1
|
Gunawardene AN, Reyes N, Valdes-Arias D, Ortug A, Martinez J, Galor A, Moulton EA. Abnormal visual cortex activity using functional magnetic resonance imaging in treatment resistant photophobia in Friedreich Ataxia. Am J Ophthalmol Case Rep 2024; 36:102213. [PMID: 39583293 PMCID: PMC11585643 DOI: 10.1016/j.ajoc.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Friedreich ataxia (FDRA) is a debilitating neurodegenerative disease that can have ophthalmological manifestations including visual dysfunction, nystagmus, and optic atrophy. However, severe photophobia has not been reported nor evaluated with functional magnetic resonance imaging (fMRI). Methods A 64-year-old white female with a 37-year history of FDRA presented to the eye clinic with worsening photophobia of 3 years. To measure her visual cortex activation and subjective responses during episodes of photophobia, she underwent event-related fMRI with light stimuli. In comparison, the same protocol was conducted in an individual with photophobia but without FDRA. After the fMRI, both patients were treated with 35 units of BoNT-A applied to the forehead. Results Analysis of visual cortex activity in response to light stimulus in the FDRA patient showed no correlation between blood oxygen level dependent (BOLD) activation and light stimuli in the first (r = -0.100, p = 0.235), and a weak negative correlation in the second half of the fMRI scan (r = -0.236 p = 0.004). In notable contrast, significant positive correlations were noted between visual cortex activity and the light stimulus (1st half: r = 0.742, p < 0.001, vs. 2nd half: r = 0.614, p < 0.001) in the comparator. Six weeks later, no improvement in photophobia was noted in either patient. Conclusion and importance Our study highlights photophobia as one potential ocular manifestation of FDRA and suggests that one underlying contributor may be a decoupled cortical neurovascular response to light. Our study provides novel information that may guide physiologic understanding and future treatments in this disease.
Collapse
Affiliation(s)
- Araliya N. Gunawardene
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Nicholas Reyes
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - David Valdes-Arias
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Alpen Ortug
- Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02115, USA
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
| | - Jaime Martinez
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Anat Galor
- Ophthalmology, Miami Veterans Affairs Medical Center, 1201 NW 16 Street, Miami, FL, 33125, USA
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17 Street, Miami, FL, 33136, USA
| | - Eric A. Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
- Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, 300 Longwood Avenue., Boston, MA, 02115, USA
| |
Collapse
|
2
|
Singh S, Maity M, Ali MH, Basu S. Tear Film and Dry Eye Characteristics as Predictors of Photophobia in 374 Patients with Dry Eye Disease. Semin Ophthalmol 2024:1-4. [PMID: 39563106 DOI: 10.1080/08820538.2024.2429630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE To assess the tear film parameters associated with photophobia in dry eye disease (DED). METHODS Three hundred seventy-four patients with DED (mean age, 42.2 ± 12.8 years) had their tear film and OSDI scores evaluated using Oculus keratograph 5 M (TMH, NIBUT, Meibography), Lipiview interferometer (LLT), and TearLab osmolarity system. Photophobia scoring from OSDI sheets was used to calculate the odds ratio via multivariate logistic regression analysis. Data from the eye with severely affected NIBUT was used. RESULTS Of 374, 127 had aqueous deficient dry eye disease (ADDE), and 247 had evaporative DED. The mean age, female sex, Schirmer I, TMH, NIBUT, LLT, and tear osmolarity values in patients with photophobia versus no or mild photophobia were 42.2. vs. 40.9 years, 42% vs. 40%, 11.6 vs. 10.5 mm, 0.27 vs. 0.29 mm, 4.6 vs. 4.7s, 60.3 vs. 60.9 nm and 305 vs. 307 mOsm/L, respectively. Multivariate analysis revealed no tear film parameters predictive of photophobia in evaporative DED, whereas tear osmolarity had a weak negative association with photophobia (odds ratio of 0.96, 95% C.I, 0.92-1, p = .04) in ADDE patients. CONCLUSION Tear film parameters do not predict the presence or absence of photophobia in DED except for a weak inverse association with tear osmolarity in ADDE. This suggests the role of central sensitization in regulating photophobia in DED patients.
Collapse
Affiliation(s)
- Swati Singh
- Center for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository (KR-ORBR), L V Prasad Eye Institute, Hyderabad, Telangana, India, Hyderabad, Telangana, India
| | - Moumi Maity
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Md Hasnat Ali
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Huang Z, Yao J, Nie L, Nie X, Xiong X, Kõks S, Quinn JP, Kanhere A, Wang M. Gender-different effect of Src family kinases antagonism on photophobia and trigeminal ganglion activity. J Headache Pain 2024; 25:175. [PMID: 39390364 PMCID: PMC11468534 DOI: 10.1186/s10194-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Src family kinases (SFKs) contribute to migraine pathogenesis, yet its role in regulating photophobia behaviour, one of the most common forms of migraine, remains unknown. Here, we addressed whether SFKs antagonism alleviates photophobia behavior and explored the underlying mechanism involving hypothalamus and trigeminal ganglion activity, as measured by the alteration of neuropeptide levels and transcriptome respectively. METHODS A rapid-onset and injury-free mouse model of photophobia was developed following intranasal injection of the TRPA1 activator, umbellulone. The role of SFKs antagonism on light aversion was assessed by the total time the mouse stays in the light and transition times between the dark and light compartments. To gain insight to the preventive mechanism of SFKs antagonism, hypothalamic neuropeptides levels were assessed using enzyme linked immunofluorescent assay and trigeminal ganglion activity were assessed using RNA-sequencing and qPCR analysis. RESULTS SFKs antagonism by a clinically relevant SFKs inhibitor saracatinib reduced the total time in light and transition times in male mice, but not in females, suggesting SFKs play a crucial role in photophobia progressing and exhibit a male-only effect. SFKs antagonism had no effect on hypothalamic calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide levels of all mice investigated, suggesting the gender-different effect of saracatinib on light aversion appears to be independent of these hypothalamic neuropeptide levels. In trigeminal ganglion of male mice, photophobia is associated with profound alteration of differentially expressed genes, part of which were reversed by SFKs antagonism. Subsequent qPCR analysis showed SFKs antagonism displayed gender-different modulation of expression in some candidate genes, particularly noteworthy those encoding ion channels (trpm3, Scn8a), ATPase signaling (crebbp, Atp5α1) and kinase receptors (Zmynd8, Akt1). CONCLUSIONS In conclusion, our data revealed that SFKs antagonism reduced photophobia processing in male mice and exhibited gender-different modulation of trigeminal ganglion activity, primarily manifesting as alterations in the transcriptome profile. These findings underscore the potential of SFKs antagonism for allieving photophobia in males, highlighting its value in the emerging field of precision medicine.
