1
|
Zhong C, Li N, Wang S, Li D, Yang Z, Du L, Huang G, Li H, Yeung WS, He S, Ma S, Wang Z, Jiang H, Zhang H, Li Z, Wen X, Xue S, Tao X, Li H, Xie D, Zhang Y, Chen Z, Wang J, Yan J, Liang Z, Zhang Z, Zhong Z, Wu Z, Wan C, Liang C, Wang L, Yu S, Ma Y, Yu Y, Li F, Chen Y, Zhang B, Lyu A, Ren F, Zhou H, Liu J, Zhang G. Targeting osteoblastic 11β-HSD1 to combat high-fat diet-induced bone loss and obesity. Nat Commun 2024; 15:8588. [PMID: 39362888 PMCID: PMC11449908 DOI: 10.1038/s41467-024-52965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
Excessive glucocorticoid (GC) action is linked to various metabolic disorders. Recent findings suggest that disrupting skeletal GC signaling prevents bone loss and alleviates metabolic disorders in high-fat diet (HFD)-fed obese mice, underpinning the neglected contribution of skeletal GC action to obesity and related bone loss. Here, we show that the elevated expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), the enzyme driving local GC activation, and GC signaling in osteoblasts, are associated with bone loss and obesity in HFD-fed male mice. Osteoblast-specific 11β-HSD1 knockout male mice exhibit resistance to HFD-induced bone loss and metabolic disorders. Mechanistically, elevated 11β-HSD1 restrains glucose uptake and osteogenic activity in osteoblast. Pharmacologically inhibiting osteoblastic 11β-HSD1 by using bone-targeted 11β-HSD1 inhibitor markedly promotes bone formation, ameliorates glucose handling and mitigated obesity in HFD-fed male mice. Taken together, our study demonstrates that osteoblastic 11β-HSD1 directly contributes to HFD-induced bone loss, glucose handling impairment and obesity.
Collapse
Affiliation(s)
- Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, College of Life Sciences, Guangxi Normal University, Gui Lin, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guangxin Huang
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitian Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wing Sze Yeung
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shan He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuting Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhuqian Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaoxin Wen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Song Xue
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Duoli Xie
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Junqin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianfeng Yan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhengming Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sifan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yang Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Baoting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, China.
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, Australia.
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong SAR, China.
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024:ard-2023-225371. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Mahida RY, Yuan Z, Kolluri KK, Scott A, Parekh D, Hardy RS, Matthay MA, Perkins GD, Janes SM, Thickett DR. 11β hydroxysteroid dehydrogenase type 1 transgenic mesenchymal stem cells attenuate inflammation in models of sepsis. Front Bioeng Biotechnol 2024; 12:1422761. [PMID: 39036559 PMCID: PMC11257926 DOI: 10.3389/fbioe.2024.1422761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background Human bone marrow mesenchymal stem cell (MSC) administration reduces inflammation in pre-clinical models of sepsis and sepsis-related lung injury, however clinical efficacy in patients has not yet been demonstrated. We previously showed that Alveolar Macrophage (AM) 11β-hydroxysteroid dehydrogenase type-1 (HSD-1) autocrine signalling is impaired in critically ill sepsis patients, which promotes inflammatory injury. Administration of transgenic MSCs (tMSCs) which overexpress HSD-1 may enhance the anti-inflammatory effects of local glucocorticoids and be more effective at reducing inflammation in sepsis than cellular therapy alone. Methods MSCs were transfected using a recombinant lentiviral vector containing the HSD-1 and GPF transgenes under the control of a tetracycline promoter. Thin layer chromatography assessed HSD-1 reductase activity in tMSCs. Mesenchymal stem cell phenotype was assessed by flow cytometry and bi-lineage differentiation. HSD-1 tMSCs were co-cultured with LPS-stimulated monocyte-derived macrophages (MDMs) from healthy volunteers prior to assessment of pro-inflammatory cytokine release. HSD-1 tMSCs were administered intravenously to mice undergoing caecal ligation and puncture (CLP). Results MSCs were transfected with an efficiency of 91.1%, and maintained an MSC phenotype. Functional HSD-1 activity was demonstrated in tMSCs, with predominant reductase cortisol activation (peak 8.23 pM/hour/100,000 cells). HSD-1 tMSC co-culture with LPS-stimulated MDMs suppressed TNFα and IL-6 release. Administration of transgene activated HSD-1 tMSCs in a murine model of CLP attenuated neutrophilic inflammation more effectively than transgene inactive tMSCs (medians 0.403 v 1.36 × 106/ml, p = 0.033). Conclusion The synergistic impact of HSD-1 transgene expression and MSC therapy attenuated neutrophilic inflammation in a mouse model of peritoneal sepsis more effectively than MSC therapy alone. Future studies investigating the anti-inflammatory capacity of HSD-1 tMSCs in models of sepsis-related direct lung injury and inflammatory diseases are required.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Krishna K. Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research Institute, Department of Medicine and Department of Anaesthesia, University of California San Francisco, San Francisco, CA, United States
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Martin CS, Crastin A, Sagmeister MS, Kalirai MS, Turner JD, MacDonald L, Kurowska-Stolarska M, Scheel-Toellner D, Taylor AE, Gilligan LC, Storbeck K, Price M, Gorvin CM, A F, Mahida R, Clark AR, Jones SW, Raza K, Hewison M, Hardy RS. Inflammation dynamically regulates steroid hormone metabolism and action within macrophages in rheumatoid arthritis. J Autoimmun 2024; 147:103263. [PMID: 38851089 DOI: 10.1016/j.jaut.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
RATIONALE In inflammatory diseases such as rheumatoid arthritis (RA), steroid metabolism is a central component mediating the actions of immuno-modulatory glucocorticoids and sex steroids. However, the regulation and function of cellular steroid metabolism within key leukocyte populations such as macrophages remain poorly defined. In this study, the inflammatory regulation of global steroid metabolism was assessed in RA macrophages. METHODS Bulk RNA-seq data from RA synovial macrophages was used to assess transcripts encoding key enzymes in steroid metabolism and signalling. Changes in metabolism were assessed in synovial fluids, correlated to measures of disease activity and functionally validated in primary macrophage cultures. RESULTS RNA-seq revealed a unique pattern of differentially expressed genes, including changes in genes encoding the enzymes 11β-HSD1, SRD5A1, AKR1C2 and AKR1C3. These correlated with disease activity, favouring increased glucocorticoid and androgen levels. Synovial fluid 11β-HSD1 activity correlated with local inflammatory mediators (TNFα, IL-6, IL-17), whilst 11β-HSD1, SRD5A1 and AKR1C3 activity correlated with systemic measures of disease and patient pain (ESR, DAS28 ESR, global disease activity). Changes in enzyme activity were evident in inflammatory activated macrophages in vitro and revealed a novel androgen activating role for 11β-HSD1. Together, increased glucocorticoids and androgens were able to suppress inflammation in macrophages and fibroblast-like-synoviocytes. CONCLUSIONS This study underscores the significant increase in androgen and glucocorticoid activation within inflammatory polarized macrophages of the synovium, contributing to local suppression of inflammation. The diminished profile of inactive steroid precursors in postmenopausal women may contribute to disturbances in this process, leading to increased disease incidence and severity.
