1
|
Davey PG, Rosen RB, Park JJ, Spors F, Gierhart DL. Evaluation of a Portable Handheld Heterochromatic Flicker Photometer in Measuring Macular Pigment Optical Density. Diagnostics (Basel) 2025; 15:431. [PMID: 40002582 PMCID: PMC11853980 DOI: 10.3390/diagnostics15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Macular pigment optical density (MPOD) is an important clinical biomarker for ocular conditions like macular degeneration, diabetic eye disease, and digital eye strain. Additionally, its measurements can be essential in health assessment for visual function, systemic diseases, and brain health. We aimed to assess the repeatability, agreement, and effects of the learning curve of the new portable handheld heterochromatic flicker photometer, Zx Pro, in measuring MPOD in a wide age range of ocular-healthy adults, compared to the MPOD measurements obtained using the clinically available QuantifEye device. Methods: Seventy-six participants performed one practice attempt and two study-related MPOD measurements with the Zx Pro and the QuantifEye. Results: The Pearson correlation between the study-related MPOD measurements for Zx Pro and QuantifEye devices was 90% and 85%, respectively. Bland and Altman plots show excellent agreement between the device's MPOD data, with 95% limits of an agreement being -0.10 to +0.11 du. The mean difference between the practice attempt and the study-related measurements was not statistically significant for Zx Pro but was significant for QuantifEye (Repeated measures ANOVA p = 0.325 and p = 0.015, respectively). Conclusions: The Zx Pro provides excellent repeatable MPOD measurements, has an insignificant learning curve, and is in good agreement with the predicate device.
Collapse
Affiliation(s)
- Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
- ZeaVision LLC, Chesterfield, MO 63005, USA;
| | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Joshua J. Park
- College of Engineering, California Baptist University, Riverside, CA 92504, USA;
| | - Frank Spors
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
| | | |
Collapse
|
2
|
Li B, Chang FY, Wan Z, Giauque NA, Addo EK, Bernstein PS. Imaging macular carotenoids and their related proteins in the human retina with confocal resonance Raman and fluorescence microscopy. Exp Eye Res 2024; 247:110043. [PMID: 39151780 PMCID: PMC11412777 DOI: 10.1016/j.exer.2024.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Lutein and zeaxanthin are highly concentrated at the central region of the human retina, forming a distinct yellow spot known as the macula lutea. The delivery and retention of the macular pigment carotenoids in the macula lutea involves many proteins, but their exact roles remain incompletely understood. In our study, we examined the distribution of the twelve known macular carotenoid-related proteins within the human macula and the underlying retinal pigment epithelium (RPE) using both fluorescence and Raman modes on our confocal resonance Raman microscope. Additionally, we assessed protein and gene expression through Western blot analysis and a single-cell RNA sequencing database. Our findings revealed that GSTP1, BCO2, and Aster-B exhibited distribution patterns similar to the macular carotenoids, with higher expression levels within the macular region compared to the periphery, while SR-BI and ABCA1 did not exhibit specific distribution patterns within the macula or RPE. Interestingly, LIPC, SR-BI's partner, accumulated specifically in the sub-foveal RPE. All three of these carotenoid transport proteins were found to be highly expressed in the RPE. These results offer valuable insights into the roles these proteins play in the formation of the macula lutea.
Collapse
Affiliation(s)
- Binxing Li
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
| | - Fu-Yen Chang
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Zihe Wan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Nathan A Giauque
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Emmanuel K Addo
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
3
|
Masri A, Armanazi M, Inouye K, Geierhart DL, Davey PG, Vasudevan B. Macular Pigment Optical Density as a Measurable Modifiable Clinical Biomarker. Nutrients 2024; 16:3273. [PMID: 39408240 PMCID: PMC11478551 DOI: 10.3390/nu16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Carotenoids are present throughout retina and body its dense deposition leads to an identifiable yellow spot in the macula. Macular pigment optical density (MPOD) measured in the macula is vital to macular well-being and high-resolution visual acuity. MPOD has also been associated with various health and disease states. We sought to review the literature on this topic and summarize MPODs role as a measurable modifiable clinical biomarker, particularly as a measure of the eye's antioxidant capacity in the context of oxidative damage and retinal ischemia. METHODS A literature review collated the articles relevant to MPOD, carotenoid intake or supplementation, and their influence on various health and disease states. RESULTS Literature reveals that MPOD can serve as a reliable biomarker for assessing the retinal defense mechanisms against oxidative stress and the deleterious effects of excessive light exposure. Elevated MPOD levels offer robust protection against the onset and progression of age-related macular degeneration (AMD), a prevalent cause of vision impairment among the elderly population. MPOD's implications in diverse ocular conditions, including diabetic retinopathy and glaucoma, have been explored, underscoring the real need for clinical measurement of MPOD. The integration of MPOD measurement into routine eye examinations presents an unparalleled opportunity for early disease detection, precise treatment planning, and longitudinal disease monitoring. CONCLUSIONS Longitudinal investigations underscore the significance of MPOD in the context of age-related ocular diseases. These studies show promise and elucidate the dynamic nuances of MPOD's status and importance as a measurable, modifiable clinical biomarker.
Collapse
Affiliation(s)
- Abdul Masri
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Mohammed Armanazi
- College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Keiko Inouye
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
- EyePromise, LLC, Chesterfield, MO 63005, USA;
| | | |
Collapse
|
4
|
Udensi J, Loskutova E, Loughman J, Byrne HJ. Raman spectroscopic analysis of human blood serum of glaucoma patients supplemented with macular pigment carotenoids. JOURNAL OF BIOPHOTONICS 2024; 17:e202400060. [PMID: 38937976 DOI: 10.1002/jbio.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024]
Abstract
As all major dietary carotenoids are contained in blood, it is a suitable substrate to evaluate their content, in vivo. Following 18-month supplementation of open-angle glaucoma patients with macula-pigment carotenoids (Lutein, Zeaxanthin and Meso-Zeaxanthin) in the European Nutrition in Glaucoma Management trial, Raman spectroscopic analysis of the carotenoid content of pre- and post-supplementation participant blood serum was carried out, to investigate the systemic impact of the supplementation regimen and explore a more direct way of quantifying this impact using routine blood tests. Using a 532 nm laser source for optimal response, a consistent increase in serum carotenoid concentration was observed in the supplemented serum, highest in patients with initial high baseline carotenoid content. A shift in the 1519 cm-1 carotenoid peak also revealed differences in the carotenoid structural profile of the two groups. The findings highlight the potential of Raman spectroscopy toquantify and differentiate carotenoids directly in blood serum.
Collapse
Affiliation(s)
- Joy Udensi
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, Dublin, Ireland
| | - Ekaterina Loskutova
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, Dublin, Ireland
| | - James Loughman
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, Dublin, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Gupta AK, Meng R, Modi YS, Srinivasan VJ. Imaging human macular pigments with visible light optical coherence tomography and superluminescent diodes. OPTICS LETTERS 2023; 48:4737-4740. [PMID: 37707890 PMCID: PMC10935566 DOI: 10.1364/ol.495247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
We demonstrate superluminescent diodes (SLDs) for visible light optical coherence tomography (OCT) of the human retina. SLDs are less costly than supercontinuum sources and have lower intrinsic excess noise, enabling imaging closer to the shot noise limit. While single SLDs are not broadband, they provide power concentrated at specific wavelengths relevant to retinal function. As a new, to the best of our knowledge, application, we image human macular pigments (MPs), which are thought to both aid vision and protect against advanced age-related macular degeneration. Using the unique depth-resolved capabilities of OCT, we localize MPs in depth to Henle's fibers beneath the foveal pit in the living human retina. Our approach reduces the cost of visible light OCT to nearly that of near-infrared (NIR) OCT while also providing information about clinically relevant MPs which cannot be measured in the NIR.
