1
|
Sun J, Xie W, Wu Y, Li Z, Li Y. Accelerated Bone Healing via Electrical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404190. [PMID: 39115981 DOI: 10.1002/advs.202404190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric effect produces an electrical signal when stress is applied to the bone. When the integrity of the bone is destroyed, the biopotential within the defect site is reduced and several physiological responses are initiated to facilitate healing. During the healing of the bone defect, the bioelectric potential returns to normal levels. Treatment of fractures that exceed innate regenerative capacity or exhibit delayed healing requires surgical intervention for bone reconstruction. For bone defects that cannot heal on their own, exogenous electric fields are used to assist in treatment. This paper reviews the effects of exogenous electrical stimulation on bone healing, including osteogenesis, angiogenesis, reduction in inflammation and effects on the peripheral nervous system. This paper also reviews novel electrical stimulation methods, such as small power supplies and nanogenerators, that have emerged in recent years. Finally, the challenges and future trends of using electrical stimulation therapy for accelerating bone healing are discussed.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
2
|
Finger FC, Schröter S, Ihle C, Herbst M, Histing T, Ahrend MD. Postoperative management following osteotomies around the knee: a narrative review. EFORT Open Rev 2024; 9:658-667. [PMID: 38949151 PMCID: PMC11297401 DOI: 10.1530/eor-23-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
The present narrative review provides a summary of postoperative therapy modalities and their effectiveness following osteotomies around the knee. The topics that are discussed in the scientific discourse include support of cartilage cell regeneration, pain management, drainage insertion, tourniquet use, pharmacological and mechanical thromboembolism prophylaxis, weight-bearing protocols and bone consolidation. There is evidence for the use of pharmacological thromboembolism prophylaxis and weight-bearing protocols. A standardized postoperative treatment concept following osteotomies around the knee cannot be derived due to lack of evidence for the other topics in current literature.
Collapse
Affiliation(s)
- Felix Christoph Finger
- BG Klinik Tübingen, Department of Traumatology and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Steffen Schröter
- Diakonie Klinikum Jung-Stilling GmbH, Department of Trauma and Reconstructive Surgery, Siegen, Germany
- Osteotomie Komitee der Deutschen Knie Gesellschaft (DKG), Munich, Germany
| | - Christoph Ihle
- BG Klinik Tübingen, Department of Traumatology and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Moritz Herbst
- BG Klinik Tübingen, Department of Traumatology and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tina Histing
- BG Klinik Tübingen, Department of Traumatology and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marc-Daniel Ahrend
- BG Klinik Tübingen, Department of Traumatology and Reconstructive Surgery, Eberhard Karls University of Tübingen, Tübingen, Germany
- Osteotomie Komitee der Deutschen Knie Gesellschaft (DKG), Munich, Germany
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
3
|
Ganse B. Methods to accelerate fracture healing - a narrative review from a clinical perspective. Front Immunol 2024; 15:1384783. [PMID: 38911851 PMCID: PMC11190092 DOI: 10.3389/fimmu.2024.1384783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Bone regeneration is a complex pathophysiological process determined by molecular, cellular, and biomechanical factors, including immune cells and growth factors. Fracture healing usually takes several weeks to months, during which patients are frequently immobilized and unable to work. As immobilization is associated with negative health and socioeconomic effects, it would be desirable if fracture healing could be accelerated and the healing time shortened. However, interventions for this purpose are not yet part of current clinical treatment guidelines, and there has never been a comprehensive review specifically on this topic. Therefore, this narrative review provides an overview of the available clinical evidence on methods that accelerate fracture healing, with a focus on clinical applicability in healthy patients without bone disease. The most promising methods identified are the application of axial micromovement, electromagnetic stimulation with electromagnetic fields and direct electric currents, as well as the administration of growth factors and parathyroid hormone. Some interventions have been shown to reduce the healing time by up to 20 to 30%, potentially equivalent to several weeks. As a combination of methods could decrease the healing time even further than one method alone, especially if their mechanisms of action differ, clinical studies in human patients are needed to assess the individual and combined effects on healing progress. Studies are also necessary to determine the ideal settings for the interventions, i.e., optimal frequencies, intensities, and exposure times throughout the separate healing phases. More clinical research is also desirable to create an evidence base for clinical guidelines. To make it easier to conduct these investigations, the development of new methods that allow better quantification of fracture-healing progress and speed in human patients is needed.
Collapse
Affiliation(s)
- Bergita Ganse
- Innovative Implant Development (Fracture Healing), Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Karagiannis T, Tsapas A, Bekiari E, Toulis KA, Nauck MA. A Methodological Framework for Meta-analysis and Clinical Interpretation of Subgroup Data: The Case of Major Adverse Cardiovascular Events With GLP-1 Receptor Agonists and SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Care 2024; 47:184-192. [PMID: 38241493 DOI: 10.2337/dc23-0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 01/21/2024]
Abstract
We present a methodological framework for conducting and interpreting subgroup meta-analyses. Methodological steps comprised evaluation of clinical heterogeneity regarding the definition of subpopulations, credibility assessment of subgroup meta-analysis, and translation of relative into absolute treatment effects. We used subgroup data from type 2 diabetes cardiovascular outcomes trials (CVOTs) with glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors for patients with established cardiovascular disease and those at high cardiovascular risk without manifest cardiovascular disease. First, we evaluated the variability in definitions of the subpopulations across CVOTs using major adverse cardiovascular events (MACE) incidence in the placebo arm as a proxy for baseline cardiovascular risk. As baseline risk did not differ considerably across CVOTs, we conducted subgroup meta-analyses of hazard ratios (HRs) for MACE and assessed the credibility of a potential effect modification. Results suggested using the same overall relative effect for each of the two subpopulations (HR 0.85, 95% CI 0.80-0.90, for GLP-1 receptor agonists and HR 0.91, 95% CI 0.85-0.97, for SGLT2 inhibitors). Finally, we calculated 5-year absolute treatment effects (number of fewer patients with event per 1,000 patients). Treatment with GLP-1 receptor agonists resulted in 30 fewer patients with event in the subpopulation with established cardiovascular disease and 14 fewer patients with event in patients without manifest cardiovascular disease. For SGLT2 inhibitors, the respective absolute effects were 18 and 8 fewer patients with event per 1,000 patients. This framework can be applied to subgroup meta-analyses regardless of outcomes or modification variables.
Collapse
Affiliation(s)
- Thomas Karagiannis
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, U.K
| | - Eleni Bekiari
- Clinical Research and Evidence-Based Medicine Unit, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Diabetes Centre, Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos A Toulis
- Department of Endocrinology, 424 Military Hospital, Thessaloniki, Greece
- Institute of Applied Health Research, University of Birmingham, Birmingham, U.K
| | - Michael A Nauck
- Diabetes, Endocrinology, and Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Zhang B, Zeng J, Zhang J, Song K, Kuang L, Wu X, Zhao G, Shang H, Ni Z, Chen L. Research trends and perspective of low-intensity pulsed ultrasound in orthopedic rehabilitation treatment based on Web of Science: A bibliometric analysis. J Back Musculoskelet Rehabil 2024; 37:1189-1203. [PMID: 38758991 DOI: 10.3233/bmr-230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Ultrasound has a long history as a diagnostic and therapeutic tool. Low-intensity pulsed ultrasound (LIPUS), whose intensity is below 300 mW/cm2, has been widely used in orthopedic rehabilitation treatment. However, the detailed bioeffects and underlying mechanisms of LIPUS treatment need to be explored. OBJECTIVE To make a comprehensive view of the field, bibliometric and visualization analysis was used to reveal the global research trends of LIPUS in orthopedics and rehabilitation treatment between 1994 and 2023. METHODS All literature data on LIPUS were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace were applied for the bibliometric and visualization analysis. RESULTS A total of 760 publications were included. The distribution of publications generally showed an unstable rising trend. China had the highest number of publications (28.0%), and Chong Qing Medical University was the organization with the highest number of publications (5.8%). Ultrasound in Medicine and Biology had the highest number of publications (8.8%), while BMJ-British Medical Journal had the highest impact factor among the retrieved journals. Ling Qin from the Chinese University of Hong Kong was the most active researcher. Our overlay visualization map showed that the keywords such as pain, knee osteoarthritis, apoptosis, chondrocytes, cartilage, and autophagy, which link to osteoarthritis, have becoming the new research trends and hotspots. CONCLUSION LIPUS is a popular and increasingly important area of orthopedic rehabilitation, and collaboration of authors from different countries should be further strengthened. Predictably, clinical application of LIPUS on chronic inflammation-related diseases and regenerative medicine, and in-depth biological mechanisms are the orientations of LIPUS in orthopedic rehabilitation treatment.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiahao Zeng
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiayi Zhang
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Keyan Song
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiangbo Wu
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Guang Zhao
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
| | - Huijuan Shang
- Rehabilitation Department, Key Specialty of Neck and Low Back Pain Rehabilitation, Xingcheng Special Duty Sanatorium, Xingcheng, Liaoning, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Inoue S, Li C, Hatakeyama J, Jiang H, Kuroki H, Moriyama H. Higher-intensity ultrasound accelerates fracture healing via mechanosensitive ion channel Piezo1. Bone 2023; 177:116916. [PMID: 37777037 DOI: 10.1016/j.bone.2023.116916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Osteoporosis-related fractures are a major public health problem. Mechanobiological stimulation utilizing low-intensity pulsed ultrasound (LIPUS) is the most widely accepted modality for accelerating fracture healing. However, recent evidence has demonstrated the ineffectiveness of LIPUS, and the biophysical mechanisms of ultrasound-induced bone formation also remain elusive. Here, we demonstrate that ultrasound at a higher intensity than LIPUS effectively accelerates fracture healing in a mouse osteoporotic fracture model. Higher-intensity ultrasound promoted chondrogenesis and hypertrophic differentiation of chondrocytes in the fracture callus. Higher-intensity ultrasound also increased osteoblasts and newly formed bone in the callus, resulting in accelerated endochondral ossification during fracture healing. In addition, we found that accelerated fracture healing by ultrasound exposure was attenuated when the mechanosensitive ion channel Piezo1 was inhibited by GsMTx4. Ultrasound-induced new bone formation in the callus was attenuated in fractured mice treated with GsMTx4. Similar results were also confirmed in a 3D osteocyte-osteoblast co-culture system, where osteocytic Piezo1 knockdown attenuated the expression of osteoblastic genes after ultrasound exposure. Together these results demonstrate that higher-intensity ultrasound than clinically used LIPUS can accelerate endochondral ossification after fractures. Furthermore, our results suggest that mechanotransduction via Piezo1 mediates ultrasound-stimulated fracture healing and bone formation.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Changxin Li
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan; Research Fellowship of the Japan Society for the Promotion of Science, Japan
| | - Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan.