Collapse
Affiliation(s)
- C S Martin
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - A Crastin
- School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - M S Sagmeister
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - M S Kalirai
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L MacDonald
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - M Kurowska-Stolarska
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - D Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - A E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - L C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - K Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - M Price
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - C M Gorvin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Filer A
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - R Mahida
- University of Birmingham, Birmingham, West Midlands Uk
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - S W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - K Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK; Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - M Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - R S Hardy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Rajakumar P, Mahadevan S, Asirvatham AR, Ranjan A. Drug-Induced Atypical Lipodystrophy. JCEM CASE REPORTS 2024; 2:luae067. [PMID: 38638337 PMCID: PMC11025636 DOI: 10.1210/jcemcr/luae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 04/20/2024]
Abstract
We describe a case of an Asian-Indian female patient who presented to us with abnormal fat accumulations in the torso and upper arms following indiscriminate use of corticosteroid and anabolic steroids for about 7 years. Despite prolonged steroid use, the patient did not display cushingoid phenotype or metabolic decompensation. Bone density, echocardiography, and ultrasonogram of the liver were also normal with no evidence of excess pericardial fat, hepatic steatosis, or peliosis hepatis. Concurrent use of anabolic androgen is thought to be protective against the ill effects of steroids, especially on the muscle and bone. This phenomenon has been observed in children and adolescents with Cushing syndrome where the adrenal androgen excess and increased physical activity have shown to reasonably reduce protein catabolism and help in preserving muscle and bone mass. The patient was withdrawn from the drugs and was put on replacement hydrocortisone that was gradually tapered over the next few weeks and planned for surgical correction. This case highlights the fact that medical providers should be aware that a combination of anabolic steroids and glucocorticoids are still used for weight-building purposes, and these patients may present with atypical signs/symptoms as a result of this combination of drugs.
Collapse
Affiliation(s)
- Priyadarshini Rajakumar
- Department of Endocrinology, Sri Ramachandra Medical College and Research Institute, Chennai 600116, Tamilnadu, India
| | - Shriraam Mahadevan
- Department of Endocrinology, Sri Ramachandra Medical College and Research Institute, Chennai 600116, Tamilnadu, India
| | - Adlyne Reena Asirvatham
- Department of Endocrinology, Sri Ramachandra Medical College and Research Institute, Chennai 600116, Tamilnadu, India
| | - Asha Ranjan
- Department of Endocrinology, Sri Ramachandra Medical College and Research Institute, Chennai 600116, Tamilnadu, India
| |
Collapse
|
6
|
Bijlsma JWJ. Annals of the Rheumatic Diseases collection on glucocorticoids (2020-2023): novel insights and advances in therapy. Ann Rheum Dis 2024; 83:4-8. [PMID: 37739452 DOI: 10.1136/ard-2023-224847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Johannes W J Bijlsma
- Department of Rheumatology and Clinical Immunology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
7
|
Pofi R, Caratti G, Ray DW, Tomlinson JW. Treating the Side Effects of Exogenous Glucocorticoids; Can We Separate the Good From the Bad? Endocr Rev 2023; 44:975-1011. [PMID: 37253115 PMCID: PMC10638606 DOI: 10.1210/endrev/bnad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
It is estimated that 2% to 3% of the population are currently prescribed systemic or topical glucocorticoid treatment. The potent anti-inflammatory action of glucocorticoids to deliver therapeutic benefit is not in doubt. However, the side effects associated with their use, including central weight gain, hypertension, insulin resistance, type 2 diabetes (T2D), and osteoporosis, often collectively termed iatrogenic Cushing's syndrome, are associated with a significant health and economic burden. The precise cellular mechanisms underpinning the differential action of glucocorticoids to drive the desirable and undesirable effects are still not completely understood. Faced with the unmet clinical need to limit glucocorticoid-induced adverse effects alongside ensuring the preservation of anti-inflammatory actions, several strategies have been pursued. The coprescription of existing licensed drugs to treat incident adverse effects can be effective, but data examining the prevention of adverse effects are limited. Novel selective glucocorticoid receptor agonists and selective glucocorticoid receptor modulators have been designed that aim to specifically and selectively activate anti-inflammatory responses based upon their interaction with the glucocorticoid receptor. Several of these compounds are currently in clinical trials to evaluate their efficacy. More recently, strategies exploiting tissue-specific glucocorticoid metabolism through the isoforms of 11β-hydroxysteroid dehydrogenase has shown early potential, although data from clinical trials are limited. The aim of any treatment is to maximize benefit while minimizing risk, and within this review we define the adverse effect profile associated with glucocorticoid use and evaluate current and developing strategies that aim to limit side effects but preserve desirable therapeutic efficacy.
Collapse
Affiliation(s)
- Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Giorgio Caratti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX37LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
8
|
O’Neil JD, Bolimowska OO, Clayton SA, Tang T, Daley KK, Lara-Reyna S, Warner J, Martin CS, Mahida RY, Hardy RS, Arthur JSC, Clark AR. Dexamethasone impairs the expression of antimicrobial mediators in lipopolysaccharide-activated primary macrophages by inhibiting both expression and function of interferon β. Front Immunol 2023; 14:1190261. [PMID: 37942320 PMCID: PMC10628473 DOI: 10.3389/fimmu.2023.1190261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Glucocorticoids potently inhibit expression of many inflammatory mediators, and have been widely used to treat both acute and chronic inflammatory diseases for more than seventy years. However, they can have several unwanted effects, amongst which immunosuppression is one of the most common. Here we used microarrays and proteomic approaches to characterise the effect of dexamethasone (a synthetic glucocorticoid) on the responses of primary mouse macrophages to a potent pro-inflammatory agonist, lipopolysaccharide (LPS). Gene ontology analysis revealed that dexamethasone strongly impaired the lipopolysaccharide-induced antimicrobial response, which is thought to be driven by an autocrine feedback loop involving the type I interferon IFNβ. Indeed, dexamethasone strongly and dose-dependently inhibited the expression of IFNβ by LPS-activated macrophages. Unbiased proteomic data also revealed an inhibitory effect of dexamethasone on the IFNβ-dependent program of gene expression, with strong down-regulation of several interferon-induced antimicrobial factors. Surprisingly, dexamethasone also inhibited the expression of several antimicrobial genes in response to direct stimulation of macrophages with IFNβ. We tested a number of hypotheses based on previous publications, but found that no single mechanism could account for more than a small fraction of the broad suppressive impact of dexamethasone on macrophage type I interferon signaling, underlining the complexity of this pathway. Preliminary experiments indicated that dexamethasone exerted similar inhibitory effects on primary human monocyte-derived or alveolar macrophages.
