-effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Arezoo G Shabgah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Lepzien R, Rankin G, Pourazar J, Muala A, Eklund A, Grunewald J, Blomberg A, Smed‐Sörensen A. Mapping mononuclear phagocytes in blood, lungs, and lymph nodes of sarcoidosis patients. J Leukoc Biol 2019; 105:797-807. [PMID: 30742337 PMCID: PMC6916617 DOI: 10.1002/jlb.5a0718-280rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a T-cell driven inflammatory disease characterized by granuloma formation. Mononuclear phagocytes (MNPs)-macrophages, monocytes, and dendritic cells (DCs)-are likely critical in sarcoidosis as they initiate and maintain T cell activation and contribute to granuloma formation by cytokine production. Granulomas manifest primarily in lungs and lung-draining lymph nodes (LLNs) but these compartments are less studied compared to blood and bronchoalveolar lavage (BAL). Sarcoidosis can present with an acute onset (usually Löfgren's syndrome (LS)) or a gradual onset (non-LS). LS patients typically recover within 2 years while 60% of non-LS patients maintain granulomas for up to 5 years. Here, four LS and seven non-LS patients underwent bronchoscopy with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). From each patient, blood, BAL, endobronchial biopsies (EBBs), and LLN samples obtained by EBUS-TBNA were collected and MNPs characterized using multicolor flow cytometry. Six MNP subsets were identified at varying frequencies in the anatomical compartments investigated. Importantly, monocytes and DCs were most mature with migratory potential in BAL and EBBs but not in the LLNs suggesting heterogeneity in MNPs in the compartments typically affected in sarcoidosis. Additionally, in LS patients, frequencies of DC subsets were lower or lacking in LLNs and EBBs, respectively, compared to non-LS patients that may be related to the disease outcome. Our work provides a foundation for future investigations of MNPs in sarcoidosis to identify immune profiles of patients at risk of developing severe disease with the aim to provide early treatment to slow down disease progression.
Collapse
Affiliation(s)
- Rico Lepzien
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Gregory Rankin
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Ala Muala
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Anders Eklund
- Division of Respiratory MedicineDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Johan Grunewald
- Division of Respiratory MedicineDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anders Blomberg
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Anna Smed‐Sörensen
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| |
Collapse
|
41
|
Menegatti S, Bianchi E, Rogge L. Anti-TNF Therapy in Spondyloarthritis and Related Diseases, Impact on the Immune System and Prediction of Treatment Responses. Front Immunol 2019; 10:382. [PMID: 30941119 PMCID: PMC6434926 DOI: 10.3389/fimmu.2019.00382] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs), such as spondyloarthritis (SpA), psoriasis, Crohn's disease (CD), and rheumatoid arthritis (RA) remain challenging illnesses. They often strike at a young age and cause lifelong morbidity, representing a considerable burden for the affected individuals and society. Pioneering studies have revealed the presence of a TNF-dependent proinflammatory cytokine cascade in several IMIDs, and the introduction of anti-TNF therapy 20 years ago has proven effective to reduce inflammation and clinical symptoms in RA, SpA, and other IMID, providing unprecedented clinical benefits and a valid alternative in case of failure or intolerable adverse effects of conventional disease-modifying antirheumatic drugs (DMARDs, for RA) or non-steroidal anti-inflammatory drugs (NSAIDs, for SpA). However, our understanding of how TNF inhibitors (TNFi) affect the immune system in patients is limited. This question is relevant because anti-TNF therapy has been associated with infectious complications. Furthermore, clinical efficacy of TNFi is limited by a high rate of non-responsiveness (30–40%) in RA, SpA, and other IMID, exposing a substantial fraction of patients to side-effects without clinical benefit. Despite the extensive use of TNFi, it is still not possible to determine which patients will respond to TNFi before treatment initiation. The recent introduction of antibodies blocking IL-17 has expanded the therapeutic options for SpA, as well as psoriasis and psoriatic arthritis. It is therefore essential to develop tools to guide treatment decisions for patients affected by SpA and other IMID, both to optimize clinical care and contain health care costs. After a brief overview of the biology of TNF, its receptors and currently used TNFi in the clinics, we summarize the progress that has been made to increase our understanding of the action of TNFi on the immune system in patients. We then summarize efforts dedicated to identify biomarkers that can predict treatment responses to TNFi and we conclude with a section dedicated to the recently introduced inhibitors of IL-17A and IL-23 in SpA and related diseases. The focus of this review is on SpA, however, we also refer to RA on topics for which only limited information is available on SpA in the literature.