Collapse
Affiliation(s)
- Zhuoan Huang
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Junyu Yao
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lingdi Nie
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Xinchen Nie
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuechunhui Xiong
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Perron Institute for Neurological and Translational Science, Murdoch University, Perth, WA, Australia
| | - John P Quinn
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Minyan Wang
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Merezhinskaya N, Bai AC, Park D, Barker Ii FM, Gu W. Characterization of Mild Traumatic Brain Injury Cohort With Photophobia From the Defense and Veterans Eye Injury and Vision Registry. Mil Med 2024; 189:736-742. [PMID: 39160895 DOI: 10.1093/milmed/usae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Photophobia is a common visual symptom following mild traumatic brain injury (mTBI), which can adversely affect the military readiness and performance of service members (SMs). We employed the Defense and Veterans Eye Injury and Vision Registry (DVEIVR) to identify and describe a cohort of SMs diagnosed with photophobia post-mTBI. The objective of this study was to characterize comorbid conditions and symptoms in an mTBI cohort with photophobia, to assess their co-occurrence, to describe the persistence of photophobia, and to assess the effectiveness of utilization of currently available International Statistical Classification of Diseases and Related Health Problems (ICD) codes in reporting photophobia in this cohort. MATERIALS AND METHODS The DVEIVR database was searched to identify a cohort of SMs experiencing photophobia after mTBI. Photophobia and other potentially related conditions and symptoms, both coded and descriptive, which were abstracted directly from the medical records of SMs, were found within DVEIVR. The presence of the conditions and symptoms comorbid with photophobia was characterized on both patient and encounter levels. Analysis of co-occurrence of photophobia with these conditions or symptoms was performed on the encounter level using co-occur package in the statistical program R. Persistence of photophobia up to 1 year since the injury was assessed. The utilization of currently available ICD codes for photophobia was analyzed. RESULTS A total of 639 SMs exhibiting photophobia after mTBI were identified in DVEIVR. Headaches, including migraines, were the most frequently experienced comorbidity affecting 92% of the SMs in the cohort. The second most frequent complaint was dizziness and/or vertigo (53%) followed by nausea (42%), blurry vision (31%), and irritation and discomfort in the eye (17%). In all, 20% of encounters with photophobia had a complaint of headaches, followed by 8.3% of photophobia encounters co-occurring with dizziness and vertigo, 5.7%-with nausea, 4.5%-with blurred vision, and 2.1%-with subjective sensations in the eye. All comorbidities co-occurred with photophobia at probabilities higher than by chance alone. The percentage of mTBI SMs experiencing photophobia declined to 20% at 30 days after the injury, 17% at 3 months, 12% at 6 months, and 7% at 12 months post-injury, respectively. The use of currently available ICD codes for photophobia was very low-only 27.1% of the cohort had at least 1 ICD code recorded in their medical records. CONCLUSIONS The results of this study support the idea that there is a strong relationship between photophobia and headache after an mTBI. Additional research is warranted to better understand this relationship and its causes so that clinical management improves. The results of this study show a precipitous decline in the numbers of cases of photophobia after mTBI over the first 30 days and a longer-term persistence up to a year in a minority of cases, which is consistent with other research in this field. Various ICD codes, which are currently used to code for photophobia, along with other vision conditions, were not widely used to document photophobia symptoms. It is important to adopt a dedicated ICD code for photophobia to improve the surveillance, data collection, and analysis of this condition.
Collapse
Affiliation(s)
- Natalya Merezhinskaya
- Department of Defense/Veterans Affairs Vision Center of Excellence, DHA Research and Engineering Directorate, Walter Reed National Military Medical Center, Bethesda, MD 20889-5629, USA
| | - Abigail C Bai
- Department of Defense/Veterans Affairs Vision Center of Excellence, DHA Research and Engineering Directorate, Walter Reed National Military Medical Center, Bethesda, MD 20889-5629, USA
| | - DoHwan Park
- Department of Defense/Veterans Affairs Vision Center of Excellence, DHA Research and Engineering Directorate, Walter Reed National Military Medical Center, Bethesda, MD 20889-5629, USA
- Department of Mathematics and Statistics, University of Maryland-Baltimore County, Baltimore, MD 21250, USA
| | - Felix M Barker Ii
- Department of Defense/Veterans Affairs Vision Center of Excellence, DHA Research and Engineering Directorate, Walter Reed National Military Medical Center, Bethesda, MD 20889-5629, USA
- Kentucky College of Optometry, University of Pikeville, Pikeville, KY 41501, USA
| | - Weidong Gu
- Department of Defense/Veterans Affairs Vision Center of Excellence, DHA Research and Engineering Directorate, Walter Reed National Military Medical Center, Bethesda, MD 20889-5629, USA
| |
Collapse
|
5
|
Gunter C, Jiang CL, Zeimantz SO, Hegarty DM, Morgans CW, Largent-Milnes TM, Aicher SA. Activating transcription factor 3 (ATF3) and calcitonin gene-related peptide (CGRP) increase in trigeminal ganglion neurons in female rats after photorefractive keratectomy (PRK)-like corneal abrasion. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100165. [PMID: 39315304 PMCID: PMC11419808 DOI: 10.1016/j.ynpai.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Photorefractive keratectomy (PRK) is a type of eye surgery that involves removal of the corneal epithelium and its associated nerves, which causes intense acute pain in most people. We used a rat model of corneal epithelium removal (corneal abrasion) to examine underlying cellular and molecular mechanisms. In this study, we used immunohistochemistry of trigeminal ganglion (TG) to assess neuronal content of CGRP and ATF3, as well as orbital tightening (OT) to assess spontaneous pain behaviors. CGRP is an important neuropeptide in pain modulation and ATF3 is often used as a nerve injury marker. We found dynamic changes in CGRP and ATF3 in TG; both increased significantly at 24 h following corneal abrasion and females had a more pronounced increase at 24 h compared to males. Interestingly, there was no sex difference in OT behaviors. Additionally, the number of cells containing either CGRP or ATF3 in each animal correlate significantly with their OT behavior at the assessed timepoint. Since CGRP increased most in females, we tested the effectiveness of Olcegepant, a CGRP antagonist, at reducing OT behaviors following corneal abrasion in female rats. Olcegepant (1 mg/kg) was given prior to and again at 24 h after abrasion but did not change OT behaviors at any time over a 1-week period. Examination of CGRP and ATF3 together in TG showed that they rarely colocalized, indicating that the cells with upregulated CGRP are distinct from those responding to epithelial nerve injury. The studies also show that underlying molecular responses may be sex specific.
Collapse
Affiliation(s)
- Clem Gunter
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Cody L. Jiang
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Shae O. Zeimantz
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Deborah M. Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Catherine W. Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | | | - Sue A. Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Johansson J, Möller M, Markovic G, Borg K. Vision impairment is common in non-hospitalised patients with post-COVID-19 syndrome. Clin Exp Optom 2024; 107:324-331. [PMID: 37201931 DOI: 10.1080/08164622.2023.2213826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
CLINICAL RELEVANCE Vision-related problems can be part of longstanding sequelae after COVID-19 and hamper the return to work and daily activities. Knowledge about symptoms, visual, and oculomotor dysfunctions is however scarce, particularly for non-hospitalised patients. Clinically applicable tools are needed as support in the assessment and determination of intervention needs. BACKGROUND The purpose of this study was to evaluate vision-related symptoms, assess visual and oculomotor function, and to test the clinical assessment of saccadic eye movements and sensitivity to visual motion in non-hospitalised post-COVID-19 outpatients. The patients (n = 38) in this observational cohort study were recruited from a post-COVID-19 clinic and had been referred for neurocognitive assessment. METHODS Patients who reported vision-related symptoms reading problems and intolerance to movement in the environment were examined. A structured symptom assessment and a comprehensive vision examination were undertaken, and saccadic eye movements and visual motion sensitivity were assessed. RESULTS High symptom scores (26-60%) and prevalence of visual function impairments were observed. An increased symptom score when reading was associated with less efficient saccadic eye movement behaviour (p < 0.001) and binocular dysfunction (p = 0.029). Patients with severe symptoms in visually busy places scored significantly higher on the Visual Motion Sensitivity Clinical Test Protocol (p = 0.029). CONCLUSION Vision-related symptoms and impairments were prevalent in the study group. The Developmental Eye Movement Test and the Visual Motion Sensitivity Clinical Test Protocol showed promise for clinical assessment of saccadic performance and sensitivity to movement in the environment. Further study will be required to explore the utility of these tools.
