1
|
Yassin SH, Wagner NE, Khuu T, Schmidt R, Igelman AD, Marra M, Schwartz H, Walker E, Nagiel A, Yang P, Everett LA, Pennesi ME, Borooah S. Refractive Error in Inherited Retinal Disease. Am J Ophthalmol 2024; 269:381-392. [PMID: 39303928 DOI: 10.1016/j.ajo.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Inherited retinal dystrophies (IRDs) lead to significant vision impairment. Refractive errors (REs) are also associated with vision impairment and an increased risk of ocular comorbidities and may compound impairment caused by IRDs. Identifying the pattern of RE in IRDs may assist in better management of patients with IRD and provide insights into understanding genetic associations with RE. The aim of this study was to investigate the patterns of RE in patients with IRD from three academic ophthalmology referral centers. DESIGN Retrospective multicenter cohort study. METHODS Chart review of clinically and molecularly confirmed IRD cases seen at the University of California San Diego, Oregon Health and Science University, and Children's Hospital Los Angeles. Data retrieved included patient demographics, disease phenotype, genotype, best-corrected visual acuity, objective, and/or subjective refraction. RESULTS A total of 1942 patients' notes were reviewed. Of these, 634 patients (1255 eyes) had refractive data. For genes associated with myopia, NYX (n = 14 [1%]) was associated with the highest spherical equivalent RE of myopia (mean -9.26 diopters [D] [95% CI -11.867 to -6.651], P < .001) followed by IMPG2 (n = 16 [1.1%]) (mean -4.062 D [95% CI -6.254 to -1.871], P = .002), then RPGR (n = 104 [7.2%]) (mean -2.664 D [95% CI -3.618 to -1.710], P = .016) and for genes associated with hyperopia, BEST1 (n = 38 [2.6%]) had the highest spherical equivalent RE for hyperopia (mean 2.996 D [95% CI 1.830-4.162], P < .001) followed by RS1 (n = 26 [1.8%]) (mean 2.562 D [95% CI 1.454-3.671], P < .001), then CNGA3 (n = 28 [1.9%]) (mean 0.603 D [95% CI -0.48 to 1.686], P = .009). Overall, patients with IRD were significantly more myopic than age-matched control participants. CONCLUSION By combining genetic testing with refraction data from a large cohort of patients, we identify IRD genes associated with myopia and hyperopia. However, we find that the pattern of ametropia varies widely not only by gene but also within a gene cohort. The genes identified to be associated with RE are candidates for further in-depth investigation to understand their functional role in RE.
Collapse
Affiliation(s)
- Shaden H Yassin
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California
| | - Naomi E Wagner
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California
| | - Thomas Khuu
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Ryan Schmidt
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Austin D Igelman
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Molly Marra
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Hilary Schwartz
- The Vision Center (H.S., A.N.), Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California; Roski Eye Institute (H.S., A.N.), Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Evan Walker
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California
| | - Aaron Nagiel
- The Vision Center (H.S., A.N.), Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California; Roski Eye Institute (H.S., A.N.), Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Paul Yang
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Lesley A Everett
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon
| | - Mark E Pennesi
- Casey Eye Institute (T.K., R.S., A.D.I., M.M., P.Y., L.A.E., M.E.P.), Oregon Health and Science University, Portland, Oregon; Retina Foundation (M.E.P.), Dallas, Texas; The Vision Center (H.S., A.N.), Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Shyamanga Borooah
- From the Shiley Eye Institute (S.H.Y., N.E.W., E.W., S.B.), University of California, La Jolla, California.