Collapse
Affiliation(s)
- Silvia Menegatti
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elisabetta Bianchi
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| | - Lars Rogge
- Immunoregulation Unit, Department of Immunology, Institut Pasteur, Paris, France.,Unité Mixte de Recherche, Institut Pasteur/AP-HP Hôpital Cochin, Paris, France
| |
Collapse
|
42
|
Weinblatt ME, McInnes IB, Kremer JM, Miranda P, Vencovsky J, Guo X, White WI, Ryan PC, Godwood A, Albulescu M, Close D, Burmester GR. A Randomized Phase IIb Study of Mavrilimumab and Golimumab in Rheumatoid Arthritis. Arthritis Rheumatol 2019; 70:49-59. [PMID: 28941039 PMCID: PMC5767745 DOI: 10.1002/art.40323] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022]
Abstract
Objective This 24‐week, phase IIb, double‐blind study was undertaken to evaluate the efficacy and safety of mavrilimumab (a monoclonal antibody to granulocyte–macrophage colony‐stimulating factor receptor α) and golimumab (a monoclonal antibody to tumor necrosis factor [anti‐TNF]) in patients with rheumatoid arthritis (RA) who have had an inadequate response to disease‐modifying antirheumatic drugs (DMARDs) (referred to as DMARD‐IR) and/or inadequate response to other anti‐TNF agents (referred to as anti‐TNF–IR). Methods Patients with active RA and a history of DMARD‐IR (≥1 failed regimen) or DMARD‐IR (≥1 failed regimen) and anti‐TNF–IR (1–2 failed regimens) were randomized 1:1 to receive either mavrilimumab 100 mg subcutaneously every other week or golimumab 50 mg subcutaneously every 4 weeks alternating with placebo every 4 weeks, administered concomitantly with methotrexate. The primary end points were the American College of Rheumatology 20% improvement (ACR20), 50% improvement, and 70% improvement response rates at week 24, percentage of patients achieving a Disease Activity Score in 28 joints using C‐reactive protein level (DAS28‐CRP) of <2.6 at week 24, percentage of patients with a score improvement of >0.22 on the Health Assessment Questionnaire (HAQ) disability index (DI) at week 24, and safety/tolerability measures. This study was not powered to formally compare the 2 treatments. Results At week 24, differences in the ACR20, ACR50, and ACR70 response rates between the mavrilimumab treatment group (n = 70) and golimumab treatment group (n = 68) were as follows: in all patients, −3.5% (90% confidence interval [90% CI] −16.8, 9.8), −8.6% (90% CI −22.0, 4.8), and −9.8% (90% CI −21.1, 1.4), respectively; in the anti‐TNF–IR group, 11.1% (90% CI −7.8, 29.9), −8.7% (90% CI −28.1, 10.7), and −0.7% (90% CI −18.0, 16.7), respectively. Differences in the percentage of patients achieving a DAS28‐CRP of <2.6 at week 24 between the mavrilimumab and golimumab groups were −11.6% (90% CI −23.2, 0.0) in all patients, and −4.0% (90% CI −20.9, 12.9) in the anti‐TNF–IR group. The percentage of patients achieving a >0.22 improvement in the HAQ DI score at week 24 was similar between the treatment groups. Treatment‐emergent adverse events were reported in 51.4% of mavrilimumab‐treated patients and 42.6% of golimumab‐treated patients. No deaths were reported, and no specific safety signals were identified. Conclusion The findings of this study demonstrate the clinical efficacy of both treatments, mavrilimumab at a dosage of 100 mg every other week and golimumab at a dosage of 50 mg every 4 weeks, in patients with RA. Both regimens were well‐tolerated in patients who had shown an inadequate response to DMARDs and/or other anti‐TNF agents.
Collapse
Affiliation(s)
| | | | | | - Pedro Miranda
- Universidad de Chile and Hospital San Juan de Dios, Santiago, Chile
| | - Jiri Vencovsky
- Institute of Rheumatology, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | - Gerd R Burmester
- Charité-University Medicine Berlin, Free University of Berlin, and Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
43
|
Vecellio M, Cohen CJ, Roberts AR, Wordsworth PB, Kenna TJ. RUNX3 and T-Bet in Immunopathogenesis of Ankylosing Spondylitis-Novel Targets for Therapy? Front Immunol 2019; 9:3132. [PMID: 30687330 PMCID: PMC6335330 DOI: 10.3389/fimmu.2018.03132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2, and LNPEPS), which are involved in antigen processing and presentation to T-cells, and several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23 driven pathways of inflammation. AS is also strongly associated with polymorphisms in two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in T-cell development and function. The influence of these genes on the pathogenesis of AS and their potential for identifying drug targets is discussed here.