Collapse
Affiliation(s)
- Jan Johansson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marika Möller
- Division of Rehabilitation Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gabriela Markovic
- Division of Rehabilitation Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Borg
- Division of Rehabilitation Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Tashiro A, Bereiter DA, Ohta H, Kawauchi S, Sato S, Morimoto Y. Trigeminal Sensitization in a Closed Head Model for Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:985-999. [PMID: 38115600 PMCID: PMC11059778 DOI: 10.1089/neu.2023.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is often accompanied by neurological and ocular symptoms that involve trigeminal nerve pathways. Laser-induced shock wave (LISW) was applied to the skull of male rats as a model for mTBI, while behavioral and neural recording methods were used to assess trigeminal function. The LISW caused greater eye wiping behavior to ocular instillation of hypertonic saline (Sham = 4.83 ± 0.65 wipes/5 min, LISW = 12.71 ± 1.89 wipes/5 min, p < 0.01) and a marked reduction in the time spent in bright light consistent with enhanced periocular and intraocular hypersensitivity, respectively (Sham = 16.3 ± 5.6 s, LISW = 115.5 ± 27.3 s, p < 0.01). To address the early neural mechanisms of mTBI, single trigeminal brainstem neurons, identified by activation to corneal or dural mechanical stimulation, were recorded in trigeminal subnucleus interpolaris/caudalis (Vi/Vc) and trigeminal subnucleus caudalis/upper cervical cord (Vc/C1) regions. The LISW caused marked sensitization to hypertonic saline and to exposure to bright light in neurons of both regions (p < 0.05). Laser speckle imaging revealed an increase in meningeal arterial blood flow to bright light after LISW (Sham = 4.7 ± 2.0 s, LISW = 469.0 ± 37.9 s, p < 0.001). Local inhibition of synaptic activity at Vi/Vc, but not at Vc/C1, by microinjection of CoCl2, prevented light-evoked increases in meningeal blood flow in LISW-treated rats. By contrast, topical meningeal application of phenylephrine significantly reduced light-evoked responses of Vi/Vc and Vc/C1 neurons. These data suggested that neurons in both regions became sensitized after LISW and were responsive to changes in meningeal blood flow. Neurons at the Vi/Vc transition and at Vc/C1, however, likely serve different roles in mediating the neurovascular and sensory aspects of mTBI.
Collapse
Affiliation(s)
- Akimasa Tashiro
- Department of Physiology, National Defense Medical College, Saitama, Japan
| | - David A. Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| | - Hiroyuki Ohta
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
8
|
Reyes N, Huang JJ, Choudhury A, Pondelis N, Locatelli EVT, Hollinger R, Felix ER, Pattany PM, Galor A, Moulton EA. FL-41 Tint Reduces Activation of Neural Pathways of Photophobia in Patients with Chronic Ocular Pain. Am J Ophthalmol 2024; 259:172-184. [PMID: 38101593 PMCID: PMC10939838 DOI: 10.1016/j.ajo.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE To assess the therapeutic effect of tinted lenses (FL-41) on photophobia and light-evoked brain activity using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular surface pain. DESIGN Prospective case series. METHODS 25 subjects from the Miami veterans affairs (VA) eye clinic were recruited based on the presence of chronic ocular pain, dry eye symptoms, and photophobia. Using a 3T MRI scanner, subjects underwent 2 fMRI scans using an event-related design based on light stimuli: one scan while wearing FL-41 lenses and one without. Unpleasantness ratings evoked by the light stimuli were collected after each scan. RESULTS With FL-41 lenses, subjects reported decreased (n = 19), maintained (n = 2), or increased (n = 4) light-evoked unpleasantness ratings. Group analysis at baseline (no lens) revealed significant light evoked responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral insula, bilateral frontal pole, visual, precuneus, paracingulate, and anterior cingulate cortices (ACC) as well as cerebellar vermis, bilateral cerebellar hemispheric lobule VI, and bilateral cerebellar crus I and II. With FL-41 lenses, light-evoked responses were significantly decreased in bilateral S1, bilateral S2, bilateral insular, right temporal pole, precuneus, ACC, and paracingulate cortices as well as bilateral cerebellar hemispheric lobule VI. CONCLUSION FL-41 lenses modulated photophobia symptoms in some individuals with chronic ocular pain. In conjunction, FL-41 lenses decreased activation in cortical areas involved in processing affective and sensory-discriminative dimensions of pain. Further research into these relationships will advance the ability to provide precision therapy for individuals with ocular pain.
Collapse
Affiliation(s)
- Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Jaxon J Huang
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Anjalee Choudhury
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Nicholas Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia (N.P., E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Massachusetts, USA
| | - Elyana V T Locatelli
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Ruby Hollinger
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA
| | - Elizabeth R Felix
- Research Service, Miami Veterans Administration Medical Center (E.R.F.), Miami, Florida, USA; Physical Medicine and Rehabilitation (E.R.F.), University of Miami, Miami, Florida, USA
| | - Pradip M Pattany
- Department of Radiology (P.M.P.), University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center (N.R., J.J.H., A.C., E.V.T.L., R.H., A.G.), Miami, Florida, USA; Bascom Palmer Eye Institute, University of Miami (N.R., J.J.H., A.C., E.V.T.L., A.G.), Miami, Florida, USA
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia (N.P., E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Massachusetts, USA; Department of Ophthalmology (E.A.M.), Boston Children's Hospital, Harvard Medical School, Massachusetts, USA.
| |
Collapse
|
9
|
Jotie JM, Gustafson JA, Fonda JR, Fortier CB, Milberg WP, Fortenbaugh FC. Association of mild traumatic brain injury, post-traumatic stress disorder, and other comorbidities on photosensitivity. Optom Vis Sci 2024; 101:90-98. [PMID: 38408306 DOI: 10.1097/opx.0000000000002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SIGNIFICANCE Photosensitivity is common after mild traumatic brain injury. However, this study demonstrates that photosensitivity is also impacted by common comorbidities that often occur with mild traumatic brain injury. Understanding how physical and psychological traumas impact photosensitivity can help improve provider care to trauma survivors and guide novel therapeutic interventions. PURPOSE This study aimed to characterize the association between mild traumatic brain injury and common comorbidities on photosensitivity in post-9/11 veterans. METHODS Existing data from the Translational Research Center for TBI and Stress Disorders cohort study were analyzed including traumatic brain injury history and post-traumatic stress disorder clinical diagnostic interviews; sleep quality, anxiety, and depression symptoms self-report questionnaires; and photosensitivity severity self-report from the Neurobehavioral Symptom Inventory. Analysis of covariance and multiple ordinal regression models were used to assess associations between mild traumatic brain injury and common comorbidities with photosensitivity severity. RESULTS Six hundred forty-one post-9/11 veterans were included in this study. An initial analysis showed that both mild traumatic brain injury and current post-traumatic stress disorder diagnosis were independently associated with higher photosensitivity ratings compared with veterans without either condition, with no interaction observed between these two conditions. Results of the ordinal regression models demonstrated positive associations between degree of photosensitivity and the number of mild traumatic brain injuries during military service and current post-traumatic stress disorder symptom severity, particularly hyperarousal symptoms, even when controlling for other factors. In addition, the degree of sleep disturbances and current anxiety symptoms were both positively associated with photosensitivity ratings, whereas depression symptoms, age, and sex were not. CONCLUSIONS Repetitive mild traumatic brain injury, post-traumatic stress disorder, anxiety, and sleep disturbances were all found to significantly impact photosensitivity severity and are therefore important clinical factors that eye care providers should consider when managing veterans with a history of deployment-related trauma reporting photosensitivity symptoms.