Collapse
Affiliation(s)
- John D. O’Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Oliwia O. Bolimowska
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sally A. Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Tina Tang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kalbinder K. Daley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jordan Warner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Claire S. Martin
- School of Biomedical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rahul Y. Mahida
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- School of Biomedical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrew R. Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Mahida RY, Lax S, Bassford CR, Scott A, Parekh D, Hardy RS, Naidu B, Matthay MA, Stewart PM, Cooper MC, Perkins GD, Thickett DR. Impaired alveolar macrophage 11β-hydroxysteroid dehydrogenase type 1 reductase activity contributes to increased pulmonary inflammation and mortality in sepsis-related ARDS. Front Immunol 2023; 14:1159831. [PMID: 37180160 PMCID: PMC10172463 DOI: 10.3389/fimmu.2023.1159831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a devastating pulmonary inflammatory disorder, commonly precipitated by sepsis. Glucocorticoids are immunomodulatory steroids that can suppress inflammation. Their anti-inflammatory properties within tissues are influenced by their pre-receptor metabolism and amplification from inactive precursors by 11β-hydroxysteroid dehydrogenase type-1 (HSD-1). We hypothesised that in sepsis-related ARDS, alveolar macrophage (AM) HSD-1 activity and glucocorticoid activation are impaired, and associated with greater inflammatory injury and worse outcomes. Methods We analysed broncho-alveolar lavage (BAL) and circulating glucocorticoid levels, AM HSD-1 reductase activity and Receptor for Advanced Glycation End-products (RAGE) levels in two cohorts of critically ill sepsis patients, with and without ARDS. AM HSD-1 reductase activity was also measured in lobectomy patients. We assessed inflammatory injury parameters in models of lung injury and sepsis in HSD-1 knockout (KO) and wild type (WT) mice. Results No difference in serum and BAL cortisol: cortisone ratios are shown between sepsis patients with and without ARDS. Across all sepsis patients, there is no association between BAL cortisol: cortisone ratio and 30-day mortality. However, AM HSD-1 reductase activity is impaired in patients with sepsis-related ARDS, compared to sepsis patients without ARDS and lobectomy patients (0.075 v 0.882 v 0.967 pM/hr/106 AMs, p=0.004). Across all sepsis patients (with and without ARDS), impaired AM HSD-1 reductase activity is associated with defective efferocytosis (r=0.804, p=0.008) and increased 30-day mortality. AM HSD-1 reductase activity negatively correlates with BAL RAGE in sepsis patients with ARDS (r=-0.427, p=0.017). Following intra-tracheal lipopolysaccharide (IT-LPS) injury, HSD-1 KO mice demonstrate increased alveolar neutrophil infiltration, apoptotic neutrophil accumulation, alveolar protein permeability and BAL RAGE concentrations compared to WT mice. Caecal Ligation and Puncture (CLP) injury in HSD-1 KO mice results in greater peritoneal apoptotic neutrophil accumulation compared to WT mice. Conclusions AM HSD-1 reductase activity does not shape total BAL and serum cortisol: cortisone ratios, however impaired HSD-1 autocrine signalling renders AMs insensitive to the anti-inflammatory effects of local glucocorticoids. This contributes to the decreased efferocytosis, increased BAL RAGE concentrations and mortality seen in sepsis-related ARDS. Upregulation of alveolar HSD-1 activity could restore AM function and improve clinical outcomes in these patients.
Collapse
Affiliation(s)
- Rahul Y. Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Siân Lax
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher R. Bassford
- Department of General Critical Care, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael A. Matthay
- Cardiovascular Research Institute, Department of Medicine, and Department of Anaesthesia, University of California San Francisco, San Francisco, California, CA, United States
| | - Paul M. Stewart
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark C. Cooper
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Elhalag RH, Motawea KR, Talat NE, Rouzan SS, Shah J. Efficacy of vamorolone in treatment of Duchene muscle dystrophy. A meta-analysis. Front Neurol 2023; 14:1107474. [PMID: 36816559 PMCID: PMC9929286 DOI: 10.3389/fneur.2023.1107474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Background and aim Recent studies evaluated the role of vamorolone in treating Duchenne muscular dystrophy (DMD), so we aimed in our Meta-analysis to assess the efficacy of vamorolone in comparison with placebo and corticosteroids for treating DMD patients. Methods We searched PubMed, Web of Science, Scopus, and Cochrane library databases. We included any randomized control trials and controlled observational studies that investigated the role of vamorolone in treating DMD patients. We used RevMan software, version 5.4. to perform our meta-analysis. Results After a search of the literature, 4 studies were included in the meta-analysis; the total number of patients included in the study is 277 patients, 125 patients in the vamorolone group, 106 in the glucocorticoids group, and 46 in placebo (steroid naïve) group. The pooled analysis showed a statistically significant association between the vamorolone group and increased TTSTAND velocity, TTRW velocity and TTCLIMB velocity compared with the placebo group (MD = 0.04, 95% CI = 0.02-0.07, p = 0.002), (MD = 0.24, 95% CI = 0.11-0.37, p = 0.0003), and (MD = 0.06, 95% CI = 0.05-0.06, p < 0.00001), respectively. Also, the analysis showed a statistically significant association between vamorolone and increased TTRW velocity and increased Height percentile for age compared with the glucocorticoid group (MD = -0.14, 95% CI = -0.26 to -0.01, p = 0.03) and (MD = 17.82, 95% CI = 3.89-31.75, p = 0.01), respectively. Conclusion Our study revealed a significant association between vamorolone and increased TTSTAND velocity, TTRW velocity, and TTCLIMB velocity compared with the placebo (steroid naïve), also showed a statistically significant association between increased TTRW velocity and increased Height percentile for age compared with the glucocorticoid that enhances the privilege of vamorolone over glucocorticoid in treating DMD patients. More multicenter randomized studies are needed to support our results.