Collapse
Affiliation(s)
- Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Carla J Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Amity R Roberts
- Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul B Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research, Oxford, United Kingdom.,Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, National Institute for Health Research, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Tony J Kenna
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD, Australia.,Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Papp KA, Gooderham M, Jenkins R, Vender R, Szepietowski JC, Wagner T, Hunt B, Souberbielle B. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as a therapeutic target in psoriasis: randomized, controlled investigation using namilumab, a specific human anti-GM-CSF monoclonal antibody. Br J Dermatol 2018; 180:1352-1360. [PMID: 30207587 PMCID: PMC7379964 DOI: 10.1111/bjd.17195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The relevance of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the management of psoriasis has not been studied previously. GM-CSF is important in the initiation and maintenance of chronic inflammatory processes. OBJECTIVES To investigate the clinical use of GM-CSF neutralization by evaluating the efficacy and safety of namilumab (AMG203), a monoclonal antibody GM-CSF inhibitor, in patients with moderate-to-severe plaque psoriasis. METHODS A phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group, dose-finding, proof-of-concept study (NEPTUNE) was conducted. Four doses of namilumab (20, 50, 80 and 150 mg, via subcutaneous injection) were compared with placebo. Assessment of the primary end point - the proportion of patients achieving ≥ 75% reduction in Psoriasis Area and Severity Index (PASI 75 treatment response) - was performed at week 12. Exploratory investigation at the tissue level was conducted in a subset of the overall study population. The trial was registered with the number NCT02129777. RESULTS In total, 122 patients were enrolled and 106 (86·9%) completed the double-blind treatment; 16 (13·1%) prematurely discontinued study medication. Serum concentration-time profiles were as expected for subcutaneous delivery of an IgG1 monoclonal antibody, and exposure increased proportionally with dose elevation. The number of patients showing PASI 75 treatment response at week 12 was low in all groups; no significant difference was recorded in this end point between placebo and any namilumab group. Similar outcomes were recorded for other clinical study end points. Moreover, no significant treatment-related changes from baseline were observed in laboratory investigations of cell types or subpopulations, or cytokines relevant to inflammatory pathways in psoriasis. CONCLUSIONS GM-CSF blockade is not critical for suppression of key inflammatory pathways underlying psoriasis.
Collapse
Affiliation(s)
- K A Papp
- K Papp Clinical Research and Probity Medical Research, 135 Union St E, Waterloo, ON, N2J1C4, Canada
| | - M Gooderham
- SKiN Centre for Dermatology, Queen's University and Probity Medical Research, Peterborough, ON, Canada
| | - R Jenkins
- Clinical Science, Takeda International - U.K. Branch, London, U.K
| | - R Vender
- Dermatrials Research Inc, Hamilton, ON, Canada
| | - J C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - T Wagner
- Modelling and Simulation, Takeda Pharmaceuticals International, Zurich, Switzerland
| | - B Hunt
- Statistics, Takeda International, Deerfield, IL, U.S.A
| | - B Souberbielle
- Clinical Science, Takeda International - U.K. Branch, London, U.K
| | | |
Collapse
|
45
|
Wang Q, Zhou X, Zhao Y, Xiao J, Lu Y, Shi Q, Wang Y, Wang H, Liang Q. Polyphyllin I Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response in Macrophages Through the NF-κB Pathway. Front Immunol 2018; 9:2091. [PMID: 30319603 PMCID: PMC6170622 DOI: 10.3389/fimmu.2018.02091] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder, characterized by an increased number of M1-like macrophages in the joints. Polyphyllin I (PPI), one of the main components in the Rhizoma of Paris polyphyllin, displays a selective inhibitory effect on various tumor cells. Here we sought to investigate the anti-rheumatoid arthritis effects and mechanisms of PPI on macrophages in vivo and in vitro. Materials and Methods:In vitro, primary bone marrow-derived macrophages (BMMs) and peritoneal elucidated macrophages (PEMs) were stimulated by lipopolysaccharide (LPS) and Interferon (IFN)-γ and then treated with PPI. We determined the degree of activation of IKKα/β and p65, two key mediators of the NF-κB-mediated inflammatory pathway, by measuring their phosphorylated forms by Western blot. The p65 nuclear localization was detected by immunofluorescent staining. Further, a NF-κB-linked luciferase reporter plasmid, as well as those expressing key