| |
Collapse
|
2
|
Han JH, Rodenburg K, Hayman T, Calzetti G, Kaminska K, Quinodoz M, Marra M, Wallerich S, Allon G, Nagy ZZ, Knézy K, Li Y, Chen R, Barboni MTS, Yang P, Pennesi ME, van den Born LI, Varsányi B, Szabó V, Sharon D, Banin E, Ben-Yosef T, Roosing S, Koenekoop RK, Rivolta C. Loss-of-function variants in UBAP1L cause autosomal recessive retinal degeneration. Genet Med 2024; 26:101106. [PMID: 38420906 DOI: 10.1016/j.gim.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Inherited retinal diseases (IRDs) are a group of monogenic conditions that can lead to progressive blindness. Their missing heritability is still considerable, due in part to the presence of disease genes that await molecular identification. The purpose of this work was to identify novel genetic associations with IRDs. METHODS Patients underwent a comprehensive ophthalmological evaluation using standard-of-care tests, such as detailed retinal imaging (macular optical coherence tomography and short-wavelength fundus autofluorescence) and electrophysiological testing. Exome and genome sequencing, as well as computer-assisted data analysis were used for genotyping and detection of DNA variants. A minigene-driven splicing assay was performed to validate the deleterious effects of 1 of such variants. RESULTS We identified 8 unrelated families from Hungary, the United States, Israel, and The Netherlands with members presenting with a form of autosomal recessive and nonsyndromic retinal degeneration, predominantly described as rod-cone dystrophy but also including cases of cone/cone-rod dystrophy. Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later. Myopia greater than 5 diopters was present in 5 of 7 cases with available refractive data, and retinal detachment was reported in 2 cases. All ascertained patients carried biallelic loss-of-function variants in UBAP1L (HGNC: 40028), a gene with unknown function and with homologies to UBAP1, encoding a protein involved in ubiquitin metabolism. One of these pathogenic variants, the intronic NM_001163692.2:c.910-7G>A substitution, was identified in 5 unrelated families. Minigene-driven splicing assays in HEK293T cells confirmed that this DNA change is responsible for the creation of a new acceptor splice site, resulting in aberrant splicing. CONCLUSION We identified UBAP1L as a novel IRD gene. Although its function is currently unknown, UBAP1L is almost exclusively expressed in photoreceptors and the retinal pigment epithelium, hence possibly explaining the link between pathogenic variants in this gene and an ocular phenotype.
Collapse
Affiliation(s)
- Ji Hoon Han
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamar Hayman
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Giacomo Calzetti
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Molly Marra
- Casey Eye Institute, Oregon Health and Science University, Portland, OR
| | - Sandrine Wallerich
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Gilad Allon
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Zoltán Z Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Krisztina Knézy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Yumei Li
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Paul Yang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health and Science University, Portland, OR
| | | | - Balázs Varsányi
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Viktória Szabó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert K Koenekoop
- Departments of Pediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University and McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
3
|
Zhang X, Wang X, Zhu H, Zhang D, Chen J, Wen Y, Li Y, Jin L, Xie C, Guo D, Luo T, Tong J, Zhou Y, Shen Y. Short-wavelength artificial light affects visual neural pathway development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115282. [PMID: 37494734 DOI: 10.1016/j.ecoenv.2023.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Nearly all modern life depends on artificial light; however, it does cause health problems. With certain restrictions of artificial light emitting technology, the influence of the light spectrum is inevitable. The most remarkable problem is its overload in the short wavelength component. Short wavelength artificial light has a wide range of influences from ocular development to mental problems. The visual neuronal pathway, as the primary light-sensing structure, may contain the fundamental mechanism of all light-induced abnormalities. However, how the artificial light spectrum shapes the visual neuronal pathway during development in mammals is poorly understood. We placed C57BL/6 mice in three different spectrum environments (full-spectrum white light: 400-750 nm; violet light: 400 ± 20 nm; green light: 510 ± 20 nm) beginning at eye opening, with a fixed light time of 7:00-19:00. During development, we assessed the ocular axial dimension, visual function and retinal neurons. After two weeks under short wavelength conditions, the ocular axial length (AL), anterior chamber depth (ACD) and length of lens thickness, real vitreous chamber depth and retinal thickness (LLVR) were shorter, visual acuity (VA) decreased, and retinal electrical activity was impaired. The density of S-cones in the dorsal and ventral retinas both decreased after one week under short wavelength conditions. In the ventral retina, it increased after three weeks. Retinal ganglion cell (RGC) density and axon thickness were not influenced; however, the axonal terminals in the lateral geniculate nucleus (LGN) were less clustered and sparse. Amacrine cells (ACs) were significantly more activated. Green light has few effects. The KEGG and GO enrichment analyses showed that many genes related to neural circuitry, synaptic formation and neurotransmitter function were differentially expressed in the short wavelength light group. In conclusion, exposure to short wavelength artificial light in the early stage of vision-dependent development in mice delayed the development of the visual pathway. The axon terminus structure and neurotransmitter function may be the major suffering.
