1
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Nakamura A, Jo S, Nakamura S, Aparnathi MK, Boroojeni SF, Korshko M, Park YS, Gupta H, Vijayan S, Rockel JS, Kapoor M, Jurisica I, Kim TH, Haroon N. HIF-1α and MIF enhance neutrophil-driven type 3 immunity and chondrogenesis in a murine spondyloarthritis model. Cell Mol Immunol 2024; 21:770-786. [PMID: 38839914 PMCID: PMC11214626 DOI: 10.1038/s41423-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The hallmarks of spondyloarthritis (SpA) are type 3 immunity-driven inflammation and new bone formation (NBF). Macrophage migration inhibitory factor (MIF) was found to be a key driver of the pathogenesis of SpA by amplifying type 3 immunity, yet MIF-interacting molecules and networks remain elusive. Herein, we identified hypoxia-inducible factor-1 alpha (HIF1A) as an interacting partner molecule of MIF that drives SpA pathologies, including inflammation and NBF. HIF1A expression was increased in the joint tissues and synovial fluid of SpA patients and curdlan-injected SKG (curdlan-SKG) mice compared to the respective controls. Under hypoxic conditions in which HIF1A was stabilized, human and mouse neutrophils exhibited substantially increased expression of MIF and IL-23, an upstream type 3 immunity-related cytokine. Similar to MIF, systemic overexpression of IL-23 induced SpA pathology in SKG mice, while the injection of a HIF1A-selective inhibitor (PX-478) into curdlan-SKG mice prevented or attenuated SpA pathology, as indicated by a marked reduction in the expression of MIF and IL-23. Furthermore, genetic deletion of MIF or HIF1A inhibition with PX-478 in IL-23-overexpressing SKG mice did not induce evident arthritis or NBF, despite the presence of psoriasis-like dermatitis and blepharitis. We also found that MIF- and IL-23-expressing neutrophils infiltrated areas of the NBF in curdlan-SKG mice. These neutrophils potentially increased chondrogenesis and cell proliferation via the upregulation of STAT3 in periosteal cells and ligamental cells during endochondral ossification. Together, these results provide supporting evidence for an MIF/HIF1A regulatory network, and inhibition of HIF1A may be a novel therapeutic approach for SpA by suppressing type 3 immunity-mediated inflammation and NBF.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, K7L, 2V6, Canada.
- Translational Institute of Medicine, School of Medicine, Queen's University, Kingston, ON, K7L 2V6, Canada.
- Division of Rheumatology, Kingston Health Science Centre, Kingston, ON, K7L 2V6, Canada.
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mansi K Aparnathi
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mariia Korshko
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, 11293, Republic of Korea
| | - Himanshi Gupta
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Sandra Vijayan
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Departments of Medical Biophysics and Comp. Science and Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 85410, Bratislava, Slovakia
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, Republic of Korea
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Seymour BJ, Trent B, Allen B, Berlinberg AJ, Tangchittsumran J, Jubair WK, Chriswell ME, Liu S, Ornelas A, Stahly A, Alexeev EE, Dowdell AS, Sneed SL, Fechtner S, Kofonow JM, Robertson CE, Dillon SM, Wilson CC, Anthony RM, Frank DN, Colgan SP, Kuhn KA. Microbiota-dependent indole production is required for the development of collagen-induced arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.561693. [PMID: 37873395 PMCID: PMC10592798 DOI: 10.1101/2023.10.13.561693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1β; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colon lymphocytes to indole increased expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a novel therapeutic pathway for RA and SpA.
Collapse
Affiliation(s)
- Brenda J. Seymour
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon Trent
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan Allen
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adam J. Berlinberg
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jimmy Tangchittsumran
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Widian K. Jubair
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Stahly
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica E. Alexeev
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sunny L. Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Fechtner
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer M. Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles E. Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert M. Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Scrivo R, D'Angelo S, Carriero A, Castellani C, Perrotta FM, Conti F, Vecellio M, Selmi C, Lubrano E. The Conundrum of Psoriatic Arthritis: a Pathogenetic and Clinical Pattern at the Midpoint of Autoinflammation and Autoimmunity. Clin Rev Allergy Immunol 2023; 65:72-85. [PMID: 35040085 DOI: 10.1007/s12016-021-08914-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2021] [Indexed: 02/06/2023]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory condition characterized by psoriasis, synovitis, enthesitis, spondylitis, and the possible association with other extra-articular manifestations and comorbidities. It is a multifaceted and systemic disorder sustained by complex pathogenesis, combining aspects of autoinflammation and autoimmunity. Features of PsA autoinflammation include the role of biomechanical stress in the onset and/or exacerbation of the disease; the evidence of involvement of the innate immune response mediators in the skin, peripheral blood and synovial tissue; an equal gender distribution; the clinical course which may encounter periods of prolonged remission and overlapping features with autoinflammatory syndromes. Conversely, the role of autoimmunity is evoked by the association with class I major histocompatibility complex alleles, the polyarticular pattern of the disease which sometimes resembles rheumatoid arthritis and the presence of serum autoantibodies. Genetics also provide important insights into the pathogenesis of PsA, particularly related to class I HLA being associated with psoriasis and PsA. In this review, we provide a comprehensive review of the pathogenesis, genetics and clinical features of PsA that endorse the mixed nature of a disorder at the crossroads of autoinflammation and autoimmunity.