mediators of the Toll-like receptor 4 pathway, such as myeloid differentiation primary response 88 (MYD88), interleukin-1 receptor (IL-1R) associated kinase (IRAK)-1, TNF receptor associated factors (TRAF)-6, Transforming growth factor-b–activated kinase 1 (TAK1) and p65, were used to identify the mechanism by which PPI achieves its inhibitory effects on macrophage-mediated inflammation. Moreover, a NF-κB inhibitor, p65-targeted siRNAs, and a p65 plasmid were further used to validate the anti-inflammatory mechanism of PPI. In vivo, PPI (1 mg/kg) was administered intragastrically one time a day for 7 weeks starting on the 42nd day after the first immunization with collagen in a collagen-induced arthritis (CIA) mouse model. Micro-computed Tomography scanning, histological examination, F4/80 and iNOS double immunofluorescent staining and CD4 immunohistochemical staining were performed to determine the effect of PPI treatment on joint structure and inflammation in this model. Results: PPI reduced the inflammatory cytokines production of PEMs stimulated by LPS/IFN-γ, inhibited the phosphorylation of IKKα/β and p65, and prevented p65 nuclear localization. The NF-κB luciferase assay showed that the target of PPI was closely related to the NF-κB pathway. Moreover, NF-κB inhibition, siRNA-mediated knockdown of p65, and p65 overexpression eliminated PPI's inhibitory effect. In addition, PPI attenuated the bone erosion and synovitis, as well as M1-like macrophage and T cell infiltration, in the ankle joint of the CIA model. Conclusion: PPI demonstrated effective amelioration of synovial inflammation in the ankle joint of CIA mice while suppressing NF-κB-mediated production of pro-inflammatory effectors in activated macrophages.
Collapse
Affiliation(s)
- Qiong Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
46
|
Furuya MY, Asano T, Sumichika Y, Sato S, Kobayashi H, Watanabe H, Suzuki E, Kozuru H, Yatsuhashi H, Koga T, Ohira H, Sekine H, Kawakami A, Migita K. Tofacitinib inhibits granulocyte-macrophage colony-stimulating factor-induced NLRP3 inflammasome activation in human neutrophils. Arthritis Res Ther 2018; 20:196. [PMID: 30157949 PMCID: PMC6116484 DOI: 10.1186/s13075-018-1685-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/24/2018] [Indexed: 01/30/2023] Open
Abstract
Background Granulocyte–macrophage colony-stimulating factor (GM-CSF) has emerged as a crucial cytokine that activates myeloid cells to initiate tissue inflammation. However, the molecular actions of GM-CSF against innate immunity are still poorly characterized. Here, we investigated the in vitro effects of GM-CSF on the activation of human myeloid lineages, neutrophils, and the underlying intracellular signaling mechanism, including inflammasome activation. Methods Human neutrophils were stimulated with GM-CSF in the presence or absence of tofacitinib. The cellular supernatants were analyzed for interleukin-1 beta (IL-1β) and caspase-1 by enzyme-linked immunosorbent assay (ELISA) methods. Pro-IL-1β mRNA expressions in human neutrophils were analyzed by real-time polymerase chain reaction. Protein phosphorylation of neutrophils was assessed by Western blot using phospho-specific antibodies. Results Stimulation with GM-CSF alone, but not tumor necrosis factor-alpha, was shown to increase the release of IL-1β and cleaved caspase-1 (p20) from human neutrophils. Tofacitinib, which inhibits GM-CSF–induced Janus kinase 2 (Jak2)-mediated signal transduction, completely abrogated GM-CSF–induced IL-1β and caspase-1 (p20) secretion from neutrophils. GM-CSF stimulation also induced pro-IL-1β mRNA expression in neutrophils and induced NLR family pyrin domain-containing 3 (NLRP3) protein expression. Although tofacitinib pretreatment marginally inhibited GM-CSF–induced pro-IL-1β mRNA expression, tofacitinib completely abrogated NLRP3 protein expression in neutrophils. Conclusions These results indicate that GM-CSF signaling induces NLRP3 expression and subsequent IL-1β production by affecting neutrophils, which may cause the activation of innate immunity. Therefore, GM-CSF is a key regulator of the NLRP3 inflammasome and IL-1β production by activating innate immune cells. This process can be blocked by tofacitinib, which interferes with JAK/STAT signaling pathways. Electronic supplementary material The online version of this article (10.1186/s13075-018-1685-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makiko Yashiro Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Yuya Sumichika
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Ohta Nishinouchi General Hospital Foundation, 2-5-20 Nishinouchi, Koriyama, Fukushima, 963-8558, Japan
| | - Hideko Kozuru
- Clinical Research Center, NHO Nagasaki Medical Center, Kubara 2-1001-1 Omura, Nagasaki, 856-8562, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, NHO Nagasaki Medical Center, Kubara 2-1001-1 Omura, Nagasaki, 856-8562, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto1-7-1, Nagasaki, 852-8501, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| |
