1
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Raposo B, Klareskog L, Robinson WH, Malmström V, Grönwall C. The peculiar features, diversity and impact of citrulline-reactive autoantibodies. Nat Rev Rheumatol 2024; 20:399-416. [PMID: 38858604 DOI: 10.1038/s41584-024-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Since entering the stage 25 years ago as a highly specific serological biomarker for rheumatoid arthritis, anti-citrullinated protein antibodies (ACPAs) have been a topic of extensive research. This hallmark B cell response arises years before disease onset, displays interpatient autoantigen variability, and is associated with poor clinical outcomes. Technological and scientific advances have revealed broad clonal diversity and intriguing features including high levels of somatic hypermutation, variable-domain N-linked glycosylation, hapten-like peptide interactions, and clone-specific multireactivity to citrullinated, carbamylated and acetylated epitopes. ACPAs have been found in different isotypes and subclasses, in both circulation and tissue, and are secreted by both plasmablasts and long-lived plasma cells. Notably, although some disease-promoting features have been reported, results now demonstrate that certain monoclonal ACPAs therapeutically block arthritis and inflammation in mouse models. A wealth of functional studies using patient-derived polyclonal and monoclonal antibodies have provided evidence for pathogenic and protective effects of ACPAs in the context of arthritis. To understand the roles of ACPAs, one needs to consider their immunological properties by incorporating different facets such as rheumatoid arthritis B cell biology, environmental triggers and chronic antigen exposure. The emerging picture points to a complex role of citrulline-reactive autoantibodies, in which the diversity and dynamics of antibody clones could determine clinical progression and manifestations.
Collapse
Affiliation(s)
- Bruno Raposo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Dominic S, Baba KSSS, Sreedevi NN, Sanober A, Rajasekhar L, Khan SA, Mohammed N, Bhaskar MV, Mohan IK. Clinical Utility of Pro-inflammatory Oligomeric Glycoprotein Tenascin-C in the Diagnosis of Seropositive and Seronegative Rheumatoid Arthritis. Indian J Clin Biochem 2024; 39:110-117. [PMID: 38223014 PMCID: PMC10784432 DOI: 10.1007/s12291-022-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Owing to limited usefulness of Rheumatoid Factor and anti-CCP in rheumatoid arthritis, there is a need to identify a more sensitive and specific biomarker to detect rheumatoid arthritis (RA), particularly seronegative RA cases. Tenascin-C is an extracellular matrix glycoprotein, which has been implicated in the pathophysiology of RA. The objective of our study was to evaluate the diagnostic utility of serum Tenascin-C in seropositive and seronegative rheumatoid arthritis patients. We conducted a cross-sectional case control study. Sixty patients who fulfilled the ACR 2010 criteria for rheumatoid arthritis were included in the study. Thirty patients were found to be positive for RF and/or anti-CCP and 30 were negative for both RF and anti-CCP. Thirty age and gender-matched healthy subjects were taken as controls. Serum Tenascin-C was measured by quantitative sandwich enzyme immunoassay technique. The mean serum concentration of Tenascin-C in controls, seronegative and seropositive cases was 0.66 ng/ml, 20.54 ng/ml and 23.42 ng/ml, respectively. Tenascin-C levels were significantly higher in RA cases compared to controls (p < 0.0001). There was no significant difference in Tenascin-C between seropositive and seronegative cases (p = 0.603). ROC curve analysis showed a sensitivity of 96.6% and specificity of 100% with AUC of 0.98 at 2.21 ng/ml as cut-off value for diagnosing RA. Tenascin-C is elevated in both seronegative and seropositive RA, which indicates that it can be used as a sensitive marker for RA. The addition of Tenascin-C to the existing RF and anti-CCP may help in identifying a large number of patients with RA, particularly seronegative rheumatoid arthritis cases.
Collapse
Affiliation(s)
- Sachin Dominic
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - K. S. S. Sai Baba
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - N. N. Sreedevi
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - Arshi Sanober
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - Liza Rajasekhar
- Department of Clinical Immunology and Rheumatology, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - Siraj Ahmed Khan
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - Noorjahan Mohammed
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - M. Vijaya Bhaskar
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| | - Iyyapu Krishna Mohan
- Department of Biochemistry, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082 India
| |
Collapse
|
5
|
Ozanne J, Lewis M, Schwenzer A, Kurian D, Brady J, Pritchard D, McLachlan G, Farquharson C, Midwood KS. Extracellular matrix complexity in biomarker studies: a novel assay detecting total serum tenascin-C reveals different distribution to isoform-specific assays. Front Immunol 2023; 14:1275361. [PMID: 38077374 PMCID: PMC10703424 DOI: 10.3389/fimmu.2023.1275361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Serum biomarkers are the gold standard in non-invasive disease diagnosis and have tremendous potential as prognostic and theranostic tools for patient stratification. Circulating levels of extracellular matrix molecules are gaining traction as an easily accessible means to assess tissue pathology. However, matrix molecules are large, multimodular proteins that are subject to a vast array of post-transcriptional and post-translational modifications. These modifications often occur in a tissue- and/or disease-specific manner, generating hundreds of different variants, each with distinct biological roles. Whilst this complexity can offer unique insight into disease processes, it also has the potential to confound biomarker studies. Tenascin-C is a pro-inflammatory matrix protein expressed at low levels in most healthy tissues but elevated in, and associated with the pathogenesis of, a wide range of autoimmune diseases, fibrosis, and cancer. Analysis of circulating tenascin-C has been widely explored as a disease biomarker. Hundreds of different tenascin-C isoforms can be generated by alternative splicing, and this protein is also modified by glycosylation and citrullination. Current enzyme-linked immunosorbent assays (ELISA) are used to measure serum tenascin-C using antibodies, recognising sites within domains that are alternatively spliced. These studies, therefore, report only levels of specific isoforms that contain these domains, and studies on the detection of total tenascin-C are lacking. As such, circulating tenascin-C levels may be underestimated and/or biologically relevant isoforms overlooked. We developed a highly specific and sensitive ELISA measuring total tenascin-C down to 0.78ng/ml, using antibodies that recognise sites in constitutively expressed domains. In cohorts of people with different inflammatory and musculoskeletal diseases, levels of splice-specific tenascin-C variants were lower than and distributed differently from total tenascin-C. Neither total nor splice-specific tenascin-C levels correlated with the presence of autoantibodies to citrullinated tenascin-C in rheumatoid arthritis (RA) patients. Elevated tenascin-C was not restricted to any one disease and levels were heterogeneous amongst patients with the same disease. These data confirm that its upregulation is not disease-specific, instead suggest that different molecular endotypes or disease stages exist in which pathology is associated with, or independent of, tenascin-C. This immunoassay provides a novel tool for the detection of total tenascin-C that is critical for further biomarker studies. Differences between the distribution of tenascin-C variants and total tenascin-C have implications for the interpretation of studies using isoform-targeted assays. These data highlight the importance of assay design for the detection of multimodular matrix molecules and reveal that there is still much to learn about the intriguingly complex biological roles of distinct matrix proteoforms.
Collapse
Affiliation(s)
- James Ozanne
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mel Lewis
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - Anja Schwenzer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford University, Oxford, United Kingdom
| | - Dominic Kurian
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeff Brady
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - David Pritchard
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - Gerry McLachlan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
6
|
Kalafatis D, Joshua V, Hansson M, Mathsson-Alm L, Hensvold A, Sköld M. Presence of anti-modified protein antibodies in idiopathic pulmonary fibrosis. Respirology 2023; 28:925-933. [PMID: 37376768 DOI: 10.1111/resp.14543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Studies of autoimmunity and anti-citrullinated protein antibodies (ACPA) in idiopathic pulmonary fibrosis (IPF) have been confined to investigations of anti-cyclic citrullinated peptide (anti-CCP) antibodies which utilize synthetic peptides as surrogate markers for in vivo citrullinated antigens. We studied immune activation by analysing the prevalence of in vivo anti-modified protein antibodies (AMPA) in IPF. METHODS We included patients with incident and prevalent IPF (N = 120), sex and smoking-matched healthy controls (HC) (N = 120) and patients with RA (N = 104). Serum (median time: 11 months [Q1-Q3: 1-28 months] from diagnosis) was analysed for presence of antibodies towards native and posttranslational modified (citrullinated [Cit, N = 25]; acetylated [Acet, N = 4] and homocitrullinated [Carb, N = 1]) peptides derived from tenascin (TNC, N = 9), fibrinogen (Fib, N = 11), filaggrin (Fil, N = 5), histone (N = 8), cathelicidin (LL37, N = 4) and vimentin (N = 5) using a custom-made peptide microarray. RESULTS AMPA were more frequent and in increased levels in IPF than in HC (44% vs. 27%, p < 0.01), but less than in RA (44% vs. 79%, p < 0.01). We specifically observed AMPA in IPF towards certain citrullinated, acetylated and carbamylated peptides versus HC: tenascin (Cit(2033) -TNC2025-2040 ; Cit(2197) -TNC2177-2200 ; Cit(2198) -TNC2177-2200 ), fibrinogen (Cit(38,42) -Fibα36-50 ; Cit(72) -Fibβ60-74 ) and filaggrin (Acet-Fil307-324 , Carb-Fil307-324 ). No differences in survival (p = 0.13) or disease progression (p = 0.19) between individuals with or without AMPA was observed in IPF. However, patients with incident IPF had better survival if AMPA were present (p = 0.009). CONCLUSION A significant proportion of IPF patients present with specific AMPA in serum. Our results suggest autoimmunity as a possible characteristic for a subgroup of IPF that may affect disease outcome.