Collapse
Affiliation(s)
- Rossana Scrivo
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Salvatore D'Angelo
- Rheumatology Institute of Lucania (IReL) - Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna Delle Grazie Hospital of Matera, Potenza, Italy
| | - Antonio Carriero
- Rheumatology Institute of Lucania (IReL) - Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna Delle Grazie Hospital of Matera, Potenza, Italy
- Dipartimento Di Medicina E Scienze Della Salute, Università Degli Studi del Molise, Campobasso, Italy
| | - Chiara Castellani
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Massimo Perrotta
- Dipartimento Di Medicina E Scienze Della Salute, Università Degli Studi del Molise, Campobasso, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Center, Oxford, UK
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Ennio Lubrano
- Dipartimento Di Medicina E Scienze Della Salute, Università Degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
5
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Bilgin E. Autoinflammation in psoriatic arthritis: time to better define the multifaceted enemy. RMD Open 2022; 8:rmdopen-2022-002685. [PMID: 36323489 PMCID: PMC9639151 DOI: 10.1136/rmdopen-2022-002685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Emre Bilgin
- Internal Medicine, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
|
8
|
Deng L, Zhou X, Lan Z, Tang K, Zhu X, Mo X, Zhao Z, Zhao Z, Wu M. Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota. J Microbiol Biotechnol 2022; 32:405-418. [PMID: 35283422 PMCID: PMC9628794 DOI: 10.4014/jmb.2110.10018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.
Collapse
Affiliation(s)
- Lijing Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xingyi Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Zhifang Lan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Kairui Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xiaoxu Zhu
- Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Zongyao Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China,Corresponding authors Zhiqiang Zhao Phone: +86-20-8775-5766 E-mail:
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China,
Mansi Wu Phone: +86-20-8522-1543 E-mail:
| |
Collapse
|
9
|
Xiong Y, Ji L, Zhao Y, Liu A, Wu D, Qian J. Sodium Butyrate Attenuates Taurocholate-Induced Acute Pancreatitis by Maintaining Colonic Barrier and Regulating Gut Microorganisms in Mice. Front Physiol 2022; 13:813735. [PMID: 35370779 PMCID: PMC8969109 DOI: 10.3389/fphys.2022.813735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundAcute pancreatitis (AP) damages the intestinal barrier, which aggravates AP. Butyrate exhibits anti-inflammatory effects in AP, but it is unknown if such a protective effect is associated with the regulation of gut microorganisms. We aim to investigate the effects of sodium butyrate (SB) on pancreatic inflammation, colonic barrier, and gut microorganisms.MethodsC57BL/6 mice were divided into groups of sham operation (Sham), AP, 200 mg/kg SB intervention (SB-200), and 500 mg/kg SB intervention group (SB-500). Samples were harvested 24 h after the model was established. The gut microbiota was analyzed using 16S rRNA gene sequencing.ResultsPancreatic infiltration of neutrophils, macrophages, and M2-type macrophages was significantly reduced in the SB-500 intervention group. Supplementation of SB-500 improved colon mucosal histology and the expression of ZO-1 and occluding. The relative abundance of Alloprevotella and Muribaculaceae was increased and that of Akkermansia was decreased in the SB-500 group compared with the AP group. Ruminococcaceae was the most significantly increased species and Prevotellaceae was the most significantly decreased species in the SB-500 group compared with the AP group.ConclusionHigh dose of SB inhibits pancreatic inflammation probably by maintaining the intestinal barrier and regulating gut microbiota in mice with AP.
Collapse
|
10
|
Paula M, Vappu R, Hannu K, Juhani VL, Kari P. Opioid use frequency in early axial spondyloarthritis in Finland - a pharmacoepidemic register study. Joint Bone Spine 2021; 89:105302. [PMID: 34687895 DOI: 10.1016/j.jbspin.2021.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate opioid use among incident axial spondyloarthritis (axSpA) patients compared to general population. METHODS From the national register, we identified all adult patients with axSpA (ICD-10 codes M45-46), who between 2010 and 2014 (index date, ID) were for the first time granted special reimbursement for any disease-modifying anti-rheumatic drugs (DMARDs). Three matched population controls were identified for each patient. Drug purchases were evaluated between 2009-15, and opioid use was analyzed for one year before and after the ID. The Defined Daily Dose (DDD) was used as a tool to assess the opioid consumption before and after the biological (b) DMARD initiation. RESULTS We identified 3,577 axSpA patients and 10,573 controls. Of these patients, 97.2% started a conventional synthetic (cs) DMARD during a year after ID and 23.4% switched later to a self-injected bDMARD between the ID and 31 Dec 2015 (median follow-up 3.4 years). Opioids were purchased at least once by 29.8% and 21.7% of the patients in the years before and after the ID, respectively, compared to 8.1% and 7.8% of the controls. The proportion of opioid-using patients was greatest during the last quarter before the ID [relative risk (RR) 4.72 (95% CI 4.14 to 5.39)] compared to controls, and it remained higher [RR 2.84 (2.59 to 3.11)] also after the start of csDMARDs. DDD of opioid consumption decreased from 7.7 to 1.6/1,000 inhabitants after bDMARD initiation. CONCLUSION Considerably more axSpA patients than population controls used opioids. The opioid consumption by dose decreased clearly after bDMARD initiation.