Collapse
|
10
|
Bell CA, Grossman SN, Balcer LJ, Galetta SL. Vision as a piece of the head trauma puzzle. Eye (Lond) 2023; 37:2385-2390. [PMID: 36801966 PMCID: PMC10397310 DOI: 10.1038/s41433-023-02437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Approximately half of the brain's circuits are involved in vision and control of eye movements. Therefore, visual dysfunction is a common symptom of concussion, the mildest form of traumatic brain injury (TBI). Photosensitivity, vergence dysfunction, saccadic abnormalities, and distortions in visual perception have been reported as vision-related symptoms following concussion. Impaired visual function has also been reported in populations with a lifetime history of TBI. Consequently, vision-based tools have been developed to detect and diagnose concussion in the acute setting, and characterize visual and cognitive function in those with a lifetime history of TBI. Rapid automatized naming (RAN) tasks have provided widely accessible and quantitative measures of visual-cognitive function. Laboratory-based eye tracking approaches demonstrate promise in measuring visual function and validating results from RAN tasks in patients with concussion. Optical coherence tomography (OCT) has detected neurodegeneration in patients with Alzheimer's disease and multiple sclerosis and may provide critical insight into chronic conditions related to TBI, such as traumatic encephalopathy syndrome. Here, we review the literature and discuss the future directions of vision-based assessments of concussion and conditions related to TBI.
Collapse
Affiliation(s)
- Carter A Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Scott N Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura J Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Steven L Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Reyes N, Huang JJ, Choudhury A, Pondelis N, Locatelli EV, Felix ER, Pattany PM, Galor A, Moulton EA. Botulinum toxin A decreases neural activity in pain-related brain regions in individuals with chronic ocular pain and photophobia. Front Neurosci 2023; 17:1202341. [PMID: 37404468 PMCID: PMC10315909 DOI: 10.3389/fnins.2023.1202341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction To examine the effect of botulinum toxin A (BoNT-A) on neural mechanisms underlying pain and photophobia using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular pain. Methods Twelve subjects with chronic ocular pain and light sensitivity were recruited from the Miami Veterans Affairs eye clinic. Inclusion criteria were: (1) chronic ocular pain; (2) presence of ocular pain over 1 week recall; and (3) presence of photophobia. All individuals underwent an ocular surface examination to capture tear parameters before and 4-6 weeks after BoNT-A injections. Using an event-related fMRI design, subjects were presented with light stimuli during two fMRI scans, once before and 4-6 weeks after BoNT-A injection. Light evoked unpleasantness ratings were reported by subjects after each scan. Whole brain blood oxygen level dependent (BOLD) responses to light stimuli were analyzed. Results At baseline, all subjects reported unpleasantness with light stimulation (average: 70.8 ± 32.0). Four to six weeks after BoNT-A injection, unpleasantness scores decreased (48.1 ± 33.6), but the change was not significant. On an individual level, 50% of subjects had decreased unpleasantness ratings in response to light stimulation compared to baseline ("responders," n = 6), while 50% had equivalent (n = 3) or increased (n = 3) unpleasantness ("non-responders"). At baseline, several differences were noted between responders and non-responders; responders had higher baseline unpleasantness ratings to light, higher symptoms of depression, and more frequent use of antidepressants and anxiolytics, compared to non-responders. Group analysis at baseline displayed light-evoked BOLD responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral anterior insula, paracingulate gyrus, midcingulate cortex (MCC), bilateral frontal pole, bilateral cerebellar hemispheric lobule VI, vermis, bilateral cerebellar crus I and II, and visual cortices. BoNT-A injections significantly decreased light evoked BOLD responses in bilateral S1, S2 cortices, cerebellar hemispheric lobule VI, cerebellar crus I, and left cerebellar crus II. BoNT-A responders displayed activation of the spinal trigeminal nucleus at baseline where non-responders did not. Discussion BoNT-A injections modulate light-evoked activation of pain-related brain systems and photophobia symptoms in some individuals with chronic ocular pain. These effects are associated with decreased activation in areas responsible for processing the sensory-discriminative, affective, dimensions, and motor responses to pain.
Collapse
Affiliation(s)
- Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Jaxon J. Huang
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Anjalee Choudhury
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Nicholas Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elyana V. Locatelli
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Elizabeth R. Felix
- Research Service, Miami Veterans Administration Medical Center, Miami, FL, United States
- Physical Medicine and Rehabilitation, University of Miami, Miami, FL, United States
| | - Pradip M. Pattany
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Eric A. Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Abstract
Traumatic brain injury disrupts the complex anatomy of the afferent and efferent visual pathways. Injury to the afferent pathway can result in vision loss, visual field deficits, and photophobia. Injury to the efferent pathway primarily causes eye movement abnormalities resulting in ocular misalignment and double vision. Injury to both the afferent and efferent systems can result in significant visual disability.
Collapse
Affiliation(s)
- Mary D Maher
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mohit Agarwal
- Division of Neuroradiology, Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Madhura A Tamhankar
- Division of Neuro-Ophthalmology, Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Suyash Mohan
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Fan M, Kim SA, Choi YJ, Tang Y, Yang HP, Kim EK. Anthocyanin oligomer (grape skin extract) administration improves dry eye disease: A randomised, double-blind, placebo-controlled study. Clin Exp Ophthalmol 2023; 51:122-130. [PMID: 36703096 DOI: 10.1111/ceo.14207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dry eye disease is a chronic, progressive ocular disease characterised by ocular discomfort and is one of the most common ophthalmological disorders that affects people's lives. METHODS This study investigated the clinical efficacy of anthocyanin oligomers (grape skin extract) for the treatment of dry eye. One hundred and eight patients with dry eye were randomly divided into placebo and treatment groups, each with 54 cases. The placebo group received maltodextrin (800 mg/day) and the treatment group received anthocyanin oligomers (800 mg/day). Clinical efficacy, clinical indices, and occurrence of adverse reactions were compared between the two groups. RESULTS Anthocyanin oligomers were safe and effective in mild-to-moderate dry eye disease, improving the tear break-up time, intraocular pressure, ocular surface disease, and patient symptomatology. CONCLUSIONS The use of oral anthocyanin oligomers in the treatment of dry eye patients can enhance the therapeutic effect and improve the quality of life of patients while ensuring the safety of treatment, making this therapeutic option suitable for wider application.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju, Republic of Korea
| | - Su Ah Kim
- Department of Ophthalmology, SahmYook Medical Center, Seoul, Republic of Korea
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, Republic of Korea.,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus program, Dong-A University, Busan, Republic of Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Yujiao Tang
- Changchun University of Science and Technology, Changchun, China
| | - Hyun Pil Yang
- Technical R&D Center, Kitto Life Co., LTD, Pyeongtaek, Republic of Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan, Republic of Korea.,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus program, Dong-A University, Busan, Republic of Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea.,Center for Food & Bio Innovation, Dong-A University, Busan, South Korea
| |
Collapse
|
14
|
Choudhury A, Reyes N, Galor A, Mehra D, Felix E, Moulton EA. Clinical Neuroimaging of Photophobia in Individuals With Chronic Ocular Surface Pain. Am J Ophthalmol 2023; 246:20-30. [PMID: 36223850 PMCID: PMC10964268 DOI: 10.1016/j.ajo.2022.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To examine neural mechanisms underlying photophobia in individuals with chronic ocular surface pain by using functional magnetic resonance imaging (fMRI). DESIGN Cross-sectional case/control analysis. METHODS A total of 16 individuals from the Miami Veterans Affairs eye clinic underwent comprehensive ocular surface evaluations and were surveyed for ocular surface symptoms. Case patients included patients who reported chronic ocular surface pain symptoms and light sensitivity at least most of the time over 1 week. Controls included persons without chronic ocular surface pain who reported no or minimal light sensitivity. All patients viewed light stimuli during 2 fMRI scans, one before and one after topical anesthetic instillation, and rated their level of pain intensity to the stimulus at the end of each scan. Areas of brain activation in response to light stimuli presentation were correlated with pain responses and examined post- vs pre-anesthesia. RESULTS Case patients (n = 8) reported higher pain intensity ratings than controls (n = 8) in response to light stimuli during fMRI. Case patient ratings correlated more with light-evoked activation in pain-related areas within the trigeminal brainstem, primary somatosensory cortex (S1), anterior mid-cingulate cortex (aMCC), and insula than in controls. Topical anesthesia led to varying responses in pain ratings among case patients as well as decreased light-evoked activation in S1 and aMCC. CONCLUSIONS The trigeminal nociceptive system may contribute to photophobia in individuals with chronic ocular surface pain. We demonstrate modulation of cortical structures in this pathway with topically applied anesthetic to the eyes. Further understanding of modulatory interactions that govern ocular surface pain and photophobia is critical for developing effective, precision-based therapies.