Collapse
|
47
|
Collagen-induced arthritis in Dark Agouti rats as a model for study of immunological sexual dimorphisms in the human disease. Exp Mol Pathol 2018; 105:10-22. [DOI: 10.1016/j.yexmp.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
|
48
|
Yang M, Klocke K, Hernandez CM, Xu B, Gjertsson I, Wing K, Holmdahl R. Regulatory T cells control epitope spreading in autoimmune arthritis independent of cytotoxic T-lymphocyte antigen-4. Immunology 2018; 155:446-457. [PMID: 29992549 DOI: 10.1111/imm.12983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
CD4+ Foxp3+ regulatory T (Treg) cells can control both cellular and humoral immune responses; however, when and how Treg cells play a predominant role in regulating autoimmune disease remains elusive. To deplete Treg cells in vivo at given time-points, we used a mouse strain, susceptible to glucose-6-phosphate isomerase peptide-induced arthritis (GIA), in which the deletion of Treg cells can be controlled by diphtheria toxin treatment. By depleting Treg cells in the GIA mouse model, we found that a temporary lack of Treg cells at both priming and onset exaggerated disease development. Ablation of Treg cells led to the expansion of antigen-specific CD4+ T cells including granulocyte-macrophage colony-stimulating factor, interferon-γ and interleukin-17-producing T cells, and promoted both T-cell and B-cell epitope spreading, which perpetuated arthritis. Interestingly, specific depletion of cytotoxic T-lymphocyte antigen-4 (CTLA-4) on Treg cells only, was sufficient to protect mice from GIA, due to the expansion of CTLA-4- Treg cells expressing alternative suppressive molecules. Collectively, our findings suggest that Treg cells, independently of CTLA-4, act as the key driving force in controlling autoimmune arthritis development.
Collapse
Affiliation(s)
- Min Yang
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Katrin Klocke
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Clara Marquina Hernandez
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kajsa Wing
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
49
|
Cooles FAH, Anderson AE, Skelton A, Pratt AG, Kurowska-Stolarska MS, McInnes I, Hilkens CMU, Isaacs JD. Phenotypic and Transcriptomic Analysis of Peripheral Blood Plasmacytoid and Conventional Dendritic Cells in Early Drug Naïve Rheumatoid Arthritis. Front Immunol 2018; 9:755. [PMID: 29867920 PMCID: PMC5968398 DOI: 10.3389/fimmu.2018.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Objective Dendritic cells (DCs) are key orchestrators of immune function. To date, rheumatoid arthritis (RA) researchers have predominantly focused on a potential pathogenic role for CD1c+ DCs. In contrast, CD141+ DCs and plasmacytoid DCs (pDCs) have not been systematically examined, at least in early RA. In established RA, the role of pDCs is ambiguous and, since disease duration and treatment both impact RA pathophysiology, we examined pDCs, and CD1c+ and CD141+ conventional DCs (cDCs), in early, drug-naïve RA (eRA) patients. Methods We analyzed the frequency and phenotype of pDCs, CD1c+, and CD141+ DCs from eRA patients and compared findings with healthy controls. In parallel, we performed transcriptional analysis of >600 immunology-related genes (Nanostring) from peripheral blood pDCs, CD1c+ DCs, B cells, T cells, and monocytes. Results All DC subsets were reduced in eRA (n = 44) compared with healthy controls (n = 30) and, for pDCs, this was most marked in seropositive patients. CD141+ and CD1c+ DCs, but not pDCs, had a comparatively activated phenotype at baseline (increased CD86) and CD1c+ DC frequency inversely associated with disease activity. All DC frequencies remained static 12 months after initiation of immunomodulatory therapy despite a fall in activation markers (e.g., HLA-DR, CD40). There was no association between the whole blood interferon gene signature (IGS) and pDC or CD1c+ DC parameters but an inverse association between CD141+ DC frequency and IGS was noted. Furthermore, IFN-I and IFN-III mRNA transcripts were comparable between eRA pDC and other leukocyte subsets (B cells, CD4+, and CD8+ T cells and monocytes) with no obvious circulating cellular source of IFN-I or IFN-III. Transcriptomic analysis suggested increased pDC and CD1c+ DC proliferation in eRA; pDC differentially expressed genes also suggested enhanced tolerogenic function, whereas for CD1c+ DCs, pro-inflammatory transcripts were upregulated. Discussion This is the first detailed examination of DC subsets in eRA peripheral blood. Compared with CD1c+ DCs, pDCs are less activated and may be skewed toward tolerogenic functions. CD141+ DCs may be implicated in RA pathophysiology. Our findings justify further investigation of early RA DC biology.
