1
|
Grupe K, Scherneck S. Mouse Models of Gestational Diabetes Mellitus and Its Subtypes: Recent Insights and Pitfalls. Int J Mol Sci 2023; 24:ijms24065982. [PMID: 36983056 PMCID: PMC10058162 DOI: 10.3390/ijms24065982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is currently the most common complication of pregnancy and is defined as a glucose intolerance disorder with recognition during pregnancy. GDM is considered a uniform group of patients in conventional guidelines. In recent years, evidence of the disease's heterogeneity has led to a growing understanding of the value of dividing patients into different subpopulations. Furthermore, in view of the increasing incidence of hyperglycemia outside pregnancy, it is likely that many cases diagnosed as GDM are in fact patients with undiagnosed pre-pregnancy impaired glucose tolerance (IGT). Experimental models contribute significantly to the understanding of the pathogenesis of GDM and numerous animal models have been described in the literature. The aim of this review is to provide an overview of the existing mouse models of GDM, in particular those that have been obtained by genetic manipulation. However, these commonly used models have certain limitations in the study of the pathogenesis of GDM and cannot fully describe the heterogeneous spectrum of this polygenic disease. The polygenic New Zealand obese (NZO) mouse is introduced as a recently emerged model of a subpopulation of GDM. Although this strain lacks conventional GDM, it exhibits prediabetes and an IGT both preconceptionally and during gestation. In addition, it should be emphasized that the choice of an appropriate control strain is of great importance in metabolic studies. The commonly used control strain C57BL/6N, which exhibits IGT during gestation, is discussed in this review as a potential model of GDM.
Collapse
Affiliation(s)
- Katharina Grupe
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Mendelssohnstraße 1, D-38106 Braunschweig, Germany
| |
Collapse
|
2
|
Gao X, He J, Zhu A, Xie K, Yan K, Jiang X, Xu Y, Li Q, Xu A, Ye D, Guo J. Modelling gestational diabetes mellitus: large animals hold great promise. Rev Endocr Metab Disord 2021; 22:407-420. [PMID: 33245468 DOI: 10.1007/s11154-020-09617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Gestational diabetes mellitus (GDM) characterized by hyperglycemia during pregnancy is a risk factor for various maternal and fetal complications. The key pathophysiological mechanisms underlying its development have not been elucidated, largely due to the lack of a model that accurately simulates the major clinical and pathological features of human GDM. In this review, we discuss the refined criteria for an ideal animal model of GDM, focusing on the key clinical and pathophysiological characteristics of human GDM. We provide a comprehensive overview of different models and currently used species for GDM research. In general, insulin insufficiency consequent to pancreatic β-cell death represents the current leading strategy to mimic human GDM-like hyperglycemia in animals. Nonetheless, these models have a limited capacity to mimic the natural history of GDM, the marked alteration in circulating estrogen/ progestogen, obesity and its related metabolic complications. We discuss emerging evidence of the increased susceptibility to GDM in rodents and large animals with genetic modifications in pregnancy-related hormones. An appraisal of current GDM models suggests that a combination strategy involving dietary stress, pregnancy-related hormones, insulin resistance and metabolic disorders might enable the development of better GDM models and expedite the translation of basic research findings to GDM treatment.
Collapse
Affiliation(s)
- Xiang Gao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Junsheng He
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Anming Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xue Jiang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qin Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Lab 406, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Room 403, 4th Floor, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
3
|
Alejandro EU, Mamerto TP, Chung G, Villavieja A, Gaus NL, Morgan E, Pineda-Cortel MRB. Gestational Diabetes Mellitus: A Harbinger of the Vicious Cycle of Diabetes. Int J Mol Sci 2020; 21:E5003. [PMID: 32679915 PMCID: PMC7404253 DOI: 10.3390/ijms21145003] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM), characterized by a transitory form of diabetes induced by insulin resistance and pancreatic β-cell dysfunction during pregnancy, has been identified as one of the major obstacles in achieving improved maternal and child health. Approximately 9-25% of pregnancies worldwide are impacted by the acute, long-term, and transgenerational health complications of this disease. Here, we discuss how GDM affects longstanding maternal and neonatal outcomes, as well as health risks that likely persist into future generations. In addition to the current challenges in the management and diagnosis of and the complications associated with GDM, we discuss current preclinical models of GDM to better understand the underlying pathophysiology of the disease and the timely need to increase our scientific toolbox to identify strategies to prevent and treat GDM, thereby advancing clinical care.