Collapse
Affiliation(s)
- Muilu Paula
- Department of Internal Medicine, Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland.
| | - Rantalaiho Vappu
- Department of Internal Medicine, Kanta-Hame Central Hospital, Hameenlinna, Finland; Department of Internal Medicine, Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kautiainen Hannu
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Virta Lauri Juhani
- Research Department, Social Insurance Institution of Finland, Turku, Finland
| | | |
Collapse
|
11
|
Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol 2021; 32:484-492. [PMID: 34918137 DOI: 10.1093/mr/roab057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
Despite increasing availability of treatments for spondyloarthritis (SpA) including tumour necrosis factor (TNF) and interleukin-17 (IL-17) inhibitors, there is no established treatment that abates new bone formation (NBF) in ankylosing spondylitis (AS), a subset of SpA. Recent research on TNF has revealed the increased level of transmembrane TNF in the joint tissue of SpA patients compared to that of rheumatoid arthritis patients, which appears to facilitate TNF-driven osteo-proliferative changes in AS. In addition, there is considerable interest in the central role of IL-23/IL-17 axis in type 3 immunity and the therapeutic potential of blocking this axis to ameliorate enthesitis and NBF in AS. AS immunopathology involves a variety of immune cells, including both innate and adoptive immune cells, to orchestrate the immune response driving type 3 immunity. In response to external stimuli of inflammatory cytokines, local osteo-chondral progenitor cells activate intra-cellular anabolic molecules and signals involving hedgehog, bone morphogenetic proteins, receptor activator of nuclear factor kappa-B ligand, and Wnt pathways to promote NBF in AS. Here, we provide an overview of the current immunopathology and future directions for the treatment of enthesitis and NBF associated with AS.
Collapse
Affiliation(s)
- Masaki Kusuda
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Spondylitis Program, Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Islam SMS, Ryu HM, Sayeed HM, Byun HO, Jung JY, Kim HA, Suh CH, Sohn S. Eubacterium rectale Attenuates HSV-1 Induced Systemic Inflammation in Mice by Inhibiting CD83. Front Immunol 2021; 12:712312. [PMID: 34531862 PMCID: PMC8438521 DOI: 10.3389/fimmu.2021.712312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to determine whether administration of the microorganism Eubacterium rectale (E. rectale) could regulate dendritic cell (DC) activation and systemic inflammation in herpes simplex virus type 1-induced Behçet's disease (BD). E. rectale, butyrate-producing bacteria, was administered to BD mice. Peripheral blood leukocytes (PBL) and lymph node cells were isolated and analyzed by flow cytometry. 16S rRNA metagenomic analysis was performed in the feces of mice to determine the differences in the composition of the microbial population between normal and BD mice. Serum cytokine levels were measured by enzyme-linked immunosorbent assay. The frequency of DC activation marker CD83 positive cells was significantly increased in PBL of BD mice. Frequencies of CD83+ cells were also significantly increased in patients with active BD. 16S rRNA metagenomic analysis revealed different gut microbiota composition between normal and BD mice. The administration of E. rectale to BD mice reduced the frequency of CD83+ cells and significantly increased the frequency of NK1.1+ cells with the improvement of symptoms. The co-administration of colchicine and E. rectale also significantly reduced the frequency of CD83+ cells. Differences in gut microbiota were observed between normal mice and BD mice, and the administration of E. rectale downregulated the frequency of CD83, which was associated with BD deterioration. These data indicate that E. rectale could be a new therapeutic adjuvant for BD management.
Collapse
Affiliation(s)
- S. M. Shamsul Islam
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Hasan M. Sayeed
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Ok Byun
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
13
|
Berthelot JM, Darrieutort-Laffite C, Trang C, Maugars Y, Le Goff B. Contribution of mycobiota to the pathogenesis of spondyloarthritis. Joint Bone Spine 2021; 88:105245. [PMID: 34166798 DOI: 10.1016/j.jbspin.2021.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
This review lists current evidences for a contribution of gut mycobiota to the pathogenesis of SpA and related conditions. Gut mycobiota has a small size as compared to bacterial microbiota, but an even greater inter- and intra-individual variability. Although most fungi (brought by food or air) are only transitory present, a core mycobiota of gut resident fungi exists, and interplays with bacteria in a complex manner. A dysbiosis of this gut mycobiota has been observed in Crohn's disease and sclerosing cholangitis, with decreased proportion of Saccharomyces cerevisiae and outgrowth of more pathogenic gut fungi. Fungal-induced lower number of commensal gut bacteria can promote translocation of some bacterial/fungal antigens through mucosae, and live fungi can also cross the epithelial border in Crohn's disease. This dysbiosis also lower the ability of bacteria to metabolize tryptophan into regulatory metabolites, consequently enhancing tryptophan metabolism within human cells, which might contribute to fatigue. Translocation of mycobiotal antigens like curdlan (beta-glucan), which plays a major role in the pathogenesis of SpA in the SGK mice, has been observed in humans. This translocation of fungal antigens in human SpA might account for the anti-Saccharomyces antibodies found in this setting. Contribution of fungal antigens to psoriasis and hidradenitis suppurativa would fit with the preferential homing of fungi in the skin area most involved in those conditions. Fungal antigens also possess autoimmune uveitis-promoting function. As genes associated with SpA (CARD9 and IL23R) strongly regulate the innate immune response against fungi, further studies on fungi contribution to SpA are needed.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France.