Collapse
Affiliation(s)
| | | | | | - Samah S. Rouzan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jaffer Shah
- New York State Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah ✉
| |
Collapse
|
11
|
Koorneef LL, Viho EMG, Wahl LF, Meijer OC. Do Corticosteroid Receptor mRNA Levels Predict the Expression of Their Target Genes? J Endocr Soc 2022; 7:bvac188. [PMID: 36578881 PMCID: PMC9791178 DOI: 10.1210/jendso/bvac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
The glucocorticoid stress hormones affect brain function via high-affinity mineralocorticoid receptors (MRs) and lower-affinity glucocorticoid receptors (GRs). MR and GR not only differ in affinity for ligands, but also have distinct, sometimes opposite, actions on neuronal excitability and other cellular and higher-order parameters related to cerebral function. GR and MR messenger RNA (mRNA) levels are often used as a proxy for the responsiveness to glucocorticoids, assuming proportionality between mRNA and protein levels. This may be especially relevant for the MR, which because of its high affinity is already largely occupied at low basal (trough) hormone levels. Here we explore how GR and MR mRNA levels are associated with the expression of a shared target gene, glucocorticoid-induced leucine zipper (GILZ, coded by Tsc22d3) with basal and elevated levels of corticosterone in male mice, using in situ hybridization. Depending on the hippocampal subfield and the corticosterone levels, mRNA levels of MR rather than GR mostly correlated with GILZ mRNA in the hippocampus and hypothalamus at the bulk tissue level. At the individual cell level, these correlations were much weaker. Using publicly available single-cell RNA sequencing data, we again observed that MR and GR mRNA levels were only weakly correlated with target gene expression in glutamatergic and GABAergic neurons. We conclude that MR mRNA levels can be limiting for receptor action, but many other cell-specific and region-specific factors ultimately determine corticosteroid receptor action. Altogether, our results argue for caution while interpreting the consequences of changed receptor expression for the response to glucocorticoids.
Collapse
Affiliation(s)
- Lisa L Koorneef
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Eva M G Viho
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Lucas F Wahl
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Onno C Meijer
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
12
|
Kelley C, Vander Molen J, Choi J, Bhai S, Martin K, Cochran C, Puthanveetil P. Impact of Glucocorticoids on Cardiovascular System-The Yin Yang Effect. J Pers Med 2022; 12:jpm12111829. [PMID: 36579545 PMCID: PMC9694205 DOI: 10.3390/jpm12111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids are not only endogenous hormones but are also administered exogenously as an anti-inflammatory and immunosuppressant for their long-term beneficial and lifesaving effects. Because of their potent anti-inflammatory property and ability to curb the cytokines, they are administered as lifesaving steroids. This property is not only made use of in the cardiovascular system but also in other major organ systems and networks. There is a fine line between their use as a protective anti-inflammatory and a steroid that could cause overuse-induced complications in major organ systems including the cardiovascular system. Studies conducted in the cardiovascular system demonstrate that glucocorticoids are required for growth and development and also for offering protection against inflammatory signals. Excess or long-term glucocorticoid administration could alter cardiac metabolism and health. The endogenous dysregulated state due to excess endogenous glucocorticoid release from the adrenals as seen with Cushing's syndrome or excess exogenous glucocorticoid administration leading to Cushing's-like condition show a similar impact on the cardiovascular system. This review highlights the importance of maintaining a glucocorticoid balance whether it is endogenous and exogenous in regulating cardiovascular health.
Collapse
Affiliation(s)
- Chase Kelley
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Jonathan Vander Molen
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Jennifer Choi
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Sahar Bhai
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Katelyn Martin
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Cole Cochran
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Prasanth Puthanveetil
- Rm-322-I, Science Hall, Department of Pharmacology, College of Graduate Studies, Midwestern University, Chicago, IL 60515, USA
- Correspondence: ; Tel.: +1-630-960-3935
| |
Collapse
|
13
|
Guglieri M, Clemens PR, Perlman SJ, Smith EC, Horrocks I, Finkel RS, Mah JK, Deconinck N, Goemans N, Haberlova J, Straub V, Mengle-Gaw LJ, Schwartz BD, Harper AD, Shieh PB, De Waele L, Castro D, Yang ML, Ryan MM, McDonald CM, Tulinius M, Webster R, McMillan HJ, Kuntz NL, Rao VK, Baranello G, Spinty S, Childs AM, Sbrocchi AM, Selby KA, Monduy M, Nevo Y, Vilchez-Padilla JJ, Nascimento-Osorio A, Niks EH, de Groot IJM, Katsalouli M, James MK, van den Anker J, Damsker JM, Ahmet A, Ward LM, Jaros M, Shale P, Dang UJ, Hoffman EP. Efficacy and Safety of Vamorolone vs Placebo and Prednisone Among Boys With Duchenne Muscular Dystrophy: A Randomized Clinical Trial. JAMA Neurol 2022; 79:1005-1014. [PMID: 36036925 PMCID: PMC9425287 DOI: 10.1001/jamaneurol.2022.2480] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Question For steroidal anti-inflammatory drugs, can efficacy be retained while safety concerns are reduced among boys with Duchenne muscular dystrophy (DMD) with the novel partial receptor agonist vamorolone? Findings A randomized, double-blind, placebo- and prednisone-controlled trial of vamorolone (2 dose groups) was carried out in 121 patients with DMD. The trial met the primary (time to stand velocity after 24 weeks for vamorolone, 6 mg/kg per day vs placebo) and first 4 sequential secondary motor function end points; vamorolone showed loss of bone morbidities compared with prednisone, with no stunting of growth and no deleterious changes in bone biomarkers. Meaning This study found that vamorolone, a dissociative steroidal anti-inflammatory, was able to reduce bone morbidities while retaining efficacy. Importance Corticosteroidal anti-inflammatory drugs are widely prescribed but long-term use shows adverse effects that detract from patient quality of life. Objective To determine if vamorolone, a structurally unique dissociative steroidal anti-inflammatory drug, is able to retain efficacy while reducing safety concerns with use in Duchenne muscular dystrophy (DMD). Design, Setting, and Participants Randomized, double-blind, placebo- and prednisone-controlled 24-week clinical trial, conducted from June 29, 2018, to February 24, 2021, with 24 weeks of follow-up. This was a multicenter study (33 referral centers in 11 countries) and included boys 4 to younger than 7 years of age with genetically confirmed DMD not previously treated with corticosteroids. Interventions The study included 4 groups: placebo; prednisone, 0.75 mg/kg per day; vamorolone, 2 mg/kg per day; and vamorolone, 6 mg/kg per day. Main Outcomes and Measures