Collapse
Affiliation(s)
- Xuhong Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyu Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hong Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dongyan Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Ophthalmology, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jinbo Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yingying Wen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yanqing Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Le Jin
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dongyu Guo
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ting Luo
- Zhejiang Academy of Agricultural Sciences, Institute of Agroproduct Safety and Nutrition, China
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Yudong Zhou
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China; Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Stephenson KAJ, Whelan L, Zhu J, Dockery A, Wynne NC, Cairns RM, Kirk C, Turner J, Duignan ES, O'Byrne JJ, Silvestri G, Kenna PF, Farrar GJ, Keegan DJ. Usher Syndrome on the Island of Ireland: A Genotype-Phenotype Review. Invest Ophthalmol Vis Sci 2023; 64:23. [PMID: 37466950 PMCID: PMC10362925 DOI: 10.1167/iovs.64.10.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose Usher syndrome (USH) is a genetically heterogeneous group of autosomal recessive (AR) syndromic inherited retinal degenerations (IRDs) representing 50% of deaf-blindness. All subtypes include retinitis pigmentosa, sensorineural hearing loss, and vestibular abnormalities. Thorough phenotyping may facilitate genetic diagnosis and intervention. Here we report the clinical/genetic features of an Irish USH cohort. Methods USH patients were selected from the Irish IRD registry (Target 5000). Patients were examined clinically (deep-phenotyping) and genetically using a 254 IRD-associated gene target capture sequencing panel, USH2A exon, and whole genome sequencing. Results The study identified 145 patients (24.1% USH1 [n = 35], 73.8% USH2 [n = 107], 1.4% USH3 [n = 2], and 0.7% USH4 [n = 1]). A genetic diagnosis was reached in 82.1%, the majority (80.7%) being MYO7A or USH2A genotypes. Mean visual acuity and visual field (VF) were 0.47 ± 0.58 LogMAR and 31.3° ± 32.8°, respectively, at a mean age of 43 years. Legal blindness criteria were met in 40.7%. Cataract was present in 77.4%. ADGRV1 genotypes had the most VF loss, whereas USH2A patients had greater myopia and CDH23 had the most astigmatism. Variants absent from gnomAD non-Finnish Europeans and ClinVar represented more than 20% of the variants identified and were detected in ADGRV1, ARSG, CDH23, MYO7A, and USH2A. Conclusions USH is a genetically diverse group of AR IRDs that have a profound impact on affected individuals and their families. The prevalence and phenotype/genotype characteristics of USH in Ireland have, as yet, gone unreported. Understanding the genotype of Irish USH patients may guide clinical and genetic characterization facilitating access to existing/novel therapeutics.