| | | | - Caroline Trang
- Service de gastro-entérologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| | - Yves Maugars
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| | - Benoît Le Goff
- Service de rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France
| |
Collapse
|
14
|
Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol 2021; 17:387-404. [PMID: 34113018 DOI: 10.1038/s41584-021-00625-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder of unknown aetiology. Unlike other systemic autoimmune diseases, in AS, the innate immune system has a dominant role characterized by aberrant activity of innate and innate-like immune cells, including γδ T cells, group 3 innate lymphoid cells, neutrophils, mucosal-associated invariant T cells and mast cells, at sites predisposed to the disease. The intestine is involved in disease manifestations, as it is at the forefront of the interaction between the mucosal-associated immune cells and the intestinal microbiota. Similarly, biomechanical factors, such as entheseal micro-trauma, might also be involved in the pathogenesis of the articular manifestation of AS, and sentinel immune cells located in the entheses could provide links between local damage, genetic predisposition and the development of chronic inflammation. Although these elements might support the autoinflammatory nature of AS, studies demonstrating the presence of autoantibodies (such as anti-CD74, anti-sclerostin and anti-noggin antibodies) and evidence of activation and clonal expansion of T cell populations support an autoimmune component to the disease. This Review presents the evidence for autoinflammation and the evidence for autoimmunity in AS and, by discussing the pathophysiological factors associated with each, aims to reconcile the two hypotheses.
Collapse
|
15
|
Role of Intestinal Microbiota on Gut Homeostasis and Rheumatoid Arthritis. J Immunol Res 2021; 2021:8167283. [PMID: 34195296 PMCID: PMC8203374 DOI: 10.1155/2021/8167283] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that is immune mediated. Patients typically present with synovial inflammation, which gradually deteriorates to investigate severe cartilage and bone damage, affecting an individual's ability to perform basic tasks and impairing the quality of life. When evaluated against healthy controls, patients with RA have notable variations within the constituents of the gut microbiota. The human gastrointestinal tract mucosa is colonized by trillions of commensal microbacteria, which are key actors in the initiation, upkeep, and operation of the host immune system. Gut microbiota dysbiosis can adversely influence the immune system both locally and throughout the host, thus predisposing the host to a number of pathologies, including RA. Proximal intestinal immunomodulatory cells, situated in specific locales within the intestine, are a promising intermediary through which the gastrointestinal microbiota can influence the pathogenesis and progression of RA. In the early stages of the disease, the microbiota appear to differ from those present in healthy controls. This difference may reflect potential autoimmune mechanisms. Research studies evaluating intestinal microbiota have demonstrated that RA is associated with a bacterial population growth or with a decline when judged against control groups. The aim of this review is to examine the studies that connect intestinal dysbiosis with the autoimmune pathways implicated in the pathogenesis of RA.
Collapse
|
16
|
Xin PL, Jie LF, Cheng Q, Bin DY, Dan CW. Pathogenesis and Function of Interleukin-35 in Rheumatoid Arthritis. Front Pharmacol 2021; 12:655114. [PMID: 34054534 PMCID: PMC8155723 DOI: 10.3389/fphar.2021.655114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 01/06/2023] Open
Abstract
It is well known that RA (Rheumatoid arthritis) is an autoimmune disease characterized by multiple and symmetric arthropathy. The main pathological features of RA are synovial hyperplasia, angiogenesis, pannus formation, inflammatory cell infiltration, articular cartilage, bone destruction, and ultimately joint dysfunction, even deformity. IL-35 (Interleukin-35) is a new member of the IL-12 (Interleukin-12) family, which is an immunosuppressive and anti-inflammatory cytokine secreted mainly by Treg (T regulatory cells). There is evidence suggested that IL-35 can attenuate the progression of RA through influencing the immune and pathological process. It suggests that IL-35 played an important role in the pathogenesis of RA, and can be used as a potential target for the future treatment of RA. This review summarizes the recent advances of IL-35 in the pathological roles and the therapeutic potential roles in RA.
Collapse
Affiliation(s)
- Pan Lin Xin
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Li Fan Jie
- Department of Orthopedic, Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Cheng
- Research and Experimental Center of Anhui Medical University, Hefei, China
| | - Du Yi Bin
- Department of Orthopedic, Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Wen Dan
- Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Łukasik Z, Gracey E, Venken K, Ritchlin C, Elewaut D. Crossing the boundaries: IL-23 and its role in linking inflammation of the skin, gut and joints. Rheumatology (Oxford) 2021; 60:iv16-iv27. [PMID: 33961030 PMCID: PMC8527243 DOI: 10.1093/rheumatology/keab385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Several lines of evidence point towards the central role of IL-23 as a crucial inflammatory mediator in the pathogenesis of SpA—a group of inflammatory arthritic diseases whose symptoms span the skin, gastrointestinal tract and joints. While therapeutic blockade of IL-23 proved successful in the treatment of IBD, psoriatic skin disease and peripheral SpA, it failed in patients suffering from SpA with predominantly axial involvement. Here we review state-of-the-art discoveries on IL-23 signalling pathways across target tissues involved in SpA. We discuss the discrepancies in resident IL-23–responding cells and their downstream activities across skin, gut and joint that shape the unique immunological landscape of SpA.