Study outcomes monitored (1) efficacy, which included motor outcomes (primary: time to stand from supine velocity in the vamorolone, 6 mg/kg per day, group vs placebo; secondary: time to stand from supine velocity [vamorolone, 2 mg/kg per day], 6-minute walk distance, time to run/walk 10 m [vamorolone, 2 and 6 mg/kg per day]; exploratory: NorthStar Ambulatory Assessment, time to climb 4 stairs) and (2) safety, which included growth, bone biomarkers, and a corticotropin (ACTH)–challenge test. Results Among the 133 boys with DMD enrolled in the study (mean [SD] age, 5.4 [0.9] years), 121 were randomly assigned to treatment groups, and 114 completed the 24-week treatment period. The trial met the primary end point for change from baseline to week 24 time to stand velocity for vamorolone, 6 mg/kg per day (least-squares mean [SE] velocity, 0.05 [0.01] m/s vs placebo −0.01 [0.01] m/s; 95% CI, 0.02-0.10; P = .002) and the first 4 sequential secondary end points: time to stand velocity, vamorolone, 2 mg/kg per day, vs placebo; 6-minute walk test, vamorolone, 6 mg/kg per day, vs placebo; 6-minute walk test, vamorolone, 2 mg/kg per day, vs placebo; and time to run/walk 10 m velocity, vamorolone, 6 mg/kg per day, vs placebo. Height percentile declined in prednisone-treated (not vamorolone-treated) participants (change from baseline [SD]: prednisone, −1.88 [8.81] percentile vs vamorolone, 6 mg/kg per day, +3.86 [6.16] percentile; P = .02). Bone turnover markers declined with prednisone but not with vamorolone. Boys with DMD at baseline showed low ACTH-stimulated cortisol and high incidence of adrenal insufficiency. All 3 treatment groups led to increased adrenal insufficiency. Conclusions and Relevance In this pivotal randomized clinical trial, vamorolone was shown to be effective and safe in the treatment of boys with DMD over a 24-week treatment period. Vamorolone may be a safer alternative than prednisone in this disease, in which long-term corticosteroid use is the standard of care. Trial Registration ClinicalTrials.gov Identifier: NCT03439670
Collapse
Affiliation(s)
- Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle Hospitals NHS Foundation Trust and Newcastle University, Newcastle, United Kingdom
| | - Paula R Clemens
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Edward C Smith
- Duke University School of Medicine, Durham, North Carolina
| | - Iain Horrocks
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Richard S Finkel
- Nemours Children's Hospital, Orlando, Florida.,St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jean K Mah
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Nathalie Goemans
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Jana Haberlova
- Neuromuscular Centre, Department of Pediatric Neurology, Motol University Hospital, 2nd Medical School, Charles University, Prague, Czech Republic
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle Hospitals NHS Foundation Trust and Newcastle University, Newcastle, United Kingdom
| | | | | | - Amy D Harper
- Richmond Children's Hospital, Richmond, Virginia
| | | | - Liesbeth De Waele
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Michelle L Yang
- University of Colorado School of Medicine, Children's Hospital Colorado, Aurora
| | - Monique M Ryan
- The Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Mar Tulinius
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Richard Webster
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, Australia
| | | | - Nancy L Kuntz
- Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Vashmi K Rao
- Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Giovanni Baranello
- The Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, London, United Kingdom
| | - Stefan Spinty
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | | | | | - Kathryn A Selby
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Yoram Nevo
- Schneider Children's Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Andres Nascimento-Osorio
- Neuropaediatrics Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Erik H Niks
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Meredith K James
- John Walton Muscular Dystrophy Research Centre, Newcastle Hospitals NHS Foundation Trust and Newcastle University, Newcastle, United Kingdom
| | - Johannes van den Anker
- ReveraGen BioPharma, Rockville, Maryland.,Children's National Medical Center, Washington, DC
| | | | - Alexandra Ahmet
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | | | | | | | - Eric P Hoffman
- ReveraGen BioPharma, Rockville, Maryland.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences Binghamton University-State University of New York, Binghamton
| |
Collapse
|
14
|
Kragl A, Schoon J, Tzvetkova A, Wenzel C, Blaschke M, Böcker W, Siggelkow H, Tzvetkov MV. Effects of HSD11B1 knockout and overexpression on local cortisol production and differentiation of mesenchymal stem cells. Front Bioeng Biotechnol 2022; 10:953034. [PMID: 36091434 PMCID: PMC9453430 DOI: 10.3389/fbioe.2022.953034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Exogenous glucocorticoids increase the risk for osteoporosis, but the role of endogenous glucocorticoids remains elusive. Here, we describe the generation and validation of a loss- and a gain-of-function model of the cortisol producing enzyme 11β-HSD1 (HSD11B1) to modulate the endogenous glucocorticoid conversion in SCP-1 cells — a model for human mesenchymal stem cells capable of adipogenic and osteogenic differentiation. CRISPR-Cas9 was successfully used to generate a cell line carrying a single base duplication and a 5 bp deletion in exon 5, leading to missense amino acid sequences after codon 146. These inactivating genomic alterations were validated by deep sequencing and by cloning with subsequent capillary sequencing. 11β-HSD1 protein levels were reduced by 70% in the knockout cells and cortisol production was not detectable. Targeted chromosomal integration was used to stably overexpress HSD11B1. Compared to wildtype cells, HSD11B1 overexpression resulted in a 7.9-fold increase in HSD11B1 mRNA expression, a 5-fold increase in 11β-HSD1 protein expression and 3.3-fold increase in extracellular cortisol levels under adipogenic differentiation. The generated cells were used to address the effects of 11β-HSD1 expression on adipogenic and osteogenic differentiation. Compared to the wildtype, HSD11B1 overexpression led to a 3.7-fold increase in mRNA expression of lipoprotein lipase (LPL) and 2.5-fold increase in lipid production under adipogenic differentiation. Under osteogenic differentiation, HSD11B1 knockout led to enhanced alkaline phosphatase (ALP) activity and mRNA expression, and HSD11B1 overexpression resulted in a 4.6-fold and 11.7-fold increase in mRNA expression of Dickkopf-related protein 1 (DKK1) and LPL, respectively. Here we describe a HSD11B1 loss- and gain-of-function model in SCP-1 cells at genetic, molecular and functional levels. We used these models to study the effects of endogenous cortisol production on mesenchymal stem cell differentiation and demonstrate an 11β-HSD1 dependent switch from osteogenic to adipogenic differentiation. These results might help to better understand the role of endogenous cortisol production in osteoporosis on a molecular and cellular level.