| |
Collapse
|
8
|
Ouyang ZQ, Shao LS, Wang WP, Ke TF, Chen D, Zheng GR, Duan XR, Chu JX, Zhu Y, Yang L, Shan HY, Huang L, Liao CD. Low intensity pulsed ultrasound ameliorates Adriamycin-induced chronic renal injury by inhibiting ferroptosis. Redox Rep 2023; 28:2251237. [PMID: 37652897 PMCID: PMC10472869 DOI: 10.1080/13510002.2023.2251237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE It is very important to develop a new therapeutic strategy to cope with the increasing morbidity and mortality of chronic kidney disease (CKD). As a kind of physical therapy, low intensity pulsed ultrasound (LIPUS) has remarkable anti-inflammatory and repair-promoting effects and is expected to become a new therapeutic method for CKD. This study aims to clarify the treatment effect of LIPUS on CKD-related renal inflammation and fibrosis, and to further explore the potential signal network of LIPUS treatment for ameliorating chronic renal injury. METHODS A rat model simulating the progress of CKD was established by twice tail-vein injection of Adriamycin (ADR). Under anesthesia, bilateral kidneys of CKD rats were continuously stimulated by LIPUS for four weeks. The parameters of LIPUS were 1.0 MHz, 60 mW/cm2, 50% duty cycle and 20 min/d. RESULTS LIPUS treatment effectively inhibited ADR-induced renal inflammation and fibrosis, and improved CKD-related to oxidative stress and ferroptosis. In addition, the therapeutic effect of LIPUS is closely related to the regulation of TGF-β1/Smad and Nrf2/keap1/HO-1 signalling pathways. DISCUSSION This study provides a new direction for further mechanism research and lays an important foundation for clinical trials.
Collapse
Affiliation(s)
- Zhi-Qiang Ouyang
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| | - Li-shi Shao
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Wei-peng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Teng-fei Ke
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Dong Chen
- Department of Ultrasound, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Guang-rong Zheng
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| | - Xi-rui Duan
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Ji-xiang Chu
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Yu Zhu
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Lu Yang
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Hai-yan Shan
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Cheng-de Liao
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| |
Collapse
|
9
|
Chu G, Niu H. Knowledge mapping and global trends in the field of low-intensity pulsed ultrasound and endocrine and metabolic diseases: a bibliometric and visual analysis from 2012 to 2022. Front Endocrinol (Lausanne) 2023; 14:1237864. [PMID: 37732128 PMCID: PMC10508976 DOI: 10.3389/fendo.2023.1237864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) is a highly promising therapeutic method that has been widely used in rehabilitation, orthopedics, dentistry, urology, gynecology, and other multidisciplinary disease diagnoses and treatments. It has attracted extensive attention worldwide. However, there is currently a lack of comprehensive and systematic research on the current status and future development direction of the LIPUS field. Therefore, this study comprehensively analyzed LIPUS-related reports from the past decade using bibliometrics methods, and further conducted research specifically focusing on its application in endocrine and metabolic diseases. Methods We downloaded LIPUS literature from 2012 to 2022 reported in the Web of Science Core Collection Science Citation Index-Expanded and Social Sciences Citation Index, and used bibliometric analysis software such as VOSviewer and CiteSpace to execute the analysis and visualize the results. Results We searched for 655 English articles published on LIPUS from 2012 to 2022. China had the highest number of published articles and collaborations between China and the United States were the closest in this field. Chongqing Medical University was the institution with the highest output, and ULTRASOUND IN MEDICINE AND BIOLOGY was the journal with the most related publications. In recent years, research on the molecular mechanisms of LIPUS has continued to deepen, and its clinical applications have also continued to expand. The application of LIPUS in major diseases such as oxidative stress, regeneration mechanism, and cancer is considered to be a future research direction, especially in the field of endocrinology and metabolism, where it has broad application value. Conclusion Global research on LIPUS is expected to continue to increase, and future research will focus on its mechanisms of action and clinical applications. This study comprehensively summarizes the current development status and global trends in the field of LIPUS, and its research progress in the field of endocrine and metabolic diseases, providing valuable reference for future research in this field.
Collapse
Affiliation(s)
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Brueton RN, Heatley FW, Brookes M. The effect of ultrasound on bone healing across a bone gap, an experimental study of a delayed union model. Injury 2023; 54:110820. [PMID: 37277267 DOI: 10.1016/j.injury.2023.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The aim of the study is to determine whether ultrasound accelerates bone repair across a bone gap. To replicate the clinical situation of bone repair in a severe tibial fracture, such as Gustilo grade three, we designed an experimental model to determine whether ultrasound can promote bone healing in the presence of a bone gap. The effect of ultrasound on bone healing of a tibial bone gap held in an external fixator was studied. 60 New Zealand White rabbits were divided into four groups. In one group of 6 animals, a tibial osteotomy was closed or compressed and studied at six weeks (Comparative Group). In 3 groups of 18 animals each, a tibial bone gap was maintained and was untreated, treated with ultrasound or mock ultrasound (Control Group). The repair of the bone gaps was studied in 3 animals each at 2,4,6,8,10 and 12 weeks. Investigation was by histology, angiography, radiography and densitometry. Three of the 18 untreated group progressed to delayed union, compared with 4 in the ultrasound and 3 in the mock ultrasound group (Control Group). Statistical analysis showed no difference between the three groups. 5 of the 6 closed/compressed osteotomies (Comparative Group) united faster at 6 weeks. The healing pattern of the bone gap groups were similar. We recommend this as a delayed union model. We found no evidence that ultrasound accelerated bone healing, reduced the rate of delayed union or increased callus formation in this model of delayed union. This study simulates delayed union following a compound tibial fracture and has clinical relevance concerning treatment of a delay in union with ultrasound.
Collapse
|
11
|
Li X, Li W, Sun L, Ren J, Xu Y, Zheng Y, Bai W. Efficacy of low-intensity pulsed ultrasound for the treatment of viral pneumonia: study protocol for a randomized controlled trial. Trials 2023; 24:389. [PMID: 37296443 DOI: 10.1186/s13063-023-07382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Viral pneumonia has always been a problem faced by clinicians because of its insidious onset, strong infectivity, and lack of effective drugs. Patients with advanced age or underlying diseases may experience more severe symptoms and are prone to severe ventilation dysfunction. Reducing pulmonary inflammation and improving clinical symptoms is the focus of current treatment. Low-intensity pulsed ultrasound (LIPUS) can mitigate inflammation and inhibit edema formation. We aimed to investigate the efficacy of therapeutic LIPUS in improving lung inflammation in hospitalized patients with viral pneumonia. METHODS Sixty eligible participants with clinically confirmed viral pneumonia will be assigned to either (1) intervention group (LIPUS stimulus), (2) control group (null stimulus), or (3) self-control group (LIPUS stimulated areas versus non-stimulated areas). The primary outcome will be the difference in the extent of absorption and dissipation of lung inflammation on computed tomography. Secondary outcomes include changes in lung inflammation on ultrasonography images, pulmonary function, blood gas analysis, fingertip arterial oxygen saturation, serum inflammatory factor levels, the sputum excretion volume, time to the disappearance of pulmonary rales, pneumonia status score, and course of pneumonia. Adverse events will be recorded. DISCUSSION This study is the first clinical study of the efficacy of therapeutic LIPUS in the treatment of viral pneumonia. Given that the current clinical recovery mainly depends on the body's self-limiting and conventional symptomatic treatment, LIPUS, as a new therapy method, might be a major advance in the treatment of viral pneumonia. TRIAL REGISTRATION ChiCTR2200059550 Chinese Clinical Trial Registry, May 3, 2022.
Collapse
Affiliation(s)
- Xiao Li
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Wen Li
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Lianjie Sun
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266555, China
| | - Junyi Ren
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Ying Xu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Yishan Road 600, Shanghai, 200233, China.
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Yishan Road 600, Shanghai, 200233, China.
| |
Collapse
|
12
|
Liu Z, Li J, Bian Y, Zhang X, Cai X, Zheng Y. Low-intensity pulsed ultrasound reduces lymphedema by regulating macrophage polarization and enhancing microcirculation. Front Bioeng Biotechnol 2023; 11:1173169. [PMID: 37214283 PMCID: PMC10198614 DOI: 10.3389/fbioe.2023.1173169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Conventional therapies reduce lymphedema but do not cure it because they cannot modulate the pathophysiology of secondary lymphedema. Lymphedema is characterized by inflammation. We hypothesized that low-intensity pulsed ultrasound (LIPUS) treatment could reduce lymphedema by enhancing anti-inflammatory macrophage polarization and microcirculation. Methods: The rat tail secondary lymphedema model was established through the surgical ligation of lymphatic vessels. The rats were randomly divided into the normal, lymphedema, and LIPUS treatment groups. The LIPUS treatment (3 min daily) was applied 3 days after establishing the model. The total treatment period was 28 days. Swelling, fibro adipose deposition, and inflammation of the rat tail were evaluated by HE staining and Masson's staining. The photoacoustic imaging system and laser Doppler flowmetry were used to monitor microcirculation changes in rat tails after LIPUS treatment. The cell inflammation model was activated with lipopolysaccharides. Flow cytometry and fluorescence staining were used to observe the dynamic process of macrophage polarization. Results: After 28 days of treatment, compared with the lymphedema group, the tail circumference and subcutaneous tissue thickness of rats in the LIPUS group were decreased by 30%, the proportion of collagen fibers and the lymphatic vessel cross-sectional area was decreased, and tail blood flow was increased significantly. Cellular experiments revealed a decrease in CD86+ macrophages (M1) after LIPUS treatment. Conclusion: The transition of M1 macrophage and the promotion of microcirculation could be responsible for the beneficial effect of LIPUS on lymphedema.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jia Li
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yu Bian
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
13
|
Puts R, Khaffaf A, Shaka M, Zhang H, Raum K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering (Basel) 2023; 10:bioengineering10030387. [PMID: 36978778 PMCID: PMC10045139 DOI: 10.3390/bioengineering10030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell-cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival.