Collapse
Affiliation(s)
- Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Therriz P. Mamerto
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines; (T.P.M.); (A.V.)
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines;
| | - Grace Chung
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Adrian Villavieja
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines; (T.P.M.); (A.V.)
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines;
| | - Nawirah Lumna Gaus
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines;
| | - Elizabeth Morgan
- Baystate Medical Center, Baystate Health, Springfield, MA 01199, USA;
| | - Maria Ruth B. Pineda-Cortel
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines; (T.P.M.); (A.V.)
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines;
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines
| |
Collapse
|
4
|
Zhu H, Yu L, He Y, Wang B. Nonhuman primate models of type 1 diabetes mellitus for islet transplantation. J Diabetes Res 2014; 2014:785948. [PMID: 25389531 PMCID: PMC4217338 DOI: 10.1155/2014/785948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
Islet transplantation is an attractive treatment of type 1 diabetes mellitus (T1DM). Animal models of diabetes mellitus (DM) contribute a lot to the experimental studies of islet transplantation and to evaluations of isolated islet grafts for future clinical applications. Diabetic nonhuman primates (NHPs) represent the suitable models of DMs to better evaluate the effectiveness of islet transplantation, to assess new strategies for controlling blood glucose (BG), relieving immune rejection, or prolonging islet survival, and eventually to translate the preclinical data into tangible clinical practice. This review introduces some NHP models of DM, clarifies why and how the models should be used, and elucidates the usefulness and limitations of the models in islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
- *Bo Wang:
| |
Collapse
|
5
|
Pasek RC, Gannon M. Advancements and challenges in generating accurate animal models of gestational diabetes mellitus. Am J Physiol Endocrinol Metab 2013; 305:E1327-38. [PMID: 24085033 PMCID: PMC4073988 DOI: 10.1152/ajpendo.00425.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The maintenance of glucose homeostasis during pregnancy is critical to the health and well-being of both the mother and the developing fetus. Strikingly, approximately 7% of human pregnancies are characterized by insufficient insulin production or signaling, resulting in gestational diabetes mellitus (GDM). In addition to the acute health concerns of hyperglycemia, women diagnosed with GDM during pregnancy have an increased incidence of complications during pregnancy as well as an increased risk of developing type 2 diabetes (T2D) later in life. Furthermore, children born to mothers diagnosed with GDM have increased incidence of perinatal complications, including hypoglycemia, respiratory distress syndrome, and macrosomia, as well as an increased risk of being obese or developing T2D as adults. No single environmental or genetic factor is solely responsible for the disease; instead, a variety of risk factors, including weight, ethnicity, genetics, and family history, contribute to the likelihood of developing GDM, making the generation of animal models that fully recapitulate the disease difficult. Here, we discuss and critique the various animal models that have been generated to better understand the etiology of diabetes during pregnancy and its physiological impacts on both the mother and the fetus. Strategies utilized are diverse in nature and include the use of surgical manipulation, pharmacological treatment, nutritional manipulation, and genetic approaches in a variety of animal models. Continued development of animal models of GDM is essential for understanding the consequences of this disease as well as providing insights into potential treatments and preventative measures.