Collapse
Affiliation(s)
- Alok K. Gupta
- Tech4Health Institute, NYU Langone Health, New York, New York, 10010, USA
- Department of Ophthalmology, NYU Langone Health, New York, New York, 10016, USA
- NYU Tandon School of Engineering, Brooklyn, New York, New York 11201, USA
| | - Ruoyu Meng
- Tech4Health Institute, NYU Langone Health, New York, New York, 10010, USA
- NYU Tandon School of Engineering, Brooklyn, New York, New York 11201, USA
| | - Yasha S. Modi
- Department of Ophthalmology, NYU Langone Health, New York, New York, 10016, USA
| | - Vivek J. Srinivasan
- Tech4Health Institute, NYU Langone Health, New York, New York, 10010, USA
- Department of Ophthalmology, NYU Langone Health, New York, New York, 10016, USA
- NYU Tandon School of Engineering, Brooklyn, New York, New York 11201, USA
| |
Collapse
|
6
|
Singh S, Keller PR, Busija L, McMillan P, Makrai E, Lawrenson JG, Hull CC, Downie LE. Blue-light filtering spectacle lenses for visual performance, sleep, and macular health in adults. Cochrane Database Syst Rev 2023; 8:CD013244. [PMID: 37593770 PMCID: PMC10436683 DOI: 10.1002/14651858.cd013244.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BACKGROUND 'Blue-light filtering', or 'blue-light blocking', spectacle lenses filter ultraviolet radiation and varying portions of short-wavelength visible light from reaching the eye. Various blue-light filtering lenses are commercially available. Some claims exist that they can improve visual performance with digital device use, provide retinal protection, and promote sleep quality. We investigated clinical trial evidence for these suggested effects, and considered any potential adverse effects. OBJECTIVES To assess the effects of blue-light filtering lenses compared with non-blue-light filtering lenses, for improving visual performance, providing macular protection, and improving sleep quality in adults. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; containing the Cochrane Eyes and Vision Trials Register; 2022, Issue 3); Ovid MEDLINE; Ovid Embase; LILACS; the ISRCTN registry; ClinicalTrials.gov and WHO ICTRP, with no date or language restrictions. We last searched the electronic databases on 22 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs), involving adult participants, where blue-light filtering spectacle lenses were compared with non-blue-light filtering spectacle lenses. DATA COLLECTION AND ANALYSIS Primary outcomes were the change in visual fatigue score and critical flicker-fusion frequency (CFF), as continuous outcomes, between baseline and one month of follow-up. Secondary outcomes included best-corrected visual acuity (BCVA), contrast sensitivity, discomfort glare, proportion of eyes with a pathological macular finding, colour discrimination, proportion of participants with reduced daytime alertness, serum melatonin levels, subjective sleep quality, and patient satisfaction with their visual performance. We evaluated findings related to ocular and systemic adverse effects. We followed standard Cochrane methods for data extraction and assessed risk of bias using the Cochrane Risk of Bias 1 (RoB 1) tool. We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS We included 17 RCTs, with sample sizes ranging from five to 156 participants, and intervention follow-up periods from less than one day to five weeks. About half of included trials used a parallel-arm design; the rest adopted a cross-over design. A variety of participant characteristics was represented across the studies, ranging from healthy adults to individuals with mental health and sleep disorders. None of the studies had a low risk of bias in all seven Cochrane RoB 1 domains. We judged 65% of studies to have a high risk of bias due to outcome assessors not being masked (detection bias) and 59% to be at high risk of bias of performance bias as participants and personnel were not masked. Thirty-five per cent of studies were pre-registered on a trial registry. We did not perform meta-analyses for any of the outcome measures, due to lack of available quantitative data, heterogenous study populations, and differences in intervention follow-up periods. There may be no difference in subjective visual fatigue scores with blue-light filtering lenses compared to non-blue-light filtering lenses, at less than one week of follow-up (low-certainty evidence). One RCT reported no difference between intervention arms (mean difference (MD) 9.76 units (indicating worse symptoms), 95% confidence interval (CI) -33.95 to 53.47; 120 participants). Further, two studies (46 participants, combined) that measured visual fatigue scores reported no significant difference between intervention arms. There may be little to no difference in CFF with blue-light filtering lenses compared to non-blue-light filtering lenses, measured at less than one day of follow-up (low-certainty evidence). One study reported no significant difference between intervention arms (MD - 1.13 Hz lower (indicating poorer performance), 95% CI - 3.00 to 0.74; 120 participants). Another study reported a less negative change in CFF (indicating less visual fatigue) with high- compared to low-blue-light filtering and no blue-light filtering lenses. Compared to non-blue-light filtering lenses, there is probably little or no effect with blue-light filtering lenses on visual performance (BCVA) (MD 0.00 logMAR units, 95% CI -0.02 to 0.02; 1 study, 156 participants; moderate-certainty evidence), and unknown effects on daytime alertness (2 RCTs, 42 participants; very low-certainty evidence); uncertainty in these effects was due to lack of available data and the small number of studies reporting these outcomes. We do not know if blue-light filtering spectacle lenses are equivalent or superior to non-blue-light filtering spectacle lenses with respect to sleep quality (very low-certainty evidence). Inconsistent findings were evident across six RCTs (148 participants); three studies reported a significant improvement in sleep scores with blue-light filtering lenses compared to non-blue-light filtering lenses, and the other three studies reported no significant difference between intervention arms. We noted differences in the populations across studies and a lack of quantitative data. Device-related adverse effects were not consistently reported (9 RCTs, 333 participants; low-certainty evidence). Nine studies reported on adverse events related to study interventions; three studies described the occurrence of such events. Reported adverse events related to blue-light filtering lenses were infrequent, but included increased depressive symptoms, headache, discomfort wearing the glasses, and lower mood. Adverse events associated with non-blue-light filtering lenses were occasional hyperthymia, and discomfort wearing the spectacles. We were unable to determine whether blue-light filtering lenses affect contrast sensitivity, colour discrimination, discomfort glare, macular health, serum melatonin levels or overall patient visual satisfaction, compared to non-blue-light filtering lenses, as none of the studies evaluated these outcomes. AUTHORS' CONCLUSIONS This systematic review found that blue-light filtering spectacle lenses may not attenuate symptoms of eye strain with computer use, over a short-term follow-up period, compared to non-blue-light filtering lenses. Further, this review found no clinically meaningful difference in changes to CFF with blue-light filtering lenses compared to non-blue-light filtering lenses. Based on the current best available evidence, there is probably little or no effect of blue-light filtering lenses on BCVA compared with non-blue-light filtering lenses. Potential effects on sleep quality were also indeterminate, with included trials reporting mixed outcomes among heterogeneous study populations. There was no evidence from RCT publications relating to the outcomes of contrast sensitivity, colour discrimination, discomfort glare, macular health, serum melatonin levels, or overall patient visual satisfaction. Future high-quality randomised trials are required to define more clearly the effects of blue-light filtering lenses on visual performance, macular health and sleep, in adult populations.
Collapse
Affiliation(s)
- Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Peter R Keller
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Ljoudmila Busija
- Biostatistics Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Patrick McMillan
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Eve Makrai
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - John G Lawrenson
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - Christopher C Hull
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Widomska J, Subczynski WK, Welc-Stanowska R, Luchowski R. An Overview of Lutein in the Lipid Membrane. Int J Mol Sci 2023; 24:12948. [PMID: 37629129 PMCID: PMC10454802 DOI: 10.3390/ijms241612948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Lutein, zeaxanthin, and meso-zeaxanthin (a steroisomer of zeaxanthin) are macular pigments. They modify the physical properties of the lipid bilayers in a manner similar to cholesterol. It is not clear if these pigments are directly present in the lipid phase of the membranes, or if they form complexes with specific membrane proteins that retain them in high amounts in the correct place in the retina. The high content of macular pigments in the Henle fiber layer indicates that a portion of the lutein and zeaxanthin should not only be bound to the specific proteins but also directly dissolved in the lipid membranes. This high concentration in the prereceptoral region of the retina is effective for blue-light filtration. Understanding the basic mechanisms of these actions is necessary to better understand the carotenoid-membrane interaction and how carotenoids affect membrane physical properties-such as fluidity, polarity, and order-in relation to membrane structure and membrane dynamics. This review focuses on the properties of lutein.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland
| | - Witold K. Subczynski
- Department of Biophysics, Medical College on Wisconsin, Milwaukee, WI 53226, USA;
| | | | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| |
Collapse
|
8
|
Jaggi D, Solberg Y, Dysli C, Lincke J, Habra O, Wyss A, Wolf S, Zinkernagel M. Fluorescence lifetime imaging ophthalmoscopy and the influence of oral lutein/zeaxanthin supplementation on macular pigment (FLOS) - A pilot study. Clin Nutr ESPEN 2023; 56:127-134. [PMID: 37344061 DOI: 10.1016/j.clnesp.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND & AIMS Oral lutein (L) and zeaxanthin (Z) supplementation enhances macular pigment optical density (MPOD) and plays a protective role in the development of age-related macular degeneration (AMD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a novel in vivo retinal imaging method that has been shown to correlate to classical MPOD measurements and might contribute to a metabolic mapping of the retina in the future. Our aim was to show that oral supplementation of L and Z affects the FLIO signal in a positive way in patients with AMD. METHODS This was a prospective, single center, open label cohort study. Patients with early and intermediate AMD received oral L and Z supplementation during three months, and were observed for another three months after therapy termination. All visits included measurements of clinical parameters, serum L and Z concentration, MPOD measurements using heterochromatic flicker photometry, dual wavelength autofluorescence imaging, and FLIO. Correlation analysis between FLIO and MPOD were performed. RESULTS Twenty-one patients completed the follow up period. Serum L and Z concentrations significantly increased during supplementation (mean difference 244.8 ng/ml; 95% CI: 81.26-419.9, and 77.1 ng/ml; 95% CI: 5.3-52.0, respectively). Mean MPOD units significantly increased (mean difference 0.06; 95% CI: 0.02-0.09; at 0.5°, 202; 95% CI: 58-345; at 2°, 1033; 95% CI: 288-1668; at 9° of eccentricity, respectively) after three months of supplementation with macular xanthophylls, which included L and Z. Median FLIO lifetimes in the foveal center significantly decreased from 277.3 ps (interquartile range 230.2-339.1) to 261.0 ps (interquartile range 231.4-334.4, p = 0.027). All parameters returned to near-normal values after termination of the nutritional supplementation. A significant negative correlation was found between FLIO and MPOD (r2 = 0.57, p < 0.0001). CONCLUSIONS FLIO is able to detect subtle changes in MPOD after L and Z supplementation in patients with early and intermediate AMD. Our findings confirm the previous described negative correlation between FLIO and MPOD. Macular xanthophylls seem to contribute to short foveal lifetimes. This study is registered at ClinicalTrials.gov (identifier number NCT04761341).
Collapse
Affiliation(s)
- Damian Jaggi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Yasmin Solberg
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Joel Lincke
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Oussama Habra
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Adrian Wyss
- DSM Nutritional Products Ltd. R&D Human Nutrition and Care, CH-4303 Kaiseraugst, Switzerland.
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Martin Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Hydrogen sulfide protects retinal pigment epithelium cells against ferroptosis through the AMPK- and p62-dependent non-canonical NRF2-KEAP1 pathway. Exp Cell Res 2023; 422:113436. [PMID: 36435220 DOI: 10.1016/j.yexcr.2022.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress-induced ferroptosis of retinal pigment epithelium (RPE) cells contributes to retinal degenerative diseases. The antioxidant molecule hydrogen sulfide (H2S) regulates oxidative stress response, but its effect on the ferroptosis of RPE cells is unclear. In this study, sodium hydrosulfide (NaHS) was used as an exogenous H2S donor to intervene tert-butyl hydroperoxide (t-BHP)-induced ferroptosis of APRE-19 cells. We found that NaHS pretreatment attenuates t-BHP-induced oxidative stress and ferroptosis. Analysis of mRNA-sequencing coupled with FerrDb database identified nuclear factor erythroid-2-related factor 2 (NRF2) as a primary target for the cytoprotective role of H2S. NRF2 inhibitor ML385 reverses the effects of H2S on ferroptosis. Biochemical analysis revealed that H2S stabilizes NRF2. H2S decreases the interaction between NRF2 and KEAP1, but enhances the interaction between KEAP1 and p62. These results suggest that H2S activates the non-canonical NRF2-KEAP1 pathway. Further study demonstrated that H2S stimulates AMPK to interact and phosphorylate p62. Additionally, inhibiting AMPK or knocking down p62 blocks the effects of H2S. We speculate that targeting the non-canonical NRF2-KEAP1 pathway by H2S-based drug may benefit the treatment of retinal degenerative diseases.
Collapse
|
10
|
Alsaqr A, Alharbi M, Aldossary N, Alruwished A, Alharbi M, Alghaib K, Alabdulkarim A, Alhamdan S, Almutleb E, Abusharha A. Assessment of macular pigment optical density in Arab population and its relationship to people's anthropometric data: a cross-sectional study. Ther Adv Ophthalmol 2023; 15:25158414231189099. [PMID: 37599800 PMCID: PMC10436989 DOI: 10.1177/25158414231189099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Background Anthropometry facilitates the evaluation of risks associated with reduced macular pigment optical density (MPOD). Objectives To investigate the predictors and anthropometric indices associated with MPOD in healthy adult in Arab population. Design This is a cross-sectional study. Methods The MPOD was measured at 0.5° from fovea using a heterochromatic flicker photometer. Healthy participants aged between 20 and 40 years were recruited. The study evaluated the following data of the participants: height, weight, body mass index, body fat percentage, basal metabolic rate, visceral fat level, muscle mass, bone mineral content, and percentage of protein and body water. The correlation between MPOD with anthropometrics and demographic data was evaluated using Spearman's correlation test. The differences among genders were investigated using the Mann-Whitney U test. The smoking effect on MPOD was analyzed using the Friedman test. Results In all, 143 participants were recruited. The median ± interquartile range was calculated for age (23 ± 4 years), visual acuity (0.00 ± 0.00 logMAR), and MPOD (0.41 ± 0.18). The average MPOD was higher in males than in females but it was not statistically significant (p > 0.05); on the other hand, they were statistically significantly different in most of the anthropometric data. A significant relationship was found between MPOD and percentage of body fat, protein, and body water (r = 0.30, p < 0.05). The observed median MPOD value was higher in this study than that found in previous studies in white populations, but lower than that found in studies investigating Asian populations. Conclusion One of the most important risk factors of age-related macular degeneration is associated with a relative absence of macular pigment. This study brought into focus percentage of protein and body water for further studies as well as the well-established links with body fat and obesity. Unknown predictors of MPOD remain uncovered. The study also provided first report on normative values of MPOD for Arab population and confirmed the differences from other ethnicities.