Collapse
Affiliation(s)
- Zuzanna Łukasik
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium
| | - Eric Gracey
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium
| | - Koen Venken
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium
| | - Christopher Ritchlin
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Dirk Elewaut
- Department of Internal Medicine and Pediatrics, UZ Ghent, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent University, Belgium.,Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Nakamura A, Haroon N. Recent Updates in the Immunopathology of Type 3 Immunity-Mediated Enthesitis. Curr Rheumatol Rep 2021; 23:31. [PMID: 33893896 DOI: 10.1007/s11926-021-00995-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Enthesitis is a cardinal feature of spondyloarthritis (SpA). Despite increasing available treatments, challenges remain in adequately controlling inflammation and subsequent new bone formation (NBF) in entheses; thus, a better understanding of the immunopathogenesis is warranted. RECENT FINDINGS Increasing evidence has identified immune cells playing key roles in enthesitis such as γδ T cells and group 3 innate lymphoid cells (ILC3), possibly with site-specific regulatory systems. The presence of T cells producing interleukin (IL)-17 independent of IL-23 in human spinal entheses was recently reported, which may corroborate the discrepancy between recent clinical trials and pre-clinical studies. In addition, the contribution of myeloid cells has also been focused in both human and pre-clinical SpA models. Moreover, not only the IL-23/IL-17 signaling, but other key type 3 immunity mediators, such as IL-22 and granulocyte-macrophage colony-stimulating factor (GM-CSF), have been reported as pivotal cytokines in inflammation and NBF of entheses. Immune cells demonstrating distinct features orchestrate entheses, leading to the complex landscape of enthesitis. However, recent advances in understanding the immunopathogenesis may provide new therapeutic targets and future research directions.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Chmielińska M, Olesińska M, Romanowska-Próchnicka K, Szukiewicz D. Haptoglobin and Its Related Protein, Zonulin-What Is Their Role in Spondyloarthropathy? J Clin Med 2021; 10:jcm10051131. [PMID: 33800376 PMCID: PMC7962838 DOI: 10.3390/jcm10051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Haptoglobin (Hp) is an acute phase protein which supports the immune response and protects tissues from free radicals. Its concentration correlates with disease activity in spondyloarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1 and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of some inflammatory and autoimmune disorders. Its potential role in modulating the immune system in SpA is still unknown. This article contains pathophysiological considerations on the potential relationship between Hp, its polymorphism and SpA.
Collapse
Affiliation(s)
- Magdalena Chmielińska
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (K.R.-P.); (D.S.)
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
- Correspondence:
| | - Marzena Olesińska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Katarzyna Romanowska-Próchnicka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (K.R.-P.); (D.S.)
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Dariusz Szukiewicz
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland; (K.R.-P.); (D.S.)
| |
Collapse
|
20
|
Effect of Duyun Compound Green Tea on Gut Microbiota Diversity in High-Fat-Diet-Induced Mice Revealed by Illumina High-Throughput Sequencing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8832554. [PMID: 33628318 PMCID: PMC7886516 DOI: 10.1155/2021/8832554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/19/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Intake of a high-fat diet (HFD) is closely related to disorders of the intestinal microbiota, which plays a key role in the pathogenesis of obesity. Duyun compound green tea, an ancient Chinese drink, is widely consumed to reduce weight, although the mechanism is not clear. In this study, 50 mice were randomly divided into 5 groups: normal control group (CK), HFD model control group (NK), positive control group with medicine (YK), low-dose compound tea group (DL), and high-dose compound tea group (DH). After 4 weeks of intervention, the feces of mice were taken under sterile conditions and evaluated using Illumina high-throughput sequencing technology. The results showed that the diversity of intestinal microbiota was the highest in the CK group, the lowest in the NK group, and relatively increased in the compound tea treatment group. Second, there were differences in intestinal microbiota in each group, among which the beneficial bacteria in the intestinal tract of the CK group were higher than those in the other groups, while the beneficial bacteria in each compound tea treatment group were more abundant than those in the NK group, in which harmful bacteria in the intestinal tract were found to be the highest. These results suggest that compounds in tea may be able to attenuate imbalances of intestinal microbiota induced by poor diet, acting as a therapeutic agent in obesity or other diseases associated with gut dysbiosis.
Collapse
|
21
|
So J, Tam LS. Gut Microbiome and Its Interaction with Immune System in Spondyloarthritis. Microorganisms 2020; 8:microorganisms8111727. [PMID: 33158167 PMCID: PMC7694200 DOI: 10.3390/microorganisms8111727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests there is a gut-joint axis in spondyloarthritis (SpA). In a study, subclinical gut inflammation occurred in nearly 50% of SpA. Chronic gut inflammation also correlated with disease activity in SpA. Trillions of microorganisms reside in the human gut and interact with the human immune system. Dysbiosis affects gut immune homeostasis and triggers different autoimmune diseases including SpA. The absence of arthritis in HLA-B27 germ-free mice and the development of arthritis after the introduction of commensal bacteria to HLA-B27 germ-free mice proved to be the important role of gut bacteria in shaping SpA, other than the genetic factor. The recent advance in gene sequencing technology promotes the identification of microorganisms. In this review, we highlighted current evidence supporting the link between gut and axial SpA (axSpA). We also summarized available findings of gut microbiota and its interaction with the immune system in axSpA. Future research may explore the way to modulate gut microorganisms in axSpA and bring gut microbiome discoveries towards application.