Collapse
Affiliation(s)
- Anjalee Choudhury
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Nicholas Reyes
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Divy Mehra
- Surgical Services (A.C., N.R., A.G., D.M.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Bascom Palmer Eye Institute (A.C., N.R., A.G., D.M.), University of Miami, Miami, Florida, USA
| | - Elizabeth Felix
- Research Service (E.F.), Miami Veterans Administration Medical Center, Miami, Florida, USA; Physical Medicine and Rehabilitation (E.F.), University of Miami, Miami, Florida, USA
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab (E.A.M.), Pain and Affective Neuroscience Center, Department of Anesthesia (E.A.M.), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Ophthalmology (E.A.M.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Dong B, Ji S, Li Y, Li H, Yang R, Yang N, Liu Z, Zhu C, Wang H, Tang Y, Peng A, Chen L. Connection between right-to-left shunt and photosensitivity: a community-based cross-sectional study. Front Neurol 2023; 14:1177879. [PMID: 37181560 PMCID: PMC10172477 DOI: 10.3389/fneur.2023.1177879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Background Hypersensitivity to light is a common symptom associated with dysfunction of the occipital region. Earlier studies also suggested that clinically significant right-to-left shunt (RLS) could increase occipital cortical excitability associated with the occurrence of migraine. The aim of this study was to investigate the relationship between RLS and photosensitivity. Methods This cross-sectional observational study included the residents aged 18-55 years living in the Mianzhu community between November 2021 and October 2022. Photosensitivity was evaluated using the Photosensitivity Assessment Questionnaire along with baseline clinical data through face-to-face interviews. After the interviews, contrast-transthoracic echocardiography (cTTE) was performed to detect RLS. Inverse probability weighting (IPW) was used to reduce selection bias. Photosensitivity score was compared between individuals with and without significant RLS using multivariable linear regression based on IPW. Results A total of 829 participants containing 759 healthy controls and 70 migraineurs were finally included in the analysis. Multivariable linear regression analysis showed that migraine (β = 0.422; 95% CI: 0.086-0.759; p = 0.014) and clinically significant RLS (β = 1.115; 95% CI: 0.760-1.470; p < 0.001) were related to higher photosensitivity score. Subgroup analysis revealed that clinically significant RLS had a positive effect on hypersensitivity to light in the healthy population (β = 0.763; 95% CI: 0.332-1.195; p < 0.001) or migraineurs (β = 1.459; 95% CI: 0.271-2.647; p = 0.010). There was also a significant interaction between RLS and migraine for the association with photophobia (pinteraction = 0.009). Conclusion RLS is associated with photosensitivity independently and might exacerbate photophobia in migraineurs. Future studies with RLS closure are needed to validate the findings. Trial registration This study was registered at the Chinese Clinical Trial Register, Natural Population Cohort Study of West China Hospital of Sichuan University, ID: ChiCTR1900024623, URL: https://www.chictr.org.cn/showproj.html?proj=40590.
Collapse
Affiliation(s)
- Bosi Dong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuming Ji
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yajiao Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Na Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxing Zhu
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yusha Tang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Anjiao Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Chen
| |
Collapse
|
16
|
Robertson CE, Benarroch EE. The anatomy of head pain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:41-60. [PMID: 38043970 DOI: 10.1016/b978-0-12-823356-6.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pain-sensitive structures in the head and neck, including the scalp, periosteum, meninges, and blood vessels, are innervated predominantly by the trigeminal and upper cervical nerves. The trigeminal nerve supplies most of the sensation to the head and face, with the ophthalmic division (V1) providing innervation to much of the supratentorial dura mater and vessels. This creates referral patterns for pain that may be misleading to clinicians and patients, as described by studies involving awake craniotomies and stimulation with electrical and mechanical stimuli. Most brain parenchyma and supratentorial vessels refer pain to the ipsilateral V1 territory, and less commonly the V2 or V3 region. The upper cervical nerves provide innervation to the posterior scalp, while the periauricular region and posterior fossa are territories with shared innervation. Afferent fibers that innervate the head and neck send nociceptive input to the trigeminocervical complex, which then projects to additional pain processing areas in the brainstem, thalamus, hypothalamus, and cortex. This chapter discusses the pain-sensitive structures in the head and neck, including pain referral patterns for many of these structures. It also provides an overview of peripheral and central nervous system structures responsible for transmitting and interpreting these nociceptive signals.
Collapse
Affiliation(s)
- Carrie E Robertson
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
17
|
Patel S, Mittal R, Sarantopoulos KD, Galor A. Neuropathic ocular surface pain: Emerging drug targets and therapeutic implications. Expert Opin Ther Targets 2022; 26:681-695. [PMID: 36069761 PMCID: PMC9613591 DOI: 10.1080/14728222.2022.2122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dysfunction at various levels of the somatosensory system can lead to ocular surface pain with a neuropathic component. Compared to nociceptive pain (due to noxious stimuli at the ocular surface), neuropathic pain tends to be chronic and refractory to therapies, making it an important source of morbidity in the population. An understanding of the options available for neuropathic ocular surface pain, including new and emerging therapies, is thus an important topic. AREAS COVERED This review will examine studies focusing on ocular surface pain, emphasizing those examining patients with a neuropathic component. Attention will be placed toward recent (after 2017) studies that have examined new and emerging therapies for neuropathic ocular surface pain. EXPERT OPINION Several therapies have been studied thus far, and continued research is needed to identify which individuals would benefit from specific therapies. Gaps in our understanding exist, especially with availability of in-clinic diagnostics for neuropathic pain. A focus on improving diagnostic capabilities and researching gene-modulating therapies could help us to provide more specific mechanism-based therapies for patients. In the meantime, continuing to uncover new modalities and examining which are likely to work depending on pain phenotype remains an important short-term goal.