Collapse
Affiliation(s)
- Ali Alsaqr
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Manal Alharbi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Aldossary
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alruwished
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alharbi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alghaib
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Alabdulkarim
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alhamdan
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Esam Almutleb
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Abusharha
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Udensi J, Loughman J, Loskutova E, Byrne HJ. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications-A Review. Molecules 2022; 27:9017. [PMID: 36558154 PMCID: PMC9784873 DOI: 10.3390/molecules27249017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoid compounds are ubiquitous in nature, providing the characteristic colouring of many algae, bacteria, fruits and vegetables. They are a critical component of the human diet and play a key role in human nutrition, health and disease. Therefore, the clinical importance of qualitative and quantitative carotene content analysis is increasingly recognised. In this review, the structural and optical properties of carotenoid compounds are reviewed, differentiating between those of carotenes and xanthophylls. The strong non-resonant and resonant Raman spectroscopic signatures of carotenoids are described, and advances in the use of Raman spectroscopy to identify carotenoids in biological environments are reviewed. Focus is drawn to applications in nutritional analysis, optometry and serology, based on in vitro and ex vivo measurements in skin, retina and blood, and progress towards establishing the technique in a clinical environment, as well as challenges and future perspectives, are explored.
Collapse
Affiliation(s)
- Joy Udensi
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - James Loughman
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - Ekaterina Loskutova
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| |
Collapse
|
12
|
Singh S, Suri S, Singh R. Potential and unrealized future possibilities of browntop millet in the food sector. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.974126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Browntop millet (BTM) is small-seeded annual grass cultivated as grain crop, primarily on the marginal lands in dry areas in temperate, subtropical and tropical regions. It is increasingly receiving attention of the scientific community. Aim of this systematic review is to study the physiochemical, sensory, functional and nutritional properties as well as health benefits of browntop millet. This paper is based on quantitative and qualitative secondary data obtained from 71 out of 208 descriptive and scientific literature reviewed and analyzed from the national and international electronic platforms. The scientific literature based on browntop millet has been found scanty. According to the few studies available energy ranges from 338.0 kcal to 368.62 kcal. The carbohydrate, crude fiber and fat content of BTM is 71.32 gm, 8.06–16.08%, 1.89 gm, respectively. Protein is between 11.64% and 10.72%. Browntop millet contains phytochemicals such as flavonoids, quinones, tannins, and resin. There is galore scope for development and standardization of value added products made from browntop millets such as ready to eat foods (cookies, bars, deserts, etc) and ready to cook foods (idli mix, poha, etc) in which the millet can be used in combination with other cereal grains. Thus, browntop millet holds great potential in alleviating food and nutrition insecurity. It has good nutritional value. It can be used for the prevention and management of several non-communicable diseases. In order to make this smart food popular among farmers and consumers, systematized studies in the field of agriculture, nutrition, toxicology, naturopathy and biomedical sciences need to be done and documented properly. From ancient times BTM has been used in many forms such as forage, staple food or in many traditional dishes. An e-repository can be made of the traditional Indian foods made from BTM to popularize its use among the younger generations.
Collapse
|
13
|
Sae-Lao W, Wunjuntuk K, Techakriengkrai T, Sirichakwal PP. Consumption of Lutein and Zeaxanthin and Its Relation to the Level of Macular Pigment Optical Density in Thai Subjects. J Nutr Metab 2022; 2022:6321778. [PMID: 35462865 PMCID: PMC9033377 DOI: 10.1155/2022/6321778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of the study is to determine dietary lutein and zeaxanthin (L/Z) consumption and to evaluate its association with macular pigment optical density (MPOD) in Thai subjects. Methods. This study was a cross-sectional study. A total of 120 ophthalmologically healthy subjects aged between 40 and 72 years were recruited from Bangkok and the vicinity area. Demographic data were collected using a questionnaire, while a semiquantitative food frequency questionnaire assessed the L/Z intake. MPOD was determined using the reflectometry method (VISUCAM 500®, Carl Zeiss Meditec AG). Pearson's correlation coefficient analyzed the relationship between L/Z consumption and MPOD. Results. The mean age of the participants was 50.7 ± 7.5 years. The mean consumption of L/Z was 3.03 ± 2.65 mg per day. The mean MPOD was 0.102 ± 0.023 density units. Consumption of foods rich in L/Z, including ivy gourd (r = 0.217, p < 0.05), Chinese flowering cabbage (r = 0.194, p < 0.05), balsam pear (r = 0.193, p < 0.05), lettuce (r = 0.182, p < 0.05), sweet corn (r = 0.181, p < 0.05), and pumpkin (r = 0.181, p < 0.05), was positively associated with the mean optical density (mean MPOD). Consumption of green onion (r = 0.212, p < 0.05) was positively associated with the sum of optical densities (MPOD volume). In contrast, chilli pepper consumption showed a negative association with mean MPOD (r = -0.220, p < 0.05) and amaranth showed a negative association with MPOD volume (r = -0.283, p < 0.05). No association was found between total L/Z consumption and MPOD. Conclusion. L/Z consumption is low among Thais living in Bangkok and the vicinity area, which may not be sufficient to ensure eye health, and total L/Z consumption is not associated with MPOD.
Collapse
Affiliation(s)
- Wipada Sae-Lao
- Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Kansuda Wunjuntuk
- Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | | | | |
Collapse
|
14
|
LaPorte MF, Vachev M, Fenn M, Diepenbrock C. Simultaneous dissection of grain carotenoid levels and kernel color in biparental maize populations with yellow-to-orange grain. G3 (BETHESDA, MD.) 2022; 12:6506523. [PMID: 35100389 PMCID: PMC8895983 DOI: 10.1093/g3journal/jkac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/30/2021] [Indexed: 01/19/2023]
Abstract
Maize enriched in provitamin A carotenoids could be key in combatting vitamin A deficiency in human populations relying on maize as a food staple. Consumer studies indicate that orange maize may be regarded as novel and preferred. This study identifies genes of relevance for grain carotenoid concentrations and kernel color, through simultaneous dissection of these traits in 10 families of the US maize nested association mapping panel that have yellow to orange grain. Quantitative trait loci were identified via joint-linkage analysis, with phenotypic variation explained for individual kernel color quantitative trait loci ranging from 2.4% to 17.5%. These quantitative trait loci were cross-analyzed with significant marker-trait associations in a genome-wide association study that utilized ∼27 million variants. Nine genes were identified: four encoding activities upstream of the core carotenoid pathway, one at the pathway branchpoint, three within the α- or β-pathway branches, and one encoding a carotenoid cleavage dioxygenase. Of these, three exhibited significant pleiotropy between kernel color and one or more carotenoid traits. Kernel color exhibited moderate positive correlations with β-branch and total carotenoids and negligible correlations with α-branch carotenoids. These findings can be leveraged to simultaneously achieve desirable kernel color phenotypes and increase concentrations of provitamin A and other priority carotenoids.
Collapse
Affiliation(s)
- Mary-Francis LaPorte
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mishi Vachev
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Matthew Fenn
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
15
|
Li B, Vachali P, Chang FY, Gorusupudi A, Arunkumar R, Shi L, Rognon GT, Frederick JM, Bernstein PS. HDL is the primary transporter for carotenoids from liver to retinal pigment epithelium in transgenic ApoA-I -/-/Bco2 -/- mice. Arch Biochem Biophys 2022; 716:109111. [PMID: 34942193 PMCID: PMC8792244 DOI: 10.1016/j.abb.2021.109111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
Supplementation with antioxidant carotenoids is a therapeutic strategy to protect against age-related macular degeneration (AMD); however, the transport mechanism of carotenoids from the liver to the retina is still not fully understood. Here, we investigate if HDL serves as the primary transporter for the macular carotenoids. ApoA-I, the key apolipoprotein of HDL, was genetically deleted from BCO2 knockout (Bco2-/-) mice, a macular pigment mouse model capable of accumulating carotenoids in the retina. We then conducted a feeding experiment with a mixed carotenoid chow (lutein:zeaxanthin:β-carotene = 1:1:1) for one month. HPLC data demonstrated that the total carotenoids were increased in the livers but decreased in the serum, retinal pigment epithelium (RPE)/choroids, and retinas of ApoA-I-/-/Bco2-/- mice compared to Bco2-/- mice. In detail, ApoA-I deficiency caused a significant increase of β-carotene but not lutein and zeaxanthin in the liver, decreased all three carotenoids in the serum, blocked the majority of zeaxanthin and β-carotene transport to the RPE/choroid, and dramatically reduced β-carotene and zeaxanthin but not lutein in the retina. Furthermore, surface plasmon resonance spectroscopy (SPR) data showed that the binding affinity between ApoA-I and β-carotene ≫ zeaxanthin > lutein. Our results show that carotenoids are transported from the liver to the eye mainly by HDL, and ApoA-I may be involved in the selective delivery of macular carotenoids to the RPE.
Collapse
Affiliation(s)
- Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Preejith Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Fu-Yen Chang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Linjia Shi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Gregory T Rognon
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
16
|
Assessment of dietary carotenoid intake and biologic measurement of exposure in humans. Methods Enzymol 2022; 674:255-295. [DOI: 10.1016/bs.mie.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Boguslawski J, Palczewska G, Tomczewski S, Milkiewicz J, Kasprzycki P, Stachowiak D, Komar K, Marzejon MJ, Sikorski BL, Hudzikowski A, Głuszek A, Łaszczych Z, Karnowski K, Soboń G, Palczewski K, Wojtkowski M. In vivo imaging of the human eye using a two-photon excited fluorescence scanning laser ophthalmoscope. J Clin Invest 2021; 132:154218. [PMID: 34847075 PMCID: PMC8759795 DOI: 10.1172/jci154218] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Noninvasive assessment of metabolic processes that sustain regeneration of human retinal visual pigments (visual cycle) is essential to improve ophthalmic diagnostics and to accelerate development of new treatments to counter retinal diseases. Fluorescent vitamin A derivatives, which are the chemical intermediates of these processes, are highly sensitive to UV light; thus, safe analyses of these processes in humans are currently beyond the reach of even the most modern ocular imaging modalities. METHODS We present a compact fluorescence scanning laser ophthalmoscope (TPEF-SLO) and spectrally resolved images of the human retina based on two-photon excitation (TPE) with near-infrared (IR) light. A custom Er:fiber laser with integrated pulse selection, along with intelligent post-processing of data, enables excitation with low laser power and precise measurement of weak signals. RESULTS We demonstrate spectrally resolved TPE fundus images of human subjects. Comparison of TPE data between human and mouse models of retinal diseases revealed similarity with mouse models that rapidly accumulate bisretinoid condensation products. Thus, visual cycle intermediates and toxic byproducts of this metabolic pathway can be measured and quantified by TPE imaging. CONCLUSION Our work establishes a TPE instrument and measurement method for noninvasive metabolic assessment of the human retina. This approach opens the possibility for monitoring eye diseases in the earliest stages before structural damage to the retina occurs. FUNDING NIH, Research to Prevent Blindness, Foundation for Polish Science, European Regional Development Fund, Polish National Agency for Academic Exchange and Polish Ministry of Science and Higher Education.