Collapse
Affiliation(s)
- Dimitrios Kalafatis
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vijay Joshua
- Division of Rheumatology, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aase Hensvold
- Division of Rheumatology, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Domaingo A, Jokesch P, Schweiger A, Gschwandtner M, Gerlza T, Koch M, Midwood KS, Kungl AJ. Chemokine Binding to Tenascin-C Influences Chemokine-Induced Immune Cell Migration. Int J Mol Sci 2023; 24:14694. [PMID: 37834140 PMCID: PMC10572825 DOI: 10.3390/ijms241914694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Tenascin-C (TNC) is a complex glycoprotein of the extracellular matrix (ECM) involved in a plethora of (patho-)physiological processes, such as oncogenesis and inflammation. Since chemokines play an essential role in both disease processes, we have investigated here the binding of TNC to some of the key chemokines, namely CCL2, CCL26, CXCL8, CXCL10, and CXCL12. Thereby, a differential chemokine-TNC binding pattern was observed, with CCL26 exhibiting the highest and CCL2 the lowest affinity for TNC. Heparan sulfate (HS), another member of the ECM, proved to be a similarly high-affinity ligand of TNC, with a Kd value of 730 nM. Chemokines use glycosa-minoglycans such as HS as co-receptors to induce immune cell migration. Therefore, we assumed an influence of TNC on immune cell chemotaxis due to co-localization within the ECM. CCL26- and CCL2-induced mobilization experiments of eosinophils and monocytes, respectively, were thus performed in the presence and the absence of TNC. Pre-incubation of the immune cells with TNC resulted in a 3.5-fold increase of CCL26-induced eosinophil chemotaxis, whereas a 1.3-fold de-crease in chemotaxis was observed when monocytes were pre-incubated with CCL2. As both chemokines have similar HS binding but different TNC binding affinities, we speculate that TNC acts as an attenuator in monocyte and as an amplifier in eosinophil mobilization by impeding CCL2 from binding to HS on the one hand, and by reinforcing CCL26 to bind to HS on the other hand.
Collapse
Affiliation(s)
- Alissa Domaingo
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Philipp Jokesch
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Alexandra Schweiger
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Martha Gschwandtner
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Andreas J. Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, 8045 Graz, Austria
| |
Collapse
|
8
|
Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. MATERIALS TODAY COMMUNICATIONS 2023; 35:105877. [DOI: 10.1016/j.mtcomm.2023.105877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Cîrciumaru A, Afonso MG, Wähämaa H, Krishnamurthy A, Hansson M, Mathsson-Alm L, Keszei M, Stålesen R, Ottosson L, de Vries C, Shelef MA, Malmström V, Klareskog L, Catrina AI, Grönwall C, Hensvold A, Réthi B. Anti-Citrullinated Protein Antibody Reactivity towards Neutrophil-Derived Antigens: Clonal Diversity and Inter-Individual Variation. Biomolecules 2023; 13:biom13040630. [PMID: 37189377 DOI: 10.3390/biom13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Why the adaptive immune system turns against citrullinated antigens in rheumatoid arthritis (RA) and whether anti-citrullinated protein antibodies (ACPAs) contribute to pathogenesis are questions that have triggered intense research, but still are not fully answered. Neutrophils may be crucial in this context, both as sources of citrullinated antigens and also as targets of ACPAs. To better understand how ACPAs and neutrophils contribute to RA, we studied the reactivity of a broad spectrum of RA patient-derived ACPA clones to activated or resting neutrophils, and we also compared neutrophil binding using polyclonal ACPAs from different patients. Methods: Neutrophils were activated by Ca2+ ionophore, PMA, nigericin, zymosan or IL-8, and ACPA binding was studied using flow cytometry and confocal microscopy. The roles of PAD2 and PAD4 were studied using PAD-deficient mice or the PAD4 inhibitor BMS-P5. Results: ACPAs broadly targeted NET-like structures, but did not bind to intact cells or influence NETosis. We observed high clonal diversity in ACPA binding to neutrophil-derived antigens. PAD2 was dispensable, but most ACPA clones required PAD4 for neutrophil binding. Using ACPA preparations from different patients, we observed high patient-to-patient variability in targeting neutrophil-derived antigens and similarly in another cellular effect of ACPAs, the stimulation of osteoclast differentiation. Conclusions: Neutrophils can be important sources of citrullinated antigens under conditions that lead to PAD4 activation, NETosis and the extrusion of intracellular material. A substantial clonal diversity in targeting neutrophils and a high variability among individuals in neutrophil binding and osteoclast stimulation suggest that ACPAs may influence RA-related symptoms with high patient-to-patient variability.
Collapse
|
10
|
Umemoto A, Kuwada T, Murata K, Shiokawa M, Ota S, Murotani Y, Itamoto A, Nishitani K, Yoshitomi H, Fujii T, Onishi A, Onizawa H, Murakami K, Tanaka M, Ito H, Seno H, Morinobu A, Matsuda S. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 2023; 25:25. [PMID: 36804906 PMCID: PMC9936655 DOI: 10.1186/s13075-023-03007-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Anti-citrullinated protein/peptide antibodies (ACPAs) are present in patients at onset and have important pathogenic roles during the course of rheumatoid arthritis (RA). The characteristics of several molecules recognized by ACPA have been studied in RA, but the positivity rate of autoantibodies against each antigen is not high, and the pathogenic mechanism of each antibody is not fully understood. We investigated the role of anti-citrullinated osteopontin (anti-cit-OPN) antibodies in RA pathogenesis. METHODS Enzyme-linked immunosorbent assays on RA patients' sera were used to detect autoantibodies against OPN. Fibroblast-like synoviocytes (FLS) isolated from RA patients were used to test the binding activity and inflammatory response of OPN mediated by anti-cit-OPN antibodies, and their effect was tested using an inflammatory arthritis mouse model immunized with cit-OPN. Anti-cit-OPN antibody positivity and clinical characteristics were investigated in the patients as well. RESULTS Using sera from 224 RA patients, anti-cit-OPN antibodies were positive in approximately 44% of RA patients, while approximately 78% of patients were positive for the cyclic citrullinated peptide (CCP2) assay. IgG from patients with anti-cit-OPN antibody increased the binding activity of OPN to FLSs, which further increased matrix metalloproteinase and interleukin-6 production in TNF-stimulated FLSs. Mice immunized with cit-OPN antibodies experienced severe arthritis. Anti-cit-OPN antibodies in RA patients decreased the drug survival rate of tumor necrosis factor (TNF) inhibitors, while it did not decrease that of CTLA4-Ig. CONCLUSIONS Anti-cit-OPN antibodies were detected in patients with RA. IgG from patients with anti-cit-OPN antibodies aggravated RA, and anti-cit-OPN antibody was a marker of reduced the survival rate of TNF inhibitors in RA patients.
Collapse
Affiliation(s)
- Akio Umemoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan. .,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Sakiko Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yoshiki Murotani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Akihiro Itamoto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8501, Japan
| | - Takayuki Fujii
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.,Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
Implications of Post-Translational Modifications in Autoimmunity with Emphasis on Citrullination, Homocitrullination and Acetylation for the Pathogenesis, Diagnosis and Prognosis of Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms232415803. [PMID: 36555449 PMCID: PMC9781636 DOI: 10.3390/ijms232415803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTMs) influence cellular processes and consequently, their dysregulation is related to the etiologies of numerous diseases. It is widely known that a variety of autoimmune responses in human diseases depend on PTMs of self-proteins. In this review we summarize the latest findings about the role of PTMs in the generation of autoimmunity and, specifically, we address the most relevant PTMs in rheumatic diseases that occur in synovial tissue. Citrullination, homocitrullination (carbamylation) and acetylation are responsible for the generation of Anti-Modified Protein/Peptide Antibodies (AMPAs family), autoantibodies which have been implicated in the etiopathogenesis, diagnosis and prognosis of rheumatoid arthritis (RA). Synthetic peptides provide complete control over the exact epitopes presented as well as the specific positions in their sequence where post-translationally modified amino acids are located and are key to advancing the detection of serological RA biomarkers that could be useful to stratify RA patients in order to pursue a personalized rheumatology. In this review we specifically address the latest findings regarding synthetic peptides post-translationally modified for the specific detection of autoantibodies in RA patients.