Collapse
Affiliation(s)
- Raymond C Pasek
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, Tennessee
| | | |
Collapse
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
Carlson LA, Boberg J, HÖgstedt B. Some physiological and clinical implications of lipid mobilization from adipose tissue
1. Compr Physiol 2011. [DOI: 10.1002/cphy.cp050163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Scow RO. Perfusion of isolated adipose tissue: FFA release and blood flow in rat parametrial fat body. Compr Physiol 2011. [DOI: 10.1002/cphy.cp050145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
|
30
|
|
31
|
|
32
|
|
33
|
Abstract
The most commonly available primate models of diabetes mellitus are of the insulin-dependent type and are attained through beta cell ablation techniques. Noninsulin-dependent primate models are less common since the animals must have a genetic predisposition to diabetes. Few studies have been conducted on lipid or vascular abnormalities associated with diabetes in primates. Diabetes develops spontaneously in Macaca nigra as the result of a lesion in the islets of Langerhans. As secretory cells are gradually lost, mild to moderate hyperglycemia, impaired glucose clearance, acute insulin release, hyperglucagonemia, and chronic hypoinsulinemia develop. Overtly diabetic monkeys require insulin therapy and thus alternate between hypoinsulinemia and hyperinsulinemia. The development of aortic atherosclerosis correlates positively with the severity of metabolic impairment. Lipid deposition is primarily extracellular and there is a paucity of foam cells. The very low density and intermediate-density lipoprotein fractions increase significantly, the low-density lipoprotein fraction increases slightly, and the high-density lipoprotein fractions remain essentially unchanged. Because these monkeys are maintained on a nonatherogenic chow ration, the effects of diabetes, per se, on vascular sclerosis can be evaluated.
Collapse
|
34
|
Howard CF. Diabetes mellitus: relationships of nonhuman primates and other animal models to human forms of diabetes. ADVANCES IN VETERINARY SCIENCE AND COMPARATIVE MEDICINE 1984; 28:115-49. [PMID: 6395671 DOI: 10.1016/b978-0-12-039228-5.50010-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Results from studies with M. nigra allow some conclusions and predictions about the etiology and development of diabetes relative to the islet lesion in monkeys and human beings. Some factor or factors must initiate the lesion; whether this is genetic, environmental, or a combination of both is not known. Amyloid is not the initiating factor to the islet lesion, but appears later as there is deterioration of cells. Sufficient evidence does not yet exist to choose from among the alternatives regarding the source of amyloid. With gradual deterioration of cells and replacement by amyloid, secretion of insulin is impaired and concentrations of glucagon increase. Sufficient circulating insulin is probably chronically available to the cells in this moderately impaired state, so that an acute decrease in delta IRI in response to glucose in an iv-administered GTT does not cause significant impairment in glucose clearance. The increase in circulating glucagon is probably due to a loss of controls on alpha-cell secretion or synthesis of glucagon. Fasting glucose levels increase but remain within the nondiabetic range. Eventually there is sufficient accretion of amyloid, usually greater than 50%, so that substantial beta-cell loss occurs and the monkey can no longer maintain fasting normoglycemia. The monkey then is hyperglycemic and hypoinsulinemic. Only at this time are the impairments detectable by the usual diagnostic clinical criterion of hyperglycemia. The ICAs arise in response to secretory cell deterioration and are present until there no longer are sufficient cells to elicit an immune response. Results from M. nigra can give insight into a similar condition that probably exists in a subpopulation of older diabetic humans. Humans probably pass through stages similar to those discerned in monkeys. Nondiabetic humans with sufficient beta cells to sustain adequate secretion of insulin, but with moderate amyloid infiltration, probably would be in a category equivalent to BD monkeys; since these people are not overtly hyperglycemic, they are not clinically recognizable as diabetic and would be classified retrospectively as nondiabetic. Continued loss of cells with concomitant amyloid deposition would eventually lead to hyperglycemia; if examined at autopsy, these people would have visible islet amyloid as well as a retrospective diagnosis of diabetes. Older type II diabetic humans with ICA usually proceed to insulin therapy more rapidly than do those who are ICA negative (Irvine et al., 1977; Del Prete et al., 1977; Gray et al., 1980).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