Collapse
Affiliation(s)
- Jakub Boguslawski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Palczewska
- Department of Medical Devices, Polgenix, Inc., Cleveland, United States of America
| | - Slawomir Tomczewski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Milkiewicz
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kasprzycki
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Stachowiak
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Komar
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin J Marzejon
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz L Sikorski
- Department of Ophthalmology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Hudzikowski
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Aleksander Głuszek
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Zbigniew Łaszczych
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Karol Karnowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Soboń
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Maciej Wojtkowski
- Physical Chemistry of Biological Systems, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Lem DW, Davey PG, Gierhart DL, Rosen RB. A Systematic Review of Carotenoids in the Management of Age-Related Macular Degeneration. Antioxidants (Basel) 2021; 10:1255. [PMID: 34439503 PMCID: PMC8389280 DOI: 10.3390/antiox10081255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Age-related macular degeneration (AMD) remains a leading cause of modifiable vision loss in older adults. Chronic oxidative injury and compromised antioxidant defenses represent essential drivers in the development of retinal neurodegeneration. Overwhelming free radical species formation results in mitochondrial dysfunction, as well as cellular and metabolic imbalance, which becomes exacerbated with increasing age. Thus, the depletion of systemic antioxidant capacity further proliferates oxidative stress in AMD-affected eyes, resulting in loss of photoreceptors, neuroinflammation, and ultimately atrophy within the retinal tissue. The aim of this systematic review is to examine the neuroprotective potential of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin on retinal neurodegeneration for the purpose of adjunctive nutraceutical strategy in the management of AMD. A comprehensive literature review was performed to retrieve 55 eligible publications, using four database searches from PubMed, Embase, Cochrane Library, and the Web of Science. Epidemiology studies indicated an enhanced risk reduction against late AMD with greater dietary consumption of carotenoids, meanwhile greater concentrations in macular pigment demonstrated significant improvements in visual function among AMD patients. Collectively, evidence strongly suggests that carotenoid vitamin therapies offer remarkable synergic protection in the neurosensory retina, with the potential to serve as adjunctive nutraceutical therapy in the management of established AMD, albeit these benefits may vary among different stages of disease.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
| | | | | | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
19
|
Fitzpatrick N, Chachay V, Bowtell J, Jackman S, Capra S, Shore A, Briskey D. An appraisal of trials investigating the effects on macular pigment optical density of lutein and zeaxanthin dietary interventions: a narrative review. Nutr Rev 2021; 80:513-524. [PMID: 34339515 DOI: 10.1093/nutrit/nuab038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lutein and zeaxanthin (L/Z), xanthophylls obtained from the diet, are deposited in the macula of the eye. The macular concentration of L/Z is quantifiable as macular pigment optical density (MPOD). The aim of this review was to critically appraise the effect on MPOD of increasing L/Z intake by dietary intervention in adults. Pubmed, Cochrane Library, Web of Science, and Cinahl were searched up to April 2020. Ten studies investigating populations with and without age-related macular degeneration were included. MPOD increased significantly in 2 of the 8 controlled studies. Studies varied largely in the prescribed dietary L/Z dosage, duration, and participant characteristics. No relationships between types of dietary L/Z interventions and MPOD response could be determined. Limited monitoring of habitual dietary L/Z intake was identified as a major limitation of all 10 studies. Habitual dietary L/Z intake should be closely monitored in future studies to account for their effects on MPOD response to dietary L/Z interventions.
Collapse
Affiliation(s)
- Naomi Fitzpatrick
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Saint Lucia, Queensland, Australia. J. Bowtell and S. Jackman are with the Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. A. Shore is with the School of Medicine, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Veronique Chachay
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Saint Lucia, Queensland, Australia. J. Bowtell and S. Jackman are with the Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. A. Shore is with the School of Medicine, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Joanna Bowtell
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Saint Lucia, Queensland, Australia. J. Bowtell and S. Jackman are with the Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. A. Shore is with the School of Medicine, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sarah Jackman
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Saint Lucia, Queensland, Australia. J. Bowtell and S. Jackman are with the Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. A. Shore is with the School of Medicine, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sandra Capra
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Saint Lucia, Queensland, Australia. J. Bowtell and S. Jackman are with the Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. A. Shore is with the School of Medicine, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Angela Shore
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Saint Lucia, Queensland, Australia. J. Bowtell and S. Jackman are with the Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. A. Shore is with the School of Medicine, College of Medicine and Health, University of Exeter, Exeter, UK
| | - David Briskey
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Saint Lucia, Queensland, Australia. J. Bowtell and S. Jackman are with the Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK. A. Shore is with the School of Medicine, College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Di Carlo E, Augustin AJ. Prevention of the Onset of Age-Related Macular Degeneration. J Clin Med 2021; 10:jcm10153297. [PMID: 34362080 PMCID: PMC8348883 DOI: 10.3390/jcm10153297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) represents the leading cause of irreversible blindness in elderly people, mostly after the age of 65. The progressive deterioration of visual function in patients affected by AMD has a significant impact on quality of life and has also high social costs. The current therapeutic options are only partially able to slow down the natural course of the disease, without being capable of stopping its progression. Therefore, better understanding of the possibilities to prevent the onset of the disease is needed. In this regard, a central role is played by the identification of risk factors, which might participate to the development of the disease. Among these, the most researched are dietary risk factors, lifestyle, and light exposure. Many studies showed that a higher dietary intake of nutrients, such as lutein, zeaxanthin, beta carotene, omega-3 fatty acids and zinc, reduced the risk of early AMD. Regarding lifestyle habits, the association between smoking and AMD is currently accepted. Finally, retinal damage caused by ultraviolet rays and blue light is also worthy of attention. The scope of this review is to summarize the present knowledge focusing on the measures to adopt in order to prevent the onset of AMD.
Collapse
|
21
|
Lem DW, Gierhart DL, Davey PG. Carotenoids in the Management of Glaucoma: A Systematic Review of the Evidence. Nutrients 2021; 13:1949. [PMID: 34204051 PMCID: PMC8228567 DOI: 10.3390/nu13061949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Primary open-angle glaucoma (POAG) remains a leading cause of irreversible blindness globally. Recent evidence further substantiates sustained oxidative stress, and compromised antioxidant defenses are key drivers in the onset of glaucomatous neurodegeneration. Overwhelming oxidative injury is likely attributed to compounding mitochondrial dysfunction that worsens with age-related processes, causing aberrant formation of free radical species. Thus, a compromised systemic antioxidant capacity exacerbates further oxidative insult in glaucoma, leading to apoptosis, neuroinflammation, and subsequent tissue injury. The purpose of this systematic review is to investigate the neuroprotective benefits of the macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin on glaucomatous neurodegeneration for the purpose of adjunctive nutraceutical treatment in glaucoma. A comprehensive literature search was conducted in three databases (PubMed, Cochrane Library, and Web of Science) and 20 records were identified for screening. Lutein demonstrated enhanced neuroprotection on retinal ganglion cell survival and preserved synaptic activity. In clinical studies, a protective trend was seen with greater dietary consumption of carotenoids and risk of glaucoma, while greater carotenoid levels in macular pigment were largely associated with improved visual performance in glaucomatous eyes. The data suggest that carotenoid vitamin therapy exerts synergic neuroprotective benefits and has the capacity to serve adjunctive therapy in the management of glaucoma.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| |
Collapse
|
22
|
Hamel T, Rheault J, Simonyan D, Bourgault S, Rochette PJ. The Influence of Blue-Filtering Intraocular Lenses Implant on Exudative Age-Related Macular Degeneration: A Case-Control Study. Clin Ophthalmol 2021; 15:2287-2292. [PMID: 34103892 PMCID: PMC8179786 DOI: 10.2147/opth.s300461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine whether the use of a blue light-filtering intraocular lens (IOL) prevents the onset of wet age-related macular degeneration (AMD). More precisely, we examined the proportion of blue light-filtering IOL in a wet AMD patients’ sample and compared it with a general North American pseudophakic population sample. Design Retrospective case–control study. Methods Case patients were diagnosed and treated for wet AMD and had prior IOL implantation at least 3 years before the diagnosis of wet AMD. Control patients were randomly selected among patients who had cataract surgery at our institution. They were exempt of AMD and paired for the year of surgery, sex and age at cataract surgery. A total of 196 patients were included in each study group. Results Among patients with wet AMD, 62.8% had a blue light-filtering IOL compared with 63.3% among control patients (p = 0.92). Mean time between implantation and injection of anti-VEGF in AMD patients was 6.62 years (95% confidence interval (CI): 6.04–7.19) in non-blue light-filtering IOL group and 5.76 years (95% CI: 5.41–6.11) in blue light-filtering IOL group (p = 0.0120). Conclusion No correlations could be established between the presence of a blue light filter in the IOL and the occurrence of wet AMD. AMD patients without blue light-filtering IOL were injected significantly later than patients with an IOL filtering blue light, which contradict the potential clinical benefit of the blue light filter.
Collapse
Affiliation(s)
- Thierry Hamel
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Québec, QC, Canada.,Centre Universitaire d'Ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec - Université Laval, Québec, QC, Canada
| | - Justine Rheault
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Québec, QC, Canada.,Centre Universitaire d'Ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec - Université Laval, Québec, QC, Canada
| | - David Simonyan
- Clinical and Evaluative Research Platform, CHU de Québec-Université Laval Research Centre, Québec, QC, Canada
| | - Serge Bourgault
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Québec, QC, Canada.,Centre Universitaire d'Ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec - Université Laval, Québec, QC, Canada
| | - Patrick J Rochette
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Québec, QC, Canada.,Centre Universitaire d'Ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec - Université Laval, Québec, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada
| |
Collapse
|
23
|
Diepenbrock CH, Ilut DC, Magallanes-Lundback M, Kandianis CB, Lipka AE, Bradbury PJ, Holland JB, Hamilton JP, Wooldridge E, Vaillancourt B, Góngora-Castillo E, Wallace JG, Cepela J, Mateos-Hernandez M, Owens BF, Tiede T, Buckler ES, Rocheford T, Buell CR, Gore MA, DellaPenna D. Eleven biosynthetic genes explain the majority of natural variation in carotenoid levels in maize grain. THE PLANT CELL 2021; 33:882-900. [PMID: 33681994 PMCID: PMC8226291 DOI: 10.1093/plcell/koab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 05/03/2023]
Abstract
Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.