Collapse
|
12
|
Zhao J, Ye X, Zhang Z. Syndecan-4 is correlated with disease activity and serological characteristic of rheumatoid arthritis. Adv Rheumatol 2022; 62:21. [DOI: 10.1186/s42358-022-00254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objectives
To describe the feature of expression of syndecan-4 in serum, synovial fluid (SF) and synovium in rheumatoid arthritis (RA) patients, and to analyze the correlation of syndecan-4 with disease activity and serological characteristic of RA.
Methods
Syndecan-4 in sera of 60 RA patients, 20 osteoarthritis (OA) patients, 20 healthy controls, and in SF of 25 RA patients and 25 OA patients were tested by enzyme linked immunosorbant assay. The expressions of syndecan-4 in synovium of RA and OA patients were detected by immunohistochemistry. The expression of syndecan-4 on synovial fibroblasts from RA and OA patients were detected by immunofluorescence. The correlation between serum syndecan-4 concentration and disease activity were analyzed in RA patients.
Results
The serum syndedcan-4 concentration was significantly higher in RA patients than in OA patients and healthy controls, and was higher in rheumatoid factor (RF)-positive RA patients than in RF-negative ones. Syndecan-4 concentration in SF of RA patients was comparable with OA patients. Syndecan-4 expression in synovial tissue was similar between RA and OA patients. The syndecan-4 concentration was significantly lower in SF than in serum of RA and OA patients. Syndecan-4 concentration in both serum and SF was positively correlated with disease activity of RA patients.
Conclusion
The serum syndecan-4 concentration was higher in RA patients than in OA patients, and significantly higher in RF-positive RA patients than in RF-negative ones. Syndecan-4 concentration in both serum and SF was positively correlated with disease activity of RA patients.
Collapse
|
13
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
14
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
15
|
Jahangir S, John P, Bhatti A, Aslam MM, Mehmood Malik J, Anderson JR, Peffers MJ. LC-MS/MS-Based Serum Protein Profiling for Identification of Candidate Biomarkers in Pakistani Rheumatoid Arthritis Patients. Life (Basel) 2022; 12:life12030464. [PMID: 35330214 PMCID: PMC8955720 DOI: 10.3390/life12030464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disorder of complex disease etiology. Currently available serological diagnostic markers lack in terms of sensitivity and specificity and thus additional biomarkers are warranted for early disease diagnosis and management. We aimed to screen and compare serum proteome profiles of rheumatoid arthritis serotypes with healthy controls in the Pakistani population for identification of potential disease biomarkers. Serum samples from rheumatoid arthritis patients and healthy controls were enriched for low abundance proteins using ProteoMinerTM columns. Rheumatoid arthritis patients were assigned to one of the four serotypes based on anti-citrullinated peptide antibodies and rheumatoid factor. Serum protein profiles were analyzed via liquid chromatography-tandem mass spectrometry. The changes in the protein abundances were determined using label-free quantification software ProgenesisQITM followed by pathway analysis. Findings were validated in an independent cohort of patients and healthy controls using an enzyme-linked immunosorbent assay. A total of 213 proteins were identified. Comparative analysis of all groups (false discovery rate < 0.05, >2-fold change, and identified with ≥2 unique peptides) identified ten proteins that were differentially expressed between rheumatoid arthritis serotypes and healthy controls including pregnancy zone protein, selenoprotein P, C4b-binding protein beta chain, apolipoprotein M, N-acetylmuramoyl-L-alanine amidase, catalytic chain, oncoprotein-induced transcript 3 protein, Carboxypeptidase N subunit 2, Apolipoprotein C-I and Apolipoprotein C-III. Pathway analysis predicted inhibition of liver X receptor/retinoid X receptor activation pathway and production of nitric oxide and reactive oxygen species pathway in macrophages in all serotypes. A catalogue of potential serum biomarkers for rheumatoid arthritis were identified. These biomarkers can be further evaluated in larger cohorts from different populations for their diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Sidrah Jahangir
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (S.J.); (A.B.)
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (S.J.); (A.B.)
- Correspondence: ; Tel.: +92-051-9085-6151
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (S.J.); (A.B.)
| | - Muhammad Muaaz Aslam
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15216, USA;
| | | | - James R. Anderson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (J.R.A.); (M.J.P.)
| | - Mandy J. Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; (J.R.A.); (M.J.P.)
| |
Collapse
|
16
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
17
|
Debreova M, Culenova M, Smolinska V, Nicodemou A, Csobonyeiova M, Danisovic L. Rheumatoid arthritis: From synovium biology to cell-based therapy. Cytotherapy 2022; 24:365-375. [DOI: 10.1016/j.jcyt.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022]
|
18
|
Sharma RK, Boddul SV, Yoosuf N, Turcinov S, Dubnovitsky A, Kozhukh G, Wermeling F, Kwok WW, Klareskog L, Malmström V. Biased TCR gene usage in citrullinated Tenascin C specific T-cells in rheumatoid arthritis. Sci Rep 2021; 11:24512. [PMID: 34972837 PMCID: PMC8720095 DOI: 10.1038/s41598-021-04291-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
We aimed to search for common features in the autoreactive T cell receptor (TCR) repertoire in patients with rheumatoid arthritis (RA), focusing on the newly identified candidate antigen citrullinated Tenascin C (cit-TNC). Mononuclear cells from peripheral blood or synovial fluid of eight RA-patients positive for the RA-associated HLA-DRB1*04:01 allele were in-vitro cultured with recently identified citrullinated peptides from Tenascin C. Antigen-specific T cells were isolated using peptide-HLA tetramer staining and subsequently single-cell sequenced for paired alpha/beta TCR analyses by bioinformatic tools. TCRs were re-expressed for further studies of antigen-specificity and T cell responses. Autoreactive T cell lines could be grown out from both peripheral blood and synovial fluid. We demonstrate the feasibility of retrieving true autoreactive TCR sequences by validating antigen-specificity in T cell lines with re-expressed TCRs. One of the Tenascin C peptides, cit-TNC22, gave the most robust T cell responses including biased TCR gene usage patterns. The shared TCR-beta chain signature among the cit-TNC22-specific TCRs was evident in blood and synovial fluid of different patients. The identification of common elements in the autoreactive TCR repertoire gives promise to the possibility of both immune monitoring of the autoimmune components in RA and of future antigen- or TCR-targeted specific intervention in subsets of patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Arthritis, Rheumatoid/etiology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Autoimmunity
- Biomarkers
- Child
- Conserved Sequence
- Disease Susceptibility/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Expression Regulation
- Humans
- Male
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/physiology
- Tenascin/immunology
- Young Adult
Collapse
Affiliation(s)
- Ravi K Sharma
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Sanjay V Boddul
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Niyaz Yoosuf
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Sara Turcinov
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Anatoly Dubnovitsky
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Genadiy Kozhukh
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - William W Kwok
- The Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
19
|
Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int J Mol Sci 2021; 22:ijms221910576. [PMID: 34638916 PMCID: PMC8508717 DOI: 10.3390/ijms221910576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is caused by prolonged periodic interactions between genetic, environmental, and immunologic factors. Posttranslational modifications (PTMs) such as citrullination, carbamylation, and acetylation are correlated with the pathogenesis of RA. PTM and cell death mechanisms such as apoptosis, autophagy, NETosis, leukotoxic hypercitrullination (LTH), and necrosis are related to each other and induce autoantigenicity. Certain microbial infections, such as those caused by Porphyromonasgingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella copri, can induce autoantigens in RA. Anti-modified protein antibodies (AMPA) containing anti-citrullinated protein/peptide antibodies (ACPAs), anti-carbamylated protein (anti-CarP) antibodies, and anti-acetylated protein antibodies (AAPAs) play a role in pathogenesis as well as in prediction, diagnosis, and prognosis. Interestingly, smoking is correlated with both PTMs and AMPAs in the development of RA. However, there is lack of evidence that smoking induces the generation of AMPAs.