Collapse
Affiliation(s)
- Angelique Kragl
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Wenzel
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Martina Blaschke
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- MVZ Endokrinologikum Göttingen, Göttingen, Germany
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Heide Siggelkow
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- MVZ Endokrinologikum Göttingen, Göttingen, Germany
| | - Mladen V. Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
- *Correspondence: Mladen V. Tzvetkov,
| |
Collapse
|
15
|
Fenton CG, Crastin A, Martin CS, Suresh S, Montagna I, Hussain B, Naylor AJ, Jones SW, Hansen MS, Gorvin CM, Price M, Filer A, Cooper MS, Lavery GG, Raza K, Hardy RS. 11β-Hydroxysteroid Dehydrogenase Type 1 within Osteoclasts Mediates the Bone Protective Properties of Therapeutic Corticosteroids in Chronic Inflammation. Int J Mol Sci 2022; 23:7334. [PMID: 35806338 PMCID: PMC9266304 DOI: 10.3390/ijms23137334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a mediator of the anti-inflammatory actions of therapeutic glucocorticoids (GCs) in vivo. In this study we delineate the role of 11β-HSD1 in the effects of GC on bone during inflammatory polyarthritis. Its function was assessed in bone biopsies from patients with RA and osteoarthritis, and in primary osteoblasts and osteoclasts. Bone metabolism was assessed in the TNF-tg model of polyarthritis treated with oral GC (corticosterone), in animals with global (TNF-tg11βKO), mesenchymal (including osteoblast) (TNF-tg11βflx/tw2cre) and myeloid (including osteoclast) (TNF-tg11βflx/LysMcre) deletion. Bone parameters were assessed by micro-CT, static histomorphometry and serum metabolism markers. We observed a marked increase in 11β-HSD1 activity in bone in RA relative to osteoarthritis bone, whilst the pro-inflammatory cytokine TNFα upregulated 11β-HSD1 within osteoblasts and osteoclasts. In osteoclasts, 11β-HSD1 mediated the suppression of bone resorption by GCs. Whilst corticosterone prevented the inflammatory loss of trabecular bone in TNF-tg animals, counterparts with global deletion of 11β-HSD1 were resistant to these protective actions, characterised by increased osteoclastic bone resorption. Targeted deletion of 11β-HSD1 within osteoclasts and myeloid derived cells partially reproduced the GC resistant phenotype. These data reveal the critical role of 11β-HSD1 within bone and osteoclasts in mediating the suppression of inflammatory bone loss in response to therapeutic GCs in chronic inflammatory disease.
Collapse
Affiliation(s)
- Chloe G Fenton
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (C.G.F.); (C.S.M.); (I.M.); (C.M.G.); (M.P.); (G.G.L.)
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.J.N.); (A.F.); (K.R.)
| | - Ana Crastin
- Institute of Clinical Science, University of Birmingham, Birmingham B15 2TT, UK; (A.C.); (S.S.); (B.H.)
| | - Claire S Martin
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (C.G.F.); (C.S.M.); (I.M.); (C.M.G.); (M.P.); (G.G.L.)
| | - Saicharan Suresh
- Institute of Clinical Science, University of Birmingham, Birmingham B15 2TT, UK; (A.C.); (S.S.); (B.H.)
| | - Isabella Montagna
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (C.G.F.); (C.S.M.); (I.M.); (C.M.G.); (M.P.); (G.G.L.)
| | - Bismah Hussain
- Institute of Clinical Science, University of Birmingham, Birmingham B15 2TT, UK; (A.C.); (S.S.); (B.H.)
| | - Amy J Naylor
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.J.N.); (A.F.); (K.R.)
| | - Simon W Jones
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK;
| | - Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Caroline M Gorvin
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (C.G.F.); (C.S.M.); (I.M.); (C.M.G.); (M.P.); (G.G.L.)
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, UK
| | - Maria Price
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (C.G.F.); (C.S.M.); (I.M.); (C.M.G.); (M.P.); (G.G.L.)
| | - Andrew Filer
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.J.N.); (A.F.); (K.R.)
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK;
| | - Mark S Cooper
- ANZAC Research Institute, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Gareth G Lavery
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (C.G.F.); (C.S.M.); (I.M.); (C.M.G.); (M.P.); (G.G.L.)
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK;
| | - Karim Raza
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.J.N.); (A.F.); (K.R.)
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK;
- Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham B15 2TT, UK
| | - Rowan S Hardy
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK; (C.G.F.); (C.S.M.); (I.M.); (C.M.G.); (M.P.); (G.G.L.)
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.J.N.); (A.F.); (K.R.)
- Institute of Clinical Science, University of Birmingham, Birmingham B15 2TT, UK; (A.C.); (S.S.); (B.H.)