Collapse
Affiliation(s)
- Faye A H Cooles
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy E Anderson
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew Skelton
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arthur G Pratt
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mariola S Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Glasgow, Glasgow, United Kingdom
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), University of Glasgow, Glasgow, United Kingdom
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John D Isaacs
- Institute of Cellular Medicine, Newcastle University and National Institute for Health Research Newcastle Biomedical Research Centre at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
50
|
Ohradanova-Repic A, Machacek C, Charvet C, Lager F, Le Roux D, Platzer R, Leksa V, Mitulovic G, Burkard TR, Zlabinger GJ, Fischer MB, Feuillet V, Renault G, Blüml S, Benko M, Suchanek M, Huppa JB, Matsuyama T, Cavaco-Paulo A, Bismuth G, Stockinger H. Extracellular Purine Metabolism Is the Switchboard of Immunosuppressive Macrophages and a Novel Target to Treat Diseases With Macrophage Imbalances. Front Immunol 2018; 9:852. [PMID: 29780382 PMCID: PMC5946032 DOI: 10.3389/fimmu.2018.00852] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
If misregulated, macrophage (Mϕ)-T cell interactions can drive chronic inflammation thereby causing diseases, such as rheumatoid arthritis (RA). We report that in a proinflammatory environment, granulocyte-Mϕ (GM-CSF)- and Mϕ colony-stimulating factor (M-CSF)-dependent Mϕs have dichotomous effects on T cell activity. While GM-CSF-dependent Mϕs show a highly stimulatory activity typical for M1 Mϕs, M-CSF-dependent Mϕs, marked by folate receptor β (FRβ), adopt an immunosuppressive M2 phenotype. We find the latter to be caused by the purinergic pathway that directs release of extracellular ATP and its conversion to immunosuppressive adenosine by co-expressed CD39 and CD73. Since we observed a misbalance between immunosuppressive and immunostimulatory Mϕs in human and murine arthritic joints, we devised a new strategy for RA treatment based on targeted delivery of a novel methotrexate (MTX) formulation to the immunosuppressive FRβ+CD39+CD73+ Mϕs, which boosts adenosine production and curtails the dominance of proinflammatory Mϕs. In contrast to untargeted MTX, this approach leads to potent alleviation of inflammation in the murine arthritis model. In conclusion, we define the Mϕ extracellular purine metabolism as a novel checkpoint in Mϕ cell fate decision-making and an attractive target to control pathological Mϕs in immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Machacek
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Celine Charvet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Franck Lager
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Delphine Le Roux
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - René Platzer
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vladimir Leksa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Goran Mitulovic
- Clinical Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Thomas R Burkard
- Bioinformatics Department of the Research Institute of Molecular Pathology and the Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Department of Transfusion Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomedical Technology, Danube University Krems, Krems, Austria
| | - Vincent Feuillet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Gilles Renault
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Stephan Blüml
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | - Johannes B Huppa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Takami Matsuyama
- The Center for Advanced Biomedical Sciences and Swine Research, Kagoshima University, Kagoshima, Japan
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Georges Bismuth
- Institut National de la Santé et de la Recherche Médicale, INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|