Collapse
|
20
|
Systemic Proteomic Analysis Reveals Distinct Exosomal Protein Profiles in Rheumatoid Arthritis. J Immunol Res 2021; 2021:9421720. [PMID: 34458379 PMCID: PMC8390169 DOI: 10.1155/2021/9421720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/07/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a complex disease with unknown pathogenesis. In recent years, fewer have paid attention to the broad spectrum of systemic markers of RA. The aim of this study was to identify exosomal candidate proteins in the pathogenesis of RA. Methods Totally, 12 specimens of plasma from 6 RA patients and 6 age- and gender-matched controls from the Chinese population were obtained for nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS) analysis to identify exosomal profiles. Results A total of 278 exosomal proteins were detected. Among them, 32 proteins were significantly upregulated (FC ≥ 2.0 and P < 0.05) and 5 proteins were downregulated (FC ≤ 0.5 and P < 0.05). Bioinformatics analysis revealed that transthyretin (TTR), angiotensinogen (AGT), lipopolysaccharide-binding protein (LBP), monocyte differentiation antigen CD14 (CD14), cartilage oligomeric matrix protein (COMP), serum amyloid P (SAP/APCS), and tenascin (TNC) can interact with each other. Subsequently, these cross-linked proteins may be mainly involved in the inflammatory-related pathways to mediate the onset of RA. Noteworthy, the LBP/CD14 complex can promote the expression of IL-8 and TNF-α, eventually leading to the development of RA. Conclusions Our findings suggest distinct plasmatic exosomal protein profiles in RA patients. These proteins not only take important parts in the vicious circle in the pathogenic process of RA but also serve as novel biomarkers in RA diagnosis and prognosis.
Collapse
|
21
|
Poulsen TBG, Damgaard D, Jørgensen MM, Senolt L, Blackburn JM, Nielsen CH, Stensballe A. Identification of potential autoantigens in anti-CCP-positive and anti-CCP-negative rheumatoid arthritis using citrulline-specific protein arrays. Sci Rep 2021; 11:17300. [PMID: 34453079 PMCID: PMC8397748 DOI: 10.1038/s41598-021-96675-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The presence or absence of autoantibodies against citrullinated proteins (ACPAs) distinguishes two main groups of rheumatoid arthritis (RA) patients with different etiologies, prognoses, disease severities, and, presumably, disease pathogenesis. The heterogeneous responses of RA patients to various biologics, even among ACPA-positive patients, emphasize the need for further stratification of the patients. We used high-density protein array technology for fingerprinting of ACPA reactivity. Identification of the proteome recognized by ACPAs may be a step to stratify RA patients according to immune reactivity. Pooled plasma samples from 10 anti-CCP-negative and 15 anti-CCP-positive RA patients were assessed for ACPA content using a modified protein microarray containing 1631 different natively folded proteins citrullinated in situ by protein arginine deiminases (PADs) 2 and PAD4. IgG antibodies from anti-CCP-positive RA plasma showed high-intensity binding to 87 proteins citrullinated by PAD2 and 99 proteins citrullinated by PAD4 without binding significantly to the corresponding native proteins. Curiously, the binding of IgG antibodies in anti-CCP-negative plasma was also enhanced by PAD2- and PAD4-mediated citrullination of 29 and 26 proteins, respectively. For only four proteins, significantly more ACPA binding occurred after citrullination with PAD2 compared to citrullination with PAD4, while the opposite was true for one protein. We demonstrate that PAD2 and PAD4 are equally efficient in generating citrullinated autoantigens recognized by ACPAs. Patterns of proteins recognized by ACPAs may serve as a future diagnostic tool for further subtyping of RA patients.
Collapse
Affiliation(s)
- Thomas B G Poulsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg, Denmark.,Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Dres Damgaard
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Malene M Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ladislav Senolt
- Institute of Rheumatology and Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg, Denmark.
| |
Collapse
|
22
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.30.454526. [PMID: 34373855 PMCID: PMC8351778 DOI: 10.1101/2021.07.30.454526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
23
|
Li Z, Chen S, Cui H, Li X, Chen D, Hao W, Wang J, Li Z, Zheng Z, Zhang Z, Liu H. Tenascin-C-mediated suppression of extracellular matrix adhesion force promotes entheseal new bone formation through activation of Hippo signalling in ankylosing spondylitis. Ann Rheum Dis 2021; 80:891-902. [PMID: 33858850 PMCID: PMC8237173 DOI: 10.1136/annrheumdis-2021-220002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of this study was to identify the role of tenascin-C (TNC) in entheseal new bone formation and to explore the underlying molecular mechanism. METHODS Ligament tissue samples were obtained from patients with ankylosing spondylitis (AS) during surgery. Collagen antibody-induced arthritis and DBA/1 models were established to observe entheseal new bone formation. TNC expression was determined by immunohistochemistry staining. Systemic inhibition or genetic ablation of TNC was performed in animal models. Mechanical properties of extracellular matrix (ECM) were measured by atomic force microscopy. Downstream pathway of TNC was analysed by RNA sequencing and confirmed with pharmacological modulation both in vitro and in vivo. Cellular source of TNC was analysed by single-cell RNA sequencing (scRNA-seq) and confirmed by immunofluorescence staining. RESULTS TNC was aberrantly upregulated in ligament and entheseal tissues from patients with AS and animal models. TNC inhibition significantly suppressed entheseal new bone formation. Functional assays revealed that TNC promoted new bone formation by enhancing chondrogenic differentiation during endochondral ossification. Mechanistically, TNC suppressed the adhesion force of ECM, resulting in the activation of downstream Hippo/yes-associated protein signalling, which in turn increased the expression of chondrogenic genes. scRNA-seq and immunofluorescence staining further revealed that TNC was majorly secreted by fibroblast-specific protein-1 (FSP1)+fibroblasts in the entheseal inflammatory microenvironment. CONCLUSION Inflammation-induced aberrant expression of TNC by FSP1+fibroblasts promotes entheseal new bone formation by suppressing ECM adhesion forces and activating Hippo signalling.
Collapse
Affiliation(s)
- Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zhongping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 2021; 17:195-212. [PMID: 33526927 DOI: 10.1038/s41584-020-00570-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.
Collapse
|
25
|
Song J, Schwenzer A, Wong A, Turcinov S, Rims C, Martinez LR, Arribas-Layton D, Gerstner C, Muir VS, Midwood KS, Malmström V, James EA, Buckner JH. Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI Insight 2021; 6:145217. [PMID: 33507879 PMCID: PMC8021118 DOI: 10.1172/jci.insight.145217] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 01/20/2023] Open
Abstract
Tenascin-C (TNC), an extracellular matrix protein that has proinflammatory properties, is a recently described antibody target in rheumatoid arthritis (RA). In this study, we utilized a systematic discovery process and identified 5 potentially novel citrullinated TNC (cit-TNC) T cell epitopes. CD4+ T cells specific for these epitopes were elevated in the peripheral blood of subjects with RA and showed signs of activation. Cit-TNC–specific T cells were also present among synovial fluid T cells and secreted IFN-γ. Two of these cit-TNC T cell epitopes were also recognized by antibodies within the serum and synovial fluid of individuals with RA. Detectable serum levels of cit-TNC–reactive antibodies were prevalent among subjects with RA and positively associated with cyclic citrullinated peptide (CCP) reactivity and the HLA shared epitope. Furthermore, cit-TNC–reactive antibodies were correlated with rheumatoid factor and elevated in subjects with a history of smoking. This work confirms cit-TNC as an autoantigen that is targeted by autoreactive CD4+ T cells and autoantibodies in patients with RA. Furthermore, our findings raise the possibility that coinciding epitopes recognized by both CD4+ T cells and B cells have the potential to amplify autoimmunity and promote the development and progression of RA.