Collapse
Affiliation(s)
| | - Daniel C Ilut
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Catherine B Kandianis
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Alexander E Lipka
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Peter J Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- United States Department of Agriculture—Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - James B Holland
- United States Department of Agriculture—Agricultural Research Service, Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Edmund Wooldridge
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Jason G Wallace
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602
| | - Jason Cepela
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Maria Mateos-Hernandez
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Brenda F Owens
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Tyler Tiede
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- United States Department of Agriculture—Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Torbert Rocheford
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Michael A Gore
- Authors for correspondence: (C.H.D.), (M.A.G.), and (D.D.P.)
| | - Dean DellaPenna
- Authors for correspondence: (C.H.D.), (M.A.G.), and (D.D.P.)
| |
Collapse
|
24
|
Wilson MR, Sandberg KA, Foutch BK. Macular pigment optical density and visual quality of life. JOURNAL OF OPTOMETRY 2021; 14:92-99. [PMID: 32868244 PMCID: PMC7753046 DOI: 10.1016/j.optom.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE There is robust evidence that higher macular pigment concentrations help reduce both veiling and discomfort glare in patients with or without ocular disease. We investigated whether there was also a relationship between macular pigment optical density (MPOD) and patient surveys about glare or ocular discomfort. METHODS We measured MPOD psychophysically in 23 healthy subjects and administered the National Eye Institute Visual Functioning Questionnaire (VFQ-25). Responses for each survey question were sorted from low (no limitation) to high (very severe limitation). The median response for each question was determined, and independent t-tests were performed on the mean MPOD values for survey responses above and below the median. We also performed a non-parametric correlation analysis between MPOD and survey responses. RESULTS While the median response was "no limitation" for most (22 of 25) survey questions, responses were slightly higher for two questions concerning ocular discomfort and one question related to driving at night. MPOD levels were significantly higher in subjects that reported no discomfort in or around their eyes than in those that reported mild discomfort. There was also a trend toward higher MPOD levels in subjects who reported that pain in or around their eyes never limited their activity as well as in subjects who reported no difficulty driving at night. CONCLUSION These preliminary findings are consistent with the well-established discomfort and glare hypotheses for MPOD. The current findings on subjective ocular discomfort in the absence of glare deserve further study.
Collapse
Affiliation(s)
- Molly R Wilson
- University of the Incarnate Word, Rosenberg School of Optometry, United States
| | - Kyle A Sandberg
- University of the Incarnate Word, Rosenberg School of Optometry, United States
| | - Brian K Foutch
- University of the Incarnate Word, Rosenberg School of Optometry, United States.
| |
Collapse
|
25
|
Hsu D, Kwon JH, Ng R, Makita S, Yasuno Y, Sarunic MV, Ju MJ. Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography. BIOMEDICAL OPTICS EXPRESS 2020; 11:6945-6961. [PMID: 33408972 PMCID: PMC7747897 DOI: 10.1364/boe.403209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 10/31/2020] [Indexed: 05/02/2023]
Abstract
Retinal microvasculature and the retinal pigment epithelium (RPE) play vital roles in maintaining the health and metabolic activity of the eye. Visualization of these retina structures is essential for pre-clinical studies of vision-robbing diseases, such as age-related macular degeneration (AMD). We have developed a quantitative multi-contrast polarization diversity OCT and angiography (QMC-PD-OCTA) system for imaging and visualizing pigment in the RPE using degree of polarization uniformity (DOPU), along with flow in the retinal capillaries using OCT angiography (OCTA). An adaptive DOPU averaging kernel was developed to increase quantifiable values from visual data, and QMC en face images permit simultaneous visualization of vessel location, depth, melanin region thickness, and mean DOPU values, allowing rapid identification and differentiation of disease symptoms. The retina of five different mice strains were measured in vivo, with results demonstrating potential for pre-clinical studies of retinal disorders.
Collapse
Affiliation(s)
- Destiny Hsu
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- co-first author
| | - Ji Hoon Kwon
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- co-first author
| | - Ringo Ng
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
| | - Shuichi Makita
- University of Tsukuba, Computational Optics Group, Institute of Applied Physics, Japan
| | - Yoshiaki Yasuno
- University of Tsukuba, Computational Optics Group, Institute of Applied Physics, Japan
| | - Marinko V. Sarunic
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
| | - Myeong Jin Ju
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- University of British Columbia, Department of Ophthalmology and Visual Sciences, Vancouver, British Columbia, Canada
- University of British Columbia, School of Biomedical Engineering, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
27
|
Imaging lutein and zeaxanthin in the human retina with confocal resonance Raman microscopy. Proc Natl Acad Sci U S A 2020; 117:12352-12358. [PMID: 32409609 DOI: 10.1073/pnas.1922793117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lutein and zeaxanthin are xanthophyll carotenoids that are highly concentrated in the human macula, where they protect the eye from oxidative damage and improve visual performance. Distinguishing lutein from zeaxanthin in images of the human retina in vivo or in donor eye tissues has been challenging because no available technology has been able to reliably differentiate between these two carotenoids, which differ only in the position of one C = C bond. Here, we report the differential distributions of lutein and zeaxanthin in human donor retinas mapped with confocal resonance Raman microscopy. Zeaxanthin is highly concentrated in the fovea, extending from the inner to the outer limiting membranes, with especially high concentrations in the outer plexiform layer, while lutein is much more diffuse at relatively lower concentration. Our results imply that zeaxanthin may play a more important role than lutein in human macular health and disease.
Collapse
|
28
|
Widomska J, SanGiovanni JP, Subczynski WK. Why is Zeaxanthin the Most Concentrated Xanthophyll in the Central Fovea? Nutrients 2020; 12:nu12051333. [PMID: 32392888 PMCID: PMC7284714 DOI: 10.3390/nu12051333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Diet-based xanthophylls (zeaxanthin and lutein) are conditionally essential polar carotenoids preferentially accreted in high concentrations (1 mM) to the central retina, where they have the capacity to impart unique physiologically significant biophysical biochemical properties implicated in cell function, rescue, and survival. Macular xanthophylls interact with membrane-bound proteins and lipids to absorb/attenuate light energy, modulate oxidative stress and redox balance, and influence signal transduction cascades implicated in the pathophysiology of age-related macular degeneration. There is exclusive transport, sequestration, and appreciable bioamplification of macular xanthophylls from the circulating carotenoid pool to the retina and within the retina to regions required for high-resolution sensory processing. The distribution of diet-based macular xanthophylls and the lutein metabolite meso-zeaxanthin varies considerably by retinal eccentricity. Zeaxanthin concentrations are 2.5-fold higher than lutein in the cone-dense central fovea. This is an ~20-fold increase in the molar ratio relative to eccentric retinal regions with biochemically detectable macular xanthophylls. In this review, we discuss how the differences in the specific properties of lutein and zeaxanthin could help explain the preferential accumulation of zeaxanthin in the most vulnerable region of the macula.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
- Correspondence: (J.W.); (J.P.S.); Tel.: 48-81448-6333 (J.W.)
| | - John Paul SanGiovanni
- Department of Nutritional Sciences, The University of Arizona, 1657 East Helen Street, Tucson, AZ 85721, USA
- Correspondence: (J.W.); (J.P.S.); Tel.: 48-81448-6333 (J.W.)
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| |
Collapse
|
29
|
Bruns Y, Junker B, Boehringer D, Framme C, Pielen A. Comparison of Macular Pigment Optical Density in Glaucoma Patients and Healthy Subjects - A Prospective Diagnostic Study. Clin Ophthalmol 2020; 14:1011-1017. [PMID: 32308361 PMCID: PMC7140904 DOI: 10.2147/opth.s224259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the relationship between macular pigment optical density (MPOD) and glaucoma. Methods Forty-three patients with an established glaucoma diagnosis (25 females, 18 males, mean age 70 (range 34–84)) and 43 healthy controls (28 females, 15 males, mean age 62 (range 30–87)) were included in this prospective diagnostic case-control study. All subjects underwent detailed eye examination including ophthalmoscopy, best-corrected visual acuity, biomicroscopy, measurement of the axial length of the eye, objective refraction, lens status, central foveal thickness on spectral-domain optical coherence tomography (SD-OCT). In all glaucoma patients, a visual field assessment and a measurement of the retinal nerve fibre layer (RNFL) on SD-OCT were done. MPOD was determined using the macula pigment module of the Spectralis HRA+OCT (Heidelberg Engineering GmbH, Heidelberg, Germany) at 0.51°, 1.02° and 1.99° retinal eccentricity using two-wavelength autofluorescence imaging. Results In the glaucoma group, the median of the visual field mean defect was 5.1 db (quartiles 3.0 and 13.5) and the mean RNFL-thickness global was 65.9 µm (SD ± 16.1). Median MPOD measured at 0.51°, 1.02° and 1.99° retinal eccentricity in the glaucoma group was 0.42 DU, 0.34 DU and 0.13 DU, in the control group 0.40 DU, 0.35 DU and 0.12 DU respectively. There was no statistically significant difference of median MPOD between glaucomatous and control eyes (p=0.510, 0.735, 0.481). No significant relation between MPOD at 1.02 retinal eccentricity and the presence of glare symptoms was found (p=0.948). However, age seems to correlate with median MPOD measured at 1.02 retinal eccentricity (p=0.017). Conclusion There was no evidence for lower MPOD levels in our glaucoma patients; lower MPOD was not related to the presence of glare symptoms. However there seems to be a positive correlation between age and MPOD at 1.02° retinal eccentricity. To further investigate the relation between glare reported by glaucoma patients and glare disability linked to lower MPOD levels, additional studies are necessary that include both detailed inquiry of the quality of glare and a glare quantification and precise analysis of MPOD levels in glaucoma patients.
Collapse
Affiliation(s)
- Yannick Bruns
- University Eye Hospital, Hannover Medical School, Hannover 30625, Germany
| | - Bernd Junker
- University Eye Hospital, Hannover Medical School, Hannover 30625, Germany
| | - Daniel Boehringer
- Clinic for Ophthalmology, University of Freiburg Faculty of Medicine, Freiburg 79106, Germany
| | - Carsten Framme
- University Eye Hospital, Hannover Medical School, Hannover 30625, Germany
| | - Amelie Pielen
- University Eye Hospital, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
30
|
Cozza F, Compagnoni MM, Airoldi C, Braga C, Nigrotti G, Vlasak N, Larcher S, Zeri F, Tavazzi S. The effects of two longpass filters on visual performance. JOURNAL OF OPTOMETRY 2020; 13:102-112. [PMID: 31635988 PMCID: PMC7182782 DOI: 10.1016/j.optom.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/21/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE This study compared visual performance and optical properties of three filters. METHOD Two groups of twenty adults were recruited: wearers of progressive addition lenses (PAL, 46-73 years) and wearers of single vision lenses (SVL, 26-55 years). Three spectacle filters (Hoya, Japan) were compared: clear control, Standard Drive (STD), and Professional Drive (PRO) lenses. Optical transmittance was measured by a Jasco V-650 spectrophotometer. Best corrected visual acuity (BCVA) was measured in photopic (BCVAphotopic) and mesopic (BCVAmesopic) conditions and under glare (BCVAglare). Photopic contrast sensitivity (CS) was also measured. RESULTS The three longpass filters show cutoff at 426±2nm (STD/PRO) and 405±2nm (clear lens). BCVAglare improved with Drive filters compared to the clear one (p<0.05) from 0.03 to -0.02 (STD) and to -0.01 (PRO) for PAL and from -0.08 to -0.12 (STD and PRO) for SVL. For PAL, BCVAmesopic improved from 0.15 to 0.12 (STD, p<0.05) and 0.13 (PRO), while no substantial difference was observed for SVL. CS showed some improvements with Drive lenses at some angular frequencies between 6 and 18 cycles/deg, mainly for the PAL group. No BCVAphotopic differences were found. After testing all filters, each for two weeks, 79% (PAL) and 60% (SVL) of participants preferred Drive lenses. CONCLUSIONS Drive lenses are found to maintain or improve some visual functions compared to the clear lens. The improvement of mesopic visual acuity, visual acuity under glare, and contrast sensitivity is mainly attributed to the reduction of intraocular light scattering as a consequence of the total light attenuation in the spectral range below the cutoff.