Collapse
Affiliation(s)
| | - Lai-Shan Tam
- Correspondence: ; Tel.: +(852)-3505-3128; Fax: +(852)-2637-3852
| |
Collapse
|
22
|
Voruganti A, Bowness P. New developments in our understanding of ankylosing spondylitis pathogenesis. Immunology 2020; 161:94-102. [PMID: 32696457 PMCID: PMC7496782 DOI: 10.1111/imm.13242] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common immune‐mediated inflammatory arthritis with a strong genetic predisposition. We review recent data from genetic and animal studies highlighting the importance of Type 17 immune responses. Furthermore, the efficacy (or lack thereof) of different anti‐cytokine monoclonal antibodies has highlighted the diversity of Type 17 immune cells and cytokines critical to AS and related spondyloarthritis pathogenesis. Recent studies have strongly implicated the gut microbiome in AS. Finally, we propose that the local metabolic environment of the joint may have a key role in driving AS, and present a novel model of AS pathogenesis.
Collapse
Affiliation(s)
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science (NDORMS), Botnar Research Centre, University of Oxford, Headington, Oxford, UK
| |
Collapse
|
23
|
Revisiting the gut-joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol 2020; 16:415-433. [PMID: 32661321 DOI: 10.1038/s41584-020-0454-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Gut inflammation is strongly associated with spondyloarthritis (SpA), as exemplified by the high prevalence of inflammatory bowel disease (IBD) and the even higher occurrence of subclinical gut inflammation in patients with SpA. The gut-joint axis of inflammation in SpA is further reinforced by similarities in immunopathogenesis at both anatomical sites and by the clinical success of therapies blocking TNF and IL-23 in IBD and in some forms of SpA. Many genetic risk factors are shared between SpA and IBD, and changes in the composition of gut microbiota are seen in both diseases. Current dogma is that inflammation in SpA initiates in the gut and leads to joint inflammation; however, although conceptually attractive, some research does not support this causal relationship. For example, therapies targeting IL-17A are efficacious in the joint but not the gut, and interfering with gut trafficking by targeting molecules such as α4β7 in IBD can lead to onset or flares of SpA. Several important knowledge gaps remain that must be addressed in future studies. Determining the true nature of the gut-joint axis has real-world implications for the treatment of patients with co-incident IBD and SpA and for the repurposing of therapeutics from one disease to the other.
Collapse
|
24
|
Scher JU, Nayak RR, Ubeda C, Turnbaugh PJ, Abramson SB. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat Rev Rheumatol 2020; 16:282-292. [PMID: 32157196 PMCID: PMC11221369 DOI: 10.1038/s41584-020-0395-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
In the past three decades, extraordinary advances have been made in the understanding of the pathogenesis of, and treatment options for, inflammatory arthritides, including rheumatoid arthritis and spondyloarthritis. The use of methotrexate and subsequently biologic therapies (such as TNF inhibitors, among others) and oral small molecules have substantially improved clinical outcomes for many patients with inflammatory arthritis; for others, however, these agents do not substantially improve their symptoms. The emerging field of pharmacomicrobiomics, which investigates the effect of variations within the human gut microbiome on drugs, has already provided important insights into these therapeutics. Pharmacomicrobiomic studies have demonstrated that human gut microorganisms and their enzymatic products can affect the bioavailability, clinical efficacy and toxicity of a wide array of drugs through direct and indirect mechanisms. This discipline promises to facilitate the advent of microbiome-based precision medicine approaches in inflammatory arthritis, including strategies for predicting response to treatment and for modulating the microbiome to improve response to therapy or reduce drug toxicity.
Collapse
Affiliation(s)
- Jose U Scher
- Department of Medicine, Division of Rheumatology, New York University Langone Health, New York, NY, USA.
| | - Renuka R Nayak
- Rheumatology Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Carles Ubeda
- Centro Superior de Investigacion en Salud Publica - FISABIO, Valencia, Spain
- CIBER en Epidemiologia y Salud Publica, Madrid, Spain
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Steven B Abramson
- Department of Medicine, Division of Rheumatology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
25
|
Abstract
Rheumatoid Arthritis (RA) is a severe, chronic autoimmune disease that affects 1% of the world's population. Familial risk contributes 50% of the risk of seropositive RA, with strongest risks seen in first-degree relatives. Smoking increases the risk of developing anti-citrullinated peptide antibody (ACPA)+ RA, particularly in individuals with high-risk RA-susceptibility alleles. Other contributory environmental risks including particulate exposure, periodontal disease, bronchiectasis, diet, obesity and the oral contraceptive impact respiratory, oral, intestinal and genital tract mucosal sites. Furthermore, the first signs of autoimmunity may appear at mucosal sites e.g. sputum ACPA-IgA and IgG. While oral and faecal dysbiosis are well described, there is no consistent single bacterial species that appears to drive RA. Animal and human data suggest a model in which multiple environmental influences impact mucosal immune function through the host genetics through enhanced mucosal permeability and the traffic of pro-inflammatory PAMPs and the amplification of autoimmune responses. In some cases, autoimmunity may be driven by cross-reactivity, or mimicry, to pathogen-specific antigens, particularly where the host immune system fails to support their rapid control and elimination.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-UQ, Faculty of Medicine, University of Queensland, Brisbane, 4102, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
26
|
Abstract