Collapse
Affiliation(s)
- Regina Puts
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Aseel Khaffaf
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Maria Shaka
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Hui Zhang
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Kay Raum
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| |
Collapse
|
14
|
Searle HKC, Lewis SR, Coyle C, Welch M, Griffin XL. Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst Rev 2023; 3:CD008579. [PMID: 36866917 PMCID: PMC9983300 DOI: 10.1002/14651858.cd008579.pub4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND The morbidity and socioeconomic costs of fractures are considerable. The length of time to healing is an important factor in determining a person's recovery after a fracture. Ultrasound may have a therapeutic role in reducing the time to union after fracture by stimulating osteoblasts and other bone-forming proteins. This is an update of a review previously published in February 2014. OBJECTIVES: To assess the effects of low-intensity ultrasound (LIPUS), high-intensity focused ultrasound (HIFUS) and extracorporeal shockwave therapies (ECSW) as part of the treatment of acute fractures in adults. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase (1980 to March 2022), Orthopaedic Proceedings, trial registers and reference lists of articles. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs including participants over 18 years of age with acute fractures (complete or stress fractures) treated with either LIPUS, HIFUS or ECSW versus a control or placebo-control. DATA COLLECTION AND ANALYSIS We used standard methodology expected by Cochrane. We collected data for the following critical outcomes: participant-reported quality of life, quantitative functional improvement, time to return to normal activities, time to fracture union, pain, delayed or non-union of fracture. We also collected data for treatment-related adverse events. We collected data in the short term (up to three months after surgery) and in the medium term (later than three months after surgery). MAIN RESULTS: We included 21 studies, involving 1543 fractures in 1517 participants; two studies were quasi-RCTs. Twenty studies tested LIPUS and one trial tested ECSW; no studies tested HIFUS. Four studies did not report any of the critical outcomes. All studies had unclear or high risk of bias in at least one domain. The certainty of the evidence was downgraded for imprecision, risk of bias and inconsistency. LIPUS versus control (20 studies, 1459 participants) We found very low-certainty evidence for the effect of LIPUS on Health-related quality of life (HRQoL) measured by SF-36 at up to one year after surgery for lower limb fractures (mean difference (MD) 0.06, 95% confidence interval (CI) -3.85 to 3.97, favours LIPUS; 3 studies, 393 participants). This result was compatible with a clinically important difference of 3 units with both LIPUS or control. There may be little to no difference in time to return to work after people had complete fractures of the upper or lower limbs (MD 1.96 days, 95% CI -2.13 to 6.04, favours control; 2 studies, 370 participants; low-certainty evidence). There is probably little or no difference in delayed union or non-union up to 12 months after surgery (RR 1.25, 95% CI 0.50 to 3.09, favours control; 7 studies, 746 participants; moderate-certainty evidence). Although data for delayed and non-union included both upper and lower limbs, we noted that there were no incidences of delayed or non-union in upper limb fractures. We did not pool data for time to fracture union (11 studies, 887 participants; very low-certainty evidence) because of substantial statistical heterogeneity which we could not explain. In upper limb fractures, MDs ranged from 0.32 to 40 fewer days to fracture union with LIPUS. In lower limb fractures, MDs ranged from 88 fewer days to 30 more days to fracture union. We also did not pool data for pain experienced at one month after surgery in people with upper limb fractures (2 studies, 148 participants; very low-certainty evidence) because of substantial unexplained statistical heterogeneity. Using a 10-point visual analogue scale, one study reported less pain with LIPUS (MD -1.7, 95% CI -3.03 to -0.37; 47 participants), and the effect was less precise in the other study (MD -0.4, 95% CI -0.61 to 0.53; 101 participants). We found little or no difference in skin irritation (a possible treatment-related adverse event) between groups but judged the certainty of the evidence from this small study to be very low (RR 0.94, 95% CI 0.06 to 14.65; 1 study, 101 participants). No studies reported data for functional recovery. Data for treatment adherence were inconsistently reported across studies, but was generally described to be good. Data for costs were reported for one study, with higher direct costs, as well as combined direct and indirect costs, for LIPUS use. ECSW versus control (1 study, 56 participants) We are uncertain whether ECSW reduces pain at 12 months after surgery in fractures of the lower limb (MD -0.62, 95% CI -0.97 to -0.27, favours ECSW); the difference between pain scores was unlikely to be clinically important, and the certainty of the evidence was very low. We are also uncertain of the effect of ECSW on delayed or non-union at 12 months because the certainty of this evidence is very low (RR 0.56, 95% CI 0.15 to 2.01; 1 study, 57 participants). There were no treatment-related adverse events. This study reported no data for HRQoL, functional recovery, time to return to normal activities, or time to fracture union. In addition, no data were available for adherence or cost. AUTHORS' CONCLUSIONS We were uncertain of the effectiveness of ultrasound and shock wave therapy for acute fractures in terms of patient-reported outcome measures (PROMS), for which few studies reported data. It is probable that LIPUS makes little or no difference to delayed union or non-union. Future trials should be double-blind, randomised, placebo-controlled trials recording validated PROMs and following up all trial participants. Whilst time to union is difficult to measure, the proportion of participants achieving clinical and radiographic union at each follow-up point should be ascertained, alongside adherence with the study protocol and cost of treatment in order to better inform clinical practice.
Collapse
Affiliation(s)
- Henry KC Searle
- Oxford University Clinical Academic Graduate School, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford, UK
- John Radcliffe Hospital, Oxford, UK
| | - Sharon R Lewis
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Matthew Welch
- Trauma & Orthopaedics, Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | | |
Collapse
|
15
|
Effects and mechanotransduction pathways of therapeutic ultrasound on healthy and osteoarthritic chondrocytes: a systematic review of in vitro studies. Osteoarthritis Cartilage 2023; 31:317-339. [PMID: 36481451 DOI: 10.1016/j.joca.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effects and mechanotransduction pathways of therapeutic ultrasound on chondrocytes. METHOD PubMed, EMBASE and Web of Science databases were searched up to 19th September 2021 to identify in vitro studies exploring ultrasound to stimulate chondrocytes for osteoarthritis (OA) treatment. Study characteristics, ultrasound parameters, in vitro setup, and mechanotransduction pathways were collected. Risk of bias was judged using the Risk of Bias Assessment for Non-randomized Studies (RoBANS) tool. RESULTS Thirty-one studies were included comprising healthy and OA chondrocytes and explants. Most studies had high risk of performance, detection and pseudoreplication bias due to lack of temperature control, setup calibration, inadequate semi-quantitatively analyzes and independent experiments. Ultrasound was applied to the culture plate via acoustic gel, water bath or culture media. Regardless of the setup used, ultrasound stimulated the cartilage production and suppressed its degradation, although the effect size was nonsignificant. Ultrasound inhibited p38, c-Jun N-terminal kinases (JNK) and factor nuclear kappa B (NFκB) pathways in OA chondrocytes to reduce apoptosis, inflammation and matrix degradation, while triggered phosphoinositide-3-kinase/akt (PI3K/Akt), extracellular signal-regulated kinase (ERK), p38 and JNK pathways in healthy chondrocytes to promote matrix synthesis. CONCLUSION The included studies suggest that ultrasound application induces therapeutic effects on chondrocytes. However, these results should be interpreted with caution because high risk of performance, detection and pseudoreplication bias were identified. Future studies should explore the application of ultrasound on human OA chondrocytes cultures to potentiate the applicability of ultrasound towards cartilage regeneration of knee with OA.
Collapse
|
16
|
Bellringer S, Jukes C, Dirckx M, Guryel E, Phadnis J. Strain reduction screws for nonunions following fixation around the elbow - A case series and review of the literature. J Clin Orthop Trauma 2023; 38:102129. [PMID: 36860994 PMCID: PMC9969280 DOI: 10.1016/j.jcot.2023.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/20/2023] [Accepted: 02/11/2023] [Indexed: 03/03/2023] Open
Abstract
Background Nonunions following fracture fixation result in significant patient morbidity and financial burden. Traditional operative management around the elbow consists of removal of metalwork, debridement of the nonunion and re-fixation with compression, often with bone grafting. Recently, some authors in the lower limb literature have described a minimally invasive technique used for select nonunions where simply placing screws across the nonunion facilitates healing by reducing inter-fragmentary strain. To our knowledge, this has not been described around the elbow, where traditional more invasive techniques continue to be employed. Aims The aim of this study was to describe the application of strain reduction screws for management of select nonunions around the elbow. Methods & Results We describe 4 cases (two humeral shaft, one distal humerus and one proximal ulna) of established nonunion following previous internal fixation, where minimally invasive placement of strain reduction screws were used. In all cases, no existing metal work was removed, the nonunion site was not opened, and no bone grafting or biologic stimulation was used. Surgery was performed between 9 and 24 months after the original fixation. 2.7 mm or 3.5 standard cortical screws were placed across the nonunion without lagging. Three fractures went on to unite with no further intervention required. One fracture required revision fixation using traditional techniques. Failure of the technique in this case did not adversely affect the subsequent revision procedure and has allowed refinement of the indications. Conclusion Strain reduction screws are safe, simple and effective technique to treat select nonunions around the elbow. This technique has potential to be a paradigm shift in the management of these highly complex cases and is the first description in the upper limb to our knowledge.