Collapse
Affiliation(s)
- Sneh Patel
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rhiya Mittal
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anat Galor
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Surgical services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
18
|
Changes of Subjective Symptoms and Tear Film Biomarkers following Femto-LASIK. Int J Mol Sci 2022; 23:ijms23147512. [PMID: 35886858 PMCID: PMC9320097 DOI: 10.3390/ijms23147512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Femtosecond laser-assisted in situ keratomileusis (Femto-LASIK) represents a common treatment modality in refractive surgery and shows excellent results in terms of safety, efficacy, predictability, and long-term stability. However, patients may be affected by dry eye symptoms. The aim of this study was to identify a potential association between subjective dry eye symptoms, objective dry eye markers, and possible changes in the tear film, which could be a target for future therapy development. Therefore, clinical (dry eye) examinations (OSDI, Schirmer test, lissamine green and fluorescein staining, BUT, visual acuity) were carried out before LASIK as well as 5 and 90 days post-OP. The dry eye marker MMP-9, cytokines (IL-1β, IL-8), and pain markers (NGF, CGRP) were quantified in tear samples with immunoassays. In addition, correlation analyses were performed. Clinical examinations revealed an upregulated OSDI score 5 days post-OP and an increased lissamine green staining score 90 days post-OP. Downregulated CGRP levels were noted 5 days post-OP, while other protein markers were not significantly altered after Femto-LASIK. Hence, Femto-LASIK surgery induced subjective symptoms like that of dry eye which could objectively rather be classified as Femto-LASIK-related discomfort. In the future, this could possibly be better detected and treated using pain markers such as CGRP.
Collapse
|
19
|
Bansal S, Green K. Application of colored filters in patients post-traumatic brain injury: A review. NeuroRehabilitation 2022; 50:321-330. [DOI: 10.3233/nre-228015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Tinted lenses have been used to manage visual discomfort and photosensitivity in patients with migraines, benign essential blepharospasm (BEB) and epilepsy. OBJECTIVES: The purpose of this review is to examine the existing clinical research regarding the use of colored filters among patients recovering from traumatic brain injuries. METHODS: A review of English articles from PubMed, Embase from embase.com, Web of Science, APA PsycINFO (OVID), Scopus, and Cochrane Central Register of Controlled Trials with publication years from date of inception to June 10, 2021 was performed. Articles were first screened by title and abstract, followed by full-text review. The search strategy resulted in 7819 results. The final analysis included seven articles which discussed the use of tinted lenses in patients post-traumatic brain injury. RESULTS: While there is a paucity of information related to the therapeutic use of tinted lenses to mitigate post-traumatic light sensitivity and migraines, patients will subjectively report improved symptoms, specifically with precision tints or FL-41. CONCLUSION: Further studies are needed to understand the mechanism of action as well as objective and subjective benefits of tinted lenses in patient post-traumatic brain injury.
Collapse
Affiliation(s)
- Surbhi Bansal
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Katherine Green
- Nova Southeastern College of Optometry, Fort Lauderdale, FL, USA
| |
Collapse
|
20
|
Theis J. Differential diagnosis and theories of pathophysiology of post-traumatic photophobia: A review. NeuroRehabilitation 2022; 50:309-319. [DOI: 10.3233/nre-228014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Photophobia is a common sensory symptom after traumatic brain injury (TBI) that may have a grave impact on a patient’s functional independence, neurorehabilitation, and activities of daily living. Post-TBI photophobia can be difficult to treat and the majority of patients can suffer chronically up to and beyond one year after their injury. OBJECTIVES: This review evaluates the current theories of the pathophysiology of photophobia and the most-common co-morbid etiologies of light sensitivity in TBI to help guide the differential diagnosis and individualized management of post-TBI photophobia. METHODS: Primary articles were found via PubMed and Google Scholar search of key terms including “photophobia” “light sensitivity” “photosensitivity” “photo-oculodynia” “intrinsically photosensitive retinal ganglion cells” “ipRGC” and “concussion” “brain injury” “dry eye”. Due to paucity of literature papers were reviewed from 1900 to present in English. RESULTS: Recent advances in understanding the pathophysiology of photophobia in dry eye and migraine and their connection to intrinsically photosensitive retinal ganglion cells (ipRGC) have revealed complex and multifaceted trigeminovascular and trigeminoautonomic pathways underlying photophobia. Patients who suffer a TBI often have co-morbidities like dry eye and migraine that may influence the patient’s photophobia. CONCLUSION: Post-traumatic photophobia is a complex multi-disciplinary complaint that can severely impact a patient’s quality of life. Exploration of underlying etiology may allow for improved treatment and symptomatic relief for these patients beyond tinted lenses alone.
Collapse
Affiliation(s)
- Jacqueline Theis
- Concussion Care Centre of Virginia, Richmond, VA, USA
- Virginia Neuro-Optometry, Richmond, VA, USA Tel.: +1 804 387 2902; Fax: +1 804 509 0543; E-mail:
| |
Collapse
|
21
|
Abstract
BACKGROUND: Post-traumatic headache is the most common sequela of brain injury and can last months or years after the damaging event. Many headache types are associated with visual concerns also known to stem from concussion. OBJECTIVES: To describe the various headache types seen after head injury and demonstrate how they impact or are impacted by the visual system. METHODS: We will mirror the International Classification of Headache Disorders (ICHD) format to demonstrate the variety of headaches following brain injury and relate correlates to the visual pathways. The PubMed database was searched using terms such as headache, head pain, vision, concussion, traumatic brain injury, glare, visuomotor pathways. RESULTS: Every type of headache described in the International Classification of Headache Disorders Edition III can be initiated or worsened after head trauma. Furthermore, there is very often a direct or indirect impact upon the visual system for each of these headaches. CONCLUSION: Headaches of every described type in the ICHD can be caused by brain injury and all are related in some way to the afferent, efferent or association areas of the visual system.
Collapse
Affiliation(s)
- Patrick T. Quaid
- Head of Optometry, VUE Cubed Vision Therapy Clinics, ON, Canada
- College of Optometrists of Ontario (Regulatory Body), ON, Canada
| | - Eric L. Singman
- Ophthalmology & Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Abstract
BACKGROUND Although patients with abnormal light sensitivity may present to an ophthalmologist or optometrist for the evaluation of photophobia, there are no previous reviews of the most common causes of this symptom. METHODS We conducted a retrospective chart review of patients who presented to our eye center between 2001 and 2009 primarily for the evaluation of photophobia. We recorded demographics, ocular examination findings, and diagnoses of these patients. RESULTS Our population included 58 women and 53 men. The mean age at presentation to the clinic was 37 years (range 6 months-94 years). The most frequent cause of photophobia was migraine headache (53.7%), followed by dry eye syndrome (36.1), ocular trauma (8.2%), progressive supranuclear palsy (6.8%), and traumatic brain injury (4.1%). A significant proportion of patients (25.9%) left the clinic without a cause for their photophobia documented by the examining physician (11.7% of adults and 69.4% of children). CONCLUSIONS Photophobia affects patients of all ages, and many patients are left without a specific diagnosis, indicating a significant knowledge gap among ophthalmologists and optometrists evaluating these patients.