Collapse
Affiliation(s)
- Jing Song
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Alicia Wong
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sara Turcinov
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Cliff Rims
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lorena Rodriguez Martinez
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Christina Gerstner
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Virginia S Muir
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
26
|
Zhang B, Wang Y, Yuan Y, Sun J, Liu L, Huang D, Hu J, Wang M, Li S, Song W, Chen H, Zhou D, Zhang X. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann Rheum Dis 2021; 80:176-184. [PMID: 32998865 DOI: 10.1136/annrheumdis-2020-217844] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Autoreactive B cells play a crucial role in the pathogenesis of rheumatoid arthritis (RA), and B cell-depleting therapies using an antibodies, such as rituximab, have been suggested to be effective in RA treatment. However, transient B cell depletion with rituximab is associated with significant safety challenges related to global suppression of the immune system and thus increases the risks of infection and cancer development. To address selective and persistent issues associated with RA therapy, we developed a customised therapeutic strategy employing universal antifluorescein isothiocyanate (FITC) chimeric antigen receptor T cells (CAR-T cells) combined with FITC-labelled antigenic peptide epitopes to eliminate autoreactive B cell subsets recognising these antigens in RA. METHODS For a proof-of-concept study, four citrullinated peptide epitopes derived from citrullinated autoantigens, namely, citrullinated vimentin, citrullinated type II collagen, citrullinated fibrinogen and tenascin-C, and a cyclocitrulline peptide-1 were selected as ligands for targeting autoreactive B cells; Engineered T cells expressing a fixed anti-FITC CAR were constructed and applied as a universal CAR-T cell system to specifically eliminate these protein-specific autoreactive B cells via recognition of the aforementioned FITC-labelled autoantigenic peptide epitopes. RESULTS We demonstrated that anti-FITC CAR-T cells could be specifically redirected and kill hybridoma cells generated by immunisation with antigenic peptides, and autoreactive B cell subsets from RA patients via recognition of corresponding FITC-labelled citrullinated peptide epitopes. Additionally, the cytotoxicity of the CAR-T cells was dependent on the presence of the peptides and occurred in a dose-dependent manner. CONCLUSIONS The approach described here provides a direction for precise, customised approaches to treat RA and can likely be applied to other systemic autoimmune diseases.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Clinical Immunology Center& Epigenetics Center, Peking Union Medical College Hospital, Chinese Academy of MedicalSciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yeshuang Yuan
- Clinical Immunology Center& Epigenetics Center, Peking Union Medical College Hospital, Chinese Academy of MedicalSciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lulu Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Huang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Hu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center& Epigenetics Center, Peking Union Medical College Hospital, Chinese Academy of MedicalSciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Clinical Immunology Center& Epigenetics Center, Peking Union Medical College Hospital, Chinese Academy of MedicalSciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengjie Li
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xuan Zhang
- Clinical Immunology Center& Epigenetics Center, Peking Union Medical College Hospital, Chinese Academy of MedicalSciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
28
|
Evaluation of autoantibodies against vimentin and α-enolase in rheumatoid arthritis patients. Reumatologia 2021; 58:350-356. [PMID: 33456077 PMCID: PMC7792540 DOI: 10.5114/reum.2020.101276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/20/2020] [Indexed: 12/05/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is categorized as an autoimmune disease with a frequency of 0.2–1% worldwide. It is reported that various autoantibodies are produced in the RA population, particularly against citrullinated peptides. Among various candidate markers for RA diagnosis, the citrullinated proteins have the highest specificity and sensitivity for both diagnosis and prognosis of RA. Anti-mutated citrullinated vimentin and α-enolase constitute a new class of autoantibodies for early detection of RA. Material and methods 45 serum samples and 19 synovial fluid (SF) specimens collected from RA patients were considered for American College of Rheumatology criteria and 20 serum samples and 10 SF specimens were provided from healthy subjects as a control group. To assess the quantity of anti-citrullinated protein antibodies (ACPA), anti-mutated citrullinated vimentin (MCV) and anti-α-enolase in the serum and SF of RA patients were determined by the enzyme-linked immunosorbent assay (ELISA) method. For the evaluation of disease activity and joint destruction, we used the Disease Activity Score of 28 joints based on erythrocyte sedimentation rate (ESR) Disease Activity Score 28 (DAS28). Furthermore, to measure the molecular weight of vimentin and α-enolase, electrophoresis on 10% SDS-PAGE was performed as described before. Results The anti-α-enolase level among serum samples from RA patients was significantly higher than in healthy subjects (4.49 ±0.20 ng/ml vs. 0.76 ±0.12 ng/ml) (p < 0.001). There was a direct relation between α-enolase quantity and (rheumatoid factor) RF and C-reactive protein (CRP) levels. The mean ESR value in positive and negative ACPA patients was 38.2 ±22.6 mm/h and 9.2 ±5.8 mm/h respectively (p < 0.0001). The mean DAS28-ESR was 3.3. The level of anti-MCV in the serum of RA patients (244.6 ±53.3 U/ml) was higher than in serum of the healthy group (148.73 ±71.8) (p < 0.0001). The level of anti-MCV in the SF of patients was 687.5 ±148.4 U/ml. Conclusions In conclusion, both autoantibodies against MCV and α-enolase are two important markers that increase in serum and SF of RA patients and are specific for diagnosis of RA disease.
Collapse
|
29
|
Wu CY, Yang HY, Luo SF, Lai JH. From Rheumatoid Factor to Anti-Citrullinated Protein Antibodies and Anti-Carbamylated Protein Antibodies for Diagnosis and Prognosis Prediction in Patients with Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22020686. [PMID: 33445768 PMCID: PMC7828258 DOI: 10.3390/ijms22020686] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease mainly involving synovial inflammation and articular bone destruction. RA is a heterogeneous disease with diverse clinical presentations, prognoses and therapeutic responses. Following the first discovery of rheumatoid factors (RFs) 80 years ago, the identification of both anti-citrullinated protein antibodies (ACPAs) and anti-carbamylated protein antibodies (anti-CarP Abs) has greatly facilitated approaches toward RA, especially in the fields of early diagnosis and prognosis prediction of the disease. Although these antibodies share many common features and can function synergistically to promote disease progression, they differ mechanistically and have unique clinical relevance. Specifically, these three RA associating auto-antibodies (autoAbs) all precede the development of RA by years. However, while the current evidence suggests a synergic effect of RF and ACPA in predicting the development of RA and an erosive phenotype, controversies exist regarding the additive value of anti-CarP Abs. In the present review, we critically summarize the characteristics of these autoantibodies and focus on their distinct clinical applications in the early identification, clinical manifestations and prognosis prediction of RA. With the advancement of treatment options in the era of biologics, we also discuss the relevance of these autoantibodies in association with RA patient response to therapy.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
30
|
Murata K, Ito H, Hashimoto M, Murakami K, Watanabe R, Tanaka M, Yamamoto W, Matsuda S. Fluctuation in anti-cyclic citrullinated protein antibody level predicts relapse from remission in rheumatoid arthritis: KURAMA cohort. Arthritis Res Ther 2020; 22:268. [PMID: 33183344 PMCID: PMC7664066 DOI: 10.1186/s13075-020-02366-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background The positivity of anti-citrullinated protein/peptide antibodies (ACPAs) is a clinically useful diagnostic and prognostic marker in rheumatoid arthritis (RA). However, the significance of ACPA titer and its fluctuation remain unclear. This study aimed to assess the role of ACPA titer and its fluctuation on disease activity and the prognosis of RA. Methods Data obtained from the Kyoto University Rheumatoid Arthritis Management Alliance (KURAMA) cohort was analyzed. Patients whose ACPA was measured at least twice between 2011 and 2019 and whose ACPA was positive at least once were included in this study. The association between the clinical variable and ACPA titer or its change was investigated. Results ACPA titer was measured in a total of 3286 patients, 1806 of whom were ACPA-positive at least once. Among them, the ACPA titer level was measured more than once in 1355 patients. Very weak correlation was observed between the ACPA titer level and disease activity. Additionally, there was no trend in the fluctuation of ACPA titer level in each patient; ACPA titer level fluctuated in some patients, but not in others. Patients with high variable levels of ACPA titer were more likely to relapse from remission. In the analysis of two consecutive ACPA measurements, the titer changes predicted the relapse from remission within a year of the second measurement. Conclusions The ACPA titer level fluctuated in some patients. Very weak correlation was observed between the ACPA titer level and disease activity. Fluctuation in ACPA titer level predicted relapse from remission in patients with RA. Supplementary information The online version contains supplementary material available at 10.1186/s13075-020-02366-x.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan. .,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan.
| | - Hiromu Ito
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Ryu Watanabe
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Wataru Yamamoto
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.,Department of Health Information Management, Kurashiki Sweet Hospital, Nakasho, Kurashiki, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| |
Collapse
|
31
|
Hasegawa M, Yoshida T, Sudo A. Tenascin-C in Osteoarthritis and Rheumatoid Arthritis. Front Immunol 2020; 11:577015. [PMID: 33101302 PMCID: PMC7554343 DOI: 10.3389/fimmu.2020.577015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tenascin-C (TNC) is a large multimodular glycoprotein of the extracellular matrix that consists of four distinct domains. Emerging evidence suggests that TNC may be involved in the pathogenesis of osteoarthritis (OA) and rheumatoid arthritis (RA). In this review, we summarize the current understanding of the role of TNC in cartilage and in synovial biology, across both OA and RA. TNC is expressed in association with the development of articular cartilage; the expression decreases during maturation of chondrocytes and disappears almost completely in adult articular cartilage. TNC expression is increased in diseased cartilage, synovium, and synovial fluid in OA and RA. In addition, elevated circulating TNC levels have been detected in the blood of RA patients. Thus, TNC could be used as a novel biochemical marker for OA and RA, although it has no specificity as a biochemical marker for these joint disorders. In a post-traumatic OA model of aged joints, TNC deficiency was shown to enhance cartilage degeneration. Treatment with TNC domains results in different, domain-specific effects, which are also dose-dependent. For instance, some TNC fragments including the fibrinogen-like globe domain might function as endogenous inducers of synovitis and cartilage matrix degradation through binding with toll-like receptor-4, while full-length TNC promotes cartilage repair and prevents the development of OA without exacerbating synovitis. The TNC peptide TNIIIA2 also prevents cartilage degeneration without causing synovial inflammation. The clinical significance of TNC effects on cartilage and synovium is unclear and understanding the clinical significance of TNC is not straightforward.