Collapse
Affiliation(s)
- S.F. Bellringer
- Department of Trauma and Orthopaedics, Brighton and Sussex University Hospitals, East Sussex, England, UK
| | - C. Jukes
- Department of Trauma and Orthopaedics, Brighton and Sussex University Hospitals, East Sussex, England, UK
| | - M. Dirckx
- Department of Trauma and Orthopaedics, Brighton and Sussex University Hospitals, East Sussex, England, UK
| | - E. Guryel
- Department of Trauma and Orthopaedics, Brighton and Sussex University Hospitals, East Sussex, England, UK
| | - J. Phadnis
- Department of Trauma and Orthopaedics, Brighton and Sussex University Hospitals, East Sussex, England, UK
- Brighton and Sussex Medical School, UK
| |
Collapse
|
17
|
Kitano M, Kawahata H, Okawa Y, Handa T, Nagamori H, Kitayama Y, Miyashita T, Sakamoto K, Fukumoto Y, Kudo S. Effects of low-intensity pulsed ultrasound on the infrapatellar fat pad in knee osteoarthritis: a randomized, double blind, placebo-controlled trial. J Phys Ther Sci 2023; 35:163-169. [PMID: 36866007 PMCID: PMC9974316 DOI: 10.1589/jpts.35.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/01/2022] [Indexed: 03/04/2023] Open
Abstract
[Purpose] We investigated the effects of low-intensity pulsed ultrasound (LIPUS) irradiation of the infrapatellar fat pad (IFP) combined with therapeutic exercise for management of knee osteoarthritis (knee OA). [Participants and Methods] The study included 26 patients with knee OA, who were randomized into the LIPUS group (patients underwent LIPUS + therapeutic exercise) and the therapeutic exercise group (patients underwent sham LIPUS + therapeutic exercise). We measured changes in the patellar tendon-tibial angle (PTTA) and in IFP thickness, IFP gliding, and IFP echo intensity after 10 treatment sessions to determine the effects of the aforementioned interventions. We additionally recorded changes in the visual analog scale, Timed Up and Go Test, the Western Ontario and McMaster Universities Osteoarthritis Index, and Kujala scores, as well as range of motion in each group at the same end-point. [Results] Compared with patients in the therapeutic exercise group, those in the LIPUS group showed significant post-treatment improvements in PTTA, VAS, and Kujala scores, as well as in range of motion. [Conclusion] The combined use of LIPUS irradiation of the IFP and therapeutic exercise is a safe and effective modality to reduce IFP swelling, relieve pain, and improve function in patients with knee OA.
Collapse
Affiliation(s)
- Masashi Kitano
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan, Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Yamamuro Orthopedics Clinic, Japan
| | - Hirohisa Kawahata
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Department of Medical Technology, Morinomiya University of
Medical Sciences, Japan
| | - Yuse Okawa
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Morinomiya University of Medical Sciences Acupuncture
Information Center, Japan
| | | | | | | | - Toshinori Miyashita
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan
| | - Kodai Sakamoto
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan
| | - Yusuke Fukumoto
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan
| | - Shintarou Kudo
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan, Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Department of Physical Therapy, Morinomiya University of
Medical Sciences, Japan,Corresponding author. Shintarou Kudo (E-mail: )
| |
Collapse
|
18
|
Boström A, Asplund K, Bergh A, Hyytiäinen H. Systematic Review of Complementary and Alternative Veterinary Medicine in Sport and Companion Animals: Therapeutic Ultrasound. Animals (Basel) 2022; 12:ani12223144. [PMID: 36428372 PMCID: PMC9686477 DOI: 10.3390/ani12223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To explore the scientific evidence for therapeutic ultrasound (TU), we conducted a systematic review of the literature on TU in dogs, horses, donkeys, and cats. METHODS In three major databases, relevant articles published in 1980-2020 were identified. The risk of bias in each article was evaluated. RESULTS Twenty-four relevant articles on the effects of TU in dogs, nine in horses, two in donkeys, and one in cats were identified. TU usually involved 2-6 treatments weekly for up to 4 weeks. Articles on tendon, ligament, and bone healing, acute aseptic arthritis, osteoarthritis, paraparesis, hindquarter weakness, and back muscle pain were identified. In experimental bone lesions in dogs, there is moderate scientific evidence for enhanced healing. For the treatment of other musculoskeletal conditions, the scientific evidence is insufficient due to the high risk of bias. There is substantial evidence that continuous TU increases tissue temperature in muscles and tendons by up to 5 °C in healthy animals. For disorders in tendons, ligaments, muscles, and joints in sport and companion animals, there is insufficient evidence for the clinical effects of TU.
Collapse
Affiliation(s)
- Anna Boström
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014 Helsinki, Finland
| | - Kjell Asplund
- Department of Public Health and Clinical Medicine, Umeå University, SE 901 87 Umeå, Sweden
| | - Anna Bergh
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE 750 07 Uppsala, Sweden
- Correspondence:
| | - Heli Hyytiäinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Goshima K, Sawaguchi T, Horii T, Shigemoto K, Iwai S. Low-intensity pulsed ultrasound does not promote bone healing and functional recovery after open wedge high tibial osteotomy. Bone Jt Open 2022; 3:885-893. [DOI: 10.1302/2633-1462.311.bjo-2022-0091.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aims To evaluate whether low-intensity pulsed ultrasound (LIPUS) accelerates bone healing at osteotomy sites and promotes functional recovery after open-wedge high tibial osteotomy (OWHTO). Methods Overall, 90 patients who underwent OWHTO without bone grafting were enrolled in this nonrandomized retrospective study, and 45 patients treated with LIPUS were compared with 45 patients without LIPUS treatment in terms of bone healing and functional recovery postoperatively. Clinical evaluations, including the pain visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) score, were performed preoperatively as well as six weeks and three, six, and 12 months postoperatively. The progression rate of gap filling was evaluated using anteroposterior radiographs at six weeks and three, six, and 12 months postoperatively. Results The pain VAS and JOA scores significantly improved after OWHTO in both groups. Although the LIPUS group had better pain scores at six weeks and three months postoperatively, there were no significant differences in JOA score between the groups. The lateral hinge united at six weeks postoperatively in 34 (75.6%) knees in the control group and in 33 (73.3%) knees in the LIPUS group. The progression rates of gap filling in the LIPUS group were 8.0%, 15.0%, 27.2%, and 46.0% at six weeks and three, six, and 12 months postoperatively, respectively, whereas in the control group at the same time points they were 7.7%, 15.2%, 26.3%, and 44.0%, respectively. There were no significant differences in the progression rate of gap filling between the groups. Conclusion The present study demonstrated that LIPUS did not promote bone healing and functional recovery after OWHTO with a locking plate. The routine use of LIPUS after OWHTO was not recommended from the results of our study. Cite this article: Bone Jt Open 2022;3(11):885–893.
Collapse
Affiliation(s)
- Kenichi Goshima
- Department of Orthopedic Surgery and Joint Reconstructive Surgery, Toyama Municipal Hospital, Toyama, Japan
- Department of Orthopedic Surgery and Joint Reconstructive Surgery, Kanazawa Munehiro Hospital, Kanazawa, Japan
| | - Takeshi Sawaguchi
- Department of Traumatology, Fukushima Medical University, Fukushima, Japan
- Trauma Reconstruction Center, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Takeshi Horii
- Department of Orthopedic Surgery and Joint Reconstructive Surgery, Toyama Municipal Hospital, Toyama, Japan
| | - Kenji Shigemoto
- Department of Orthopedic Surgery and Joint Reconstructive Surgery, Toyama Municipal Hospital, Toyama, Japan
| | - Shintaro Iwai
- Department of Orthopedic Surgery and Joint Reconstructive Surgery, Toyama Municipal Hospital, Toyama, Japan
| |
Collapse
|
20
|
Stengel D, Mutschler W, Dubs L, Kirschner S, Renkawitz T. [Interpretation of systematic review articles and meta-analyses : Clinical trials in trauma surgery and orthopedics]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2022; 125:897-908. [PMID: 36166082 DOI: 10.1007/s00113-022-01244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clinical trials must be planned and interpreted in the context of current best clinical and scientific evidence, undoubtedly provided by systematic reviews and meta-analyses, especially Cochrane Reviews. While many clinicians feel overwhelmed by this complex data source, few visualElements (e.g., the traffic light system of the Cochrane risk of bias [RoB‑2] tool, forest plots, etc.), together with indices such as the I2 heterogeneity statistic, allow for a quick appraisal of all critical and necessary qualitative and quantitative information. The effectiveness of different treatment options can indirectly be assessed by methodological advancements like network meta-analyses.Point estimates of percentages are insufficient to describe the utility and value of a proposed novel intervention, which, in orthopedic and trauma surgery, often represents a step innovation. 95% confidence intervals and the so-called fragility index are helpful in determining the ultimate patient benefit.
Collapse
Affiliation(s)
- Dirk Stengel
- Forschung - Ressort Medizin, BG Kliniken - Klinikverbund der Gesetzlichen Unfallversicherung gGmbH, Leipziger Pl. 1, 10117, Berlin, Deutschland.
| | - Wolf Mutschler
- Klinik für Allgemeine, Unfall- und Wiederherstellungschirurgie, LMU Klinikum der Universität München, Nußbaumstr. 20, 80336, München, Deutschland
| | - Luzi Dubs
- FMH für Orthopädische Chirurgie, Rychenbergstr. 155, 8400, Winterthur, Schweiz
| | - Stephan Kirschner
- Klinik für Orthopädie, St. Vincentius-Kliniken gAG, Steinhäuserstr. 18, 76135, Karlsruhe, Deutschland
| | - Tobias Renkawitz
- Orthopädie, Unfallchirurgie und Paraplegiologie, Orthopädische Universitätsklinik Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Deutschland
| |
Collapse
|
21
|
The perceptions of clinicians using low-intensity pulsed ultrasound (LIPUS) for orthopaedic pathology: A national qualitative study. Injury 2022; 53:3214-3219. [PMID: 35803746 DOI: 10.1016/j.injury.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Low-intensity pulsed ultrasound (LIPUS) is a non-invasive treatment modality for delayed union or non-union of acute fractures. We aimed to assess the current use of LIPUS at a national level in the United Kingdom, why and how clinicians use it, what treatment protocols are followed, and what the current perceptions are on this technology. METHODOLOGY Using a detailed online survey compromised of 20 questions delivered to known LIPUS users, we were able to collect qualitative data on indication of use, type of machine used, personal views on the technology, frequency of usage, and treatment protocols. Each question was peer-reviewed to exclude bias. RESULTS A total of 70 respondents completed the survey. LIPUS was used by most clinicians for cases of non-union (N = 55, 78.5%) and delayed union (N = 51, 72.8%). The majority of respondents personally used a LIPUS device between 1 and 5 times in 12 months (N = 38, 54.3%). Most considered LIPUS a failure after three to six months of treatment without clinical improvement (N = 39, 55.7%). A total of 32 respondents (45.7%) mentioned the need for funding approval before accessing LIPUS technology. Poor revision surgery candidates (N = 48, 68.6%) and atrophic non-union (N = 46, 65.7%) were the most frequently cited reasons for using LIPUS technology as treatment. Most participants (N = 48, 68.6%) considered LIPUS to be cost-effective. Despite most clinicians being comfortable with the use of LIPUS, some respondents did not understand the basic science underpinning the technology nor could explain the need for LIPUS to patients comfortably. CONCLUSION LIPUS technology may have a significant role to play in the treatment of orthopaedic fracture related pathology. Regular users perceived the technology to be cost-effective and efficacious. Further research should standardize treatment protocols and aim to establish a national LIPUS registry.