Collapse
|
23
|
Wang Y, Wang S, Qiu T, Xiao Z. Photophobia in headache disorders: characteristics and potential mechanisms. J Neurol 2022; 269:4055-4067. [PMID: 35322292 DOI: 10.1007/s00415-022-11080-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/23/2023]
Abstract
Photophobia is present in multiple types of headache disorders. The coexistence of photophobia and headache suggested the potential reciprocal interactions between visual and pain pathways. In this review, we summarized the photophobic characteristics in different types of headache disorders in the context of the three diagnostic categories of headache disorders: (1) primary headaches: migraine, tension-type headache, and trigeminal autonomic cephalalgias; (2) secondary headaches: headaches attributed to traumatic brain injury, meningitis, non-traumatic subarachnoid hemorrhage and disorder of the eyes; (3) painful cranial neuropathies: trigeminal neuralgia and painful optic neuritis. We then discussed potential mechanisms for the coexistence of photophobia and headache. In conclusion, the characteristics of photophobia are different among these headache disorders. The coexistence of photophobia and headache is associated with the interactions between visual and pain pathway at retina, midbrain, thalamus, hypothalamus and visual cortex. The communication between these pathways may depend on calcitonin gene-related peptide and pituitary cyclase-activating polypeptide transmission. Moreover, cortical spreading depression, an upstream trigger of headache, also plays an important role in photophobia by increased nociceptive input to the thalamus.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shaoyang Wang
- Department of Emergency, Rizhao People's Hospital, Rizhao, 276800, Shandong, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
24
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|
25
|
Patel S, Mittal R, Felix ER, Sarantopoulos KD, Levitt RC, Galor A. Differential Effects of Treatment Strategies in Individuals With Chronic Ocular Surface Pain With a Neuropathic Component. Front Pharmacol 2021; 12:788524. [PMID: 35002721 PMCID: PMC8733738 DOI: 10.3389/fphar.2021.788524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Dysfunction at the ocular system via nociceptive or neuropathic mechanisms can lead to chronic ocular pain. While many studies have reported on responses to treatment for nociceptive pain, fewer have focused on neuropathic ocular pain. This retrospective study assessed clinical responses to pain treatment modalities in individuals with neuropathic component ocular surface pain. Methods: 101 individuals seen at the University of Miami Oculofacial Pain Clinic from January 2015 to August 2021 with ≥3 months of clinically diagnosed neuropathic pain were included. Patients were subcategorized (postsurgical, post-traumatic, migraine-like, and laterality) and self-reported treatment outcomes were assessed (no change, mild, moderate, or marked improvement). One-way ANOVA (analysis of variance) was used to examine relationships between follow up time and number of treatments attempted with pain improvement, and multivariable logistic regression was used to assess which modalities led to pain improvement. Results: The mean age was 55 years, and most patients were female (64.4%) and non-Hispanic (68.3%). Migraine-like pain (40.6%) was most common, followed by postsurgical (26.7%), post-traumatic (16.8%) and unilateral pain (15.8%). The most common oral therapies were α2δ ligands (48.5%), the m common topical therapies were autologous serum tears (20.8%) and topical corticosteroids (19.8%), and the most common adjuvant was periocular nerve block (24.8%). Oral therapies reduced pain in post-traumatic (81.2%), migraine-like (73%), and unilateral (72.7%) patients, but only in a minority of postsurgical (38.5%) patients. Similarly, topicals improved pain in post-traumatic (66.7%), migraine-like (78.6%), and unilateral (70%) compared to postsurgical (43.7%) patients. Non-oral/topical adjuvants reduced pain in postsurgical (54.5%), post-traumatic (71.4%), and migraine-like patients (73.3%) only. Multivariable analyses indicated migraine-like pain improved with concomitant oral α2δ ligands and adjuvant therapies, while postsurgical pain improved with topical anti-inflammatories. Those with no improvement in pain had a shorter mean follow-up (266.25 ± 262.56 days) than those with mild (396.65 ± 283.44), moderate (652 ± 413.92), or marked improvement (837.93 ± 709.35) (p < 0.005). Identical patterns were noted for number of attempted medications. Conclusion: Patients with migraine-like pain frequently experienced pain improvement, while postsurgical patients had the lowest response rates. Patients with a longer follow-up and who tried more therapies experienced more significant relief, suggesting multiple trials were necessary for pain reduction.
Collapse
Affiliation(s)
- Sneh Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Rhiya Mittal
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Elizabeth R. Felix
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roy C. Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States
- John T. MacDonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, United States
| |
Collapse
|
26
|
van der Valk Bouman ES, Pump H, Borsook D, Severinsky B, Wisse RPL, Saeed HN, Moulton EA. Pain mechanisms and management in corneal cross-linking: a review. BMJ Open Ophthalmol 2021; 6:e000878. [PMID: 34901466 PMCID: PMC8633999 DOI: 10.1136/bmjophth-2021-000878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Though corneal collagen cross-linking (CXL) is an increasingly available and effective treatment for keratoconus, few reports have considered its impact on pain-related physiology in depth. This comprehensive narrative review summarises mechanisms underlying pain in CXL and clinical care possibilities, with the goal of future improvement in management of CXL-related pain. Postoperative pain associated with CXL is largely due to primary afferent nerve injury and, to a smaller extent, inflammation. Chronification of pain after CXL has not been reported, even as long-term nerve damage without regeneration following standard CXL treatment is frequently observed. The lack of pain chronification may be due to the minimally invasive nature of the procedure, with its rapidly recovering superficial corneal wound, and to the positive anti-inflammatory changes of the tear film that have been described after CXL. Different CXL approaches have been developed, with the transepithelial epithelial-on technique (epi-on) associated with less postsurgical pain than the gold standard, epithelial-off technique (epi-off). After the first few days, however, the difference in pain scores and need for analgesics between epi-on and epi-off disappear. Patients experience relatively high-intensity pain the first few days post-CXL, and many strategies for acute pain control following CXL have been studied. Currently, no method of pain management is considered superior or universally accepted. Acute pain following CXL is a recognised and clinically significant side effect, but few CXL studies have systematically investigated postoperative pain and its management. This review aims to improve patient pain outcomes following this increasingly common procedure.
Collapse
Affiliation(s)
| | | | - David Borsook
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Childrens Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Boris Severinsky
- Department of Ophthalmology, Emory Eye Center, Atlanta, Georgia, USA
| | - Robert PL Wisse
- Department of Ophthalmology, Univerisity Medical Center, Utrecht, The Netherlands
| | - Hajirah N Saeed
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine; Department of Ophthalmology, Boston Childrens Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Merezhinskaya N, Mallia RK, Park D, Millian-Morell L, Barker FM. Photophobia Associated with Traumatic Brain Injury: A Systematic Review and Meta-analysis. Optom Vis Sci 2021; 98:891-900. [PMID: 34354013 DOI: 10.1097/opx.0000000000001757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE This study reports the prevalence and relative risk of photophobia in patients with traumatic brain injury (TBI). OBJECTIVES This study aimed to conduct a systematic review and meta-analysis to determine the prevalence and relative risk of photophobia in patients with TBI. DATA SOURCES Three databases were used for literature search: PubMed, EMBASE, and Cochrane Library. STUDY APPRAISAL AND SYNTHESIS METHODS Publications reporting the prevalence of photophobia after TBI in patients of any age were included. A series of meta-regression analyses based on a generalized linear mixed model was performed to identify potential sources of heterogeneity in the prevalence estimates. RESULTS Seventy-five eligible publications were identified. The prevalence of photophobia was 30.46% (95% confidence interval [CI], 20.05 to 40.88%) at 1 week after the injury. Prevalence decreased to 19.34% (95% CI, 10.40 to 28.27%) between 1 week and 1 month after TBI and to 13.51% (95% CI, 5.77 to 21.24%) between 1 and 3 months after the injury. The rapid decrease in the prevalence of photophobia in the first 3 months after a TBI injury was significant (P < .001). Three months post-TBI, the prevalence of photophobia leveled off to a near plateau with nonsignificant variability, increasing between 3 and 6 months (17.68%; 95% CI, 9.05 to 26.32%) and decreasing between 6 and 12 months since TBI (14.85%; 95% CI, 6.80 to 22.90%). Subgroup analysis of 14 publications that contained control data showed that the estimated risk ratio for photophobia was significantly higher in the TBI than in the control group during the entire 12 months after TBI. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS This study demonstrates that photophobia is a frequent complaint after TBI, which largely resolves for many individuals within 3 months after the injury. For some patients, however, photophobia can last up to 12 months and possibly longer. Developing an objective quantitative methodology for measuring photophobia, validating a dedicated photophobia questionnaire, and having a specific photophobia International Classification of Diseases, Tenth Revision code would greatly improve data gathering and analysis.