| |
Collapse
|
16
|
Pelechas E, Drosos AA. State-of-the-art glucocorticoid-targeted drug therapies for the treatment of rheumatoid arthritis. Expert Opin Pharmacother 2022; 23:703-711. [PMID: 35313795 DOI: 10.1080/14656566.2022.2049238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Glucocorticoids are steroid hormones broadly used for the treatment of several inflammatory and autoimmune diseases among other numerous indications, including rheumatoid arthritis. AREAS COVERED For the purposes of this article, the authors have performed an extensive review of the literature to present the latest studies on glucocorticoid use in rheumatoid arthritis. They also provide the reader with their expert perspectives on future developments. EXPERT OPINION The authors do not anticipate that glucocorticoids with be replaced in the near future by newer drugs. As such, rheumatologists should be fully aware of the possible side-effects and educate appropriately their patients to recognize and report them. Newer formulations, such as the liposomal/nanoparticle-based treatments, will result in less pronounced adverse effects, but the input of clinical experience along with the current recommendations for the glucocorticoid use will benefit both clinicians and patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Eleftherios Pelechas
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Alexandros A Drosos
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
17
|
Filippa MG, Tektonidou MG, Mantzou A, Kaltsas GA, Chrousos GP, Sfikakis PP, Yavropoulou MP. Adrenocortical dysfunction in rheumatoid arthritis: Α narrative review and future directions. Eur J Clin Invest 2022; 52:e13635. [PMID: 34097322 DOI: 10.1111/eci.13635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Iatrogenic adrenal insufficiency (AI) secondary to long-term treatment with exogenous glucocorticoids (GC) is common in patients with systematic rheumatic diseases, including rheumatoid arthritis (RA). Moreover, a proportion of these patients is always in need of even small doses of glucocorticoids to maintain clinical remission, despite concomitant treatment with conventional and biologic disease-modifying drugs. METHODS We conducted a literature review up to December 2020 on (a) the incidence of AI in both long-term GC-treated and GC-treatment naïve RA patients; (b) the potential effects of increased levels of circulating proinflammatory cytokines, as well as of chronic stress, in adrenocortical function in RA; (c) the circadian cortisol rhythm in RA; and (d) established and evolving methods of assessment of adrenocortical function. RESULTS Up to 48% of RA patients develop glucocorticoid-induced AI; however, predictors are not established, while adrenocortical dysfunction may also occur in GC-treatment naïve RA patients. Experimental and clinical data have suggested that inadequate production of endogenous cortisol relative to enhanced clinical needs associated with the systemic inflammatory response, coined as the 'disproportion principle', may operate in RA. Although the underlying mechanisms are unknown, both proinflammatory cytokines and chronic stress may contribute the most in the adrenals hyporesponsiveness and the target tissue glucocorticoid resistance that have been described, but not systematically studied. A precise longitudinal assessment of endogenous cortisol production may be needed for optimal RA management. CONCLUSION Apart from iatrogenic AI, an intrinsically compromised adrenal reserve in RA may have a pathogenetic role and interfere with effective management, thus deserving further research.
Collapse
Affiliation(s)
- Maria G Filippa
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria G Tektonidou
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Mantzou
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory A Kaltsas
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria P Yavropoulou
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Glennon V, Whittle SL, Hill CL, Johnston RV, Avery JC, Grobler L, McKenzie BJ, Cyril S, Pardo Pardo J, Buchbinder R. Short-term glucocorticoids for flares in people with rheumatoid arthritis receiving disease-modifying anti-rheumatic drugs (DMARDs). Hippokratia 2021. [DOI: 10.1002/14651858.cd014898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vanessa Glennon
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
| | - Samuel L Whittle
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
- Rheumatology Unit; Queen Elizabeth Hospital; Woodville South Australia
| | - Catherine L Hill
- Rheumatology Unit; Queen Elizabeth Hospital; Woodville South Australia
- Discipline of Medicine; The University of Adelaide; Adelaide Australia
| | - Renea V Johnston
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
| | - Jodie C Avery
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
- Adelaide Medical School, Robinson Research Institute; The University of Adelaide; North Adelaide Australia
| | - Liesl Grobler
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
- Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Bayden J McKenzie
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
| | - Sheila Cyril
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
| | - Jordi Pardo Pardo
- Ottawa Hospital Research Institute, The Ottawa Hospital - General Campus; Ottawa Canada
| | - Rachelle Buchbinder
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University; Monash-Cabrini Department of Musculoskeletal Health and Clinical Epidemiology; Cabrini Health; Melbourne Australia
| |
Collapse
|
19
|
Chronobiology and Chronotherapy in Inflammatory Joint Diseases. Pharmaceutics 2021; 13:pharmaceutics13111832. [PMID: 34834246 PMCID: PMC8621834 DOI: 10.3390/pharmaceutics13111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Circadian rhythm perturbations can impact the evolution of different conditions, including autoimmune diseases. This narrative review summarizes the current understanding of circadian biology in inflammatory joint diseases and discusses the potential application of chronotherapy. Proinflammatory cytokines are key players in the development and progression of rheumatoid arthritis (RA), regulating cell survival/apoptosis, differentiation, and proliferation. The production and secretion of inflammatory cytokines show a dependence on the human day–night cycle, resulting in changing cytokine plasma levels over 24 h. Moreover, beyond the circadian rhythm of cytokine secretion, disturbances in timekeeping mechanisms have been proposed in RA. Taking into consideration chronotherapy concepts, modified-release (MR) prednisone tablets have been introduced to counteract the negative effects of night-time peaks of proinflammatory cytokines. Low-dose MR prednisone seems to be able to improve the course of RA, reduce morning stiffness and morning serum levels of IL-6, and induce significant clinical benefits. Additionally, methotrexate (MTX) chronotherapy has been reported to be associated with a significant improvement in RA activity score. Similar effects have been described for polymyalgia rheumatica and gout, although the available literature is still limited. Growing knowledge of chronobiology applied to inflammatory joint diseases could stimulate the development of new drug strategies to treat patients in accordance with biological rhythms and minimize side effects.
Collapse
|
20
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
21
|
Global Deletion of 11β-HSD1 Prevents Muscle Wasting Associated with Glucocorticoid Therapy in Polyarthritis. Int J Mol Sci 2021; 22:ijms22157828. [PMID: 34360594 PMCID: PMC8346140 DOI: 10.3390/ijms22157828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids provide indispensable anti-inflammatory therapies. However, metabolic adverse effects including muscle wasting restrict their use. The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) modulates peripheral glucocorticoid responses through pre-receptor metabolism. This study investigates how 11β-HSD1 influences skeletal muscle responses to glucocorticoid therapy for chronic inflammation. We assessed human skeletal muscle biopsies from patients with rheumatoid arthritis and osteoarthritis for 11β-HSD1 activity ex vivo. Using the TNF-α-transgenic mouse model (TNF-tg) of chronic inflammation, we examined the effects of corticosterone treatment and 11β-HSD1 global knock-out (11βKO) on skeletal muscle, measuring anti-inflammatory gene expression, muscle weights, fiber size distribution, and catabolic pathways. Muscle 11β-HSD1 activity was elevated in patients with rheumatoid arthritis and correlated with inflammation markers. In murine skeletal muscle, glucocorticoid administration suppressed IL6 expression in TNF-tg mice but not in TNF-tg11βKO mice. TNF-tg mice exhibited reductions in muscle weight and fiber size with glucocorticoid therapy. In contrast, TNF-tg11βKO mice were protected against glucocorticoid-induced muscle atrophy. Glucocorticoid-mediated activation of catabolic mediators (FoxO1, Trim63) was also diminished in TNF-tg11βKO compared to TNF-tg mice. In summary, 11β-HSD1 knock-out prevents muscle atrophy associated with glucocorticoid therapy in a model of chronic inflammation. Targeting 11β-HSD1 may offer a strategy to refine the safety of glucocorticoids.