Collapse
Affiliation(s)
- Masahiro Hasegawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology & Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
32
|
Reed E, Hedström AK, Hansson M, Mathsson-Alm L, Brynedal B, Saevarsdottir S, Cornillet M, Jakobsson PJ, Holmdahl R, Skriner K, Serre G, Alfredsson L, Rönnelid J, Lundberg K. Presence of autoantibodies in "seronegative" rheumatoid arthritis associates with classical risk factors and high disease activity. Arthritis Res Ther 2020; 22:170. [PMID: 32678001 PMCID: PMC7364538 DOI: 10.1186/s13075-020-02191-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/22/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is classified as seropositive or seronegative, depending on the presence/absence of rheumatoid factor (RF), primarily IgM RF, and/or anti-citrullinated protein antibodies (ACPA), commonly detected using anti-cyclic citrullinated peptide (CCP) assays. Known risk factors associate with the more severe seropositive form of RA; less is known about seronegative RA. Here, we examine risk factors and clinical phenotypes in relation to presence of autoantibodies in the RA subset that is traditionally defined as seronegative. METHODS Anti-CCP2 IgG, 19 ACPA fine-specificities, IgM/IgG/IgA RF, anti-carbamylated-protein (CarP) antibodies, and 17 other autoantibodies, were analysed in 2755 RA patients and 370 controls. Antibody prevalence, levels, and co-occurrence were examined, and associations with risk factors and disease activity during 5 years were investigated for different antibody-defined RA subsets. RESULTS Autoantibodies were detected in a substantial proportion of the traditionally defined seronegative RA subset, with ACPA fine-specificities found in 30%, IgA/IgG RF in 9.4%, and anti-CarP antibodies in 16%, with a 9.6% co-occurrence of at least two types of RA-associated autoantibodies. HLA-DRB1 shared epitope (SE) associated with the presence of ACPA in anti-CCP2-negative RA; in anti-CCP2-positive RA, the SE association was defined by six ACPA fine-specificities with high co-occurrence. Smoking associated with RF, but not with ACPA, in anti-CCP2-negative RA. Presence of ACPA and RF, but not anti-CarP antibodies, in conventionally defined "seronegative" RA, associated with worse clinical outcome. CONCLUSIONS "Seronegative" RA is not truly a seronegative disease subset. Additional screening for ACPA fine-specificities and IgA/IgG RF defines a group of patients that resembles seropositive patients with respect to risk factors and clinical picture and may contribute to earlier diagnosis for a subset of anti-CCP2-/IgM RF- patients with a high need for active treatment.
Collapse
Affiliation(s)
- Evan Reed
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
| | - Anna Karin Hedström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Uppsala, Sweden
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Martin Cornillet
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Université de Toulouse-INSERM UMR 1056, Toulouse, France
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl Skriner
- Department of Rheumatology and Clinical Immunology, Charité University, Berlin, Germany
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde, Université de Toulouse-INSERM UMR 1056, Toulouse, France
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Lundberg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, CMM L8:04, 171 76, Stockholm, Sweden.
| |
Collapse
|
33
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
34
|
Klareskog L, Rönnelid J, Saevarsdottir S, Padyukov L, Alfredsson L. The importance of differences; On environment and its interactions with genes and immunity in the causation of rheumatoid arthritis. J Intern Med 2020; 287:514-533. [PMID: 32176395 DOI: 10.1111/joim.13058] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
The current review uses rheumatoid arthritis (RA) as a prominent example for how studies on the interplay between environmental and genetic factors in defined subsets of a disease can be used to formulate aetiological hypotheses that subsequently can be tested for causality using molecular and functional studies. Major discussed findings are that exposures to airways from many different noxious agents including cigarette smoke, silica dust and more interact with major susceptibility genes, mainly HLA-DR genetic variants in triggering antigen-specific immune reactions specific for RA. We also discuss how several other environmental and lifestyle factors, including microbial, neural and metabolic factors, can influence risk for RA in ways that are different in different subsets of RA.The description of these processes in RA provides the best example so far in any immune-mediated disease of how triggering of immunity at one anatomical site in the context of known environmental and genetic factors subsequently can lead to symptoms that precede the classical inflammatory disease symptoms and later contribute also to the classical RA joint inflammation. The findings referred to in the review have led to a change of paradigms for very early therapy and prevention of RA and to efforts towards what we have named 'personalized prevention'. We believe that the progress described here for RA will be of relevance for research and practice also in other immune-mediated diseases.
Collapse
Affiliation(s)
- L Klareskog
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - J Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - S Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Karolinska Institutet, Stockholm, Sweden
| | - L Padyukov
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - L Alfredsson
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Cutolo M, Soldano S, Paolino S. Potential roles for tenascin in (very) early diagnosis and treatment of rheumatoid arthritis. Ann Rheum Dis 2020; 79:e42. [PMID: 30709814 DOI: 10.1136/annrheumdis-2019-215063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine, University of Genova, Polyclinic Hospital San Martino Genova, Genova, Italy
| | - Stefano Soldano
- Research Laboratories and Academic Division of Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine, University of Genova, Polyclinic Hospital San Martino Genova, Genova, Italy
| | - Sabrina Paolino
- Research Laboratories and Academic Division of Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine, University of Genova, Polyclinic Hospital San Martino Genova, Genova, Italy
| |
Collapse
|
36
|
Damian LO, Zmarandache CD, Vele P, Albu A, Belizna C, Crăciun A. Osteogenesis imperfecta and rheumatoid arthritis: is there a link? Arch Osteoporos 2020; 15:40. [PMID: 32144589 DOI: 10.1007/s11657-020-0681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED We present the cases of a mother and daughter with osteogenesis imperfecta, also diagnosed later with rheumatoid arthritis. In our patients finding and treating the over-imposed arthritis improved the joint pain initially attributed to osteogenesis imperfecta. Exploring joint inflammation in this setting could help ease the disease burden. PURPOSE Osteogenesis imperfecta (OI) is a rare hereditary disease evolving with recurrent fractures upon minor trauma, blue sclerae, and hearing loss. Although inflammation was not generally considered a feature of the disease, systemic inflammation was recently reported in children with OI and in murine models of OI. METHOD We present the cases of a mother and a daughter with OI, without a personal or family history of autoimmune diseases, who were also diagnosed with rheumatoid arthritis seropositive for anti-cyclic citrullinated peptide autoantibodies and rheumatoid factor. RESULTS The genetic tests identified in both patients a deletion in COL1A1 gene (c.3399del, p.Ala1134Profs*105), not previously reported, not present in population databases, creating a premature translational stop signal in the COL1A1 gene in the collagen I major ligand binding region 3. In our patients finding and treating the over-imposed arthritis improved the joint pain initially attributed to OI. Possible pathogenic links between OI and RA are discussed. CONCLUSION The prevalence of joint inflammation in OI is unknown and may be underestimated. As musculoskeletal involvement affects the quality of life in most OI patients, exploring this relation may help ease the disease burden.
Collapse
Affiliation(s)
- Laura Otilia Damian
- Rheumatology Department, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor Street, 400006, Cluj-Napoca, Romania. .,CMI Reumatologie Dr Damian, 6-8 Petru Maior Str., 400002, Cluj-Napoca, Romania.
| | - Carmen-Delia Zmarandache
- Radiology Department, Emergency Clinical County Hospital Cluj, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Paulina Vele
- Rheumatology Department, Emergency Clinical County Hospital Cluj, 2-4 Clinicilor Street, 400006, Cluj-Napoca, Romania.,"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania
| | - Adriana Albu
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania.,2nd Internal Medicine Department, Emergency Clinical County Hospital Cluj, Cluj-Napoca, Romania
| | - Cristina Belizna
- Centre Vasculaire et de la Coagulation CHU (Centre Hospitalier Universitaire), Angers 4 rue Larrey, 49000, Angers, France
| | - Alexandra Crăciun
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj, 8 V. Babes Str, 400012, Cluj-Napoca, Romania.,Molecular Sciences Department, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Biochem Soc Trans 2020; 47:1651-1660. [PMID: 31845742 DOI: 10.1042/bst20190081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.