Collapse
Affiliation(s)
- Federica Cozza
- Department of Materials Science, University of Milano Bicocca, Milan, Italy; Research Centre in Optics and Optometry (COMiB), University of Milano Bicocca, Milan, Italy
| | | | - Chiara Airoldi
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Chiara Braga
- Research Centre in Optics and Optometry (COMiB), University of Milano Bicocca, Milan, Italy
| | - Gabriele Nigrotti
- Research Centre in Optics and Optometry (COMiB), University of Milano Bicocca, Milan, Italy
| | | | | | - Fabrizio Zeri
- Department of Materials Science, University of Milano Bicocca, Milan, Italy; Research Centre in Optics and Optometry (COMiB), University of Milano Bicocca, Milan, Italy; Ophthalmic Research Group. School of Life and Health Sciences, Aston University, Birmingham, UK.
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano Bicocca, Milan, Italy; Research Centre in Optics and Optometry (COMiB), University of Milano Bicocca, Milan, Italy
| |
Collapse
|
31
|
Hong IH, Jung WH, Lee JH, Chang IB. Macular Pigment Optical Density in the Korean Population: a Cross Sectional Study. J Korean Med Sci 2020; 35:e30. [PMID: 32030919 PMCID: PMC7008070 DOI: 10.3346/jkms.2020.35.e30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND To evaluate the macular pigment optical density (MPOD) with age in the Korean population using the Macular Pigment Screener II (MPSII®). METHODS One hundred and twenty-six eyes were retrospectively reviewed. MPOD was measured using MPSII®, which uses a heterochromatic flicker photometry method, and the estimated values were analyzed. Spearman's correlation test was used to evaluate correlations between MPOD and age. The association between MPOD and age was determined using a simple linear regression analysis. MPODs among the four groups were compared via the post hoc analysis with Bonferroni correction, MPODs between the age-related macular degeneration (AMD) group and aged-matched healthy subjects were compared via the Mann-Whitney U test. Other risk factors for AMD were identified via a logistic regression analysis. RESULTS Estimated MPOD decreased significantly with increasing age in the general population. In the simple regression analysis, a statistically significant linear regression model was observed, and the estimated values of MPOD decreased by ?0.005 as age increased by 1 year. Aged (> 50 years) showed lower MPOD than younger (30-49 years) subjects. But, in the healthy population, the estimated MPOD values exhibited a decreasing trend with age, but there were no significant differences according to age, after excluding patients with AMD. MPOD was significantly lower in patients with AMD than in aged healthy controls. Furthermore, hypertension, dyslipidemia, and smoking were identified as risk factors for AMD. CONCLUSION MPOD measured with MPSII® reflects the MP density in healthy individuals and patients with dry AMD. Aging was not significantly associated with low MPOD in healthy population, but the presence of dry AMD was significantly associated with low MPOD. Then, low MPOD may be a risk factor for development of dry AMD. Furthermore, routine screening with MPS II® for ages 50 and older is thought to help detect early low MPOD and identify individuals who should take supplements.
Collapse
Affiliation(s)
- In Hwan Hong
- Department of Ophthalmology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Korea
| | - Woo Hyun Jung
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jae Hyup Lee
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - In Boem Chang
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
32
|
Hammond BR, Sreenivasan V, Suryakumar R. The Effects of Blue Light-Filtering Intraocular Lenses on the Protection and Function of the Visual System. Clin Ophthalmol 2019; 13:2427-2438. [PMID: 31824137 PMCID: PMC6901063 DOI: 10.2147/opth.s213280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Filtration of high-energy short-wave visible light (blue light) to improve vision and protect against damage has evolved both in aquatic animals and terrestrial species. In humans, pigments in the inner layer of the macula absorb wavelengths between 400 and 520 nm and function to improve visual performance. In patients who undergo cataract surgery, replacing cataractous lenses with artificial intraocular lenses (IOLs) that do not mimic normal healthy adult lenses could result in preventable negative visual effects, including glare disability. Blue light-filtering (BLF) IOLs were designed to filter short-wave light in addition to ultraviolet light and mimic the natural crystalline lens. Current studies indicate that BLF IOLs may provide protection from blue light-induced retinal damage and slow the development and progression of age-related macular degeneration. Additionally, BLF IOLs have been shown to improve chromatic contrast, reduce photostress recovery time, reduce glare disability and discomfort, and generally improve visual performance under glare conditions. Although a number of concerns have been raised about the relative risks versus the benefits of BLF IOLs, recent studies reported no adverse effects on visual function or contrast under photopic conditions, no long-term effects on color vision, and no detrimental effects on circadian rhythms with BLF IOLs. Based on the current understanding of the field, evidence suggests that BLF IOLs would be returning the eye to a more natural state compared with non-BLF lenses.
Collapse
Affiliation(s)
- Billy R Hammond
- Department of Psychology, Vision Sciences Laboratory, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
33
|
Christaras D, Ginis H, Pennos A, Mompean J, Artal P. Objective method for measuring the macular pigment optical density in the eye. BIOMEDICAL OPTICS EXPRESS 2019; 10:3572-3583. [PMID: 31467794 PMCID: PMC6706042 DOI: 10.1364/boe.10.003572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Macular pigment is a yellowish pigment of purely dietary origin, which is thought to have a protective role in the retina. Recently, it was linked to age-related macular degeneration and improved visual function. In this work, we present a method and a corresponding optical instrument for the rapid measurement of its optical density. The method is based on fundus reflectometry and features a photodetector for the measurement of reflectance at different wavelengths and retinal locations. The method has been tested against a commercially available instrument on a group of healthy volunteers and has shown good correlation. The proposed instrument can serve as a rapid, non-midriatic, low-cost tool for the measurement of macular pigment optical density.
Collapse
Affiliation(s)
- Dimitrios Christaras
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia,
Spain
- Department of Research, Athens Eye Hospital, Leof. Vouliagmenis 45, Glifada 166 75,
Greece
| | - Harilaos Ginis
- Department of Research, Athens Eye Hospital, Leof. Vouliagmenis 45, Glifada 166 75,
Greece
| | - Alexandros Pennos
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia,
Spain
| | - Juan Mompean
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia,
Spain
| | - Pablo Artal
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia,
Spain
| |
Collapse
|
34
|
Loskutova E, Shah K, Flitcroft ID, Setti A, Butler JS, Nolan Y, Paudel N, Loughman J. Lutein and zeaxanthin: The possible contribution, mechanisms of action and implications of modern dietary intake for cognitive development in children. HRB Open Res 2019. [DOI: 10.12688/hrbopenres.12903.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background:Studies suggest that lutein and zeaxanthin may be important for cognitive development in children, but a comprehensive evidence synthesis is lacking. The purpose of this evidence synthesis was to analyse the available data regarding the role of lutein and zeaxanthin for cognition in children and propose a theoretical basis for future studies.Methods:The PubMed, Scopus, the ISRCTN registry and Cochrane Library databases were searched for studies that evaluated the relationship between lutein and zeaxanthin and cognitive function in children. Reference list and ancestry searches were performed on relevant articles. A total of 543 articles were identified, of which six cross-sectional studies were included.Results:The literature search revealed that the evidence concerning the effect of lutein and zeaxanthin on cognition in children is sparse. However, there is some preliminary evidence indicating a positive association between lutein and zeaxanthin and cognition in childhood.Conclusions:The cross-sectional nature of the few studies available and the lack of RCT data indicates a need for further investigation before any firm conclusions can be drawn.
Collapse
|
35
|
Downie LE, Keller PR, Busija L, Lawrenson JG, Hull CC. Blue-light filtering spectacle lenses for visual performance, sleep, and macular health in adults. Hippokratia 2019. [DOI: 10.1002/14651858.cd013244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laura E Downie
- The University of Melbourne; Department of Optometry and Vision Sciences; Level 4, Alice Hoy Building Melbourne Victoria Australia 3010
| | - Peter R Keller
- The University of Melbourne; Department of Optometry and Vision Sciences; Level 4, Alice Hoy Building Melbourne Victoria Australia 3010
| | - Ljoudmila Busija
- Monash University; Biostatistics Unit, Department of Epidemiology and Preventive Medicine; Melbourne Victoria Australia 3000
| | - John G Lawrenson
- City University of London; Centre for Applied Vision Research, School of Health Sciences; Northampton Square London UK EC1V 0HB
| | - Christopher C Hull
- City University of London; Centre for Applied Vision Research, School of Health Sciences; Northampton Square London UK EC1V 0HB
| |
Collapse
|
36
|
Cezare-Gomes EA, Mejia-da-Silva LDC, Pérez-Mora LS, Matsudo MC, Ferreira-Camargo LS, Singh AK, de Carvalho JCM. Potential of Microalgae Carotenoids for Industrial Application. Appl Biochem Biotechnol 2019; 188:602-634. [PMID: 30613862 DOI: 10.1007/s12010-018-02945-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022]
Abstract
Microalgae cultivation, when compared to the growth of higher plants, presents many advantages such as faster growth, higher biomass productivity, and smaller land area requirement for cultivation. For this reason, microalgae are an alternative platform for carotenoid production when compared to the traditional sources. Currently, commercial microalgae production is not well developed but, fortunately, there are several studies aiming to make the large-scale production feasible by, for example, employing different cultivation systems. This review focuses on the main carotenoids from microalgae, comparing them to the traditional sources, as well as a critical analysis about different microalgae cultivation regimes that are currently available and applicable for carotenoid accumulation. Throughout this review paper, we present relevant information about the main commercial microalgae carotenoid producers; the comparison between carotenoid content from food, vegetables, fruits, and microalgae; and the great importance and impact of these molecule applications, such as in food (nutraceuticals and functional foods), cosmetics and pharmaceutical industries, feed (colorants and additives), and healthcare area. Lastly, the different operating systems applied to these photosynthetic cultivations are critically discussed, and conclusions and perspectives are made concerning the best operating system for acquiring high cell densities and, consequently, high carotenoid accumulation.