Collapse
Affiliation(s)
- Kirk A J Stephenson
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Laura Whelan
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Julia Zhu
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adrian Dockery
- Next Generation Sequencing Laboratory, Pathology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Niamh C Wynne
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - Rebecca M Cairns
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Claire Kirk
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Jacqueline Turner
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Emma S Duignan
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - James J O'Byrne
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giuliana Silvestri
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Paul F Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - G Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - David J Keegan
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Caracterización fenotípica de la retinitis pigmentaria asociada a sordera. BIOMÉDICA 2022; 42:130-143. [PMID: 35866736 PMCID: PMC9385447 DOI: 10.7705/biomedica.6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/21/2022]
Abstract
Introducción. El síndrome de Usher es una alteración genética caracterizada por la asociación de retinitis pigmentaria y sordera. Sin embargo, hay casos con familias en las cuales, a pesar de presentarse dicha asociación, no se puede diagnosticar un síndrome de Usher ni ninguno otro. Objetivo. Reevaluar fenotípicamente a 103 familias con diagnóstico previo de posible síndrome de Usher o retinitis pigmentaria asociada con sordera. Materiales y métodos. Se revisaron las historias clínicas de 103 familias con un posible diagnóstico clínico de síndrome de Usher o retinitis pigmentaria asociada con sordera. Se seleccionaron las familias cuyo diagnóstico clínico no correspondía a un síndrome de Usher típico. Los afectados fueron valorados oftalmológica y audiológicamente. Se analizaron variables demográficas y clínicas. Resultados. Se reevaluaron 14 familias cuyo diagnóstico clínico no correspondía al de síndrome de Usher. De las familias con diagnóstico inicial de síndrome de Usher típico, el 13,6 % recibieron uno posterior de “retinitis pigmentaria asociada con sordera” de “otro síntoma ocular asociado con hipoacusia’,’ o en forma aislada en una misma familia, de “retinitis pigmentaria” o “hipoacusia’.’ Conclusiones. Es fundamental el estudio familiar en los casos en que la clínica no concuerda con el diagnóstico de síndrome de Usher típico. En los pacientes con retinitis pigmentaria asociada con sordera, el diagnóstico clínico acertado permite enfocar los análisis moleculares y, así, establecer un diagnóstico diferencial. Es necesario elaborar guías de nomenclatura en los casos con estos hallazgos atípicos para orientar a médicos e investigadores en cuanto a su correcto manejo.
Collapse
|
6
|
Yang J, Zhou L, Ouyang J, Xiao X, Sun W, Li S, Zhang Q. Genotype-Phenotype Analysis of RPGR Variations: Reporting of 62 Chinese Families and a Literature Review. Front Genet 2021; 12:600210. [PMID: 34745198 PMCID: PMC8565807 DOI: 10.3389/fgene.2021.600210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose RPGR is the most common cause of X-linked retinitis pigmentosa (RP), of which female carriers are also frequently affected. The aim of the current study was to explore the RPGR variation spectrum and associated phenotype based on the data from our lab and previous studies. Methods Variants in RPGR were selected from exome sequencing data of 7,092 probands with different eye conditions. The probands and their available family members underwent comprehensive ocular examinations. Similar data were collected from previous reports through searches in PubMed, Web of Science, and Google Scholar. Systematic analyses of genotypes, phenotypes and their correlations were performed. Results A total of 46 likely pathogenic variants, including nine missense and one in-frame variants in RCC1-like domain and 36 truncation variants, in RPGR were detected in 62 unrelated families in our in-house cohort. In addition, a total of 585 variants, including 491 (83.9%) truncation variants, were identified from the literature. Systematic analysis of variants from our in-house dataset, literature, and gnomAD suggested that most of the pathogenic variants of RPGR were truncation variants while pathogenic missense and in-frame variants were enriched in the RCC1-like domain. Phenotypic variations were present between males and female carriers, including more severe refractive error but better best corrected visual acuity (BCVA) in female carriers than those in males. The male patients showed a significant reduction of BCVA with increase of age and males with exon1-14 variants presented a better BCVA than those with ORF15 variants. For female carriers, the BCVA also showed significant reduction with increase of age, but BCVA in females with exon1-14 variants was not significant difference compared with those with ORF15 variants. Conclusion Most pathogenic variants of RPGR are truncations. Missense and in-frame variants located outside of the RCC1-like domain might be benign and the pathogenicity criteria for these variants should be considered with greater caution. The BCVA and refractive error are different between males and female carriers. Increase of age and location of variants in ORF15 contribute to the reduction of BCVA in males. These results are valuable for understanding genotypes and phenotypes of RPGR.