35
|
|
36
|
Wiener J, Loud AV, Kimberg DV, Spiro D. A quantitative description of cortisone-induced alterations in the ultrastructure of rat liver parenchmal cells. J Cell Biol 1968; 37:47-61. [PMID: 5645845 PMCID: PMC2107386 DOI: 10.1083/jcb.37.1.47] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A stereological comparison of the hepatic parenchymal cells from 125-g male rats given a daily injection for 6 days of either 5 mg of cortisone acetate or saline (controls) was carried out with both light and electron microscopy. Cortisone treatment results in an increase in average parenchymal cell cytoplasmic volume from 5100 to 5800 micro(3) and a decrease in average nuclear diameter from 7.1 to 6.5 micro. The volume of the average mitochondrion is increased fourfold in midzonal and peripheral regions of hepatic lobules, and there is a decrease in the number of mitochondria per cell such that the total mitochondrial volume per cell remains approximately unchanged. The numbers of peroxisomes are reduced, while the numbers of lysosomes and lipid droplets are increased in all parts of the lobules. The average volume of glycogen is doubled in all cells. The areas of membranes of the smooth- and rough-surfaced endoplasmic reticulum are decreased to one-half and two-thirds of their control values, respectively. The effects of cortisone on these various structural elements is discussed with respect to steroid-related alterations in biochemical processes.
Collapse
|
37
|
Jeanrenaud B. Effect of glucocorticoid hormones on fatty acid mobilization and re-esterification in rat adipose tissue. Biochem J 1967; 103:627-33. [PMID: 6049367 PMCID: PMC1270460 DOI: 10.1042/bj1030627] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1. The effect of dexamethasone and cortisol on fatty acid mobilization and re-esterification has been studied in intact adipose tissue and isolated fat cells of the rat. 2. Dexamethasone added in vitro inhibited both the re-esterification of mobilized free fatty acids and the esterification of palmitate in the medium. 3. Under several conditions (low concentrations of dexamethasone, cortisol at a high concentration, with tissue from starved animals), steroid-induced release of free fatty acids could be accounted for by decreased re-esterification only, overall lipolytic activity remaining unmodified. At higher concentrations of dexamethasone, however, stimulation of lipolytic activity also occurred. 4. Decreased re-esterification produced by dexamethasone was observed in the total absence of glucose from the incubation medium. Further, dexamethasone stimulated the disappearance of prelabelled [(14)C]glycogen from the tissue. 5. The evidence presented suggests that mobilization of free fatty acids induced by glucocorticoid hormones under physiological conditions is primarily due to a decrease of the re-esterification rate rather than to lipase activation.
Collapse
|
38
|
Rodbell M. Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem 1966. [PMID: 4379054 DOI: 10.1002/cphy.cp050147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
Dole VP. Energy storage. Compr Physiol 1965. [DOI: 10.1002/cphy.cp050103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
White JE. Structural sugars in adipose tissue. Compr Physiol 1965. [DOI: 10.1002/cphy.cp050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Bierman EL. Particulate lipid components in plasma. Compr Physiol 1965. [DOI: 10.1002/cphy.cp050151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
|
43
|
Rudman D, Girolamo MD, Malkin MF, Garcia LA. The adipokinetic property of hypophyseal peptides and catecholamines: a problem in comparative endocrinology 1. Compr Physiol 1965. [DOI: 10.1002/cphy.cp050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
|
45
|
|
46
|
Lebovitz HE, Engel FL. In vivo and in vitro adipokinetic effects of corticotropin and related peptides 1. Compr Physiol 1965. [DOI: 10.1002/cphy.cp050155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Feller DD. Conversion of amino acids to fatty acids. Compr Physiol 1965. [DOI: 10.1002/cphy.cp050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Hirsch J, Goldrick B. Metabolism of human adipose tissue in vitro. Compr Physiol 1965. [DOI: 10.1002/cphy.cp050146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
|
50
|
|