Collapse
|
22
|
Zeng L, Brignardello-Petersen R, Hultcrantz M, Mustafa RA, Murad MH, Iorio A, Traversy G, Akl EA, Mayer M, Schünemann HJ, Guyatt GH. GRADE Guidelines 34: Updated GRADE guidance for imprecision rating using a minimally contextualized approach. J Clin Epidemiol 2022; 150:216-224. [DOI: 10.1016/j.jclinepi.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
|
23
|
Palanisamy P, Alam M, Li S, Chow SKH, Zheng Y. Low-Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing: A Review. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:547-563. [PMID: 33949710 PMCID: PMC9290611 DOI: 10.1002/jum.15738] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 05/17/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a developing technology, which has been proven to improve fracture healing process with minimal thermal effects. This noninvasive treatment accelerates bone formation through various molecular, biological, and biomechanical interactions with tissues and cells. Although LIPUS treatment has shown beneficial effects on different bone fracture locations, only very few studies have examined its effects on deeper bones. This study provides an overview on therapeutic ultrasound for fractured bones, possible mechanisms of action, clinical evidences, current limitations, and its future prospects.
Collapse
Affiliation(s)
- Poornima Palanisamy
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| | - Monzurul Alam
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| | - Shuai Li
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| | - Simon K. H. Chow
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong KongS.A.RChina
| | - Yong‐Ping Zheng
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongS.A.RChina
| |
Collapse
|
24
|
Sun Y, Wan B, Wang R, Zhang B, Luo P, Wang D, Nie JJ, Chen D, Wu X. Mechanical Stimulation on Mesenchymal Stem Cells and Surrounding Microenvironments in Bone Regeneration: Regulations and Applications. Front Cell Dev Biol 2022; 10:808303. [PMID: 35127684 PMCID: PMC8815029 DOI: 10.3389/fcell.2022.808303] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023] Open
Abstract
Treatment of bone defects remains a challenge in the clinic. Artificial bone grafts are the most promising alternative to autologous bone grafting. However, one of the limiting factors of artificial bone grafts is the limited means of regulating stem cell differentiation during bone regeneration. As a weight-bearing organ, bone is in a continuous mechanical environment. External mechanical force, a type of biophysical stimulation, plays an essential role in bone regeneration. It is generally accepted that osteocytes are mechanosensitive cells in bone. However, recent studies have shown that mesenchymal stem cells (MSCs) can also respond to mechanical signals. This article reviews the mechanotransduction mechanisms of MSCs, the regulation of mechanical stimulation on microenvironments surrounding MSCs by modulating the immune response, angiogenesis and osteogenesis, and the application of mechanical stimulation of MSCs in bone regeneration. The review provides a deep and extensive understanding of mechanical stimulation mechanisms, and prospects feasible designs of biomaterials for bone regeneration and the potential clinical applications of mechanical stimulation.
Collapse
Affiliation(s)
- Yuyang Sun
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Ben Wan
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Bowen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Diaodiao Wang
- Department of Joint Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Jing-Jun Nie, ; Dafu Chen,
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Jing-Jun Nie, ; Dafu Chen,
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
25
|
McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. MICROMACHINES 2021; 12:1488. [PMID: 34945337 PMCID: PMC8707172 DOI: 10.3390/mi12121488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.
Collapse
Affiliation(s)
- Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
26
|
ElHawary H, Baradaran A, Abi-Rafeh J, Vorstenbosch J, Xu L, Efanov JI. Bone Healing and Inflammation: Principles of Fracture and Repair. Semin Plast Surg 2021; 35:198-203. [PMID: 34526868 PMCID: PMC8432998 DOI: 10.1055/s-0041-1732334] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bones comprise a significant percentage of human weight and have important physiologic and structural roles. Bone remodeling occurs when healthy bone is renewed to maintain bone strength and maintain calcium and phosphate homeostasis. It proceeds through four phases: (1) cell activation, (2) resorption, (3) reversal, and (4) bone formation. Bone healing, on the other hand, involves rebuilding bone following a fracture. There are two main types of bone healing, primary and secondary. Inflammation plays an integral role in both bone remodeling and healing. Therefore, a tightly regulated inflammatory response helps achieve these two processes, and levels of inflammation can have detrimental effects on bone healing. Other factors that significantly affect bone healing are inadequate blood supply, biomechanical instability, immunosuppression, and smoking. By understanding the different mechanisms of bone healing and the factors that affect them, we may have a better understanding of the underlying principles of bony fixation and thereby improve patient care.
Collapse
Affiliation(s)
- Hassan ElHawary
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Aslan Baradaran
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jad Abi-Rafeh
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Joshua Vorstenbosch
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Liqin Xu
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Johnny Ionut Efanov
- Division of Plastic and Reconstructive Surgery, Centre Hospitalier de l'Université de Montréal, Quebec, Canada
| |
Collapse
|
27
|
Seong S, Kim D, Lee D, Kim HR, Shin Y. Low-intensity pulsed ultrasound attenuates replacement root resorption of avulsed teeth stored in dry condition in dogs. Sci Rep 2021; 11:12892. [PMID: 34145362 PMCID: PMC8213703 DOI: 10.1038/s41598-021-92471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on replacement root resorption after replantation of avulsed teeth stored in a dry condition in dogs. A total of 73 premolar roots from four male mongrel dogs were intentionally avulsed with forceps and divided into four groups—HN, HL, DN, and DL—according to storage conditions and whether or not they received LIPUS treatment. Thirty-eight roots were kept in Hanks’ Balanced Salt Solution for 30 min (HN and HL groups), whereas the remaining 35 roots were left to dry in the air for an hour (DN and DL groups) prior to replantation. Following replantation, the roots in the HL and DL groups (21 and 18 roots, respectively) received a 20-min daily LIPUS treatment for 2 weeks. The animals were euthanized 4 weeks after the operation. Micro-computed tomography images were acquired for each root and the amount of replacement root resorption was measured three-dimensionally. Histological assessments were also carried out. There was significantly less replacement root resorption for the roots in the DL group compared to the DN group (p < 0.01). Histological findings in the DN group demonstrated evident replacement root resorption, whereas the DL group revealed less severe resorption compared to the DN group. Within the limitations, these results suggest that LIPUS could attenuate the replacement resorption of avulsed teeth stored in a dry condition, thereby improving their prognosis.
Collapse
Affiliation(s)
- Saemi Seong
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Dasun Lee
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Yooseok Shin
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.
| |
Collapse
|
28
|
Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review. Sports (Basel) 2021; 9:sports9040052. [PMID: 33923520 PMCID: PMC8073721 DOI: 10.3390/sports9040052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Physical activity is known to be beneficial for bone; however, some athletes who train intensely are at risk of bone stress injury (BSI). Incidence in adolescent athlete populations is between 3.9 and 19% with recurrence rates as high as 21%. Participation in physical training can be highly skeletally demanding, particularly during periods of rapid growth in adolescence, and when competition and training demands are heaviest. Sports involving running and jumping are associated with a higher incidence of BSI and some athletes appear to be more susceptible than others. Maintaining a very lean physique in aesthetic sports (gymnastics, figure skating and ballet) or a prolonged negative energy balance in extreme endurance events (long distance running and triathlon) may compound the risk of BSI with repetitive mechanical loading of bone, due to the additional negative effects of hormonal disturbances. The following review presents a summary of the epidemiology of BSI in the adolescent athlete, risk factors for BSI (physical and behavioural characteristics, energy balance and hormone disruption, growth velocity, sport-specific risk, training load, etc.), prevention and management strategies.
Collapse
|
29
|
Zamarioli A, Campbell ZR, Maupin KA, Childress PJ, Ximenez JPB, Adam G, Chakraborty N, Gautam A, Hammamieh R, Kacena MA. Analysis of the effects of spaceflight and local administration of thrombopoietin to a femoral defect injury on distal skeletal sites. NPJ Microgravity 2021; 7:12. [PMID: 33772025 PMCID: PMC7997973 DOI: 10.1038/s41526-021-00140-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
With increased human presence in space, bone loss and fractures will occur. Thrombopoietin (TPO) is a recently patented bone healing agent. Here, we investigated the systemic effects of TPO on mice subjected to spaceflight and sustaining a bone fracture. Forty, 9-week-old, male, C57BL/6 J were divided into 4 groups: (1) Saline+Earth; (2) TPO + Earth; (3) Saline+Flight; and (4) TPO + Flight (n = 10/group). Saline- and TPO-treated mice underwent a femoral defect surgery, and 20 mice were housed in space ("Flight") and 20 mice on Earth for approximately 4 weeks. With the exception of the calvarium and incisor, positive changes were observed in TPO-treated, spaceflight bones, suggesting TPO may improve osteogenesis in the absence of mechanical loading. Thus, TPO, may serve as a new bone healing agent, and may also improve some skeletal properties of astronauts, which might be extrapolated for patients on Earth with restraint mobilization and/or are incapable of bearing weight on their bones.