Collapse
|
38
|
Zhu H, Fu J, Chen S, Li X, Liang H, Hou Y, Dou H. FC-99 reduces macrophage tenascin-C expression by upregulating miRNA-494 in arthritis. Int Immunopharmacol 2019; 79:106105. [PMID: 31881378 DOI: 10.1016/j.intimp.2019.106105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/16/2019] [Accepted: 11/29/2019] [Indexed: 01/29/2023]
Abstract
The excessive production of inflammatory mediators by inflammatory cells contributes to the pathogenesis of rheumatoid arthritis. Tenascin-C (TN-C) is expressed in rheumatoid joint, and is associated with levels of inflammatory mediators. FC-99 (N1-[(4-methoxy)methyl]-4-methyl-1,2-Benzenediamine), a novel 1,2-benzenediamine derivative, was previously reported to block the prolonged expression of key rheumatoid arthritis inflammatory cytokines and relieve zymosan-induced joint inflammation. However, the specific mechanism is unknown. This study aimed to examine the effects of FC-99 on TN-C expression and inflammation and investigate its possible molecular mechanism. The results showed that FC-99 treatment reduced the high expression of TN-C in ankle joints of arthritis mice. Besides, FC-99 reduced the increased number of macrophages in arthritis mice, while did not change the number of synovioblasts. Concomitantly, expression of TN-C in synovial fibroblasts exhibited no difference between control and ZIA groups, and was not apparently altered following FC-99 treatment, while FC-99 decreased TN-C expression in macrophages both in vivo and in vitro. Meanwhile, TargetScan and luciferase assays indicated that TN-C was negatively regulated by miR-494. Transfection assay further demonstrated that FC-99 inhibited TN-C by targeting miR-494. Furthermore, the reduction of miR-494 mimic on expression of TN-C was associated with NF-κB pathway. Similarly, the down-regulation of FC-99 on TN-C was considerably decreased when NF-κB pathway was inhibited. These results indicated that FC-99 relieved macrophages inflammation via the miR-494/TN-C/NF-κB pathway, finally leading to the relief of inflammation in arthritis. The findings suggested that FC-99 might be a potential therapeutic candidate for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Juanhua Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Sheng Chen
- Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaoqin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Army Medical University, Chongqing 400042, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
39
|
Steen J, Forsström B, Sahlström P, Odowd V, Israelsson L, Krishnamurthy A, Badreh S, Mathsson Alm L, Compson J, Ramsköld D, Ndlovu W, Rapecki S, Hansson M, Titcombe PJ, Bang H, Mueller DL, Catrina AI, Grönwall C, Skriner K, Nilsson P, Lightwood D, Klareskog L, Malmström V. Recognition of Amino Acid Motifs, Rather Than Specific Proteins, by Human Plasma Cell-Derived Monoclonal Antibodies to Posttranslationally Modified Proteins in Rheumatoid Arthritis. Arthritis Rheumatol 2019; 71:196-209. [PMID: 30152202 PMCID: PMC6563427 DOI: 10.1002/art.40699] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Antibodies against posttranslationally modified proteins are a hallmark of rheumatoid arthritis (RA), but the emergence and pathogenicity of these autoantibodies are still incompletely understood. The aim of this study was to analyze the antigen specificities and mutation patterns of monoclonal antibodies (mAb) derived from RA synovial plasma cells and address the question of antigen cross-reactivity. METHODS IgG-secreting cells were isolated from RA synovial fluid, and the variable regions of the immunoglobulins were sequenced (n = 182) and expressed in full-length mAb (n = 93) and also as germline-reverted versions. The patterns of reactivity with 53,019 citrullinated peptides and 49,211 carbamylated peptides and the potential of the mAb to promote osteoclastogenesis were investigated. RESULTS Four unrelated anti-citrullinated protein autoantibodies (ACPAs), of which one was clonally expanded, were identified and found to be highly somatically mutated in the synovial fluid of a patient with RA. The ACPAs recognized >3,000 unique peptides modified by either citrullination or carbamylation. This highly multireactive autoantibody feature was replicated for Ig sequences derived from B cells from the peripheral blood of other RA patients. The plasma cell-derived mAb were found to target distinct amino acid motifs and partially overlapping protein targets. They also conveyed different effector functions as revealed in an osteoclast activation assay. CONCLUSION These findings suggest that the high level of cross-reactivity among RA autoreactive B cells is the result of different antigen encounters, possibly at different sites and at different time points. This is consistent with the notion that RA is initiated in one context, such as in the mucosal organs, and thereafter targets other sites, such as the joints.
Collapse
Affiliation(s)
- Johanna Steen
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Peter Sahlström
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and Charité Univeristätsmedizin, Berlin, Germany
| | | | - Lena Israelsson
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sara Badreh
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Daniel Ramsköld
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Monika Hansson
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Philip J Titcombe
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, and University of Minnesota Medical School, Minneapolis
| | | | | | - Anca I Catrina
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Peter Nilsson
- KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Lars Klareskog
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Lopez-Oliva I, de Pablo P, Dietrich T, Chapple I. Gums and joints: is there a connection? Part two: the biological link. Br Dent J 2019; 227:611-617. [PMID: 31605072 DOI: 10.1038/s41415-019-0723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) and periodontitis (PD) are inflammatory diseases characterised by an exacerbated immune-inflammatory reaction that leads to the destruction of bone and other connective tissues that share numerous similarities. Although a significant and independent association between these two conditions has been described, the pathophysiological processes that may explain this relationship remain unknown and multiple theories have been proposed. This review presents the most important theories currently proposed to explain the biological link between RA and PD.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Paola de Pablo
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Thomas Dietrich
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Iain Chapple
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| |
Collapse
|
41
|
Stefanelli VL, Choudhury S, Hu P, Liu Y, Schwenzer A, Yeh CR, Chambers DM, von Beck K, Li W, Segura T, Midwood KS, Torres M, Barker TH. Citrullination of fibronectin alters integrin clustering and focal adhesion stability promoting stromal cell invasion. Matrix Biol 2019; 82:86-104. [PMID: 31004743 PMCID: PMC7168757 DOI: 10.1016/j.matbio.2019.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) microenvironment is increasingly implicated in the instruction of pathologically relevant cell behaviors, from aberrant transdifferentation to invasion and beyond. Indeed, pathologic ECMs possess a panoply of alterations that provide deleterious instructions to resident cells. Here we demonstrate the precise manner in which the ECM protein fibronectin (FN) undergoes the posttranslational modification citrullination in response to peptidyl-arginine deiminase (PAD), an enzyme associated with innate immune cell activity and implicated in systemic ECM-centric diseases, like cancer, fibrosis and rheumatoid arthritis. FN can be citrullinated in at least 24 locations, 5 of which reside in FN's primary cell-binding domain. Citrullination of FN alters integrin clustering and focal adhesion stability with a concomitant enhancement in force-triggered integrin signaling along the FAK-Src and ILK-Parvin pathways within fibroblasts. In vitro migration and in vivo wound healing studies demonstrate the ability of citrullinated FN to support a more migratory/invasive phenotype that enables more rapid wound closure. These findings highlight the potential of ECM, particularly FN, to "record" inflammatory insults via post-translational modification by inflammation-associated enzymes that are subsequently "read" by resident tissue fibroblasts, establishing a direct link between inflammation and tissue homeostasis and pathogenesis through the matrix.
Collapse
Affiliation(s)
- Victoria L Stefanelli
- Georgia Institute of Technology, Atlanta, GA, USA; Emory University, Atlanta, GA, USA
| | | | - Ping Hu
- University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Dwight M Chambers
- Georgia Institute of Technology, Atlanta, GA, USA; Emory University, Atlanta, GA, USA
| | | | - Wei Li
- Georgia Institute of Technology, Atlanta, GA, USA; University of Virginia, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
42
|
Zhao J, Li ZG. The challenges of early diagnosis and therapeutic prediction in rheumatoid arthritis. Int J Rheum Dis 2018; 21:2059-2062. [PMID: 30681275 DOI: 10.1111/1756-185x.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Zhan-Guo Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
43
|
Schultz C. Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. Br J Pharmacol 2018; 176:26-37. [PMID: 30311636 DOI: 10.1111/bph.14516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
Modifications to the extracellular matrix (ECM) can be either causal or consequential of disease processes including arthritis and cancer. In arthritis, the cartilage ECM is adversely affected by the aberrant behaviours of inflammatory cells, synoviocytes and chondrocytes, which secrete a plethora of cytokines and degradative proteases. In cancer, the ECM and stromal cells are linked to disease severity, and metalloproteinases are implicated in metastasis. There have been some successes in the field of targeted therapies, but efficacy depends upon the type and stage of disease. ECM targets are becoming increasingly attractive for drug delivery, owing to changes in ECM structure and composition in the diseased state, and the long in vivo half-life of its components. This review will highlight various strategies for targeting therapeutics to arthritic joints, including antibody and peptide-mediated drug delivery platforms to aid delivery to the ECM and retention at disease sites. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Christopher Schultz
- Centre for Biochemical Pharmacology, Queen Mary University of London, Charterhouse Square Campus, London, UK
| |
Collapse
|
44
|
Diaz-Gallo LM, Ramsköld D, Shchetynsky K, Folkersen L, Chemin K, Brynedal B, Uebe S, Okada Y, Alfredsson L, Klareskog L, Padyukov L. Systematic approach demonstrates enrichment of multiple interactions between non- HLA risk variants and HLA-DRB1 risk alleles in rheumatoid arthritis. Ann Rheum Dis 2018; 77:1454-1462. [PMID: 29967194 PMCID: PMC6161669 DOI: 10.1136/annrheumdis-2018-213412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE In anti-citrullinated protein antibody positive rheumatoid arthritis (ACPA-positive RA), a particular subset of HLA-DRB1 alleles, called shared epitope (SE) alleles, is a highly influential genetic risk factor. Here, we investigated whether non-HLA single nucleotide polymorphisms (SNP), conferring low disease risk on their own, interact with SE alleles more frequently than expected by chance and if such genetic interactions influence the HLA-DRB1 SE effect concerning risk to ACPA-positive RA. METHODS We computed the attributable proportion (AP) due to additive interaction at genome-wide level for two independent ACPA-positive RA cohorts: the Swedish epidemiological investigation of rheumatoid arthritis (EIRA) and the North American rheumatoid arthritis consortium (NARAC). Then, we tested for differences in the AP p value distributions observed for two groups of SNPs, non-associated and associated with disease. We also evaluated whether the SNPs in interaction with HLA-DRB1 were cis-eQTLs in the SE alleles context in peripheral blood mononuclear cells from patients with ACPA-positive RA (SE-eQTLs). RESULTS We found a strong enrichment of significant interactions (AP p<0.05) between the HLA-DRB1 SE alleles and the group of SNPs associated with ACPA-positive RA in both cohorts (Kolmogorov-Smirnov test D=0.35 for EIRA and D=0.25 for NARAC, p<2.2e-16 for both). Interestingly, 564 out of 1492 SNPs in consistent interaction for both cohorts were significant SE-eQTLs. Finally, we observed that the effect size of HLA-DRB1 SE alleles for disease decreases from 5.2 to 2.5 after removal of the risk alleles of the two top interacting SNPs (rs2476601 and rs10739581). CONCLUSION Our data demonstrate that there are massive genetic interactions between the HLA-DRB1 SE alleles and non-HLA genetic variants in ACPA-positive RA.