Collapse
Affiliation(s)
- Eleane A Cezare-Gomes
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Lauris Del Carmen Mejia-da-Silva
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Lina S Pérez-Mora
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - Marcelo C Matsudo
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, MG, 37500-903, Brazil
| | - Lívia S Ferreira-Camargo
- Center of Natural and Human Sciences, Federal University of ABC, R. Abolição, s/n° - Vila São Pedro, Santo André, SP, 09210-180, Brazil
| | - Anil Kumar Singh
- Department of Pharmacy, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil
| | - João Carlos Monteiro de Carvalho
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Avenida Prof. Lineu Prestes 580, Bl. 16, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
37
|
Macular Pigment Distribution as Prognostic Marker for Disease Progression in Macular Telangiectasia Type 2. Am J Ophthalmol 2018; 194:163-169. [PMID: 30053477 DOI: 10.1016/j.ajo.2018.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate macular pigment distribution pattern as a prognostic marker for disease progression in patients with macular telangiectasia type 2 (MacTel). DESIGN Retrospective cohort study. METHODS In this single-center study, 90 eyes of 47 patients were analyzed. Macular pigment optical density (MPOD) was measured with dual-wavelength fundus autofluorescence. Eyes were graded into MPOD distribution classes 1 to 3 with increasing loss of macular pigment and grading was performed masked by 2 independent graders. Best-corrected visual acuity, reading acuity, total scotoma size in fundus-controlled perimetry (microperimetry), and break of the ellipsoid zone (EZ) in optical coherence tomography (en face measurement) were defined as functional and morphologic outcome parameters and evaluated at baseline and after 60 months. RESULTS After a mean review period of 59.6 months (±standard deviation 5.2 months), no change between MPOD classes was observed compared to baseline. Morphologic and functional deficits were limited to the area of MPOD loss. At last follow-up, a significant mean decrease of visual acuity and reading acuity as well as a significant mean increase of scotoma size and EZ break were observed in eyes assigned to MPOD classes 2 and 3, while outcome parameters remained stable in eyes of class 1. CONCLUSIONS The results indicate that MPOD and its distribution may serve as a prognostic marker for disease progression and functional impairment in patients with MacTel.
Collapse
|
38
|
Downie LE, Busija L, Keller PR. Blue-light filtering intraocular lenses (IOLs) for protecting macular health. Cochrane Database Syst Rev 2018; 5:CD011977. [PMID: 29786830 PMCID: PMC6494477 DOI: 10.1002/14651858.cd011977.pub2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND An intraocular lens (IOL) is a synthetic lens that is surgically implanted within the eye following removal of the crystalline lens, during cataract surgery. While all modern IOLs attenuate the transmission of ultra-violet (UV) light, some IOLs, called blue-blocking or blue-light filtering IOLs, also reduce short-wavelength visible light transmission. The rationale for blue-light filtering IOLs derives primarily from cell culture and animal studies, which suggest that short-wavelength visible light can induce retinal photoxicity. Blue-light filtering IOLs have been suggested to impart retinal protection and potentially prevent the development and progression of age-related macular degeneration (AMD). We sought to investigate the evidence relating to these suggested benefits of blue-light filtering IOLs, and to consider any potential adverse effects. OBJECTIVES To assess the effects of blue-light filtering IOLs compared with non-blue-light filtering IOLs, with respect to providing protection to macular health and function. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 9); Ovid MEDLINE; Ovid Embase; LILACS; the ISRCTN registry; ClinicalTrials.gov and the ICTRP. The date of the search was 25 October 2017. SELECTION CRITERIA We included randomised controlled trials (RCTs), involving adult participants undergoing cataract extraction, where a blue-light filtering IOL was compared with an equivalent non-blue-light filtering IOL. DATA COLLECTION AND ANALYSIS The prespecified primary outcome was the change in distance best-corrected visual acuity (BCVA), as a continuous outcome, between baseline and 12 months of follow-up. Prespecified secondary outcomes included postoperative contrast sensitivity, colour discrimination, macular pigment optical density (MPOD), proportion of eyes with a pathological finding at the macula (including, but not limited to the development or progression of AMD, or both), daytime alertness, reaction time and patient satisfaction. We evaluated findings related to ocular and systemic adverse effects.Two review authors independently screened abstracts and full-text articles, extracted data from eligible RCTs and judged the risk of bias using the Cochrane tool. We reached a consensus on any disagreements by discussion. Where appropriate, we pooled data relating to outcomes and used random-effects or fixed-effect models for the meta-analyses. We summarised the overall certainty of the evidence using GRADE. MAIN RESULTS We included 51 RCTs from 17 different countries, although most studies either did not report relevant outcomes, or provided data in a format that could not be extracted. Together, the included studies considered the outcomes of IOL implantation in over 5000 eyes. The number of participants ranged from 13 to 300, and the follow-up period ranged from one month to five years. Only two of the studies had a trial registry record and no studies referred to a published protocol. We did not judge any of the studies to have a low risk of bias in all seven domains. We judged approximately two-thirds of the studies to have a high risk of bias in domains relating to 'blinding of participants and personnel' (performance bias) and 'blinding of outcome assessment' (detection bias).We found with moderate certainty, that distance BCVA with a blue-light filtering IOL, at six to 18 months postoperatively, and measured in logMAR, was not clearly different to distance BCVA with a non-blue-light filtering IOL (mean difference (MD) -0.01 logMAR, 95% confidence interval (CI) -0.03 to 0.02, P = 0.48; 2 studies, 131 eyes).There was very low-certainty evidence relating to any potential inter-intervention difference for the proportion of eyes that developed late-stage AMD at three years of follow-up, or any stage of AMD at one year of follow-up, as data derived from one trial and two trials respectively, and there were no events in either IOL intervention group, for either outcome. There was very low-certainty evidence for the outcome for the proportion of participants who lost 15 or more letters of distance BCVA at six months of follow-up; two trials that considered a total of 63 eyes reported no events, in either IOL intervention group.There were no relevant, combinable data available for outcomes relating to the effect on contrast sensitivity at six months, the proportion of eyes with a measurable loss of colour discrimination from baseline at six months, or the proportion of participants with adverse events with a probable causal link with the study interventions after six months.We were unable to draw reliable conclusions on the relative equivalence or superiority of blue-light filtering IOLs versus non-blue-light filtering IOLs in relation to longer-term effects on macular health. We were also not able to determine with any certainty whether blue-light filtering IOLs have any significant effects on MPOD, contrast sensitivity, colour discrimination, daytime alertness, reaction time or patient satisfaction, relative to non-blue-light filtering IOLs. AUTHORS' CONCLUSIONS This systematic review shows with moderate certainty that there is no clinically meaningful difference in short-term BCVA with the two types of IOLs. Further, based upon available data, these findings suggest that there is no clinically meaningful difference in short-term contrast sensitivity with the two interventions, although there was a low level of certainty for this outcome due to a small number of included studies and their inherent risk of bias. Based upon current, best-available research evidence, it is unclear whether blue-light filtering IOLs preserve macular health or alter risks associated with the development and progression of AMD, or both. Further research is required to fully understand the effects of blue-light filtering IOLs for providing protection to macular health and function.
Collapse
Affiliation(s)
- Laura E Downie
- The University of MelbourneDepartment of Optometry and Vision SciencesLevel 4, Alice Hoy BuildingParkvilleVictoriaAustralia3010
| | - Ljoudmila Busija
- Australian Catholic UniversityInstitute for Health and Ageing215 Spring StreetMelbourneVictoriaAustralia3000
| | - Peter R Keller
- The University of MelbourneDepartment of Optometry and Vision SciencesLevel 4, Alice Hoy BuildingParkvilleVictoriaAustralia3010
| | | |
Collapse
|
39
|
Supplementation with macular carotenoids improves visual performance of transgenic mice. Arch Biochem Biophys 2018; 649:22-28. [PMID: 29742455 DOI: 10.1016/j.abb.2018.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022]
Abstract
Carotenoid supplementation can improve human visual performance, but there is still no validated rodent model to test their effects on visual function in laboratory animals. We recently showed that mice deficient in β-carotene oxygenase 2 (BCO2) and/or β-carotene oxygenase 1 (BCO1) enzymes can accumulate carotenoids in their retinas, allowing us to investigate the effects of carotenoids on the visual performance of mice. Using OptoMotry, a device to measure visual function in rodents, we examined the effect of zeaxanthin, lutein, and β-carotene on visual performance of various BCO knockout mice. We then transgenically expressed the human zeaxanthin-binding protein GSTP1 (hGSTP1) in the rods of bco2-/- mice to examine if delivering more zeaxanthin to retina will improve their visual function further. The visual performance of bco2-/- mice fed with zeaxanthin or lutein was significantly improved relative to control mice fed with placebo beadlets. β-Carotene had no significant effect in bco2-/- mice but modestly improved cone visual function of bco1-/- mice. Expression of hGSTP1 in the rods of bco2-/-mice resulted in a 40% increase of retinal zeaxanthin and further improvement of visual performance. This work demonstrates that these "macular pigment mice" may serve as animal models to study carotenoid function in the retina.
Collapse
|
40
|
Christaras D, Pennos A, Ginis H, Artal P. Effect of intraocular scattering in macular pigment optical density measurements. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29745133 DOI: 10.1117/1.jbo.23.5.056001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Fundus reflectometry is a common in-vivo, noninvasive method to estimate the macular pigment optical density (MPOD). The measured density, however, can be affected by the individual's intraocular scattering. Scattering causes a reduction in the contrast of the fundus image, which in turn leads to an underestimation of the measured density. Intraocular scattering was measured optically in a group of seven young, healthy subjects using the method of optical integration and was subsequently used to correctly estimate the MPOD from fundus images. It was shown that when scattering is not considered, the measured optical density using fundus reflectometry can be underestimated by as high as 16% for our group of subjects.
Collapse
|
41
|
Jorge LPC, Pereira CEG, Jorge E, de Ávila MP. Macular pigment optical density in a Brazilian sample. Int J Retina Vitreous 2018; 4:4. [PMID: 29387455 PMCID: PMC5776767 DOI: 10.1186/s40942-018-0107-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/06/2018] [Indexed: 01/21/2023] Open
Abstract
Background To evaluate macular pigment optical density (MPOD) and to identify its determinants in a sample of Brazilian individuals. Methods This was a cross-sectional study. One hundred three healthy individuals had both eyes photographed using a Visucam 500 digital fundus camera (Carl Zeiss Meditec, Jena, Germany) in combination with the MPOD module. Four variables were obtained: maximum MPOD, mean MPOD, MPOD volume, and MPOD area. Demographic data and information on lifestyle habits were also collected.
Results Mean MPOD was 0.14 density unit ± 0.05. MPOD was not influenced by gender, smoking history, or refractive error. MPOD was significantly higher among black individuals than among white and biracial individuals. There was a positive but low correlation between MPOD and age. Conclusion This study found MPOD values to be similar to those found in European samples but lower than other studies performed on Asian and Australian samples. This is the first data regarding MPOD in a South American Population.