Collapse
|
22
|
Blaschke M, Koepp R, Streit F, Beismann J, Manthey G, Seitz MT, Kragl A, Siggelkow H. The rise in expression and activity of 11β-HSD1 in human mesenchymal progenitor cells induces adipogenesis through increased local cortisol synthesis. J Steroid Biochem Mol Biol 2021; 210:105850. [PMID: 33639236 DOI: 10.1016/j.jsbmb.2021.105850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) plays an important role in pre-receptor glucocorticoid metabolism. This enzyme is expressed in bone, increases with age, and catalyzes the conversion of the inactive glucocorticoid cortisone into the active glucocorticoid cortisol and vice versa. Here we hypothesized that the physiological activity of 11β-HSD1 to produce cortisol in human mesenchymal progenitor cells (hMSC) is principally sufficient to shift the differentiation potential in the direction of adipogenic. We thus investigated differentiating hMSCs and the mesenchymal stem cell line SCP-1 cultured under osteogenic conditions and stimulated with supra-physiological cortisone levels. The release of active cortisol into the medium was monitored and the influence on cell differentiation analyzed. We revealed an increase in 11β-HSD1 expression followed by increased reductive activity of the enzyme, thereby inducing a more adipogenic phenotype of the cell models via cortisol with negative effects on osteogenesis. Through inhibition experiments with the specific inhibitor 10 j, we proved the enzyme specificity for cortisol synthesis and adipogenic differentiation. Increased expression of 11β-HSD1 followed by higher cortisol levels might thus explain bone marrow adiposity followed by reduced bone quality and stability in old age or in situations of supra-physiological glucocorticoid exposure.
Collapse
Affiliation(s)
- Martina Blaschke
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany; MVZ Endokrinologikum Göttingen, Von-Siebold-Straße 3, Göttingen, 37075, Germany.
| | - Regine Koepp
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Frank Streit
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Johannes Beismann
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Georg Manthey
- Evangelical Hospital Göttingen-Weende, Neu-Mariahilf Site, Göttingen, Germany
| | - Mark-Tilmann Seitz
- Clinic for Trauma Surgery, Orthopedics and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Angelique Kragl
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Str. 3, Greifswald, 17487, Germany
| | - Heide Siggelkow
- Clinic of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, 37075, Germany; MVZ Endokrinologikum Göttingen, Von-Siebold-Straße 3, Göttingen, 37075, Germany
| |
Collapse
|
23
|
Cutolo M, Paolino S, Gotelli E. Glucocorticoids in rheumatoid arthritis still on first line: the reasons. Expert Rev Clin Immunol 2021; 17:417-420. [PMID: 33706640 DOI: 10.1080/1744666x.2021.1903319] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties, University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties, University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties, University of Genova, IRCCS San Martino Polyclinic, Genova, Italy
| |
Collapse
|
24
|
Martin CS, Cooper MS, Hardy RS. Endogenous Glucocorticoid Metabolism in Bone: Friend or Foe. Front Endocrinol (Lausanne) 2021; 12:733611. [PMID: 34512556 PMCID: PMC8429897 DOI: 10.3389/fendo.2021.733611] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
The role of tissue specific metabolism of endogenous glucocorticoids (GCs) in the pathogenesis of human disease has been a field of intense interest over the last 20 years, fuelling clinical trials of metabolism inhibitors in the treatment of an array of metabolic diseases. Localised pre-receptor metabolism of endogenous and therapeutic GCs by the 11β-hydroxysteroid dehydrogenase (11β-HSD) enzymes (which interconvert endogenous GCs between their inactive and active forms) are increasingly recognised as being critical in mediating both their positive and negative actions on bone homeostasis. In this review we explore the roles of endogenous and therapeutic GC metabolism by the 11β-HSD enzymes in the context of bone metabolism and bone cell function, and consider future strategies aimed at modulating this system in order to manage and treat various bone diseases.
Collapse
Affiliation(s)
- Claire S. Martin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Mark S. Cooper
- Australian and New Zealand Army Corps (ANZAC) Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Rowan S. Hardy
- Arthritis Research United Kingdom (UK) Career Development Fellow, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Rowan S. Hardy,
| |
Collapse
|
25
|
Lee S, Krüger BT, Ignatius A, Tuckermann J. Distinct Glucocorticoid Receptor Actions in Bone Homeostasis and Bone Diseases. Front Endocrinol (Lausanne) 2021; 12:815386. [PMID: 35082759 PMCID: PMC8784516 DOI: 10.3389/fendo.2021.815386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones that respond to stress and the circadian rhythm. Pharmacological GCs are widely used to treat autoimmune and chronic inflammatory diseases despite their adverse effects on bone after long-term therapy. GCs regulate bone homeostasis in a cell-type specific manner, affecting osteoblasts, osteoclasts, and osteocytes. Endogenous physiological and exogenous/excessive GCs act via nuclear receptors, mainly via the GC receptor (GR). Endogenous GCs have anabolic effects on bone mass regulation, while excessive or exogenous GCs can cause detrimental effects on bone. GC-induced osteoporosis (GIO) is a common adverse effect after GC therapy, which increases the risk of fractures. Exogenous GC treatment impairs osteoblastogenesis, survival of the osteoblasts/osteocytes and prolongs the longevity of osteoclasts. Under normal physiological conditions, endogenous GCs are regulated by the circadian rhythm and circadian genes display oscillatory rhythmicity in bone cells. However, exogenous GCs treatment disturbs the circadian rhythm. Recent evidence suggests that the disturbed circadian rhythm by continuous exogenous GCs treatment can in itself hamper bone integrity. GC signaling is also important for fracture healing and rheumatoid arthritis, where crosstalk among several cell types including macrophages and stromal cells is indispensable. This review summarizes the complexity of GC actions via GR in bone cells at cellular and molecular levels, including the effect on circadian rhythmicity, and outlines new therapeutic possibilities for the treatment of their adverse effects.
Collapse
Affiliation(s)
- Sooyeon Lee
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Medical Center, Ulm, Germany
| | - Jan Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- *Correspondence: Jan Tuckermann,
| |
Collapse
|
26
|
Buttgereit F. Glucocorticoids: surprising new findings on their mechanisms of actions. Ann Rheum Dis 2020; 80:137-139. [PMID: 33162396 DOI: 10.1136/annrheumdis-2020-218798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Frank Buttgereit
- Charité University Medicine, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| |
Collapse
|