Collapse
Affiliation(s)
- Junxing Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Li HP, Yuan SQ, Wang XG, Sheng XL, Li XR. Myopia with X-linked retinitis pigmentosa results from a novel gross deletion of RPGR gene. Int J Ophthalmol 2020; 13:1306-1311. [PMID: 32821686 DOI: 10.18240/ijo.2020.08.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
AIM To identify mutations with whole exome sequencing (WES) in a Chinese X-linked retinitis pigmentosa (XLRP) family. METHODS Patients received the comprehensive ophthalmic evaluation. Genomic DNA was extracted from peripheral blood and subjected to SureSelect Human All Exon 6+ UTR exon capture kit. The exons were sequenced as 100 base paired reads on Illumina HiSeq2500 system. Only mutations that resulted in a change in amino acid sequence were selected. A pattern of inheritance of the RP family was aligned to identified causal mutation. RESULTS We analysed the data of WES information from XLRP family. The analysis revealed a hemizygous large genomic deletion of RPGR c.29_113del was responsible for this XLRP. The gross deletion lead to a frame-shift mutation and generate stop codon at 7 animo acid behind Asp (D10Afs*7), which would serious truncate RPGR protein. The novel frame-shift mutation was found to segregate with retinitis pigmentosa (RP) phenotype in this family. Bilateral myopia was present on the male patients, but carrier female showed unilateral myopia without RP. CONCLUSION Our study identifies a novel frame-shift mutation of RPGR in a Chinese family, which would expand the spectrum of RPGR mutations. The geno-phenotypic analysis reveals a correlation between RP and myopia. Although exact mechanism of RP related myopia is still unknown, but the novel frame-shift mutation will give our hit on studying the molecular pathogenesis of RP and myopia.
Collapse
Affiliation(s)
- Hui-Ping Li
- Tianjin Medical University Eye Hospital, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin 300384, China.,Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Shi-Qin Yuan
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Xiao-Guang Wang
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Xun-Lun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan 750002, Ningxia Hui Autonomous Region, China
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin 300384, China
| |
Collapse
|
8
|
Verbakel SK, van Huet RAC, den Hollander AI, Geerlings MJ, Kersten E, Klevering BJ, Klaver CCW, Plomp AS, Wesseling NL, Bergen AAB, Nikopoulos K, Rivolta C, Ikeda Y, Sonoda KH, Wada Y, Boon CJF, Nakazawa T, Hoyng CB, Nishiguchi KM. Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the RP1 Gene: Extending the RP1 Disease Spectrum. Invest Ophthalmol Vis Sci 2019; 60:1192-1203. [PMID: 30913292 DOI: 10.1167/iovs.18-26084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the clinical and genetic spectrum of RP1-associated retinal dystrophies. Methods In this multicenter case series, we included 22 patients with RP1-associated retinal dystrophies from 19 families from The Netherlands and Japan. Data on clinical characteristics, visual acuity, visual field, ERG, and retinal imaging were extracted from medical records over a mean follow-up of 8.1 years. Results Eleven patients were diagnosed with autosomal recessive macular dystrophy (arMD) or autosomal recessive cone-rod dystrophy (arCRD), five with autosomal recessive retinitis pigmentosa (arRP), and six with autosomal dominant RP (adRP). The mean age of onset was 40.3 years (range 14-56) in the patients with arMD/arCRD, 26.2 years (range 18-40) in adRP, and 8.8 years (range 5-12) in arRP patients. All patients with arMD/arCRD carried either the hypomorphic p.Arg1933* variant positioned close to