Spondyloarthritis (SpA) is a group of chronic, inflammatory rheumatic diseases mainly affecting the axial skeleton. Although the pathogenesis of the disease remains elusive, alterations of intestinal microbial composition have been demonstrated in patients with SpA and associated with intestinal and systemic immune alterations. Substantial data have been published in recent years in ethnically different patient populations, demonstrating in a consolidated way the presence of alterations in the composition of the microbial flora in patients with SpA. It is not currently possible to establish whether these alterations are intrinsically inherent in the disease, for example, the effect of particular genes that confer susceptibility to the disease itself, or are a consequence of a more systemic inflammatory process that also involves the intestine. However, data deriving from animal models and studies on relatives of patients with SpA strongly suggest that these alterations might precede the onset of the disease. In this review, we will try to critically analyze studies on dysbiosis in SpA and animal models of SpA, analyzing their functional consequences and the impact of biotechnological therapies on intestinal bacterial composition.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, Università Degli Studi Della Campania L. Vanvitelli, Naples, Italy
| | - Francesco Ciccia
- Department of Precision Medicine, Università Degli Studi Della Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
27
|
Rossini M, Epis OM, Tinazzi I, Grembiale RD, Iagnocco A. Role of the IL-23 pathway in the pathogenesis and treatment of enthesitis in psoriatic arthritis. Expert Opin Biol Ther 2020; 20:787-798. [PMID: 32129102 DOI: 10.1080/14712598.2020.1737855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Enthesitis is a key feature of spondyloarthritis (SpA). Several studies have underlined the role of interleukin (IL)-23 in SpA development as a crucial cytokine in the pathogenesis of enthesitis. AREA COVERED This review summarizes recent evidence of the role of IL-23 in the pathogenesis of and as a target of the treatment of enthesitis. We review the definition, diagnosis and clinical impact of enthesitis and its connection with microbial infections, gut dysbiosis, and mechanical stress. We also review clinical trials and real-life studies of drugs targeting the p19 or p40 subunits of IL-23. EXPERT OPINION Novel therapies targeting the p19 or p40 subunit of IL-23 appear to be promising treatment options for patients with enthesitis. Although we are currently unable to identify the best therapeutic window to target IL-23 in SpA disease evolution, the promising ability of this therapy to control the gut-entheseal axis is increasing our knowledge of SpA pathogenesis.
Collapse
Affiliation(s)
- Maurizio Rossini
- Rheumatology Section, Department of Medicine, University of Verona , Verona, Italy
| | | | - Ilaria Tinazzi
- Unit of Rheumatology, IRCCS Sacro Cuore Don Calabria Hospital , Verona, Italy
| | | | - Annamaria Iagnocco
- Academic Rheumatology Centre, Università Degli Studi Di Torino , Turin, Italy
| |
Collapse
|
28
|
Abstract
A causal link between the wealth of microbes that populate our body surfaces, designated as microbiota, and inflammatory disorders, including ankylosing spondylitis and the related spondyloarthritis (SpA) has been suspected for decades. This specially concerns the gut microbiota that became only recently accessible to thorough description thanks to massive sequencing methods or metagenomics. Here, we review evidences supporting the existence of microbiota imbalance or dysbiosis in the context of SpA. We also discuss currently existing evidences for a causal relationship between such dysbiosis and disease development, as well as putative therapeutic implications.
Collapse
Affiliation(s)
- Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 Ave Charles de Gaulle, 92100, Boulogne, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marie Beaufrère
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 Ave Charles de Gaulle, 92100, Boulogne, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 Ave de La Source de La Bièvre, 78180, Montigny-le-Bretonneux, France; Laboratoire D'Excellence Inflamex, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
29
|
Bridgewood C, Sharif K, Sherlock J, Watad A, McGonagle D. Interleukin-23 pathway at the enthesis: The emerging story of enthesitis in spondyloarthropathy. Immunol Rev 2020; 294:27-47. [PMID: 31957051 DOI: 10.1111/imr.12840] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The inflammatory disorders collectively termed the seronegative spondyloarthropathies (SpA) include ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, the arthritis associated with inflammatory bowel disease including Crohn's disease and ulcerative colitis, the arthritis related to anterior uveitis, and finally, somewhat controversially Behcet's disease. All of these diseases are associated with SNPs in the IL-23R or the interleukin-23 (IL-23) cytokine itself and related downstream signaling JAK pathway genes and the interleukin-17 (IL-17) pathway. In rheumatoid arthritis, the target of the immune response is the synovium but the SpA disorders target the tendon, ligament, and joint capsule skeletal anchorage points that are termed entheses. The discovery that IL-23R-expressing cells were ensconced in healthy murine enthesis, and other extraskeletal anchorage points including the aortic root and the ciliary body of the eye and that systemic overexpression of IL-23 resulted in a severe experimental SpA, confirmed a fundamentally different immunobiology to rheumatoid arthritis. Recently, IL-23R-expressing myeloid cells and various innate and adaptive T cells that produce IL-17 family cytokines have also been described in the human enthesis. Blockade of IL-23 pathway with either anti-p40 or anti-p19 subunits has resulted in some spectacular therapeutic successes in psoriasis and PsA including improvement in enthesitis in the peripheral skeleton but has failed to demonstrate efficacy in AS that is largely a spinal polyenthesitis. Herein, we discuss the known biology of IL-23 at the human enthesis and highlight the remarkable emerging story of this unique skeletal tissue.