Collapse
Affiliation(s)
- Ariane Zamarioli
- grid.257413.60000 0001 2287 3919Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN USA ,Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, Ribeirão Preto, SP Brazil
| | - Zachery R. Campbell
- grid.257413.60000 0001 2287 3919Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN USA ,Marian University College of Osteopathic Medicine, Indianapolis, IN USA
| | - Kevin A. Maupin
- grid.257413.60000 0001 2287 3919Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Paul J. Childress
- grid.257413.60000 0001 2287 3919Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joao P. B. Ximenez
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Medical School, Ribeirão Pre, SP Brazil
| | - Gremah Adam
- grid.257413.60000 0001 2287 3919Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nabarun Chakraborty
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Aarti Gautam
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Rasha Hammamieh
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Melissa A. Kacena
- grid.257413.60000 0001 2287 3919Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN USA ,grid.280828.80000 0000 9681 3540Richard L. Roudebush VA Medical Center, Indianapolis, IN USA
| |
Collapse
|
30
|
Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the Effectiveness of Biophysical Methods of Osteogenesis Stimulation: Review. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2021; 27:86-96. [DOI: https:/doi.org/10.21823/2311-2905-2021-27-1-86-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Background. Stimulation of osteogenesis (SO) by biophysical methods has been widely used in practice to accelerate healing or stimulate the healing of fractures with non-unions, since the middle of the XIX century. SO can be carried out by direct current electrostimulation, or indirectly by low-intensity pulsed ultrasound, capacitive electrical coupling stimulation, and pulsed electromagnetic field stimulation. SO simulates natural physiological processes: in the case of electrical stimulation, it changes the electromagnetic potential of damaged cell tissues in a manner similar to normal healing processes, or in the case of low-intensity pulsed ultrasound, it produces weak mechanical effects on the fracture area. SO increases the expression of factors and signaling pathways responsible for tissue regeneration and bone mineralization and ultimately accelerates bone union.The purpose of this review was to present the most up-to-date data from laboratory and clinical studies of the effectiveness of SO.Material and Methods. The results of laboratory studies and the final results of metaanalyses for each of the four SO methods published from 1959 to 2020 in the PubMed, EMBASE, and eLibrary databases are reviewed.Conclusion. The use of SO effectively stimulates the healing of fractures with the correct location of the sensors, compliance with the intensity and time of exposure, as well as the timing of use for certain types of fractures. In case of non-union or delayed union of fractures, spondylodesis, arthrodesis, preference should be given to non-invasive methods of SO. Invasive direct current stimulation can be useful for non-union of long bones, spondylodesis with the risk of developing pseudoarthrosis.
Collapse
|
31
|
Emelianov VY, Preobrazhenskaia EV, Nikolaev NS. Evaluating the Effectiveness of Biophysical Methods of Osteogenesis Stimulation: Review. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2021; 27:86-96. [DOI: 10.21823/2311-2905-2021-27-1-86-96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background. Stimulation of osteogenesis (SO) by biophysical methods has been widely used in practice to accelerate healing or stimulate the healing of fractures with non-unions, since the middle of the XIX century. SO can be carried out by direct current electrostimulation, or indirectly by low-intensity pulsed ultrasound, capacitive electrical coupling stimulation, and pulsed electromagnetic field stimulation. SO simulates natural physiological processes: in the case of electrical stimulation, it changes the electromagnetic potential of damaged cell tissues in a manner similar to normal healing processes, or in the case of low-intensity pulsed ultrasound, it produces weak mechanical effects on the fracture area. SO increases the expression of factors and signaling pathways responsible for tissue regeneration and bone mineralization and ultimately accelerates bone union.The purpose of this review was to present the most up-to-date data from laboratory and clinical studies of the effectiveness of SO.Material and Methods. The results of laboratory studies and the final results of metaanalyses for each of the four SO methods published from 1959 to 2020 in the PubMed, EMBASE, and eLibrary databases are reviewed.Conclusion. The use of SO effectively stimulates the healing of fractures with the correct location of the sensors, compliance with the intensity and time of exposure, as well as the timing of use for certain types of fractures. In case of non-union or delayed union of fractures, spondylodesis, arthrodesis, preference should be given to non-invasive methods of SO. Invasive direct current stimulation can be useful for non-union of long bones, spondylodesis with the risk of developing pseudoarthrosis.
Collapse
|
32
|
Low-Intensity Pulsed Ultrasound Modulates RhoA/ROCK Signaling of Rat Mandibular Bone Marrow Mesenchymal Stem Cells to Rescue Their Damaged Cytoskeletal Organization and Cell Biological Function Induced by Radiation. Stem Cells Int 2020; 2020:8863577. [PMID: 32952571 PMCID: PMC7482001 DOI: 10.1155/2020/8863577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Osteoradionecrosis of the jaw (ORNJ) is an infrequent yet potentially devastating complication of head and neck radiation therapy. Low-intensity pulsed ultrasound (LIPUS) has been widely accepted as a promising method for the successful management of ORNJ, but the mechanism remains unclear. In this study, the effects of LIPUS on cytoskeletal reorganization, cell viability, and osteogenic differentiation capacity of rat mandible-derived bone marrow mesenchymal stem cells (M-BMMSCs) induced by radiation were determined by immunofluorescence staining, CCK-8 cell proliferation assay, quantification of alkaline phosphatase (ALP) activity, alizarin red staining, and real-time RT-PCR, respectively. Moreover, the involvement of the RhoA/ROCK signaling pathway underlying this process was investigated via western blot analysis. We found that radiation induced significant damage to the cytoskeleton, cell viability, and osteogenic differentiation capacity of M-BMMSCs and downregulated their expression of RhoA, ROCK, and vinculin while increasing FAK expression. LIPUS treatment effectively rescued the disordered cytoskeleton and redistributed vinculin. Furthermore, the cell viability and osteogenic differentiation capacity were also significantly recovered. More importantly, it could reverse the aberrant expression of the key molecules induced by radiation. Inhibition of RhoA/ROCK signaling remarkably aggravated the inhibitory effect of radiation and attenuated the therapeutic effect of LIPUS. In the light of these findings, the RhoA/ROCK signaling pathway might be a promising target for modifying the therapeutic effect of LIPUS on osteoradionecrosis.
Collapse
|
33
|
Berber R, Aziz S, Simkins J, Lin SS, Mangwani J. Low Intensity Pulsed Ultrasound Therapy (LIPUS): A review of evidence and potential applications in diabetics. J Clin Orthop Trauma 2020; 11:S500-S505. [PMID: 32774018 PMCID: PMC7394837 DOI: 10.1016/j.jcot.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022] Open
Abstract
Low Intensity Pulsed Ultrasound Therapy (LIPUS) is a non-invasive treatment and aims to reduce fracture healing time and avoid non-union by delivering micro-mechanical stress to the bone to stimulate bone healing. In 2018, the National Institute for Health and Clinical Excellence (NICE) recommended that the evidence for LIPUS to promote healing of delayed-union and non-union fractures raised no major safety concerns, but the current evidence on efficacy is inadequate in quality. Little is known about the potential benefits of LIPUS for fracture healing in diabetic patients. In this article, we review the current evidence of LIPUS therapy both in animal and human studies and its possible application on fractures in diabetics.
Collapse
Affiliation(s)
- Reshid Berber
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
| | - Sheweidin Aziz
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
| | - Joanna Simkins
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Newark, NJ, 07101, USA
| | - Jitendra Mangwani
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK,Corresponding author. Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK.
| |
Collapse
|
34
|
Hériveaux Y, Audoin B, Biateau C, Nguyen VH, Haïat G. Ultrasonic Propagation in a Dental Implant. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1464-1473. [PMID: 32139153 DOI: 10.1016/j.ultrasmedbio.2020.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/23/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Ultrasound techniques can be used to characterize and stimulate dental implant osseointegration. However, the interaction between an ultrasonic wave and the implant-bone interface (IBI) remains unclear. This study-combining experimental and numerical approaches-investigates the propagation of an ultrasonic wave in a dental implant by assessing the amplitude of the displacements along the implant axis. An ultrasonic transducer was excited in a transient regime at 10 MHz. Laser interferometric techniques were employed to measure the amplitude of the displacements, which varied 3.2-8.9 nm along the implant axis. The results demonstrated the propagation of a guided wave mode along the implant axis. The velocity of the first arriving signal was equal to 2110 m.s-1, with frequency components lower than 1 MHz, in agreement with numerical results. Investigating guided wave propagation in dental implants should contribute to improved methods for the characterization and stimulation of the IBI.
Collapse
Affiliation(s)
- Yoann Hériveaux
- CNRS, Laboratoire Modélisation et Simulation Multi-Échelle, Créteil, France
| | - Bertrand Audoin
- CNRS, Institut de Mécanique et d'Ingénierie, Talence, France
| | | | - Vu-Hieu Nguyen
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Échelle, Créteil, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation Multi-Échelle, Créteil, France
| |
Collapse
|
35
|
Majeed H, Karim T, Davenport J, Karski M, Smith R, Clough TM. Clinical and patient-reported outcomes following Low Intensity Pulsed Ultrasound (LIPUS, Exogen) for established post-traumatic and post-surgical nonunion in the foot and ankle. Foot Ankle Surg 2020; 26:405-411. [PMID: 31142440 DOI: 10.1016/j.fas.2019.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Biophysical methods including Low Intensity Pulsed Ultrasound (LIPUS) are emerging as potential alternatives to revision surgery for treating established nonunions. We aim to prospectively review the clinical and patient-reported outcomes of patients treated with LIPUS following post-traumatic and post-surgical nonunions in the foot and ankle. METHODS Forty-seven consecutive patients underwent Exogen treatment. Patient-reported outcome scores included MOXFQ, EQ-5D and VAS. Patients were divided in to 3 groups: fractures (A), hindfoot procedures (B) and midfoot/forefoot procedures (C). RESULTS Thirty-seven patients (78.7%) clinically united, 4 patients (8.5%) noticed no significant improvement but did not want further intervention and 6 patients (12.8%) underwent revision surgery. The mean duration of Exogen treatment was 6 months. Union rates of 93%, 67% and 78% were noted in the three groups. Significant improvement in functional outcomes and potential cost savings were observed. CONCLUSIONS Exogen for established nonunion in the foot and ankle is a safe, valuable and economically viable clinical option as an alternative to revision surgery. We observed better results in the fracture and midfoot/forefoot groups and relatively poorer results in the hindfoot fusion group.
Collapse
Affiliation(s)
- Haroon Majeed
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL England, United Kingdom.
| | - Tariq Karim
- Wrightington Hospital, Hall Lane, Wigan, WN6 9EP England, United Kingdom
| | - James Davenport
- Wrightington Hospital, Hall Lane, Wigan, WN6 9EP England, United Kingdom
| | - Michael Karski
- Wrightington Hospital, Hall Lane, Wigan, WN6 9EP England, United Kingdom
| | - Robert Smith
- Wrightington Hospital, Hall Lane, Wigan, WN6 9EP England, United Kingdom
| | - Timothy M Clough
- Wrightington Hospital, Hall Lane, Wigan, WN6 9EP England, United Kingdom.
| |
Collapse
|
36
|
Abstract
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14.