the C-terminus (8 of 11 patients) or a missense variant in exon 2 (3 of 11 patients), compound heterozygous with a likely deleterious frameshift or nonsense mutation, or the p.Gln1916* variant. In contrast, all mutations identified in adRP and arRP patients were frameshift and/or nonsense variants located far from the C-terminus. Conclusions Mutations in the RP1 gene are associated with a broad spectrum of progressive retinal dystrophies. In addition to adRP and arRP, our study provides further evidence that arCRD and arMD are RP1-associated phenotypes as well. The macular involvement in patients with the hypomorphic RP1 variant suggests that macular function may remain compromised if expression levels of RP1 do not reach adequate levels after gene augmentation therapy.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nieneke L Wesseling
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A B Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Konstantinos Nikopoulos
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Merrill K. Don't Miss This! Red Flags in the Pediatric Eye Examination: Subnormal Acuity. J Binocul Vis Ocul Motil 2019; 69:90-92. [PMID: 31329058 DOI: 10.1080/2576117x.2019.1565907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Subnormal vision can be a harbinger of threating disease. Recognizing certain "red flags" on history or examination can facilitate early diagnosis in the pediatric patient. These objective tests or subjective complaints may help differentiate true organic causes of vision loss from possible functional overlay, amblyopia or poor results due to an uncooperative child.
Collapse
Affiliation(s)
- Kimberly Merrill
- a Department of Ophthalmology & Visual Neurosciences, University of Minnesota , Minneapolis , Minnesota
| |
Collapse
|
10
|
Talib M, van Schooneveld MJ, Van Cauwenbergh C, Wijnholds J, Ten Brink JB, Florijn RJ, Schalij-Delfos NE, Dagnelie G, van Genderen MM, De Baere E, Meester-Smoor MA, De Zaeytijd J, Cremers FPM, van den Born LI, Thiadens AA, Hoyng CB, Klaver CC, Leroy BP, Bergen AA, Boon CJF. The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the RPGR Gene. Invest Ophthalmol Vis Sci 2019; 59:4123-4133. [PMID: 30105367 DOI: 10.1167/iovs.17-23453] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the phenotype and long-term clinical course of female carriers of RPGR mutations. Methods This was a retrospective cohort study of 125 heterozygous RPGR mutation carriers from 49 families. Results Eighty-three heterozygotes were from retinitis pigmentosa (RP) pedigrees, 37 were from cone-/cone-rod dystrophy (COD/CORD) pedigrees, and 5 heterozygotes were from pedigrees with mixed RP/CORD or unknown diagnosis. Mutations were located in exon 1-14 and in ORF15 in 42 of 125 (34%) and 83 of 125 (66%) subjects, respectively. The mean age at the first examination was 34.4 years (range, 2.1 to 86.0 years). The median follow-up time in heterozygotes with longitudinal data (n = 62) was 12.2 years (range, 1.1 to 52.2 years). Retinal pigmentary changes were present in 73 (58%) individuals. Visual symptoms were reported in 51 (40%) cases. Subjects with both symptoms and pigmentary fundus changes were older than the other heterozygotes (P = 0.01) and had thinner foveal outer retinas (P = 0.006). Complete expression of the RP or CORD phenotype was observed in 29 (23%) heterozygotes, although usually in milder forms than in affected male relatives. Best-corrected visual acuity (BCVA) was <20/40 and <20/400 in at least one eye in 45 of 116 (39%) and 11 of 116 (9%) heterozygotes, respectively. Myopia was observed in 74 of 101 (73%) subjects and was associated with lower BCVA (P = 0.006). Increasing age was associated with lower BCVA (P = 0.002) and decreasing visual field size (P = 0.012; I4e isopter). Conclusions RPGR mutations lead to a phenotypic spectrum in female carriers, with myopia as a significantly aggravating factor. Complete disease expression is observed in some individuals, who may benefit from future (gene) therapeutic options.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | | | - Gislin Dagnelie