Collapse
Affiliation(s)
| | | | - Eduardo Jorge
- Instituto Panamericano da Visão, Street T 8 No. 171 Setor Marista, 74150-060 Goiânia, GO Brazil
| | - Marcos Pereira de Ávila
- 2Universidade Federal de Goiás, Av 1 No. 355 Setor Universitário, 74605-020 Goiânia, GO Brazil
| |
Collapse
|
42
|
Singh N, Srinivasan S, Muralidharan V, Roy R, V J, Raman R. Prevention of Age-Related Macular Degeneration. Asia Pac J Ophthalmol (Phila) 2017; 6:520-526. [PMID: 29204995 DOI: 10.22608/apo.2017416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 11/08/2022] Open
Abstract
Age-related macular degeneration (AMD) compromises quality of life. However, the available therapeutic options are limited. This has led to the identification of modifiable risk factors to prevent the development or alter the natural course and prognosis of AMD. The identification and modification of risk factors has the potential for greater public health impact on reducing morbidity from AMD. Likewise, identifying the imaging clues and genetic clues could serve as a guide to recognizing the propensity for progression to severe and end stages of the disease. Several attempts, both successful and unsuccessful, have been made for interventions that could delay the progression of AMD. Of these, pharmacological interventions have shown promising results. The Age-Related Eye Disease Study 1 and 2 have shown the beneficial role of antioxidants in a selected group of patients.
Collapse
Affiliation(s)
- Niharika Singh
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sangeetha Srinivasan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Vinata Muralidharan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | | - Jayprakash V
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| |
Collapse
|
43
|
Downie LE. Blue-light filtering ophthalmic lenses: to prescribe, or not to prescribe? Ophthalmic Physiol Opt 2017; 37:640-643. [DOI: 10.1111/opo.12414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laura E Downie
- Department of Optometry & Vision Sciences; University of Melbourne; Melbourne Australia
| |
Collapse
|
44
|
Kim EK, Kim H, Kwon O, Chang N. Associations between fruits, vegetables, vitamin A, β-carotene and flavonol dietary intake, and age-related macular degeneration in elderly women in Korea: the Fifth Korea National Health and Nutrition Examination Survey. Eur J Clin Nutr 2017; 72:161-167. [DOI: 10.1038/ejcn.2017.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022]
|
45
|
Colombo L, Melardi E, Ferri P, Montesano G, Samir Attaalla S, Patelli F, De Cillà S, Savaresi G, Rossetti L. Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases. BMC Ophthalmol 2017; 17:149. [PMID: 28830379 PMCID: PMC5568170 DOI: 10.1186/s12886-017-0545-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background To evaluate functional visual parameters using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by central or peripheral scotoma due to retinal diseases. Sixty patients were enrolled in this study: 30 patients affected by central scotoma, group 1, and 30 affected by peripheral scotoma, group 2. Black on White Best Corrected Visual Acuity (BW-BCVA), White on Black Best Corrected Visual Acuity (WB-BCVA), Mars Contrast Sensitivity (CS) and a Glare Test (GT) were performed to all patients. Test results with blue-violet filter, a short-pass yellow filter and with no filters were compared. Results All scores from test results increased significantly with blue-violet filters for all patients. The mean BW-BCVA increased from 0.30 ± 0.20 to 0.36 ± 0.21 decimals in group 1 and from 0.44 ± 0.22 to 0.51 ± 0.23 decimals in group 2 (Mean ± SD, p < 0.0001 in both cases). The mean WB-BCVA increased from 0.31 ± 0.19 to 0.38 ± 0.23 decimals in group 1 and from 0.46 ± 0.20 to 0.56 ± 0.22 decimals in group 2 (Mean ± SD, p < 0.0001 in both cases). The letter count for the CS test increased from 26.7 ± 7.9 to 30.06 ± 7.8 in group 1 (Mean ± SD, p = 0.0005) and from 31.5 ± 7.6 to 33.72 ± 7.3 in group 2 (Mean ± SD, p = 0.031). GT was significantly reduced: the letter count increased from 20.93 ± 5.42 to 22.82 ± 4.93 in group 1 (Mean ± SD, p < 0.0001) and from 24.15 ± 5.5 to 25.97 ± 4.7 in group 2 (Mean ± SD, p < 0.0001). Higher scores were recorded with the Blue filter compared to Yellow filter in all tests (p < 0.05). No significant differences in any test results could be detected between the Yellow filter and the No filter condition. Conclusions The use of a combination of photocromic lens with a selective blue-violet light filter showed functional benefit in all evaluated patients.
Collapse
Affiliation(s)
- L Colombo
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy.
| | - E Melardi
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | - P Ferri
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | - G Montesano
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | - S Samir Attaalla
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | - F Patelli
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| | - S De Cillà
- Department of Ophthalmology, AO Maggiore della Carità, Novara, Italy
| | - G Savaresi
- Associazione Retinitis Onlus, San Paolo Hospital, Milan, Italy
| | - L Rossetti
- Department of Ophthalmology, San Paolo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
46
|
Koncsek A, Helyes L, Daood HG. Bioactive compounds of cold pressed spice paprika seeds oils. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arnold Koncsek
- Rubin Spice Paprika Processing Ltd; Szerb u. 173, Szeged 6771 Hungary
| | - Lajos Helyes
- Horticultural Institute - Szent-Istvan University; Gödöllő Hungary
| | - Hussein G. Daood
- Regional Knowledge Centre - Szent-Istvan University; Gödöllő Hungary
| |
Collapse
|
47
|
Hammond BR. Comment on 'The evidence informing the surgeon's selection of intraocular lens on the basis of light transmittance properties'. Eye (Lond) 2017; 31:1507-1509. [PMID: 28430180 DOI: 10.1038/eye.2017.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- B R Hammond
- Brain and Behavioral Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
48
|
Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes. Exp Eye Res 2017; 159:123-131. [PMID: 28286282 DOI: 10.1016/j.exer.2017.02.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/29/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Carotenoid supplementation can prevent and reduce the risk of age-related macular degeneration (AMD) and other ocular disease, but until now, there has been no validated and well-characterized mouse model which can be employed to investigate the protective mechanism and relevant metabolism of retinal carotenoids. β-Carotene oxygenases 1 and 2 (BCO1 and BCO2) are the only two carotenoid cleavage enzymes found in animals. Mutations of the bco2 gene may cause accumulation of xanthophyll carotenoids in animal tissues, and BCO1 is involved in regulation of the intestinal absorption of carotenoids. To determine whether or not mice deficient in BCO1 and/or BCO2 can serve as a macular pigment mouse model, we investigated the retinal accumulation of carotenoids in these mice when fed with zeaxanthin, lutein, or β-carotene using an optimized carotenoid feeding method. HPLC analysis revealed that all three carotenoids were detected in sera, livers, retinal pigment epithelium (RPE)/choroids, and retinas of all of the mice, except that no carotenoid was detectable in the retinas of wild type (WT) mice. Significantly higher amounts of zeaxanthin and lutein accumulated in the retinas of BCO2 knockout (bco2-/-) mice and BCO1/BCO2 double knockout (bco1-/-/bco2-/-) mice relative to BCO1 knockout (bco1-/-) mice, while bco1-/- mice preferred to take up β-carotene. The levels of zeaxanthin and lutein were higher than β-carotene levels in the bco1-/-/bco2-/- retina, consistent with preferential uptake of xanthophyll carotenoids by retina. Oxidative metabolites were detected in mice fed with lutein or zeaxanthin but not in mice fed with β-carotene. These results indicate that bco2-/- and bco1-/-/bco2-/- mice could serve as reasonable non-primate models for macular pigment function in the vertebrate eye, while bco1-/- mice may be more useful for studies related to β-carotene.
Collapse
|
49
|
Neelam K, Goenadi CJ, Lun K, Yip CC, Au Eong KG. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. Br J Ophthalmol 2017; 101:551-558. [PMID: 28232380 DOI: 10.1136/bjophthalmol-2016-309814] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/21/2017] [Indexed: 01/02/2023]
Abstract
Diabetic retinopathy (DR) is one of the most important microvascular complications of diabetes and remains the leading cause of blindness in the working-age individuals. The exact aetiopathogenesis of DR remains elusive despite major advances in basic science and clinical research. Oxidative damage as one of the underlying causes for DR is increasingly being recognised. In humans, three hydroxycarotenoids, lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ), accumulate at the central retina (to the exclusion of all other dietary carotenoids), where they are collectively known as macular pigment. These hydroxycarotenoids by nature of their biochemical structure and function help neutralise reactive oxygen species, and thereby, prevent oxidative damage to the retina (biological antioxidants). Apart from their key antioxidant function, evidence is emerging that these carotenoids may also exhibit neuroprotective and anti-inflammatory function in the retina. Since the preliminary identification of hydroxycarotenoid in the human macula by Wald in the 1940s, there has been astounding progress in our knowledge of the role of these carotenoids in promoting ocular health. While the Age-Related Eye Disease Study 2 has established a clinical benefit for L and Z supplements in patients with age-related macular degeneration, the role of these carotenoids in other retinal diseases potentially linked to oxidative damage remains unclear. In this article, we comprehensively review the literature germane to the putative protective role of two hydroxycarotenoids, L and Z, in the pathogenesis of DR.
Collapse
Affiliation(s)
- Kumari Neelam
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore
| | - Catherina J Goenadi
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Katherine Lun
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Chee Chew Yip
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Kah-Guan Au Eong
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore, Singapore.,Singapore International Eye Cataract Retina Centre, Mount Elizabeth Medical Centre, Singapore, Singapore.,International Eye Cataract Retina Centre, Farrer Park Medical Centre, Singapore, Singapore
| |
Collapse
|
50
|
Fung FKC, Law BYK, Lo ACY. Lutein Attenuates Both Apoptosis and Autophagy upon Cobalt (II) Chloride-Induced Hypoxia in Rat Műller Cells. PLoS One 2016; 11:e0167828. [PMID: 27936094 PMCID: PMC5148028 DOI: 10.1371/journal.pone.0167828] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
Retinal ischemia/reperfusion injury is a common feature of various retinal diseases such as glaucoma and diabetic retinopathy. Lutein, a potent anti-oxidant, is used to improve visual function in patients with age-related macular degeneration (AMD). Lutein attenuates apoptosis, oxidative stress and inflammation in animal models of acute retinal ischemia/hypoxia. Here, we further show that lutein improved Műller cell viability and enhanced cell survival upon hypoxia-induced cell death through regulation of intrinsic apoptotic pathway. Moreover, autophagy was activated upon treatment of cobalt (II) chloride, indicating that hypoxic injury not only triggered apoptosis but also autophagy in our in vitro model. Most importantly, we report for the first time that lutein treatment suppressed autophagosome formation after hypoxic insult and lutein administration could inhibit autophagic event after activation of autophagy by a pharmacological approach (rapamycin). Taken together, lutein may have a beneficial role in enhancing glial cell survival after hypoxic injury through regulating both apoptosis and autophagy.
Collapse
Affiliation(s)
- Frederic K. C. Fung
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Betty Y. K. Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- * E-mail:
| |
Collapse
|