Collapse
|
37
|
Abstract
Athletic trainers, physical therapists, and team physicians have differing roles when providing care, yet often need to collaborate. Athletic trainers and physical therapists use a variety of therapeutic modalities and manual therapy techniques in conjunction with rehabilitation exercises to improve outcomes. Clinicians must be knowledgeable of the scientific rationale for each modality to choose the most effective treatment for the specific condition and stage of recovery. The team physician should be familiar with the use of common procedures in an athletic training room. Here, we review the most current evidence and the basic methods encountered in athletic training room settings.
Collapse
|
38
|
Nicholson JA, Tsang STJ, MacGillivray TJ, Perks F, Simpson AHRW. What is the role of ultrasound in fracture management?: Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019; 8:304-312. [PMID: 31463038 PMCID: PMC6691369 DOI: 10.1302/2046-3758.87.bjr-2018-0215.r2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods A review of relevant literature was undertaken, including articles indexed in PubMed with keywords "ultrasound" or "sonography" combined with "diagnosis", "fracture healing", "impaired fracture healing", "nonunion", "microbiology", and "fracture-related infection". Results The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote union in the management of acute fractures is currently a controversial topic. However, there is strong in vitro evidence that ultrasound can stimulate a biological effect with potential clinical benefit in established nonunions, which supports the need for further investigation. Conclusion Modern ultrasound image processing has the potential to replace traditional imaging modalities in several areas of trauma practice, particularly in the early prediction of impaired fracture healing. Further understanding of the therapeutic application of ultrasound is required to understand and identify the use in promoting fracture healing.Cite this article: J. A. Nicholson, S. T. J. Tsang, T. J. MacGillivray, F. Perks, A. H. R. W. Simpson. What is the role of ultrasound in fracture management? Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019;8:304-312. DOI: 10.1302/2046-3758.87.BJR-2018-0215.R2.
Collapse
Affiliation(s)
- J A Nicholson
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - S T J Tsang
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - T J MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - F Perks
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - A H R W Simpson
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Leiblein M, Verboket R, Marzi I, Wagner N, Nau C. Nonunions of the humerus - Treatment concepts and results of the last five years. Chin J Traumatol 2019; 22:187-195. [PMID: 31109830 PMCID: PMC6667773 DOI: 10.1016/j.cjtee.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Fractures of the humerus account for 5%-8% of all fractures. Nonunion is found with an incidence of up to 15%, depending on the location of the fracture. In case of a manifest nonunion the surgeon faces a challenging problem and has to conceive a therapy based on the underlying pathology. The aim of this study was to describe our treatment concepts for this entity and present our results of the last five years. METHODS Twenty-six patients were treated for nonunion of the humerus between January 2013 and December 2017. Their charts were reviewed retrospectively and demographic data, pathology, surgical treatment and outcome were assessed. RESULTS The most frequent location for a nonunion was the humeral shaft, with the most common trauma mechanism being multiple falls. Most often atrophic nonunion (n = 14), followed by hypertrophic and infection-caused nonunion (each n = 4), were found. Our treatment concept could be applied in 19 patients, of which in 90% of those who were available for follow-up consolidation could be achieved. CONCLUSION Humeral nonunion is a heterogeneous entity that has to be analyzed precisely and be treated correspondingly. We therefore present a treatment concept based on the underlying pathology.
Collapse
|
40
|
Abstract
OBJECTIVE To examine the effect of low-intensity pulsed ultrasound (LIPUS) on early-stage spondylolysis in young athletes. DESIGN Case-control study. SETTING A single outpatient orthopedic and sports clinic. PATIENTS A total of 82 young athletes (80 boys and 2 girls; mean age, 14.8 years; range, 10-18 years) with early-stage lumbar spondylolysis were enrolled in this study. All patients were examined by plain radiography and magnetic resonance imaging. INTERVENTIONS Patients received either standard conservative treatment combined with LIPUS (n = 35) or without LIPUS (n = 47), according to the sequence of admission. The standard conservative treatment included thoracolumbosacral brace, sports modification, and therapeutic exercise. MAIN OUTCOME MEASURES The time required to return to previous sports activities was analyzed by using Kaplan-Meier methods with the log-rank test. RESULTS The baseline parameters of both groups were not significantly different. The median time to return to previous sports activities was 61 days [95% confidence interval (CI): 58-69 days] in the group treated with LIPUS, which was significantly shorter than that of the group treated without LIPUS (167 days, 95% CI: 135-263 days; P < 0.01). CONCLUSIONS These results suggest that LIPUS combined with conservative treatment for early-stage lumbar spondylolysis in young athletes could be a useful therapy for quick return to playing sports.
Collapse
|
41
|
Efficacy and Safety of a Stimulator Using Low-Intensity Pulsed Ultrasound Combined with Transcutaneous Electrical Nerve Stimulation in Patients with Painful Knee Osteoarthritis. Pain Res Manag 2019; 2019:7964897. [PMID: 31316682 PMCID: PMC6604342 DOI: 10.1155/2019/7964897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 01/17/2023]
Abstract
Objective Studies regarding the combination of ultrasound and transcutaneous electrical nerve stimulation (TENS) are rarely reported. In this study, we aimed to elucidate the efficacy and safety of a stimulator using low-intensity pulsed ultrasound (LIPUS) combined with TENS in patients with painful knee osteoarthritis (OA). We evaluated the effectiveness of this therapy against pain, physical function, and cartilage regeneration. Moreover, we aim to prove the superiority of the effects of LIPUS combined with TENS therapy compared with only TENS therapy. Methods Of the 40 included patients, aged 45-85 years with painful knee OA, 20 patients received only TENS therapy and 20 patients received LIPUS combined with TENS therapy for 8 weeks (a total of more than 80 treatment sessions). We evaluated visual analogue scale (VAS), Western Ontario and McMaster Universities (WOMAC) osteoarthritis index, MOS 36-Item Short-Form Health Survey (SF-36), and femoral articular cartilage (FAC) thickness. The evaluation was performed at three visits: visit 1 (V1, pretreatment, within 28 days after screening), visit 2 (V2, posttreatment period 1, ±3 days after treatment), and visit 3 (V3, posttreatment period 2, 21 ± 3 days after treatment). Results We expected that LIPUS combined with TENS therapy would be superior to only TENS therapy. However, there was no significant difference between the two therapies. In the within-group comparison, both treatments (only TENS therapy and LIPUS with TENS therapy) demonstrated statistical differences from baseline values for pain and physical function outcomes. FAC thickness showed no significant differences after treatment in both groups. Conclusion The effects of a stimulator using LIPUS with TENS on pain relief and functional improvement were not superior to the only TENS therapy. Cartilage regeneration, which was expected as an additional benefit of LIPUS, was also not significantly evident. Therefore, further investigation is warranted to determine whether the combination therapy is beneficial. This trial is registered with KCT0003883.
Collapse
|
42
|
Chu YC, Lim J, Hong CW, Chu YS, Wang JL. Design of an ultrasound chamber for cellular excitation and observation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL547. [PMID: 31255168 DOI: 10.1121/1.5111974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
In this work, a design of integrating ultrasonic transduction with live cell imaging chamber is introduced. The principle of a metal-incident-glass-output acoustic path was used to deliver a uniform energy profile into the imaging/incubation chamber in the form of leaky Lamb waves. The design was applied to examine living mouse mammary gland epithelial cells (EpH4). Significant changes in intracellular activities were observed even at a very low energy intensity level (1 MHz, ISATA = 1 mW/cm2, continuous wave). Live imaging with ultrasonic stimulation provides a different paradigm to interrogate cellular mechanosensitive responses in real time.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| | - Jormay Lim
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| | - Cheng-Wei Hong
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang-Ming University, Taipei, , , , ,
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Abstract
There have been a growing number of landmark randomized controlled trials published in the orthopedic literature over the past decade. These large-scale trials have had a substantial impact on informing clinical orthopedic practice globally. This review highlights a selected sample of such pivotal trials, across the subspecialties of trauma, sports medicine, arthroplasty, spine, and the important topic of intimate partner violence.
Collapse
|
44
|
Wuytack F, Regan M, Biesty L, Meskell P, Lutomski JE, O'Donnell M, Treweek S, Devane D. Risk of bias assessment of sequence generation: a study of 100 systematic reviews of trials. Syst Rev 2019; 8:13. [PMID: 30621793 PMCID: PMC6323681 DOI: 10.1186/s13643-018-0924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Systematic reviews of randomised trials guide policy and healthcare decisions. Yet, we observed that some reviews judge randomised trials as high or unclear risk of bias (ROB) for sequence generation, potentially introducing bias. However, to date, the extent of this issue has not been well examined. We evaluated the consistency in the ROB assessment for sequence generation of randomised trials in Cochrane and non-Cochrane reviews, and explored the reviewers' judgement of the quality of evidence for the related outcomes. METHODS Cochrane intervention reviews (01/01/2017-31/03/2017) were retrieved from the Cochrane Database of Systematic Reviews. We also searched for systematic reviews in ten general medical journals with highest impact factors (01/01/2016-31/03/2017). We examined the proportion of reviews that rated the sequence generation domain as high, low or unclear risk of selection bias. For reviews that had rated any randomised trials as high or unclear risk of bias, we examined the proportion that had assessed the quality of evidence. RESULTS Overall, 100 systematic reviews were included in our analysis. We evaluated 64 Cochrane reviews which comprised of 984 randomised trials; 0.8% (n = 8) and 52.2% (n = 514) were rated as high and unclear ROB for sequence generation respectively. We further evaluated 36 non-Cochrane reviews which comprised of 1376 trials; 5.8% (n = 80) and 39.6% (n = 545) were rated as high and unclear ROB respectively. Ninety percent (n = 10) of non-Cochrane reviews which rated randomised trials as high ROB for sequence generation did not report an underlying reason. All Cochrane reviews assessed the quality of evidence (GRADE). For the non-Cochrane reviews, only just over half had assessed the quality of evidence. CONCLUSION Systematic reviews of interventions frequently rate randomised trials as high or unclear ROB for sequence generation. In general, Cochrane reviews were more transparent than non-Cochrane reviews in ROB and quality of evidence assessment. The scientific community should more strongly promote consistent ROB assessment for sequence generation to minimise selection bias and support transparent quality of evidence assessment. Consistency ensures that appropriate conclusions are drawn from the data.