Collapse
Affiliation(s)
- Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Medicine "B", Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jonathan Sherlock
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Medicine "B", Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, UK
| |
Collapse
|
30
|
Rebalancing of the gut flora and microbial metabolism is responsible for the anti-arthritis effect of kaempferol. Acta Pharmacol Sin 2020; 41:73-81. [PMID: 31427695 PMCID: PMC7468310 DOI: 10.1038/s41401-019-0279-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/23/2019] [Indexed: 01/25/2023] Open
Abstract
Kaempferol is a natural flavonol that possesses various pharmacological activities, including anti-arthritis effects, yet the underlying mechanisms remain controversial. To evaluate the anti-arthritis efficacy and the underlying mechanisms of kaempferol, collagen-induced arthritis (CIA) mice were treated with kaempferol intragastrically (200 mg · kg−1 · d−1) and intraperitoneally (20 mg · kg−1 · d−1). Pharmacodynamic and pharmacokinetic studies showed that the oral administration of kaempferol produced distinct anti-arthritis effects in model mice with arthritis in terms of the spleen index, arthritis index, paw thickness, and inflammatory factors; the bioavailability (1.5%, relative to that of the intraperitoneal injection) and circulatory exposure of kaempferol (Cmax = 0.23 ± 0.06 ng/mL) and its primary metabolite kaempferol-3-O-glucuronide (Cmax = 233.29 ± 89.64 ng/mL) were rather low. In contrast, the intraperitoneal injection of kaempferol caused marginal anti-arthritis effects, although it achieved a much higher in vivo exposure. The much higher kaempferol content in the gut implicated a potential mechanism involved in the gut. Analysis of 16S ribosomal RNA revealed that CIA caused imbalance of 14 types of bacteria at the family level, whereas kaempferol largely rebalanced the intestinal microbiota in CIA mice. A metabolomics study showed that kaempferol treatment significantly reversed the perturbation of metabolites involved in energy production and the tryptophan, fatty acid and secondary bile acid metabolisms in the gut contents of the CIA mice. In conclusion, we demonstrate for the first time that the high level of kaempferol in the gut regulates the intestinal flora and microbiotic metabolism, which are potentially responsible for the anti-arthritis activities of kaempferol.
Collapse
|
31
|
Wendling D, Prati C, Chouk M, Verhoeven F. Effects of anti-IL-23 and anti-IL-17: The hidden side of spondyloarthritis polymorphism? Joint Bone Spine 2020; 87:5-7. [DOI: 10.1016/j.jbspin.2019.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
|
32
|
Nakamura A, Talukdar A, Nakamura S, Pathan E, Haroon N. Bone formation in axial spondyloarthritis: Is disease modification possible? Best Pract Res Clin Rheumatol 2019; 33:101491. [DOI: 10.1016/j.berh.2020.101491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J Immunol Res 2019; 2019:7546047. [PMID: 31772949 PMCID: PMC6854958 DOI: 10.1155/2019/7546047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
34
|
Abstract
The human gut-resident commensal microbiota is a unique ecosystem associated with various bodily functions, especially immunity. Gut microbiota dysbiosis plays a crucial role in autoimmune disease pathogenesis as well as in bowel-related diseases. However, the role of the gut microbiota, which causes or influences systemic immunity in autoimmune diseases, remains elusive. Aryl hydrocarbon receptor, a ligand-activated transcription factor, is a master moderator of host-microbiota interactions because it shapes the immune system and impacts host metabolism. In addition, treatment optimization while minimizing potential adverse effects in autoimmune diseases remains essential, and modulation of the gut microbiota constitutes a potential clinical therapy. Here, we present evidence linking gut microbiota dysbiosis with autoimmune mechanisms involved in disease development to identify future effective approaches based on the gut microbiota for preventing autoimmune diseases.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW A growing body of evidence supports the relevance of the interleukin-23/interleukin-17 (IL-23/IL-17) pathway for the pathogenesis of axial spondyloarthritis (axSpA) and its treatment. Recently, innate lymphoid cells (ILC), a heterogeneous family of immune effector cells, have been identified as a relevant contributor in tissue homeostasis, partially via IL-23/IL-17 axis. This review describes the biology and the origins of the group 3 ILCs (ILC3s) in humans, focusing on their role in the pathogenesis of axSpA. RECENT FINDINGS Clinical trials showed the effectiveness of IL23/IL-17 axis inhibition in both spondyloarthritis (SpA) and Inflammatory Bowel Disease (IBD). Recent findings confirm the high prevalence of subclinical gut inflammation in patients with SpA. Translational data in humans have demonstrated an increase in the number of ILC3s responsive to IL-23 and producing either IL-22 or IL-17 in the gut of SpA patients. The observation of gut-derived ILC3s in circulation and at inflamed tissues in patients with SpA suggest a recirculation of ILCs from mucosal site to lymphoid tissues and possibly enthesis and joints. Multiple observations demonstrate the expansion of IL-17- and IL-22-producing ILC3 in the subclinically inflamed gut of SpA patients. These innate immune cells, also observed in normal entheses, seem to be able to re-circulate from the gut to inflamed tissues of SpA patients, thus contributing to the disease perpetuation. The development of tools that can provide access to diseased tissue from sacroiliac joint and spinal entheses will provide valuable knowledge on the role of ILC3 in axSpA pathogenesis.
Collapse
|
36
|
Leon de la Rocha JA, Patel NJ, Espinoza LR. Trauma-induced concomitant psoriatic arthritis and complex regional pain syndrome. Clin Rheumatol 2019; 38:1889-1895. [DOI: 10.1007/s10067-019-04612-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 01/25/2023]
|