Collapse
Affiliation(s)
- Lina-Marcela Diaz-Gallo
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Ramsköld
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klementy Shchetynsky
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lasse Folkersen
- Sankt Hans Hospital, Capital Region Hospitals, Roskilde, Denmark
| | - Karine Chemin
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Steffen Uebe
- Human Genetics Institute, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Marzeda AM, Midwood KS. Internal Affairs: Tenascin-C as a Clinically Relevant, Endogenous Driver of Innate Immunity. J Histochem Cytochem 2018; 66:289-304. [PMID: 29385356 PMCID: PMC5958381 DOI: 10.1369/0022155418757443] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
To protect against danger, the innate immune system must promptly and accurately sense alarm signals, and mount an appropriate response to restore homeostasis. One endogenous trigger of immunity is tenascin-C, a large hexameric protein of the extracellular matrix. Upregulated upon tissue injury and cellular stress, tenascin-C is expressed during inflammation and tissue remodeling, where it influences cellular behavior by interacting with a multitude of molecular targets, including other matrix components, cell surface proteins, and growth factors. Here, we discuss how these interactions confer upon tenascin-C distinct immunomodulatory capabilities that make this matrix molecule necessary for efficient tissue repair. We also highlight in vivo studies that provide insight into the consequences of misregulated tenascin-C expression on inflammation and fibrosis during a wide range of inflammatory diseases. Finally, we examine how its unique expression pattern and inflammatory actions make tenascin-C a viable target for clinical exploitation in both diagnostic and therapeutic arenas.
Collapse
Affiliation(s)
- Anna M Marzeda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis. Cent Eur J Immunol 2017; 42:390-398. [PMID: 29472818 PMCID: PMC5820977 DOI: 10.5114/ceji.2017.72807] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The most specific autoimmunity known for rheumatoid arthritis (RA) is reflected by generation of anti-citrullinated protein antibodies (ACPA). Presence of ACPA in established RA is associated with disease severity, while generation of ACPA at early developmental phases of RA can have a strong predictive value for progressing to the full-blown disease. Hence, development of ACPA may be of crucial importance to the pathogenesis of RA. Therefore, a lot of effort has been put recently to investigate the feature of ACPA at early developmental stages of RA (before disease onset) and functional activities of these autoantibodies. Results of these studies enlarged the knowledge about the nature of ACPA, which is essential for planning the therapeutic or preventive strategies interfering with their development and pathogenic functions. In this review we describe recent evidence for a role of ACPA in the etiopathogenesis of RA and indicate key unresolved issues regarding ACPA biology that need to be clarified in the future.
Collapse
|
47
|
Schwenzer A, Quirke A, Marzeda AM, Wong A, Montgomery AB, Sayles HR, Eick S, Gawron K, Chomyszyn‐Gajewska M, Łazarz‐Bartyzel K, Davis S, Potempa J, Kessler BM, Fischer R, Venables PJ, Payne JB, Mikuls TR, Midwood KS. Association of Distinct Fine Specificities of Anti-Citrullinated Peptide Antibodies With Elevated Immune Responses to Prevotella intermedia in a Subgroup of Patients With Rheumatoid Arthritis and Periodontitis. Arthritis Rheumatol 2017; 69:2303-2313. [PMID: 29084415 PMCID: PMC5711558 DOI: 10.1002/art.40227] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In addition to the long-established link with smoking, periodontitis (PD) is a risk factor for rheumatoid arthritis (RA). This study was undertaken to elucidate the mechanism by which PD could induce antibodies to citrullinated peptides (ACPAs), by examining the antibody response to a novel citrullinated peptide of cytokeratin 13 (CK-13) identified in gingival crevicular fluid (GCF), and comparing the response to 4 other citrullinated peptides in patients with RA who were well-characterized for PD and smoking. METHODS The citrullinomes of GCF and periodontal tissue from patients with PD were mapped by mass spectrometry. ACPAs of CK13 (cCK13), tenascin-C (cTNC5), vimentin (cVIM), α-enolase (CEP-1), and fibrinogen β (cFIBβ) were examined by enzyme-linked immunosorbent assay in patients with RA (n = 287) and patients with osteoarthritis (n = 330), and cross-reactivity was assessed by inhibition assays. RESULTS A novel citrullinated peptide cCK13-1 (444 TSNASGR-Cit-TSDV-Cit-RP458 ) identified in GCF exhibited elevated antibody responses in RA patients (24%). Anti-cCK13-1 antibody levels correlated with anti-cTNC5 antibody levels, and absorption experiments confirmed this was not due to cross-reactivity. Only anti-cCK13-1 and anti-cTNC5 were associated with antibodies to the periodontal pathogen Prevotella intermedia (P = 0.05 and P = 0.001, respectively), but not with antibodies to Porphyromonas gingivalis arginine gingipains. Levels of antibodies to CEP-1, cFIBβ, and cVIM correlated with each other, and with smoking and shared epitope risk factors in RA. CONCLUSION This study identifies 2 groups of ACPA fine specificities associated with different RA risk factors. One is predominantly linked to smoking and shared epitope, and the other links anti-cTNC5 and cCK13-1 to infection with the periodontal pathogen P intermedia.
Collapse
Affiliation(s)
| | | | - Anna M. Marzeda
- University of Oxford, Oxford, UK, and Jagiellonian UniversityKrakowPoland
| | | | | | | | | | | | | | | | | | - Jan Potempa
- Jagiellonian University, Krakow, Poland, and University of LouisvilleLouisvilleKentucky
| | | | | | | | | | - Ted R. Mikuls
- University of Nebraska Medical Center and Nebraska‐Western Iowa Health Care SystemOmaha
| | | |
Collapse
|
48
|
Giblin SP, Murdamoothoo D, Deligne C, Schwenzer A, Orend G, Midwood KS. How to detect and purify tenascin-C. Methods Cell Biol 2017; 143:371-400. [PMID: 29310788 DOI: 10.1016/bs.mcb.2017.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extracellular matrix molecule tenascin-C (TNC) was discovered over 30 years ago, and its tightly regulated pattern of expression since sparked keen interest in the scientific community. In adult tissues, TNC expression is restricted to specific niches and areas of active remodeling or high mechanical strain. However, while most healthy tissues contain little TNC, its transient expression upon cellular stress or tissue injury helps to mediate repair and restore homeostasis. Persistent expression of TNC is associated with chronic inflammation, fibrosis, and cancer, where methods for its detection are emerging as a reliable means to predict disease onset, prognosis, and response to treatment. Because studying the expression of this large matrix molecule is not always straightforward, here we describe basic techniques to examine tissue levels of TNC mRNA and protein. We also describe methods for purifying recombinant TNC, knocking down its expression, and creating cell-derived matrices with or without TNC within.
Collapse
Affiliation(s)
- Sean P Giblin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Devadarssen Murdamoothoo
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Claire Deligne
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Gertraud Orend
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
49
|
Labrousse-Arias D, Martínez-Ruiz A, Calzada MJ. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications. Antioxid Redox Signal 2017; 27:802-822. [PMID: 28715969 DOI: 10.1089/ars.2017.7275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Collapse
Affiliation(s)
- David Labrousse-Arias
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Madrid, Spain
| | - María J Calzada
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Departmento de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
50
|
Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13:606-620. [DOI: 10.1038/nrrheum.2017.132] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|