Collapse
Affiliation(s)
- Francesca Wuytack
- School of Nursing & Midwifery, Trinity College Dublin, 24 D'Olier Street, Dublin 2, Ireland.
| | - Maria Regan
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Linda Biesty
- HRB-Trials Methodology Research Network/School of Nursing & Midwifery, National University of Ireland Galway, Galway, Ireland
| | - Pauline Meskell
- Department of Nursing & Midwifery, Health Sciences Building, University of Limerick, Limerick, Ireland
| | - Jennifer E Lutomski
- Radboud Biobank, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Martin O'Donnell
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Shaun Treweek
- Health Services Research Unit, University of Aberdeen, Health Sciences Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Declan Devane
- HRB-Trials Methodology Research Network/School of Nursing & Midwifery, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
45
|
Zadro JR, Moseley AM, Elkins MR, Maher CG. PEDro searching has improved over time: A comparison of search commands from two six-month periods three years apart. Int J Med Inform 2018; 121:1-9. [PMID: 30545484 DOI: 10.1016/j.ijmedinf.2018.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND In 2014-2015, the Physiotherapy Evidence Database (PEDro) was searched poorly by users; few search commands used sophisticated features and ∼20% contained errors. To improve the quality of PEDro searches, users now receive error messages when using incorrect search commands and have access to video tutorials. OBJECTIVES To determine whether search quality has improved since error messages and tutorials were implemented; and evaluate the content of PEDro searches. METHODS Google Analytics was used to access all search commands on PEDro (between 1 August 2017 and 31 January 2018) and extract the following data: total number of search commands; 25 most common simple and advanced search commands; and frequency of search errors (e.g. Boolean operators) or use of sophisticated features (e.g. truncation/wildcards). Two researchers independently coded the subdiscipline (e.g. musculoskeletal, neurology) and PICO elements (Population; Intervention; Comparison; Outcome) from a random sample of 200 simple and 200 advanced search commands. Data were compared to an identical analysis performed in 2014-2015 to determine whether the content or quality of search commands had changed. RESULTS There has been a very small increase in the use of truncation/wildcards since 2014-2015 (1.4% increase in simple and 1.9% in advanced search commands; p < 0.001) and small reductions in search errors (Boolean operators: 3.7% reduction in simple and 3.2% in advanced; brackets: 0.9% and 0.4%; non-ASCII characters: 3.1% and 1.6%; p < 0.001 for all analyses). Overall, only 6% of simple and 9% of advanced search commands used sophisticated features, while 16% of simple and 12% of advanced search commands contained errors. The content of PEDro search commands was largely similar to searches from 2014 to 2015. CONCLUSION There has been a small reduction in the number of search commands containing errors, and only a very small increase in the use of sophisticated features. These improvements may be explained by video tutorials on how to optimise searching and warnings that appear when users enter search commands containing errors. However, with 16% of simple and 12% of advanced search commands still containing errors, additional strategies to further improve the quality of searches are needed.
Collapse
Affiliation(s)
- Joshua R Zadro
- School of Public Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, NSW, Australia.
| | - Anne M Moseley
- School of Public Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, NSW, Australia
| | - Mark R Elkins
- Research Education Consultant, Centre for Education and Workforce Development, Sydney Local Health District, Sydney, NSW, Australia
| | - Christopher G Maher
- School of Public Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
46
|
曲 良, 严 金, 蒋 章, 宋 志, 罗 佛, 彭 清. [Low-intensity pulsed ultrasound pretreatment inhibits HMGB1 expression and attenuates lung ischemia-reperfusion injury in rats via the cholinergic anti-inflammatory pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1061-1065. [PMID: 30377098 PMCID: PMC6744187 DOI: 10.12122/j.issn.1673-4254.2018.09.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To observe the effects of low-intensity pulsed ultrasound (LIPUS) pretreatment on pulmonary expression of high mobility group box-1 (HMGB1) in a rat model of lung ischemia-reperfusion (IR). METHODS Thirty-two male SpragueDawley rats weighing 250-300 g were randomly divided (n=8) into sham-operated group, lung IR group, LIPUS pretreatment group and pretreatment with α7-nicotinic cholinergic receptor (α7nAChR) antagonist group. In the sham-operated group, the left pulmonary hilum was dissociated without occlusion; in the other 3 groups, the left pulmonary hilum was occluded for 45 min followed by reperfusion for 180 min; LIPUS pretreatment for 30 min and intraperitoneal injection of methyllycaconitine (2 mg/kg), an α7nAChR antagonist, were administered before the operation. The wet/dry weight ratio (W/D) and pulmonary permeability index (LPI) of the lung tissue were measured, and the lung histopathology was observed and scored. The contents of interleukin-1 (IL-1) and IL-6 in the lung tissues were measured using ELISA, and the pulmonary expression of HMGB1 protein was detected using immunofluorescence assay and Western blotting. RESULTS Compared with those in the sham-operated group, the W/D of the lung tissue, LPI, pathological scores, IL-1 and IL-6 contents in the lung tissue, and pulmonary HMGB1 expression all significantly increased in the other 3 groups (P < 0.05). LIPUS preconditioning significantly lowered the W/D values, LPI, pathological score, IL-1 and IL-6 contents and HMGB1 expression in the lung tissues following lung IR, and these effects were significantly inhibited by administration of methyllycaconitine. CONCLUSIONS LIPUS preconditioning can reduce lung IR injury possibly by activating α7nAChR-dependent cholinergic anti-inflammatory pathway to reduce lung tissue HMGB1 expression.
Collapse
Affiliation(s)
- 良超 曲
- />南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 金秀 严
- />南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 章颉 蒋
- />南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 志平 宋
- />南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 佛全 罗
- />南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - 清华 彭
- />南昌大学第一附属医院麻醉科,江西 南昌 330006Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
47
|
Lou S, Lv H, Li Z, Tang P, Wang Y. Effect of low-intensity pulsed ultrasound on distraction osteogenesis: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res 2018; 13:205. [PMID: 30119631 PMCID: PMC6098620 DOI: 10.1186/s13018-018-0907-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/05/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) is a common adjunct used to promote bone healing for fresh fractures and non-unions, but its efficacy for bone distraction osteogenesis remains uncertain. This study aims to determine whether LIPUS can effectively and safely reduce the associated treatment time for patients undergoing distraction osteogenesis. METHODS MEDLINE, EMBASE, and the Cochrane Library were searched until May 1, 2018, without language restriction. Studies should be randomized controlled trials (RCTs) or quasi-RCTs of LIPUS compared with sham devices or no devices in patients who undergo distraction osteogenesis. The primary outcome was the treatment time. The secondary outcome was the risk of complications. Treatment effects were assessed using mean differences, standardized mean differences, or risk ratios using a random-effects model. The Cochrane risk-of-bias tool was used to assess the risk of bias. The I2 statistic was used to assess the heterogeneity. The GRADE system was used to evaluate the evidence quality. RESULTS A total of 7 trials with 172 patients were included. The pooled results suggested that during the process of distraction osteogenesis, LIPUS therapy did not show a statistically significant reduction in the treatment time (mean difference, - 8.75 days/cm; 95% CI, - 20.68 to 3.18 days/cm; P = 0.15; I2 = 72%) or in the risk of complications (risk ratio, 0.90 in favor of LIPUS; 95% CI, 0.65 to 1.24; I2 = 0%). Also, LIPUS therapy did not show a significant effect on the radiological gap fill area (standardized mean difference, 0.48 in favor of control; 95%CI, - 1.49 to 0.52; I2 = 0%), the histological gap fill length (standardized mean difference, 0.76 in favor of control; 95%CI, - 1.78 to 0.27; I2 = 0%), or the bone density increase (standardized mean difference, 0.43 in favor of LIPUS; 95%CI, - 0.02 to 0.88; I2 = 0%). CONCLUSIONS Among patients undergoing distraction osteogenesis, neither the treatment time nor the risk of complications could be reduced by LIPUS therapy. The currently available evidence is insufficient to support the routine use of this intervention in clinical practice. TRIAL REGISTRATION CRD 42017073596.
Collapse
Affiliation(s)
- Shenghan Lou
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Road, Harbin, 150001, Heilongjiang, People's Republic of China.,Department of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Houchen Lv
- Department of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zhirui Li
- Department of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Yansong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Road, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
48
|
Lou S, Lv H, Li Z, Tang P, Wang Y. Parathyroid hormone analogues for fracture healing: protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2018; 8:e019291. [PMID: 29362267 PMCID: PMC5988099 DOI: 10.1136/bmjopen-2017-019291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Fracture healing is a complex physiological process. Impaired healing will increase the need for care and cause serious complications. Thus, identifying strategies to accelerate the rate of healing, preventing delayed unions and non-unions, is essential. Parathyroid hormone (PTH) is a key systemic regulator of calcium and phosphate metabolism. It has been determined that intermittent administration of PTH and its analogue can exert anabolic effect on bone, increase bone mass and reduce bone loss, leading to an increase in bone formation. Owing to their anabolic effect, there is an increasing interest in its potential in promoting the process of fracture healing. However, in clinical studies, the results are in conflict. This objective of this study is to determine the role of PTH analogues for fracture healing in adults. METHODS AND ANALYSIS MEDLINE, EMBASE and Cochrane databases will be searched to identify all randomised controlled trials (RCTs) and quasi-RCTs that compare the different effects between PTH analogues and any other treatments in adults with any type of fracture. The primary outcome is the functional recovery. And the secondary outcomes are fracture union and adverse events. The meta-analysis will be performed using a random effects model. Heterogeneity will be assessed by the P values and I² statistic. And subgroup analyses and sensitivity analyses will be used to explore the heterogeneity. Risk of bias will be assessed using the Cochrane tool and the quality of evidence will be assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. ETHICS AND DISSEMINATION Ethical approval is not required because this proposed systematic review and meta-analysis is based on published data, without including confidential personal data or data on interventions on patients. The findings of this study will be published in a peer-reviewed journaland presented at a relevant conference. PROSPERO REGISTRATION NUMBER CRD42017062093.
Collapse
Affiliation(s)
- Shenghan Lou
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Houchen Lv
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhirui Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yansong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|