Collapse
Affiliation(s)
- Natalya Merezhinskaya
- Department of Defense/Veterans Affairs Vision Center of Excellence, Bethesda, Maryland
| | - Rita K Mallia
- Department of Defense/Veterans Affairs Vision Center of Excellence, Bethesda, Maryland
| | - DoHwan Park
- University of Maryland, Baltimore County, Maryland
| | | | | |
Collapse
|
28
|
Axonopathy precedes cell death in ocular damage mediated by blast exposure. Sci Rep 2021; 11:11774. [PMID: 34083587 PMCID: PMC8175471 DOI: 10.1038/s41598-021-90412-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways. Here, we report a refined analysis of retinal ganglion cell (RGC) damage in male C57BL/6J mice exposed to a blast-wave in an enclosed chamber. Ganglion cell layer thickness, RGC density (BRN3A and RBPMS immunoreactivity), cellular density of ganglion cell layer (hematoxylin and eosin staining), and axon numbers (paraphenylenediamine staining) were quantified at timepoints ranging from 1 to 17-weeks. RNA sequencing was performed at 1-week and 5-weeks post-injury. Earliest indices of damage, evident by 1-week post-injury, are a loss of RGC marker expression, damage to RGC axons, and increase in glial markers expression. Blast exposure caused a loss of RGC somas and axons—with greatest loss occurring by 5-weeks post-injury. While indices of glial involvement are prominent early, they quickly subside as RGCs are lost. The finding that axonopathy precedes soma loss resembles pathology observed in mouse models of glaucoma, suggesting similar mechanisms.
Collapse
|
29
|
Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles. Pain 2021; 162:1163-1175. [PMID: 33027220 DOI: 10.1097/j.pain.0000000000002103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.
Collapse
|
30
|
Mehra D, Mangwani-Mordani S, Acuna K, C Hwang J, R Felix E, Galor A. Long-Term Trigeminal Nerve Stimulation as a Treatment for Ocular Pain. Neuromodulation 2021; 24:1107-1114. [PMID: 33945660 DOI: 10.1111/ner.13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Ocular pain symptoms (e.g., hypersensitivity to light and wind, "burning" sensations) can be debilitating and difficult to treat. Neuromodulatory therapies targeting sensory trigeminal and central pain pathways may help treat chronic ocular pain refractory to traditional therapies. The current study evaluates the long-term effects of a trigeminal neurostimulator (TNS) on ocular pain. MATERIALS AND METHODS Retrospective review of 18 individuals at the Miami Veterans Affairs Eye Clinic with chronic, severe ocular pain who were prescribed and used TNS at home for ≥3 months. The primary outcome measures were 1) ocular symptom intensity over a 24-hour recall period (dryness, pain, light sensitivity, wind sensitivity, burning; rated on 0-10 scales) captured pre-TNS and at monthly follow-up intervals and 2) side effects. The frequency and duration of TNS was a secondary outcome measure. RESULTS The mean age of the population (n = 18) was 57.5 years (range, 34-85 years) with a male majority (67%). Two individuals discontinued use due to lack of efficacy and one due to confounding health issues. Initial mean weekly frequency of TNS use was 3.7 ± 1.9 sessions of 25.8 min at month 1 and 2.7 ± 2.3 sessions of 28.0 min at month 6. At six months, pain intensity (↓ 31.4%), light sensitivity (↓ 36.3%), wind sensitivity (↓ 32.6%), and burning sensation (↓ 53.9%) were all decreased compared to baseline (p < 0.01 for all); greater decreases in ocular pain were noted in individuals with migraine (n = 10) than those without migraine (n = 8). No significant change was noted in mean dryness scores. Fifteen subjects experienced sedation with TNS use, persisting throughout the follow-up visits. No other adverse effects were communicated by any subjects. CONCLUSION Our study suggests TNS is a safe, adjunctive treatment option in individuals with severe, chronic ocular pain. Individuals demonstrated gradual, continual improvement in pain symptoms over time within a multimodal approach.
Collapse
Affiliation(s)
- Divy Mehra
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | | | - Kelly Acuna
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA
| | - Jodi C Hwang
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elizabeth R Felix
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Physical Medicine and Rehabilitation, University of Miami, Miami, Florida, USA
| | - Anat Galor
- Surgical and Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, USA.,Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
31
|
Kim M, Lee Y, Mehra D, Sabater AL, Galor A. Dry eye: why artificial tears are not always the answer. BMJ Open Ophthalmol 2021; 6:e000697. [PMID: 33907713 PMCID: PMC8039249 DOI: 10.1136/bmjophth-2020-000697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease that manifests in patients with a variety of symptoms and signs such as ocular pain, visual issues, rapid tear evaporation and/or decreased tear production. It is a global health problem and is the leading cause of optometry and ophthalmology clinic visits. The mainstay therapy for DED is artificial tears (ATs), which mimics tears and improves tear stability and properties. ATs have been found to improve symptoms and signs of disease in all DED subtypes, including aqueous deficient DED and evaporative DED. However, given the heterogeneity of DED, it is not surprising that ATs are not effective in all patients. When AT fails to relieve symptoms and/or signs of DED, it is critical to identify the underlying contributors to disease and escalate therapy appropriately. This includes underlying systemic diseases, meibomian gland dysfunction, anatomical abnormalities and neuropathic dysfunction. Thus, this review will discuss the benefits and limitations of ATs and review conditions when escalation of therapy should be considered in DED.
Collapse
Affiliation(s)
- Minji Kim
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Yonghoon Lee
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Divy Mehra
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, Florida, USA
| | - Alfonso L Sabater
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
32
|
Baksh BS, Garcia JC, Galor A. Exploring the Link Between Dry Eye and Migraine: From Eye to Brain. Eye Brain 2021; 13:41-57. [PMID: 33692643 PMCID: PMC7939506 DOI: 10.2147/eb.s234073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Dry eye and migraine are common diseases with large societal and economic burdens that have recently been associated in the literature. This review outlines the link between dry eye and migraine, which may have implications for reducing their respective burdens. We highlight possible shared pathophysiology, including peripheral and central sensitization, as the potential link between dry eye and migraine. Finally, therapies targeting similar pathophysiological mechanisms between dry eye and migraine are discussed.
Collapse
Affiliation(s)
- Brandon S Baksh
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julia Costa Garcia
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Faculdade de Medicina (FMB) da Universidade do Estado de São Paulo (UNESP), Botucatu, Brazil
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|