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Maria M van Genderen
- Bartiméus, Diagnostic Centre for Complex Visual Disorders, Zeist, The Netherlands
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Frans P M Cremers
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Alberta A Thiadens
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Ophthalmic Genetics & Visual Electrophysiology, Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, The Netherlands.,The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
11
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Hendriks M, Verhoeven VJ, Buitendijk GH, Polling JR, Meester-Smoor MA, Hofman A, Kamermans M, Ingeborgh van den Born L, Klaver CC, van Huet RA, Klevering BJ, Bax NM, Lambertus S, Klaver CC, Hoyng CB, Oomen CJ, van Zelst-Stams WA, Cremers FP, Plomp AS, van Schooneveld MJ, van Genderen MM, Schuil J, Boonstra FN, Schlingemann RO, Bergen AA, Pierrache L, Meester-Smoor M, van den Born LI, Boon CJ, Pott JW, van Leeuwen R, Kroes HY, de Jong-Hesse Y. Development of Refractive Errors-What Can We Learn From Inherited Retinal Dystrophies? Am J Ophthalmol 2017; 182:81-89. [PMID: 28751151 DOI: 10.1016/j.ajo.2017.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/13/2023]
Abstract
PURPOSE It is unknown which retinal cells are involved in the retina-to-sclera signaling cascade causing myopia. As inherited retinal dystrophies (IRD) are characterized by dysfunction of a single retinal cell type and have a high risk of refractive errors, a study investigating the affected cell type, causal gene, and refractive error in IRDs may provide insight herein. DESIGN Case-control study. METHODS Study Population: Total of 302 patients with IRD from 2 ophthalmogenetic centers in the Netherlands. Reference Population: Population-based Rotterdam Study-III and Erasmus Rucphen Family Study (N = 5550). Distributions and mean spherical equivalent (SE) were calculated for main affected cell type and causal gene; and risks of myopia and hyperopia were evaluated using logistic regression. RESULTS Bipolar cell-related dystrophies were associated with the highest risk of SE high myopia 239.7; odds ratio (OR) mild hyperopia 263.2, both P < .0001; SE -6.86 diopters (D) (standard deviation [SD] 6.38), followed by cone-dominated dystrophies (OR high myopia 19.5, P < .0001; OR high hyperopia 10.7, P = .033; SE -3.10 D [SD 4.49]); rod dominated dystrophies (OR high myopia 10.1, P < .0001; OR high hyperopia 9.7, P = .001; SE -2.27 D [SD 4.65]), and retinal pigment epithelium (RPE)-related dystrophies (OR low myopia 2.7; P = .001; OR high hyperopia 5.8; P = .025; SE -0.10 D [SD 3.09]). Mutations in RPGR (SE -7.63 D [SD 3.31]) and CACNA1F (SE -5.33 D [SD 3.10]) coincided with the highest degree of myopia and in CABP4 (SE 4.81 D [SD 0.35]) with the highest degree of hyperopia. CONCLUSIONS Refractive errors, in particular myopia, are common in IRD. The bipolar synapse and the inner and outer segments of the photoreceptor may serve as critical sites for myopia development.
Collapse
|
13
|
Lu L, Wang X, Lo D, Weng J, Liu X, Yang J, He F, Wang Y, Liu X. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing. Oncotarget 2016; 7:79797-79804. [PMID: 27806333 PMCID: PMC5346751 DOI: 10.18632/oncotarget.12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations.
Collapse
Affiliation(s)
- Lan Lu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, 518000, China
| | - David Lo
- Department of Internal Medicine, Danbury, CT 06810, USA
| | - Jingning Weng
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - xiaohong Liu
- Department of Ophthalmology, The People's Hospital of Baoan Shenzhen, Guangdong, 518101, China
| | - Juhua Yang
- Biomedical Engineering Center, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Fen He
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, 518000, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, 518000, China
| | - Xuyang Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
14
|
Abstract
Myopia is a major cause of visual impairment worldwide. In particular, high myopia is associated with serious blinding complications, including retinal detachment, chorioretinal degeneration, and choroidal neovascularization. Myopia is multifactorial in etiology, resulting from the interaction of environmental and genetic risk factors. During the past 2 decades, a large number of gene loci and variants have been identified for myopia. There are more than 20 myopia-associated loci spanning all chromosomes. Earlier findings were obtained mainly from family linkage analyses and candidate gene studies, and more recent results are principally from genome-wide association studies and exome sequencing. Some genetic associations have been successfully validated and replicated in populations of different geographic localities and ethnicities, but some have not. Compared with Whites, Asian populations-in particular Japanese, Korean, and Chinese-have a much higher prevalence of myopia, especially high myopia. Both genetic and environmental factors contribute to such ethnic variations. This review attempts to summarize and compare the allelic frequencies of gene variants known to be associated with myopia in different ethnic groups, especially in the Asia-Pacific region.
Collapse
Affiliation(s)
- Shi Song Rong
- From the *Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong; and †Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
15
|
Maranhao B, Biswas P, Gottsch ADH, Navani M, Naeem MA, Suk J, Chu J, Khan SN, Poleman R, Akram J, Riazuddin S, Lee P, Riazuddin SA, Hejtmancik JF, Ayyagari R. Investigating the Molecular Basis of Retinal Degeneration in a Familial Cohort of Pakistani Decent by Exome Sequencing. PLoS One 2015; 10:e0136561. [PMID: 26352687 PMCID: PMC4564165 DOI: 10.1371/journal.pone.0136561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To define the molecular basis of retinal degeneration in consanguineous Pakistani pedigrees with early onset retinal degeneration. METHODS A cohort of 277 individuals representing 26 pedigrees from the Punjab province of Pakistan was analyzed. Exomes were captured with commercial kits and sequenced on an Illumina HiSeq 2500. Candidate variants were identified using standard tools and analyzed using exomeSuite to detect all potentially pathogenic changes in genes implicated in retinal degeneration. Segregation analysis was performed by dideoxy sequencing and novel variants were additionally investigated for their presence in ethnicity-matched controls. RESULTS We identified a total of nine causal mutations, including six novel variants in RPE65, LCA5, USH2A, CNGB1, FAM161A, CERKL and GUCY2D as the underlying cause of inherited retinal degenerations in 13 of 26 pedigrees. In addition to the causal variants, a total of 200 variants each observed in five or more unrelated pedigrees investigated in this study that were absent from the dbSNP, HapMap, 1000 Genomes, NHLBI ESP6500, and ExAC databases were identified, suggesting that they are common in, and unique to the Pakistani population. CONCLUSIONS We identified causal mutations associated with retinal degeneration in nearly half of the pedigrees investigated in this study through next generation whole exome sequencing. All novel variants detected in this study through exome sequencing have been cataloged providing a reference database of variants common in, and unique to the Pakistani population.
Collapse
Affiliation(s)
- Bruno Maranhao
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Pooja Biswas
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Alexander D. H. Gottsch
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Mili Navani
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - John Suk
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Justin Chu
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Sheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rachel Poleman
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Pauline Lee
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - J. Fielding Hejtmancik
- OGVF branch, National Eye Institute, NIH, Bethesda, MD, United States of America
- * E-mail: (RA); (JFH)
| | - Radha Ayyagari
- Department of Ophthalmology, University of California La Jolla, La Jolla, CA, United States of America
- * E-mail: (RA); (JFH)
| |
Collapse
|
16
|
Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned. PLoS One 2015. [PMID: 26197217 PMCID: PMC4509755 DOI: 10.1371/journal.pone.0133624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies.
Collapse
|